JP2011167598A - Catalyst for producing carbon nanocoil, method for producing the nanocoil and carbon nanocoil - Google Patents

Catalyst for producing carbon nanocoil, method for producing the nanocoil and carbon nanocoil Download PDF

Info

Publication number
JP2011167598A
JP2011167598A JP2010031574A JP2010031574A JP2011167598A JP 2011167598 A JP2011167598 A JP 2011167598A JP 2010031574 A JP2010031574 A JP 2010031574A JP 2010031574 A JP2010031574 A JP 2010031574A JP 2011167598 A JP2011167598 A JP 2011167598A
Authority
JP
Japan
Prior art keywords
catalyst
cnc
layer
substrate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010031574A
Other languages
Japanese (ja)
Other versions
JP5560060B2 (en
JP2011167598A5 (en
Inventor
Yoshiori Hirahara
佳織 平原
Yoshikazu Nakayama
喜萬 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2010031574A priority Critical patent/JP5560060B2/en
Publication of JP2011167598A publication Critical patent/JP2011167598A/en
Publication of JP2011167598A5 publication Critical patent/JP2011167598A5/ja
Application granted granted Critical
Publication of JP5560060B2 publication Critical patent/JP5560060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing a carbon nanocoil (CNC), wherein a carbonized material layer formed in a CNC production process is reduced to attain reduction in the production time, the production cost and the CNC synthesis efficiency without excessively consuming a hydrocarbon gas such as acetylene gas and a catalytic metal, which are required to synthesize CNC, and to provide a method for producing the CNC and the CNC produced by the producing method. <P>SOLUTION: A tin compound solution is applied onto the surface of a carrier substrate material 1, the applied solution is dried, the dried tin compound is oxidized, the oxidized tin compound is fired to form an intermediate catalyst body having a tin oxide layer 2 formed on the substrate 1. After the tin oxide layer 2 is formed, a catalyst layer is formed from a wet catalyst. The applied catalyst solution is dried and the dried catalyst is fired at 600-1,100°C in the atmosphere to form a CNC production catalyst layer 3 on the tin oxide layer 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭素原子を螺旋状に巻回成長させた外直径が1000nm以下のカーボンナノコイル(以下、CNCという。)の製造に用いるカーボンナノコイル製造用触媒及びその触媒を用いてCNCを製造する製造方法に関する。   The present invention relates to a catalyst for producing carbon nanocoils used to produce carbon nanocoils (hereinafter referred to as CNC) having an outer diameter of 1000 nm or less in which carbon atoms are spirally wound and grown, and a CNC is produced using the catalyst. It relates to a manufacturing method.

CNCの合成は、特許文献1〜3等に開示されているように、内部を加熱した反応器内部にアセチレンガス等の炭化水素ガスを流通させ、この炭化水素ガスの中にCNC製造用触媒を粒子状に分散させ、炭化水素を触媒近傍で分解しながら触媒粒子の表面にカーボンナノコイルを成長させて行われる。カーボンナノコイルはnmサイズの線径を有し、長さ数10μmのコイル状物質からなるものである。   In the synthesis of CNC, as disclosed in Patent Documents 1 to 3, etc., a hydrocarbon gas such as acetylene gas is circulated in a reactor heated inside, and a catalyst for CNC production is placed in the hydrocarbon gas. The carbon nanocoil is grown on the surface of the catalyst particles while being dispersed in the form of particles and decomposing hydrocarbons in the vicinity of the catalyst. The carbon nanocoil has a wire diameter of nm size and is made of a coiled material having a length of several tens of μm.

CNCを化学気相成長法(CVD法)により高効率で合成できる触媒として、非特許文献1に示すように、Fe−In−Sn系酸化物が有効であることが既に知られている。   As shown in Non-Patent Document 1, it is already known that an Fe—In—Sn-based oxide is effective as a catalyst capable of highly efficiently synthesizing CNC by a chemical vapor deposition method (CVD method).

CNC合成において、例えば、湿式触媒を用いるとき、触媒は触媒金属塩化物及び硝酸塩の水又はエタノール溶液として成長基板上に塗布され、乾燥の後に800℃付近の高温で酸化処理することにより前駆体が形成される。CVD開始時に炭素源であるアセチレンガスが触媒に到達すると同時に還元されて最適な組成や粒径を持つ触媒粒子が形成され、CNCが基板上に成長していく。   In CNC synthesis, for example, when a wet catalyst is used, the catalyst is applied on the growth substrate as a catalyst metal chloride and nitrate water or ethanol solution, and after drying, the precursor is oxidized at a high temperature around 800 ° C. It is formed. At the start of CVD, acetylene gas as a carbon source reaches the catalyst and is simultaneously reduced to form catalyst particles having an optimal composition and particle size, and the CNC grows on the substrate.

特開2009−214021号公報JP 2009-214021 A WO2004/105940号公報WO 2004/105940 特開2004−2616301号公報JP 2004-2616301 A N.Okazaki,J.Phys.Chem.B 2005,109,17366−17371)N. Okazaki, J. et al. Phys. Chem. B 2005, 109, 17366-17371)

CNC合成のとき、CVD後の生成物の断面を電子顕微鏡で観察すると、担持材質と成長したCNCとの間には、黒鉛及び触媒金属からなる厚い炭化層が形成される。炭化層の厚さは成長したCNCの長さと同じオーダーにまで達する。   When the cross section of the product after CVD is observed with an electron microscope during the CNC synthesis, a thick carbonized layer made of graphite and catalytic metal is formed between the support material and the grown CNC. The thickness of the carbonized layer reaches the same order as the length of the grown CNC.

しかしながら、かかる炭化層の形成は、CNC合成に必要なアセチレンガス等の炭化水素ガスや触媒金属を余分に消費してしまうため、CNC合成コストの上昇を招き、また、所要製造時間の無駄を生じ、更に製造効率の低下を招くといった問題を生じていた。   However, the formation of such a carbonized layer consumes an excess of hydrocarbon gas such as acetylene gas and catalytic metal necessary for CNC synthesis, leading to an increase in CNC synthesis cost and waste of required production time. Further, there has been a problem that the production efficiency is lowered.

本発明の目的は、上記課題に鑑み、CNC製造過程で生ずる炭化層を低減して、CNC合成に必要なアセチレンガス等の炭化水素ガスや触媒金属を余分に消費することなく、製造時間の削減、低コスト化及びCNC合成効率の向上を図ることのできるカーボンナノコイル製造用触媒、その製造方法及びその製法により製造されたカーボンナノコイルを提供することである。   In view of the above problems, the object of the present invention is to reduce the carbonization layer generated in the CNC production process, and reduce the production time without consuming extra hydrocarbon gas such as acetylene gas and catalyst metal necessary for CNC synthesis. Another object of the present invention is to provide a carbon nanocoil production catalyst capable of reducing the cost and improving the CNC synthesis efficiency, a production method thereof, and a carbon nanocoil produced by the production method.

本発明者らは、上記課題を解決すべく鋭意研究した結果、基板材質と触媒層の界面に予め酸化スズ層からなるバッファー層を形成することによりCNC合成過程で生ずる炭化層の低減に成功した。
本発明の第1の形態は、基板と、前記基板表面に形成された酸化スズ層と、前記酸化スズ層の表面に形成されたカーボンナノコイル製造用触媒層を少なくとも有するカーボンナノコイル製造用触媒である。
As a result of diligent research to solve the above problems, the present inventors succeeded in reducing the carbonized layer generated in the CNC synthesis process by forming a buffer layer made of a tin oxide layer in advance at the interface between the substrate material and the catalyst layer. .
A first embodiment of the present invention is a carbon nanocoil manufacturing catalyst having at least a substrate, a tin oxide layer formed on the substrate surface, and a carbon nanocoil manufacturing catalyst layer formed on the surface of the tin oxide layer. It is.

本発明の第2の形態は、第1形態において、前記カーボンナノコイル製造用触媒層がFeMgSn、FeMgSnCo、FeMgCo、FeInSn、FeInSnCo、FeInCoの1種以上からなるカーボンナノコイル製造用触媒である。   A second aspect of the present invention is the carbon nanocoil manufacturing catalyst according to the first aspect, wherein the carbon nanocoil manufacturing catalyst layer is made of at least one of FeMgSn, FeMgSnCo, FeMgCo, FeInSn, FeInSnCo, and FeInCo.

本発明の第3の形態は、第1又は第2形態において、前記基板が、Si、SiO、Al、Siの1種以上からなるカーボンナノコイル製造用触媒である。 A third aspect of the present invention is the carbon nanocoil manufacturing catalyst according to the first or second aspect, wherein the substrate is composed of one or more of Si, SiO 2 , Al 2 O 3 , and Si 3 N 4 .

本発明の第4の形態は、スズ化合物溶液を調製し、前記スズ化合物溶液を基板表面に塗布して乾燥、焼成し、前記基板上に酸化スズ層を形成した中間触媒体を形成し、前記中間触媒体の酸化スズ層の表面にカーボンナノコイル製造用触媒層を形成するカーボンナノコイル製造用触媒の製造方法である。   According to a fourth aspect of the present invention, a tin compound solution is prepared, the tin compound solution is applied to a substrate surface, dried and fired, and an intermediate catalyst body in which a tin oxide layer is formed on the substrate is formed. It is the manufacturing method of the catalyst for carbon nanocoil manufacture which forms the catalyst layer for carbon nanocoil manufacture on the surface of the tin oxide layer of an intermediate catalyst body.

本発明の第5の形態は、第4形態において、前記スズ化合物溶液が、塩化スズ水和物と、水、アルコール又は水及びアルコールとの混合溶液であるカーボンナノコイル製造用触媒の製造方法である。   A fifth aspect of the present invention is a method for producing a catalyst for producing carbon nanocoils according to the fourth aspect, wherein the tin compound solution is a tin chloride hydrate and water, alcohol, or a mixed solution of water and alcohol. is there.

本発明の第6の形態は、第4又は第5の形態において、前記乾燥を100〜150℃で行い、前記焼成を300〜500℃の酸化処理で行うカーボンナノコイル製造用触媒の製造方法である。   A sixth aspect of the present invention is a method for producing a catalyst for producing carbon nanocoils according to the fourth or fifth aspect, wherein the drying is performed at 100 to 150 ° C., and the calcination is performed by an oxidation treatment at 300 to 500 ° C. is there.

本発明の第7の形態は、第4、第5又は第6の形態において、前記酸化スズ層の層厚が10〜100nmであり、前記カーボンナノコイル製造用触媒層の層厚が100〜700nmであるカーボンナノコイル製造用触媒の製造方法である。   According to a seventh aspect of the present invention, in the fourth, fifth or sixth aspect, the tin oxide layer has a thickness of 10 to 100 nm, and the carbon nanocoil production catalyst layer has a thickness of 100 to 700 nm. It is a manufacturing method of the catalyst for carbon nanocoil manufacture which is.

本発明の第8の形態は、第4〜第7のいずれかの形態に係る製造方法により製造した前記中間触媒体及び前記カーボンナノコイル製造用触媒層を形成した基板を反応器内部に設置し、前記反応器内部を加熱して炭化水素ガスを流通させ、この炭化水素ガスの中に前記カーボンナノコイル製造用触媒層を粒子状に分散させ、炭化水素を触媒近傍で分解しながら触媒粒子の表面にカーボンナノコイルを成長させるカーボンナノコイルの製造方法である。   In an eighth aspect of the present invention, a substrate on which the intermediate catalyst body produced by the production method according to any one of the fourth to seventh aspects and the catalyst layer for producing the carbon nanocoil are formed is installed inside a reactor. The inside of the reactor is heated to circulate a hydrocarbon gas, and the catalyst layer for producing the carbon nanocoil is dispersed in the hydrocarbon gas in the form of particles. This is a carbon nanocoil manufacturing method in which carbon nanocoils are grown on the surface.

本発明の第9の形態は、第8の形態に係る製造方法により触媒粒子の表面に成長されたカーボンナノコイルからなることを特徴とするカーボンナノコイルである。   According to a ninth aspect of the present invention, there is provided a carbon nanocoil comprising carbon nanocoils grown on the surface of catalyst particles by the production method according to the eighth aspect.

本発明の第1の形態によれば、基板材質とCNC製造用触媒層の界面に予め形成した酸化スズ層がバッファー層として機能してCNC合成過程で生ずる炭化層を低減することができる。従って、CNC製造過程で生ずる炭化層を低減できるため、CNC合成に必要なアセチレンガス等の炭化水素ガスや触媒金属を余分に消費することなく、製造時間の削減、低コスト化及びCNC合成効率の向上を図ることができる。   According to the first embodiment of the present invention, the tin oxide layer formed in advance at the interface between the substrate material and the CNC production catalyst layer functions as a buffer layer, and the carbonized layer generated in the CNC synthesis process can be reduced. Accordingly, since the carbonized layer generated in the CNC production process can be reduced, the production time can be reduced, the cost can be reduced, and the CNC synthesis efficiency can be reduced without consuming extra hydrocarbon gas such as acetylene gas and catalyst metal necessary for CNC synthesis. Improvements can be made.

本発明の第2の形態によれば、前記カーボンナノコイル製造用触媒層として、FeInSnやFeInCoのFe−In−Sn系触媒の他、Inを安価なMgに代替したFe−Mg−Sn系触媒のFeMgSnやFeMgCo、更に、Coを添加したFe−Mg−Sn−Co系触媒のFeInSnCo、FeMgSnCoの1種以上からなるので、より高効率にカーボンナノコイルを製造することが可能になる。   According to the second embodiment of the present invention, as the carbon nanocoil production catalyst layer, Fe—Mn—Sn catalyst in which In is replaced with inexpensive Mg in addition to FeInSn and FeInCo Fe—In—Sn catalysts. Thus, it is possible to manufacture carbon nanocoils with higher efficiency because FeMnSn, FeMgCo, and Fe—Mg—Sn—Co based catalysts FeInSnCo and FeMgSnCo added with Co are added.

本発明の第3の形態によれば、Si、SiO、Al、Siの1種以上からなるCNC合成に好適な担持基板上にカーボンナノコイルを高効率に製造することが可能になる。 According to the third aspect of the present invention, carbon nanocoils can be efficiently produced on a support substrate suitable for CNC synthesis comprising one or more of Si, SiO 2 , Al 2 O 3 , and Si 3 N 4. Is possible.

本発明の第4の形態によれば、スズ化合物溶液を調製し、前記スズ化合物溶液を基板表面に塗布して乾燥、焼成し、前記基板上に酸化スズ層を形成した中間触媒体を形成し、前記中間触媒体の酸化スズ層の表面にカーボンナノコイル製造用触媒層を形成するので、基板材質とCNC製造用触媒層の界面に酸化スズ層をバッファー層として形成でき、CNC合成過程で生ずる炭化層を低減することができる。   According to the fourth aspect of the present invention, a tin compound solution is prepared, the tin compound solution is applied to a substrate surface, dried and fired, and an intermediate catalyst body having a tin oxide layer formed on the substrate is formed. The catalyst layer for producing carbon nanocoils is formed on the surface of the tin oxide layer of the intermediate catalyst body, so that the tin oxide layer can be formed as a buffer layer at the interface between the substrate material and the catalyst layer for producing CNC, which is generated in the CNC synthesis process. The carbonized layer can be reduced.

本発明の第5の形態によれば、前記スズ化合物溶液が、塩化スズ水和物と、水、アルコール又は水及びアルコールとの混合溶液であるので、湿式法により簡単に酸化スズ層を形成することができ、炭化層の低減を低コストで行うことができる。   According to the fifth aspect of the present invention, since the tin compound solution is a mixed solution of tin chloride hydrate and water, alcohol or water and alcohol, a tin oxide layer is easily formed by a wet method. The carbonized layer can be reduced at a low cost.

本発明の第6の形態によれば、前記乾燥を100〜150℃で行い、前記焼成を300〜500℃の酸化処理で行うので、通常の乾燥処理及び酸化処理を用いて炭化層の低減処理を簡易且つ低コストで行うことができる。   According to the sixth aspect of the present invention, since the drying is performed at 100 to 150 ° C. and the baking is performed at an oxidation treatment of 300 to 500 ° C., the carbonized layer reduction treatment is performed using a normal drying treatment and an oxidation treatment. Can be performed easily and at low cost.

本発明の第7の形態は、前記酸化スズ層の層厚が10〜100nmであり、前記カーボンナノコイル製造用触媒層の層厚が100〜700nmであるので、CNC製造過程で簡易にカーボンナノコイル製造用触媒を製造することができる。   In the seventh embodiment of the present invention, the tin oxide layer has a thickness of 10 to 100 nm, and the carbon nanocoil production catalyst layer has a thickness of 100 to 700 nm. A catalyst for coil production can be produced.

本発明の第8の形態によれば、前記中間触媒体及び前記カーボンナノコイル製造用触媒層を形成した基板を反応器内部に設置し、前記反応器内部を加熱して炭化水素ガスを流通させ、この炭化水素ガスの中に前記カーボンナノコイル製造用触媒層を粒子状に分散させ、炭化水素を触媒近傍で分解しながら触媒粒子の表面にカーボンナノコイルを成長させるので、酸化スズ層がバッファー層として機能してCNC合成過程で生ずる炭化層を低減することができる。しかも、炭化層の低減化によりCNC合成に必要なアセチレンガス等の炭化水素ガスや触媒金属を余分に消費しなくて済み、また、比較的簡単な酸化スズ層形成工程を付与するだけであり、製造時間の削減、低コスト化及びCNC合成効率の向上を図ることができる。炭化水素ガスにはアセチレンに限らず、炭化水素ガスである限り特に制限されず、例えば、メタン、エタン、プロパン、ブタンなどのアルカン類、エチレンなどのアルケン類、アセチレン以外のアルキン類等が用いられる。   According to an eighth aspect of the present invention, the substrate on which the intermediate catalyst body and the carbon nanocoil production catalyst layer are formed is installed inside a reactor, and the inside of the reactor is heated to allow hydrocarbon gas to flow. The carbon nanocoil production catalyst layer is dispersed in particles in the hydrocarbon gas, and carbon nanocoils are grown on the surface of the catalyst particles while decomposing hydrocarbons in the vicinity of the catalyst. It can function as a layer and reduce the carbonized layer generated in the CNC synthesis process. In addition, by reducing the carbonized layer, it is not necessary to consume extra hydrocarbon gas such as acetylene gas and catalyst metal necessary for CNC synthesis, and only a relatively simple tin oxide layer forming step is provided. Manufacturing time can be reduced, costs can be reduced, and CNC synthesis efficiency can be improved. The hydrocarbon gas is not limited to acetylene, and is not particularly limited as long as it is a hydrocarbon gas. For example, alkanes such as methane, ethane, propane, and butane, alkenes such as ethylene, and alkynes other than acetylene are used. .

本発明者らの検証実験によれば、酸化スズ層がバッファー層として機能することにより、以下の効果を奏することに基づきCNC合成効率が向上すると考察される。
1)基板材質と触媒金属との化学反応が抑制され、CNC触媒組成がより効果的に調整できた。
2)触媒焼成段階で昇華しやすい低融点のスズをあえて触媒層とは別の酸化スズ層として提供することができ、CVD開始時と同時にスズが効果的に気相中に供給され、CNC触媒組成の安定化を促進した。
According to the verification experiment of the present inventors, it is considered that the CNC synthesis efficiency is improved based on the following effects by the function of the tin oxide layer as the buffer layer.
1) The chemical reaction between the substrate material and the catalyst metal was suppressed, and the CNC catalyst composition could be adjusted more effectively.
2) Low melting point tin that is easily sublimated in the catalyst calcination stage can be provided as a tin oxide layer separate from the catalyst layer, and tin is effectively supplied into the gas phase at the same time as the start of CVD. Promoted composition stabilization.

本発明の第9の形態によれば、第8の形態に係る製造方法によって製造されることにより、低コスト化に良質のカーボンナノコイル得ることができる。   According to the ninth aspect of the present invention, high-quality carbon nanocoils can be obtained at low cost by being manufactured by the manufacturing method according to the eighth aspect.

本発明の実施形態に係るCNC合成プロセスを示す工程フロー図である。It is a process flow figure showing a CNC composition process concerning an embodiment of the present invention. CNC合成の様子を模式的に示す図である。It is a figure which shows the mode of CNC synthesis | combination typically. 従来のCNC合成プロセスを示す工程フロー図である。It is a process flow figure showing the conventional CNC composition process. アルミナ基板上に作製した酸化スズ層のSEM断層写真及び焼成後の酸化スズ層上の触媒粒子のSEM写真である。It is the SEM tomographic image of the tin oxide layer produced on the alumina substrate, and the SEM photograph of the catalyst particle on the tin oxide layer after baking. アルミナ基板上に生成したCNC試料のSEM断層写真及びCNC主要部分、アルミナ基板との界面付近のSEM写真である。It is the SEM tomogram of the CNC sample produced | generated on the alumina substrate, and the SEM photograph of the CNC main part and the interface vicinity of an alumina substrate. 従来の合成プロセスによるアルミナ基板上に作製した触媒粒子のSEM写真である。It is a SEM photograph of the catalyst particle produced on the alumina substrate by the conventional synthesis process. 従来の合成プロセスによるCNCの合成例を示すSEM写真である。It is a SEM photograph which shows the synthesis example of CNC by the conventional synthesis process. 別の実施例によるCNCのSEM写真及び従来法による場合のCNCのSEM写真である。It is the SEM photograph of CNC by another example, and the SEM photograph of CNC in the case of being based on a conventional method. 図8(A)の拡大SEM写真である。It is an enlarged SEM photograph of FIG. 図8(A)の別の拡大SEM写真である。It is another enlarged SEM photograph of FIG. 8 (A). アルミナ基板上に厚さの異なる酸化スズ層形成を行ったCVD処理後のCNCのSEM写真である。It is the SEM photograph of CNC after CVD processing which formed the tin oxide layer from which thickness differs on an alumina substrate. Fe−Mg−Co系触媒層によるCNC成長高さの影響を調べた結果をまとめた表である。It is the table | surface which put together the result of having investigated the influence of the CNC growth height by a Fe-Mg-Co type catalyst layer. Fe−Mg−Sn−Co系触媒層によるCNC成長高さの影響を調べた結果をまとめた表であるIt is the table | surface which put together the result of having investigated the influence of the CNC growth height by a Fe-Mg-Sn-Co type catalyst layer. Fe−Mg−Sn−Co系触媒を使用し、窒化物基板におけるCVD15分処理の結果を示すSEM断層写真である。It is a SEM tomogram which shows the result of the CVD 15 minute process in a nitride board | substrate using a Fe-Mg-Sn-Co type | system | group catalyst. 触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)を使用し、基板に酸化シリコンを使用してCNC成長させたときのSEM写真である。SEM photograph of CNC growth using Fe-In-Sn-Co catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) as the catalyst and silicon oxide as the substrate. It is. 触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)及びFe−In−Co系触媒(Fe:In:Co=10:1:0.5)を使用し、基板に酸化シリコンを使用し、更にSnコート処理をしてCNC成長させたときのSEM写真である。Fe-In-Sn-Co catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) and Fe-In-Co catalyst (Fe: In: Co = 10: 1: 0) 5), silicon oxide is used for the substrate, Sn coating treatment is further performed, and CNC growth is performed. 触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)を使用し、基板にアルミナを使用し、更にSnコートの厚さを変えてCNC成長させたときのSEM写真である。Fe-In-Sn-Co based catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) is used as the catalyst, alumina is used as the substrate, and the thickness of the Sn coat is changed. It is a SEM photograph when it was made to grow CNC. 触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)を使用し、基板にアルミナを使用し、更にSnコートの厚さを変えてCNC成長させたときのSEM写真である。Fe-In-Sn-Co based catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) is used as the catalyst, alumina is used as the substrate, and the thickness of the Sn coat is changed. It is a SEM photograph when it was made to grow CNC. 触媒にFe−In−Sn(Fe:In:Sn=10:1:1)を使用し、基板にアルミナを使用してCNC成長させた場合のSEM写真である。It is a SEM photograph at the time of carrying out CNC growth using Fe-In-Sn (Fe: In: Sn = 10: 1: 1) as a catalyst and using alumina as a substrate. Snを含まない触媒(Fe:In:Co=10:1:0.5)を薄く(約100nm)塗布して担持させた基板を、Snを含む触媒を担持させた別の基板と一緒にCVD処理したときのCNCのSEM写真である。A substrate on which a catalyst containing no Sn (Fe: In: Co = 10: 1: 0.5) was applied thinly (about 100 nm) and supported was CVD together with another substrate carrying a catalyst containing Sn. It is a SEM photograph of CNC when processed. 酸化スズ層を設けた場合と設けない場合のCVD処理開始3秒後のSEM写真である。It is a SEM photograph 3 seconds after the start of the CVD process with and without the tin oxide layer. 図21(A)のCVD処理におけるCVD処理開始10秒後のSEM写真である。It is a SEM photograph 10 seconds after the CVD process start in the CVD process of FIG. 図22のCVD処理前のSEM断層写真である。It is a SEM tomographic photograph before CVD processing of FIG. Snコート処理して触媒を担持させたアルミナ基板を用いた場合のCVD開始後1分のSEM写真である。It is a SEM photograph for 1 minute after CVD start at the time of using the alumina substrate which carried out Sn coat processing and carry | supported the catalyst. Snコート処理しない場合のCVD開始後1分のSEM写真である。It is a SEM photograph for 1 minute after the start of CVD when Sn coating treatment is not performed. Fe−Mg−Sn−Co系触媒とFe−In−Sn−Co系触媒につき、各種基板とSnコートの有無との関係をまとめた表である。It is the table | surface which put together the relationship between the various board | substrates and the presence or absence of Sn coating about a Fe-Mg-Sn-Co-type catalyst and a Fe-In-Sn-Co-type catalyst.

以下、本発明の実施形態に係るCNC製造用触媒を用いたCNC製造方法を説明する。   Hereinafter, a CNC manufacturing method using a CNC manufacturing catalyst according to an embodiment of the present invention will be described.

図1は本発明の実施形態に係るCNC合成プロセスを示す。図2はCNC合成の様子を模式的に示す図である。CNC担持基板材料にはアルミナAl、シリコンSi、酸化シリコンSiO、窒化ケイ素Si等を使用する。図2において担持基板材料を用意してからの工程Aが本実施形態に対応する。 FIG. 1 illustrates a CNC synthesis process according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing the state of CNC synthesis. Alumina Al 2 O 3 , silicon Si, silicon oxide SiO 2 , silicon nitride Si 3 N 4 or the like is used as the CNC supporting substrate material. In FIG. 2, step A after preparing the supporting substrate material corresponds to this embodiment.

ステップS1〜S2は、カーボンナノコイル製造用触媒で形成工程である。上記担持基板材料1上にスズ化合物溶液を基板表面に塗布して乾燥させた後(ステップS1)、酸化処理により焼成して基板1上に酸化スズ層2を形成した中間触媒体を形成する(ステップS2)。スズ化合物溶液は、四塩化スズ・六水和物を水又はエタノールで溶解して調製される。酸化スズ層2は10〜100nmの層厚に形成される。   Steps S <b> 1 to S <b> 2 are steps for forming a carbon nanocoil manufacturing catalyst. After applying a tin compound solution onto the substrate surface 1 and drying it on the support substrate material 1 (step S1), the intermediate catalyst body in which the tin oxide layer 2 is formed on the substrate 1 is formed by baking by oxidation treatment ( Step S2). The tin compound solution is prepared by dissolving tin tetrachloride hexahydrate in water or ethanol. The tin oxide layer 2 is formed with a layer thickness of 10 to 100 nm.

ステップS1の乾燥は100〜150℃の温度で行われ、ステップS2の焼成は300〜500℃の大気中酸化処理で行われる。スズ化合物溶液の塗布処理はディップコート法やスピンコート法を用いて行われる。   The drying in step S1 is performed at a temperature of 100 to 150 ° C., and the firing in step S2 is performed by an atmospheric oxidation treatment at 300 to 500 ° C. The tin compound solution is applied by a dip coating method or a spin coating method.

酸化スズ層2の形成後には、湿式触媒による触媒層の形成が行われる。予め触媒種に応じて調整された触媒溶液が酸化スズ層2上に塗布されて大気中での乾燥が行われる(ステップS3)。触媒物質としては、FeMgSn、FeMgSnCo、FeMgCo、FeInSn、FeInCo、FeInSnCoの1種以上を選択的に使用することができる。触媒溶液としては、Fe、Mg、Sn、Coの塩化物又は硝酸塩の混合エタノール溶液を使用することができ、例えば、FeMgSnCo触媒の場合には、硝酸鉄、塩化スズ、塩化マグネシウム、塩化コバルトの主成分に水又はエタノールの溶媒を混合した混合溶液により触媒溶液が調製される。   After the tin oxide layer 2 is formed, a catalyst layer is formed by a wet catalyst. A catalyst solution adjusted in advance according to the catalyst type is applied onto the tin oxide layer 2 and dried in the air (step S3). As the catalyst material, one or more of FeMgSn, FeMgSnCo, FeMgCo, FeInSn, FeInCo, and FeInSnCo can be selectively used. As the catalyst solution, a mixed ethanol solution of Fe, Mg, Sn, Co chloride or nitrate can be used. For example, in the case of FeMgSnCo catalyst, the main solutions are iron nitrate, tin chloride, magnesium chloride, and cobalt chloride. A catalyst solution is prepared from a mixed solution obtained by mixing water or an ethanol solvent with the components.

触媒乾燥の後は600〜1100℃の温度で大気中での焼成処理が行われ、CNC製造用触媒層3が酸化スズ層2上に形成される(ステップS4)。例えば、Fe−(In又はMg)−Sn系触媒の場合には乾燥処理により粒径30〜200nm程度の酸化物微粒子が生成される。CNC製造用触媒層3は100〜700nmの層厚に形成される。   After the catalyst is dried, a firing process in the air is performed at a temperature of 600 to 1100 ° C., and a CNC production catalyst layer 3 is formed on the tin oxide layer 2 (step S4). For example, in the case of an Fe— (In or Mg) —Sn-based catalyst, oxide fine particles having a particle size of about 30 to 200 nm are generated by a drying treatment. The CNC production catalyst layer 3 is formed to a layer thickness of 100 to 700 nm.

上記ステップS1〜S4により製造した中間触媒体及びCNC製造用触媒層を形成した基板1を反応炉(図示せず)内部に導入する(ステップS5)。当該反応炉内部はHe、Ar、N2等の不活性ガスで置換された後、700℃に昇温される。ついで、加熱反応炉に炭化水素ガス(例えば、アセチレンガス)を流通させることにより(ステップS6)、炭化水素ガスの中にCNC製造用触媒層を粒子状に分散させ、炭化水素を触媒近傍で分解しながら触媒粒子の表面にカーボンナノコイル4を成長させる(ステップS7)。   The substrate 1 on which the intermediate catalyst body manufactured in steps S1 to S4 and the catalyst layer for CNC manufacture are formed is introduced into a reaction furnace (not shown) (step S5). After the inside of the reactor is replaced with an inert gas such as He, Ar, N2, etc., the temperature is raised to 700 ° C. Next, by circulating a hydrocarbon gas (for example, acetylene gas) through the heating reactor (step S6), the catalyst layer for CNC production is dispersed in the hydrocarbon gas in the form of particles, and the hydrocarbon is decomposed in the vicinity of the catalyst. Then, carbon nanocoils 4 are grown on the surfaces of the catalyst particles (step S7).

本発明との比較のために、図3に従来のCNC合成プロセスを示す。図2において担持基板材料を用意してからの工程Bが従来プロセスに対応する。従来のCNC合成プロセスでは、図1の合成プロセスと比較して、酸化スズ層の中間触媒体形成工程はなく、触媒溶液の塗布・乾燥(ステップS10)、焼成(ステップS11)、反応炉導入(ステップS12)、アセチレンガス導入(ステップS13)、CNC成長(ステップS14)の手順だけで行われる。   For comparison with the present invention, FIG. 3 shows a conventional CNC synthesis process. In FIG. 2, Step B after preparing the supporting substrate material corresponds to the conventional process. In the conventional CNC synthesis process, as compared with the synthesis process of FIG. 1, there is no intermediate catalyst body forming step of the tin oxide layer, application and drying of the catalyst solution (step S10), firing (step S11), introduction of the reactor ( It is performed only by the procedures of step S12), acetylene gas introduction (step S13), and CNC growth (step S14).

従来の合成プロセスでは、図2に示すように、CNC合成過程で厚い炭化層5が生じ、その上にCNC6が成長する。一方、本実施形態に係るCNC合成プロセスによれば、基板1とCNC製造用触媒層3の界面に予め形成した酸化スズ層2がバッファー層として機能するため、炭化層を生じず、あるいは大幅に低減することができ、CNC4の合成に必要なアセチレンガス等の炭化水素ガスや触媒金属を余分に消費することなく、製造時間の削減、低コスト化及びCNC合成効率の向上を図ることができる。   In the conventional synthesis process, as shown in FIG. 2, a thick carbonized layer 5 is formed in the CNC synthesis process, and a CNC 6 grows thereon. On the other hand, according to the CNC synthesis process according to this embodiment, the tin oxide layer 2 formed in advance at the interface between the substrate 1 and the CNC production catalyst layer 3 functions as a buffer layer. The production time can be reduced, the cost can be reduced, and the CNC synthesis efficiency can be improved without excessive consumption of hydrocarbon gas such as acetylene gas and catalyst metal necessary for the synthesis of CNC4.

本実施形態に係るCNC製造方法及び触媒の優位性につき、以下の実施例及び各種検証実験に基づいて詳述する。
<実施例1>
まず、アルミナとシリカ基板を用いて酸化スズ層を形成した。酸化スズ層の作製は、四塩化スズ・五水和物のエタノールもしくはエタノール:水=1:1溶液0.1〜0.5mol/L濃度の溶液を滴下して、スピンコート法(1000〜1500rpm、15〜45秒)により塗布、あるいは、0.02mol/L濃度の溶液へ含浸して塗布した後100〜150℃で乾燥させ、基板の端に凝集した液滴を吸い取りながら100〜150℃で乾燥させ、更に300〜500℃で酸化処理した。触媒には、Fe−Mg−Sn−Co系酸化物触媒とSnを含まないものを2種類使用した。つまり、夫々の配合比は、Fe:Mg:Sn:Co=10:1:1:0.5〜1、Fe:Mg:Co=10:1:0.5である。
The superiority of the CNC manufacturing method and catalyst according to the present embodiment will be described in detail based on the following examples and various verification experiments.
<Example 1>
First, a tin oxide layer was formed using an alumina and a silica substrate. The tin oxide layer was prepared by adding dropwise a solution of tin tetrachloride pentahydrate in ethanol or ethanol: water = 1: 1 solution at a concentration of 0.1 to 0.5 mol / L, and spin coating (1000-1500 rpm). 15 to 45 seconds) or impregnated in a solution having a concentration of 0.02 mol / L and dried at 100 to 150 ° C. It was dried and further oxidized at 300 to 500 ° C. As the catalyst, two kinds of Fe-Mg-Sn-Co-based oxide catalyst and Sn-free catalyst were used. That is, each compounding ratio is Fe: Mg: Sn: Co = 10: 1: 1: 0.5-1 and Fe: Mg: Co = 10: 1: 0.5.

図4の(4A)はアルミナ基板上に作製した酸化スズ層のSEM断層写真を示す。酸化スズ層の厚さ4aは30〜60nmである。図4の(4B)は焼成後の酸化スズ層上の触媒粒子のSEM写真である。触媒粒子層の厚さは250〜600nmである。触媒粒子のSEM写真(4B)から明らかなように、炭化層が形成されずに触媒粒子が分散している。(4B)の4bは酸化スズ層である。触媒には、Fe−Mg−Sn−Co系酸化物触媒と、上記配合のSnを含まないものを使用したが、Snを含まない場合には、塗布厚さが薄くなる傾向にある。なお、CNCの成長効率には塗布ムラが大きく影響された。   (4A) in FIG. 4 shows a SEM tomographic image of the tin oxide layer produced on the alumina substrate. The thickness 4a of the tin oxide layer is 30 to 60 nm. FIG. 4 (4B) is an SEM photograph of catalyst particles on the tin oxide layer after firing. The thickness of the catalyst particle layer is 250 to 600 nm. As is apparent from the SEM photograph (4B) of the catalyst particles, the catalyst particles are dispersed without forming a carbonized layer. 4b of (4B) is a tin oxide layer. As the catalyst, a Fe-Mg-Sn-Co-based oxide catalyst and a catalyst containing no Sn having the above composition were used. However, when Sn is not contained, the coating thickness tends to be thin. The coating unevenness was greatly influenced by the CNC growth efficiency.

上記の酸化スズ層及び触媒層の形成後、CVD法によるCNC成長を15分実施した。図5の(5A)は上記実施例において、アルミナ基板上に生成したCNC試料のSEM断層写真である。同図(5B)、(5C)は夫々、(5A)のCNC主要部分、アルミナ基板との界面付近のSEM写真である。この試料におけるアルミナ基板上の酸化スズ層の厚さは約30nmであり、その上の触媒層の厚さは約200nmである。   After the formation of the tin oxide layer and the catalyst layer, CNC growth by CVD was performed for 15 minutes. FIG. 5 (5A) is a SEM tomographic image of a CNC sample produced on an alumina substrate in the above example. FIGS. 5B and 5C are SEM photographs of the CNC main portion of 5A and the vicinity of the interface with the alumina substrate, respectively. In this sample, the thickness of the tin oxide layer on the alumina substrate is about 30 nm, and the thickness of the catalyst layer thereon is about 200 nm.

本実施例によれば、炭化層が生成されず、基板根元から直接CNCを成長させることができる。従って、CVD法によるCNC成長が従来の合成プロセスと比較して約3倍の成長速度で行われた。成長速度の高速化によって、触媒組成比を調製することにより、触媒塗布量が従来の50%以下にすることが可能になる。   According to the present embodiment, the carbonized layer is not generated, and the CNC can be grown directly from the base of the substrate. Therefore, the CNC growth by the CVD method was performed at a growth rate about three times that of the conventional synthesis process. By adjusting the catalyst composition ratio by increasing the growth rate, the catalyst coating amount can be reduced to 50% or less of the conventional amount.

図6及び図7は従来の合成プロセスによる合成例を示すSEM写真である。この従来例はアルミナ基板にFe−Mg−Sn−Co系酸化物触媒を用いて、実施例1と同様に、15分間CVDにより合成した場合である。図6は焼成後のアルミナ基板上の触媒粒子を示すSEM写真である。図7の(7A)及び(7B)は、夫々、触媒塗布厚さを約180nmとした場合のCNC写真、断層写真である。図7の(7C)及び(7D)は、夫々、触媒塗布厚さを約650nmとした場合のCNC写真、断層写真である。図7の(7B)及び(7D)から分かるように、CNCが成長していない炭化層((7B)の7e参照)がアルミナ基板上に生成されている。炭化層の厚さはCNC高さと同程度の大きさまで形成されている。これがCVD開始時に基板界面付近の触媒組成に変化を与えてしまい、CNC成長開始を遅延させ、アセチレンガスや触媒材料の浪費を生ずる原因となっている。一方、実施例1では、酸化スズ層のバッファー機能によりCNCが成長していない層がなくなり、高速CNC成長を可能にした。   6 and 7 are SEM photographs showing examples of synthesis by a conventional synthesis process. This conventional example is a case where an Fe—Mg—Sn—Co-based oxide catalyst is used for an alumina substrate and synthesized by CVD for 15 minutes in the same manner as in Example 1. FIG. 6 is an SEM photograph showing the catalyst particles on the alumina substrate after firing. (7A) and (7B) in FIG. 7 are a CNC photograph and a tomographic photograph, respectively, when the catalyst coating thickness is about 180 nm. (7C) and (7D) in FIG. 7 are a CNC photograph and a tomographic photograph, respectively, when the catalyst coating thickness is about 650 nm. As can be seen from (7B) and (7D) of FIG. 7, a carbonized layer (see 7e of (7B)) on which no CNC has grown is formed on the alumina substrate. The thickness of the carbonized layer is formed to the same size as the CNC height. This changes the catalyst composition in the vicinity of the substrate interface at the start of CVD, delays the start of CNC growth, and causes waste of acetylene gas and catalyst material. On the other hand, in Example 1, the layer in which the CNC was not grown disappeared due to the buffer function of the tin oxide layer, and high-speed CNC growth was enabled.

<実施例2>
図8の(8A)は実施例1と同様にして、アルミナ基板上に厚さ約30nmの酸化スズ層、厚さ約500nmのFe−Mg−Sn−Co系触媒層を形成したときのCNC断層写真である。同図(8B)は、同種の触媒を使用したときの、酸化スズ層を形成しない従来法による場合のSEM写真である。この実施例では、CVD処理開始から15分間においてCNCの高さHが75μmまで、従来より3倍の速度で成長した。
<Example 2>
(8A) in FIG. 8 shows a CNC tomography when a tin oxide layer having a thickness of about 30 nm and a Fe—Mg—Sn—Co based catalyst layer having a thickness of about 500 nm are formed on an alumina substrate in the same manner as in Example 1. It is a photograph. FIG. 8B is an SEM photograph in the case of using a conventional method in which a tin oxide layer is not formed when the same type of catalyst is used. In this example, in 15 minutes from the start of the CVD process, the CNC height H was increased to 75 μm and grew at a rate three times that of the conventional method.

図9及び図10は実施例2の拡大SEM写真である。図10の(10A)は基板を剥がした状態でのCNC根元部分を示し、同図(10B)、(10C)は夫々、(10A)の部分拡大写真である。この拡大写真からCNCが根元まで視認でき、基板表面に成長していることが確認できた。
上記の実施例1及び2から、酸化スズ層を介在させることによる合成効率の向上の要因は以下の理由によると考察される。
1)基板材質と触媒金属との化学反応がバッファー層により抑制され、CNC触媒組成がより効果的に調整できた。
2)触媒焼成段階では昇華しやすい低融点のスズをあえて触媒層とは別の酸化スズ層として提供することにより、CVD開始と同時にスズが効果的に機相中を介して供給され、CNC触媒組成の安定化を促進したことによる。
9 and 10 are enlarged SEM photographs of Example 2. FIG. (10A) in FIG. 10 shows the CNC root portion in a state where the substrate is peeled off, and (10B) and (10C) are partially enlarged photographs of (10A). From this enlarged photograph, the CNC was visible to the root, and it was confirmed that it was growing on the substrate surface.
From the above Examples 1 and 2, it is considered that the cause of the improvement in the synthesis efficiency by interposing the tin oxide layer is due to the following reason.
1) The chemical reaction between the substrate material and the catalyst metal was suppressed by the buffer layer, and the CNC catalyst composition could be adjusted more effectively.
2) By providing tin with a low melting point, which is easily sublimated at the catalyst firing stage, as a tin oxide layer separate from the catalyst layer, tin is effectively supplied via the inside of the machine at the same time as the start of CVD. This is because the stabilization of the composition was promoted.

次に、酸化スズ層の研究過程で、酸化スズ層の厚さによる生成物の変化が認められた。図11は、アルミナ基板上に厚さの異なる層形成を行い、その上にFe−Mg−Co系触媒層(Fe:Mg:Co=10:1:0.5)を厚さ約200nm形成して15分CVD処理したとき成長したCNCのSEM写真である。同図(11A)は約30nmの酸化スズ層を形成したときであり、このときのCNC11cは約30μmに成長した。一方、同図(11B)は約8nmの酸化スズ層を形成したときであり、このときのCNCは約12μmの繊維状の物質11eの上に約17μmCNC11eが成長しただけであった。   Next, in the research process of the tin oxide layer, changes in the product due to the thickness of the tin oxide layer were observed. In FIG. 11, layers having different thicknesses are formed on an alumina substrate, and an Fe—Mg—Co based catalyst layer (Fe: Mg: Co = 10: 1: 0.5) is formed on the alumina substrate to a thickness of about 200 nm. It is the SEM photograph of CNC grown when CVD processing for 15 minutes. FIG. 11A shows a case where a tin oxide layer having a thickness of about 30 nm was formed. At this time, the CNC 11c grew to about 30 μm. On the other hand, FIG. 11B shows the case where a tin oxide layer of about 8 nm was formed, and the CNC at this time was only about 17 μm CNC 11e grown on the fibrous material 11e of about 12 μm.

CVD15分処理における酸化スズ層の厚さがCNC成長に与える影響ないしその依存性を検証するために各種条件を変えて実験した。
図12はFe−Mg−Co系触媒層(Fe:Mg:Co=10:1:0.5;Snなし)によるCNC成長高さの影響を調べた結果をまとめた表である。
図13はFe−Mg−Sn−Co系触媒層(Fe:Mg:Sn:Co=10:1:1:0.5)によるCNC成長高さの影響を調べた結果をまとめた表である。図12及び図13において、触媒層の厚さを4種類(300〜500nm;200〜300nm;80〜120nm;Snコートなし)に分類している。また、Sn層の厚さを4段階(80±30μm、60±30μm、40±30μm、0〜60μm)に変えている。図表における×、△は夫々、CNCの未成長、低収率を示す。図表中の上段の数値がCNC又は繊維状の生成物の高さ(μm)を示し、下段が炭化層の厚さ(μm)を示す。
In order to verify the influence or dependency of the thickness of the tin oxide layer on the CNC growth in the CVD 15-minute treatment, various experiments were performed under various conditions.
FIG. 12 is a table summarizing the results of examining the influence of the CNC growth height on the Fe—Mg—Co based catalyst layer (Fe: Mg: Co = 10: 1: 0.5; no Sn).
FIG. 13 is a table summarizing the results of examining the influence of the CNC growth height by the Fe—Mg—Sn—Co based catalyst layer (Fe: Mg: Sn: Co = 10: 1: 1: 0.5). 12 and 13, the thickness of the catalyst layer is classified into four types (300 to 500 nm; 200 to 300 nm; 80 to 120 nm; no Sn coating). Further, the thickness of the Sn layer is changed in four steps (80 ± 30 μm, 60 ± 30 μm, 40 ± 30 μm, 0 to 60 μm). In the chart, “x” and “Δ” indicate CNC ungrown and low yield, respectively. The upper value in the chart indicates the height (μm) of the CNC or fibrous product, and the lower value indicates the thickness (μm) of the carbonized layer.

この検証実験によれば、Fe−Mg−Co系触媒層の場合には、炭化層は完全になくならなかったが、Fe−Mg−Sn−Co系触媒層をそのまま基板上に担持させたときよりもCNC成長速度が1.5倍以上になった。また、酸化スズ層を予め40〜60nm作製しておくことにより、Fe−Mg−Sn−Co系触媒を300〜600nm担持したとき、Fe−Mg−Sn−Co系触媒を直接担持させたときよりも炭化層を低減することができる。   According to this verification experiment, in the case of the Fe—Mg—Co based catalyst layer, the carbonized layer did not disappear completely, but when the Fe—Mg—Sn—Co based catalyst layer was supported on the substrate as it was. CNC growth rate more than 1.5 times. In addition, by preparing a tin oxide layer in advance in a thickness of 40 to 60 nm, when a Fe—Mg—Sn—Co based catalyst is supported at 300 to 600 nm, compared to when a Fe—Mg—Sn—Co based catalyst is directly supported. Also, the carbonized layer can be reduced.

アルミナ基板に変えて窒化物基板(Si)を使用して酸化スズ層の形成による効果を検証した。触媒には、Fe−Mg−Sn−Co系触媒(Fe:Mg:Sn:Co=10:1:1:0.5)を使用し、300〜500nmの層厚にした。図14は窒化物基板におけるCVD15分処理の結果を示すSEM写真である。図14の(14A)及び(14B)は酸化スズ層を形成した場合であり、同図(14C)及び(14D)は酸化スズ層を形成しない場合である。(14A)及び(14C)では、Heを230sccm、アセチレンCを30sccm反応炉に供給した。(14B)及び(14D)では、Heを460sccm、アセチレンCを60sccm反応炉に供給した。この検証実験によれば、Snコートしたとき酸化シリコン基板と同様のCNC成長が確認できた。また、反応ガスの流速を上げるとCNC形状が安定化し、炭化層も減少した((14A)及び(14B)参照)。 A nitride substrate (Si 3 N 4 ) was used instead of the alumina substrate to verify the effect of forming the tin oxide layer. As the catalyst, an Fe—Mg—Sn—Co based catalyst (Fe: Mg: Sn: Co = 10: 1: 1: 0.5) was used, and the layer thickness was 300 to 500 nm. FIG. 14 is an SEM photograph showing the result of the CVD 15-minute treatment on the nitride substrate. (14A) and (14B) of FIG. 14 are cases where a tin oxide layer is formed, and (14C) and (14D) of the same figure are cases where a tin oxide layer is not formed. In (14A) and (14C), He was supplied to a 230 sccm reactor and acetylene C 2 H 2 was supplied to a 30 sccm reactor. In (14B) and (14D), 460 sccm of He and acetylene C 2 H 2 were supplied to the 60 sccm reactor. According to this verification experiment, the same CNC growth as that of the silicon oxide substrate was confirmed when Sn coating was performed. Moreover, when the flow rate of the reaction gas was increased, the CNC shape was stabilized and the carbonized layer was reduced (see (14A) and (14B)).

図15は触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)を使用し、基板に酸化シリコンを使用してCNC成長させたときのSEM写真である。図15の(15A)、(15B)は夫々、酸化スズ層を形成しない場合と、形成する場合(本発明の製造方法による場合)を示す。酸化スズ層を形成する場合には、炭化層が6〜8μm生じ、CNCは30〜40μm成長した。Snコートなし(15A)ではほとんど炭化層のみであり、厚さも30μmあった。   FIG. 15 shows a case where an Fe—In—Sn—Co-based catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) is used as a catalyst, and silicon oxide is used as a substrate for CNC growth. It is a SEM photograph of. (15A) and (15B) of FIG. 15 show the case where the tin oxide layer is not formed and the case where it is formed (in the case of the manufacturing method of the present invention), respectively. In the case of forming a tin oxide layer, a carbonized layer was formed at 6 to 8 μm, and a CNC was grown at 30 to 40 μm. Without Sn coating (15A), there was almost only a carbonized layer and the thickness was 30 μm.

図16は基板に酸化シリコンを使用し、更にSnコート処理をしてCNC成長させたときのSEM写真である。図16の(16A)は触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)を使用したとき、(16B)は触媒にSnを含まないFe−In−Co系触媒(Fe:In:Sn:Co=10:1:0.5)を使用したときの15分CVD処理した結果を示す。酸化スズ層を形成することにより、いずれの場合も、炭化層が減少し、CNC成長効率の向上が確認された。   FIG. 16 is an SEM photograph when silicon oxide is used for the substrate and Sn coating is further performed for CNC growth. (16A) in FIG. 16 shows that when a Fe—In—Sn—Co based catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) is used as the catalyst, (16B) shows Sn as the catalyst. The result of having performed CVD processing for 15 minutes when using the Fe-In-Co type catalyst (Fe: In: Sn: Co = 10: 1: 0.5) which does not contain is shown. By forming a tin oxide layer, the carbonization layer decreased in any case, and the improvement of CNC growth efficiency was confirmed.

図17は触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)を使用し、基板にアルミナを使用し、更にSnコートの厚さを変えてCNC成長させたときのSEM写真である。図17の(17A)、(17B)及び(17C)は夫々、酸化スズ層なし、薄めの酸化スズ層を形成した場合、厚めの酸化スズ層を形成した場合である。図18は図17の場合と同様に、触媒にFe−In−Sn−Co系触媒(Fe:In:Sn:Co=10:1:1:0.5)を使用し、基板に酸化シリコンを使用し、更にSnコートの厚さを変えてCNC成長させたときのSEM写真である。図18の(18A)、(18B)及び(18C)は夫々、酸化スズ層なし、薄めの酸化スズ層を形成した場合、厚めの酸化スズ層を形成した場合である。図19は図17及び図18の場合と同様に、触媒にFe−In−Sn系触媒を使用し、配合比をFe:In:Sn=10:1:1にした場合である。
図17〜図19による実験によれば、少なくとも、CNC成長速度の向上及びCNC成長の高密度化を確認することができた。
FIG. 17 shows the case where a Fe—In—Sn—Co based catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) is used as the catalyst, alumina is used as the substrate, and the thickness of the Sn coat is further increased. It is a SEM photograph when changing CNC and growing CNC. (17A), (17B) and (17C) in FIG. 17 are the cases where a tin oxide layer is not formed, a thin tin oxide layer is formed, and a thick tin oxide layer is formed. As in the case of FIG. 17, FIG. 18 uses a Fe—In—Sn—Co based catalyst (Fe: In: Sn: Co = 10: 1: 1: 0.5) as a catalyst and silicon oxide on the substrate. It is a SEM photograph when it is used, and also the thickness of Sn coat was changed and CNC was grown. (18A), (18B), and (18C) in FIG. 18 are the cases where the tin oxide layer is not formed, the thin tin oxide layer is formed, and the thick tin oxide layer is formed. FIG. 19 shows the case where an Fe—In—Sn catalyst is used as the catalyst and the blending ratio is Fe: In: Sn = 10: 1: 1 as in the case of FIGS. 17 and 18.
According to the experiments shown in FIGS. 17 to 19, at least an improvement in the CNC growth rate and an increase in the density of the CNC growth could be confirmed.

触媒のSn含有有無についても酸化スズ層の効果を検証した。図20はSnを含まない触媒(Fe:In:Co=10:1:0.5)を薄く(約100nm)塗布して担持させた基板を、Snを含む触媒を担持させた別の基板と一緒にCVD処理したときのCNCのSEM写真である。この比較結果から図20の矢印に示すように、Snを含まない触媒を担持させた基板に、別の基板からSnがCVD開始後にも気相中を拡散していき当該基板のFeと合金化することが確認できた。   The effect of the tin oxide layer was also verified on the presence or absence of Sn in the catalyst. FIG. 20 shows a substrate on which a catalyst containing no Sn (Fe: In: Co = 10: 1: 0.5) is applied thinly (about 100 nm) and supported on another substrate on which a catalyst containing Sn is supported. It is a SEM photograph of CNC when CVD processing is carried out together. From the comparison result, as shown by the arrow in FIG. 20, Sn diffuses in the gas phase from another substrate even after the start of CVD on the substrate carrying the catalyst not containing Sn and alloyed with Fe of the substrate. I was able to confirm.

次に、Snコート有無の違いによるCNC成長初期過程をアルミナ基板で観察した。図21の(21A)は酸化スズ層を設けた場合のCVD処理開始3秒後のSEM写真である。図21の(21B)及び(21C)は酸化スズ層を設けない場合のCVD処理開始3秒後のSEM写真である。Snコートしたときには、触媒層との界面付近の細かい粒子は消滅し、触媒粒子の隙間やアルミナ基板の隙間に析出物が見られた。一方、Snコートをしない場合には、CNCでなく、直径10nm程度のカーボンナノチューブ(CNT)が成長した。   Next, the initial stage of CNC growth depending on the presence or absence of Sn coating was observed on an alumina substrate. (21A) in FIG. 21 is an SEM photograph 3 seconds after the start of the CVD process when a tin oxide layer is provided. (21B) and (21C) in FIG. 21 are SEM photographs 3 seconds after the start of the CVD process when no tin oxide layer is provided. When Sn coating was applied, fine particles near the interface with the catalyst layer disappeared, and precipitates were observed in the gaps between the catalyst particles and the gaps in the alumina substrate. On the other hand, when the Sn coating was not applied, carbon nanotubes (CNT) having a diameter of about 10 nm were grown instead of CNC.

図22は図21のCNC処理におけるCVD処理開始10秒後のSEM写真である。図23は図22のCVD処理前のSEM断層写真である。
CVD処理前の触媒担持基板は50〜100nmの触媒粒子が凝集しており多孔質状態になっている。CVD処理開始して10秒経過したとき、触媒層と担持基板との界面に細いCNTが多数成長している。
FIG. 22 is an SEM photograph 10 seconds after the start of the CVD process in the CNC process of FIG. FIG. 23 is a SEM tomogram before the CVD process of FIG.
The catalyst-carrying substrate before the CVD treatment is in a porous state in which catalyst particles of 50 to 100 nm are aggregated. When 10 seconds have passed since the start of the CVD process, many thin CNTs grow on the interface between the catalyst layer and the carrier substrate.

図24はSnコート処理して上記触媒を担持させたアルミナ基板を用いた場合のCVD開始後1分のSEM写真である。図25は同様にSnコート処理しない場合のSEM写真である。
CVD開始から1分経過した段階では、CNCが3〜6μmに成長し始め、触媒粒子の隙間にCNTが成長していく。Snコートした場合は、しない場合よりもCNTの密度が小さくなる傾向にある。
FIG. 24 is a SEM photograph of 1 minute after the start of CVD in the case of using an alumina substrate on which the above catalyst is supported by Sn coating. FIG. 25 is an SEM photograph in the case where Sn coating is not performed in the same manner.
At the stage where 1 minute has elapsed from the start of CVD, the CNC begins to grow to 3 to 6 μm, and CNT grows in the gaps between the catalyst particles. When Sn coating is performed, the density of CNTs tends to be smaller than when Sn coating is not performed.

触媒含有元素と基板材質の関係も酸化スズ層の有無の観点で検証した。
図26はFe−Mg−Sn−Co系触媒とFe−In−Sn−Co系触媒につき、各種基板とSnコートの有無との関係をまとめた表である。同表において、×は20〜30μm以上の炭化層が形成されたことを、△は8〜15μm程度の炭化層が形成されたことを示す。また、符号○は、炭化層はやや軽減するかあるいは低減しないが(割合にして40%〜0%)、CNC成長長さ及び密度の向上が見られたことを表す。特に、符号◎は、炭化層を大幅に軽減且つCNC成長長さ及び密度が顕著に向上したことを表す。Mg系とIn系触媒との比較でいえば、Mg系触媒における酸化スズ層の効果が一層大きい。
The relationship between the catalyst-containing element and the substrate material was also verified from the viewpoint of the presence or absence of a tin oxide layer.
FIG. 26 is a table summarizing the relationship between various substrates and the presence or absence of Sn coating for Fe—Mg—Sn—Co based catalysts and Fe—In—Sn—Co based catalysts. In the table, × indicates that a carbonized layer of 20 to 30 μm or more is formed, and Δ indicates that a carbonized layer of about 8 to 15 μm is formed. Moreover, the symbol “◯” indicates that although the carbonized layer is somewhat reduced or not reduced (40% to 0% as a ratio), the CNC growth length and density are improved. In particular, the symbol “◎” indicates that the carbonized layer is greatly reduced and the CNC growth length and density are remarkably improved. In comparison between the Mg-based catalyst and the In-based catalyst, the effect of the tin oxide layer in the Mg-based catalyst is even greater.

本発明は、上記実施形態や変形例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々変形例、設計変更などをその技術的範囲内に包含するものであることは云うまでもない。   The present invention is not limited to the above-described embodiments and modifications, and includes various modifications and design changes within the technical scope without departing from the technical idea of the present invention. Needless to say.

本発明によれば、CNC製造用触媒担持材質の表面改質に好適なCNC製造用触媒を提供することができる。特に、各種担持材質のうち炭化層の形成が顕著であるアルミナ基板の場合にも、炭化層の低減化を実現できるので、比較的安価なアルミナ基板を用いて高効率且つ低コストで良質のカーボンナノコイルを製造することができる。本発明に係るCNC製造方法により製造されたCNCは、高伝導性、バネ的な機械特性、電磁波活性に優れており、GHz電磁波遮蔽(吸収)材、透明電極膜、制震材料等に好適である。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst for CNC manufacture suitable for the surface modification of the catalyst support material for CNC manufacture can be provided. In particular, even in the case of an alumina substrate, in which the formation of a carbonized layer is remarkable among various support materials, it is possible to reduce the carbonized layer. Nanocoils can be manufactured. The CNC manufactured by the CNC manufacturing method according to the present invention is excellent in high conductivity, spring-like mechanical properties, and electromagnetic wave activity, and is suitable for GHz electromagnetic wave shielding (absorption) materials, transparent electrode films, vibration control materials, and the like. is there.

1 基板
2 酸化スズ層
3 触媒層
4 CNC
5 炭化層
6 CNC
1 Substrate 2 Tin oxide layer 3 Catalyst layer 4 CNC
5 Carbonized layer 6 CNC

Claims (9)

基板と、前記基板表面に形成された酸化スズ層と、前記酸化スズ層の表面に形成されたカーボンナノコイル製造用触媒層を少なくとも有することを特徴とするカーボンナノコイル製造用触媒。 A catalyst for producing carbon nanocoils comprising at least a substrate, a tin oxide layer formed on the surface of the substrate, and a catalyst layer for producing carbon nanocoils formed on the surface of the tin oxide layer. 前記カーボンナノコイル製造用触媒層がFeMgSn、FeMgSnCo、FeMgCo、FeInSn、FeInSnCo、FeInCoの1種以上からなる請求項1に記載のカーボンナノコイル製造用触媒。 The catalyst for producing carbon nanocoils according to claim 1, wherein the catalyst layer for producing carbon nanocoils comprises at least one of FeMgSn, FeMgSnCo, FeMgCo, FeInSn, FeInSnCo, and FeInCo. 前記基板が、Si、SiO、Al、Siの1種以上からなる請求項1又は2に記載のカーボンナノコイル製造用触媒。 The catalyst for producing carbon nanocoils according to claim 1 or 2, wherein the substrate comprises one or more of Si, SiO 2 , Al 2 O 3 , and Si 3 N 4 . スズ化合物溶液を調製し、前記スズ化合物溶液を基板表面に塗布して乾燥、焼成し、前記基板上に酸化スズ層を形成した中間触媒体を形成し、前記中間触媒体の酸化スズ層の表面にカーボンナノコイル製造用触媒層を形成することを特徴とするカーボンナノコイル製造用触媒の製造方法。 Preparing a tin compound solution, applying the tin compound solution to a substrate surface, drying and baking, forming an intermediate catalyst body having a tin oxide layer formed on the substrate, and forming a surface of the tin oxide layer of the intermediate catalyst body; A method for producing a catalyst for producing carbon nanocoils, comprising forming a catalyst layer for producing carbon nanocoils on a substrate. 前記スズ化合物溶液が、塩化スズ水和物と、水、アルコール又は水及びアルコールとの混合溶液である請求項4に記載のカーボンナノコイル製造用触媒の製造方法。 The method for producing a catalyst for producing carbon nanocoils according to claim 4, wherein the tin compound solution is a mixed solution of tin chloride hydrate and water, alcohol, or water and alcohol. 前記乾燥を100〜150℃で行い、前記焼成を300〜500℃の酸化処理で行う請求項4又は5に記載のカーボンナノコイル製造用触媒の製造方法。 The method for producing a catalyst for producing carbon nanocoils according to claim 4 or 5, wherein the drying is performed at 100 to 150 ° C, and the calcination is performed by an oxidation treatment at 300 to 500 ° C. 前記酸化スズ層の層厚が10〜100nmであり、前記カーボンナノコイル製造用触媒層の層厚が100〜700nmである請求項4、5又は6に記載のカーボンナノコイル製造用触媒の製造方法。 The method for producing a catalyst for producing carbon nanocoils according to claim 4, 5 or 6, wherein the tin oxide layer has a thickness of 10 to 100 nm, and the carbon nanocoil production catalyst layer has a thickness of 100 to 700 nm. . 請求項4〜7のいずれかに記載の製造方法により製造した前記中間触媒体及び前記カーボンナノコイル製造用触媒層を形成した基板を反応器内部に設置し、前記反応器内部を加熱して炭化水素ガスを流通させ、この炭化水素ガスの中に前記カーボンナノコイル製造用触媒層を粒子状に分散させ、炭化水素を触媒近傍で分解しながら触媒粒子の表面にカーボンナノコイルを成長させることを特徴とするカーボンナノコイルの製造方法。 A substrate on which the intermediate catalyst body produced by the production method according to any one of claims 4 to 7 and the catalyst layer for producing the carbon nanocoil are formed is installed in a reactor, and the inside of the reactor is heated to be carbonized. Circulating hydrogen gas, dispersing the carbon nanocoil production catalyst layer in particles in the hydrocarbon gas, and growing carbon nanocoils on the surface of the catalyst particles while decomposing hydrocarbons in the vicinity of the catalyst. A carbon nanocoil manufacturing method characterized by the above. 請求項8に記載の製造方法により触媒粒子の表面に成長されたカーボンナノコイルからなることを特徴とするカーボンナノコイル。 A carbon nanocoil comprising carbon nanocoils grown on the surface of catalyst particles by the production method according to claim 8.
JP2010031574A 2010-02-16 2010-02-16 Catalyst for producing carbon nanocoil, method for producing the same, and carbon nanocoil Expired - Fee Related JP5560060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031574A JP5560060B2 (en) 2010-02-16 2010-02-16 Catalyst for producing carbon nanocoil, method for producing the same, and carbon nanocoil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031574A JP5560060B2 (en) 2010-02-16 2010-02-16 Catalyst for producing carbon nanocoil, method for producing the same, and carbon nanocoil

Publications (3)

Publication Number Publication Date
JP2011167598A true JP2011167598A (en) 2011-09-01
JP2011167598A5 JP2011167598A5 (en) 2013-03-14
JP5560060B2 JP5560060B2 (en) 2014-07-23

Family

ID=44682284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031574A Expired - Fee Related JP5560060B2 (en) 2010-02-16 2010-02-16 Catalyst for producing carbon nanocoil, method for producing the same, and carbon nanocoil

Country Status (1)

Country Link
JP (1) JP5560060B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904949A (en) * 2017-03-01 2017-06-30 桥运精密部件(苏州)有限公司 A kind of preparation method of new high-hardness ceramic Microspring material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192204A (en) * 1999-12-31 2001-07-17 Yoshikazu Nakayama Method for manufacturing carbon nano-coil
JP2001310130A (en) * 2000-04-29 2001-11-06 Yoshikazu Nakayama Method for producing indium-tin-iron catalyst for forming carbon nanocoil
WO2004105940A1 (en) * 2003-05-29 2004-12-09 Japan Science And Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
JP2007252982A (en) * 2006-03-20 2007-10-04 Osaka Industrial Promotion Organization Catalyst particle for manufacturing carbon nanocoil, its manufacturing method and method for manufacturing carbon nanocoil
JP2009018234A (en) * 2007-07-10 2009-01-29 Osaka Prefecture Univ Catalyst and method for producing carbon nano-coil
WO2010005118A1 (en) * 2008-07-10 2010-01-14 財団法人大阪産業振興機構 Catalyst for producing carbon nanocoil and process for producing carbon nanocoil using the catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192204A (en) * 1999-12-31 2001-07-17 Yoshikazu Nakayama Method for manufacturing carbon nano-coil
JP2001310130A (en) * 2000-04-29 2001-11-06 Yoshikazu Nakayama Method for producing indium-tin-iron catalyst for forming carbon nanocoil
WO2004105940A1 (en) * 2003-05-29 2004-12-09 Japan Science And Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
JP2007252982A (en) * 2006-03-20 2007-10-04 Osaka Industrial Promotion Organization Catalyst particle for manufacturing carbon nanocoil, its manufacturing method and method for manufacturing carbon nanocoil
JP2009018234A (en) * 2007-07-10 2009-01-29 Osaka Prefecture Univ Catalyst and method for producing carbon nano-coil
WO2010005118A1 (en) * 2008-07-10 2010-01-14 財団法人大阪産業振興機構 Catalyst for producing carbon nanocoil and process for producing carbon nanocoil using the catalyst

Also Published As

Publication number Publication date
JP5560060B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5747333B2 (en) Method for producing aligned carbon nanotube assembly
KR101870844B1 (en) Glass substrates having carbon nanotubes grown thereon and methods for production thereof
JP2007268319A (en) Catalyst for synthesizing carbon nano-tube and its manufacturing method, catalyst dispersion and manufacturing method for carbon nanotube
EP1987878A1 (en) Catalyst for carbon nanostructure growth, process for producing carbon nanostructure, raw-material gas and carrier gas for producing the same, and apparatus for producing the same
Marichy et al. Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition
JP5622278B2 (en) Base material for manufacturing aligned carbon nanotube aggregate, method for manufacturing aligned carbon nanotube assembly, and method for manufacturing base material for manufacturing aligned carbon nanotube assembly
WO2018151278A1 (en) Manufacturing methods for supported catalyst and carbon nanostructure
JP2009120771A (en) Sliding member and method for manufacturing the same
EP3421129A1 (en) Catalyst carrier and production method for fibrous carbon nanostructure
JP2016108175A (en) Production method of carbon nanotube
JP5156896B2 (en) Method for producing catalyst for producing carbon nanocoil and method for producing carbon nanocoil
JP2008169092A (en) Carbon nanotube production method
Hirahara et al. The effect of a tin oxide buffer layer for the high yield synthesis of carbon nanocoils
JP5560060B2 (en) Catalyst for producing carbon nanocoil, method for producing the same, and carbon nanocoil
Yoshihara et al. Growth mechanism of carbon nanotubes over gold-supported catalysts
JP5802992B2 (en) Aligned CNT manufacturing method using wet catalyst
JP2015151277A (en) Production method of gas phase method fine carbon fiber
JP5176925B2 (en) CNT synthesis substrate, method for producing the same, and method for producing CNT
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
JP5145603B2 (en) Metal-containing composite structure and method for producing the same
JP5196417B2 (en) Catalyst for producing carbon nanocoil and method for producing carbon nanocoil
JP6810408B2 (en) Catalyst carrier and its preparation method
JP2009062230A (en) Method for manufacturing vapor-phase growth carbon fiber and vapor-phase growth carbon fiber
JP2010042942A (en) Method for manufacturing substrate for forming carbon nanotube and method for manufacturing carbon nanotube using the substrate
JP2009174093A (en) Method for producing carbon fiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees