JP2011034732A - Conductive composition, conductor and method of manufacturing the same - Google Patents

Conductive composition, conductor and method of manufacturing the same Download PDF

Info

Publication number
JP2011034732A
JP2011034732A JP2009178246A JP2009178246A JP2011034732A JP 2011034732 A JP2011034732 A JP 2011034732A JP 2009178246 A JP2009178246 A JP 2009178246A JP 2009178246 A JP2009178246 A JP 2009178246A JP 2011034732 A JP2011034732 A JP 2011034732A
Authority
JP
Japan
Prior art keywords
component
conductive composition
metal salt
conductive
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009178246A
Other languages
Japanese (ja)
Other versions
JP5431055B2 (en
Inventor
Hideki Takamatsu
秀機 高松
Hiroki Maruyama
浩樹 丸山
Koji Sasaki
幸司 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2009178246A priority Critical patent/JP5431055B2/en
Publication of JP2011034732A publication Critical patent/JP2011034732A/en
Application granted granted Critical
Publication of JP5431055B2 publication Critical patent/JP5431055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive composition, capable of obtaining a conductive thin film which is superior in adhesiveness to a base material and surface smoothness without requiring a complicated process, a conductor, and a method of manufacturing the same. <P>SOLUTION: This conductive composition contains (A) first organic acid metal salt, (B) at least one kind of amine selected from aliphatic polyamine, alicyclic polyamine and a nitrogen-containing heterocyclic compound having at least one amino group, (C) at least one kind of compound selected from among metal alkoxide and second organic acid metal salt (excluding organic acid metal salt, containing a metal contained in the first organic metal salt). This method of manufacturing the conductor includes a process of forming a coating film by applying the conductive composition on a base material, and a process to form a conductive film by baking the base material on which the coating film is formed at 150-900°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基材への密着性、表面平滑性及び金属光沢性に優れた導電薄膜を形成し得る導電性組成物、これを用いた導電体及びその製造方法に関する。   The present invention relates to a conductive composition capable of forming a conductive thin film excellent in adhesion to a substrate, surface smoothness and metallic luster, a conductor using the same, and a method for producing the same.

各種の電極、回路、コンデンサ等の電子部品の幅広い用途に、金属微粒子、有機溶媒等
を含む導電性材料により形成された導電膜が用いられている。これらの導電膜は、例えば、ガラス基板や半導体基板等の基材上に導電性材料からなる塗膜を形成し、焼成して形成される。
A conductive film formed of a conductive material containing metal fine particles, an organic solvent, and the like is used for a wide range of electronic parts such as various electrodes, circuits, and capacitors. These conductive films are formed, for example, by forming a coating film made of a conductive material on a base material such as a glass substrate or a semiconductor substrate and baking it.

近年、携帯情報機器やLCD等の薄型ディスプレイパネルに代表されるように、電子部品の小型化、薄型化が進み、導電膜が適用される回路等の微細化、高密度化が要求されている。このような電子部品を形成するために、導電膜には、基材に対するより強固な密着性及び表面平滑性が必要となる。   In recent years, as typified by thin display panels such as portable information devices and LCDs, electronic components have become smaller and thinner, and miniaturization and higher density of circuits to which conductive films are applied have been required. . In order to form such an electronic component, the conductive film needs to have stronger adhesion and surface smoothness to the substrate.

このような導電膜を形成する方法として、銀イオンと、アルキルアミン等の保護剤とを含む第一有機溶媒に還元剤を添加し、沈殿物をろ過したろ液を濃縮して固形物を形成し、この固形物を第二有機溶媒に添加し、さら有機金属化合物を添加して得られたペーストを基板に塗布して、250〜350℃の温度で焼成する銀薄膜の形成方法が提案されている(特許文献1)。   As a method for forming such a conductive film, a reducing agent is added to a first organic solvent containing silver ions and a protective agent such as alkylamine, and the filtrate obtained by filtering the precipitate is concentrated to form a solid. Then, a method for forming a silver thin film is proposed in which the solid is added to a second organic solvent, a paste obtained by further adding an organometallic compound is applied to a substrate, and fired at a temperature of 250 to 350 ° C. (Patent Document 1).

また、導電膜を形成するために、有機金属塩と、溶媒と、シランカップリング剤等の密着性向上剤と、必要に応じてジエタノールアミン等のpH調整剤を含む導電性インクが提案されている(特許文献2)。   In order to form a conductive film, a conductive ink containing an organic metal salt, a solvent, an adhesion improver such as a silane coupling agent, and a pH adjuster such as diethanolamine as necessary has been proposed. (Patent Document 2).

特開2005−100980号公報JP 2005-100980 A 特開2006−348160号公報JP 2006-348160 A

しかし、特許文献1の銀薄膜を形成する方法にあっては、250〜350℃の低温焼成により銀薄膜を得るために、可溶化した銀イオンを還元して微粒子化する必要があり、工程が煩雑である。
また、特許文献2の導電性インクにあっては、有機金属塩として酢酸銀等を用いると、ジエタノールアミン等のpH調整剤を用いても溶解性が充分ではなく、得られた導電膜の基材に対する密着性、表面平滑性に劣る場合がある。
However, in the method of forming a silver thin film of Patent Document 1, in order to obtain a silver thin film by low-temperature baking at 250 to 350 ° C., it is necessary to reduce solubilized silver ions to form fine particles, and the process is as follows. It is complicated.
In addition, in the conductive ink of Patent Document 2, when silver acetate or the like is used as the organic metal salt, the solubility of the conductive film obtained is not sufficient even when a pH adjuster such as diethanolamine is used. May be inferior to the adhesion and surface smoothness.

本発明の課題は、煩雑な工程を必要とせずに、密着性及び表面平滑性に優れる導電薄膜を形成することのできる導電性組成物、導電体及びその製造方法を提供することである。   The subject of this invention is providing the electroconductive composition which can form the electroconductive thin film which is excellent in adhesiveness and surface smoothness, and a manufacturing method therefor, without requiring a complicated process.

本発明者らは、上記課題を解決すべく検討を重ねた結果、特定のアミンと、金属アルコキシド及び第2の有機酸金属塩から選択される少なくとも1種の化合物とを用いることによって、第1の有機酸金属塩の溶解度を高めるとともに、金属の凝集を抑制して、基材に対する密着性及び表面平滑性に優れた導電薄膜を形成することができる導電性組成物が得られることを見出した。
[1]本発明は、(A)第1の有機酸金属塩と、(B)脂肪族ポリアミン、脂環式ポリアミン及び少なくとも1個のアミノ基を有する含窒素複素環化合物から選択される少なくとも1種のアミンと、(C)金属アルコキシド及び第2の有機酸金属塩(ただし、第1の有機酸金属塩に含まれる金属を含有する有機酸金属塩を除く)から選択される少なくとも1種の化合物とを含む導電性組成物である。
[2]本発明は、上記導電性組成物を用いて得られた導電膜を有する導電体である。
[3]本発明は、上記導電性組成物からなる塗膜を基材に形成する工程と、上記導電性組成物が塗布された基材を150〜900℃で焼成して導電膜を形成する工程とを含む導電体の製造方法である。
As a result of repeated studies to solve the above problems, the present inventors have used a specific amine and at least one compound selected from a metal alkoxide and a second organic acid metal salt to obtain a first It was found that a conductive composition capable of forming a conductive thin film with improved adhesion to the substrate and excellent surface smoothness can be obtained while increasing the solubility of the organic acid metal salt of .
[1] The present invention provides at least one selected from (A) a first organic acid metal salt, and (B) an aliphatic polyamine, an alicyclic polyamine, and a nitrogen-containing heterocyclic compound having at least one amino group. And at least one selected from (A) a metal alkoxide and a second organic acid metal salt (excluding an organic acid metal salt containing a metal contained in the first organic acid metal salt) It is an electroconductive composition containing a compound.
[2] The present invention is a conductor having a conductive film obtained by using the conductive composition.
[3] In the present invention, the step of forming a coating film made of the above conductive composition on a substrate and the substrate coated with the above conductive composition are baked at 150 to 900 ° C. to form a conductive film. A process for producing a conductor including a process.

本発明は、成分(B)のアミンによって、成分(A)の第1の有機酸金属塩の溶解度を高めることができ、還元剤等によって有機酸金属塩に含まれる金属を微粒子化する等の煩雑な工程を必要とすることがなく、成分(A)、(B)及び(C)を含む滑らかで伸展性に富む均一な導電性組成物を得ることができる。また、本発明は、成分(C)の金属アルコキシド及び第2の有機酸金属塩から選択された少なくとも1種の化合物によって、焼成時における成分(A)の第1の有機酸金属塩に含まれていた金属の凝集を抑制して、基材への密着性、表面平滑性及び金属光沢性に優れた導電薄膜を形成する導電性組成物を提供することができる。
また、本発明の製造方法によれば、150〜900℃で焼成した場合においても、基材への導電薄膜の密着性及び表面平滑性が優れた導電体を形成することができる。
In the present invention, the solubility of the first organic acid metal salt of the component (A) can be increased by the amine of the component (B), and the metal contained in the organic acid metal salt can be finely divided by a reducing agent or the like. It is possible to obtain a smooth and uniform conductive composition containing components (A), (B) and (C) without requiring a complicated process. Moreover, this invention is contained in the 1st organic acid metal salt of the component (A) at the time of baking by the at least 1 sort (s) of compound selected from the metal alkoxide of the component (C) and the 2nd organic acid metal salt. The conductive composition which forms the conductive thin film excellent in the adhesiveness to a base material, surface smoothness, and metal glossiness can be provided by suppressing aggregation of the metal which had been.
Moreover, according to the manufacturing method of this invention, even when it bakes at 150-900 degreeC, the conductor excellent in the adhesiveness and surface smoothness of the conductive thin film to a base material can be formed.

実施例6の導電薄膜について、倍率5000倍で撮影したSEM写真である。It is a SEM photograph image | photographed by 5000 time magnification about the electrically conductive thin film of Example 6. FIG. 比較例2の導電薄膜について、倍率5000倍で撮影したSEM写真である。It is a SEM photograph imaged at a magnification of 5000 times for the conductive thin film of Comparative Example 2. 実施例1,7及び比較例3の導電膜の焼成温度とRa値(表面粗さ)との関係を示すグラフである。It is a graph which shows the relationship between the baking temperature of the electrically conductive film of Example 1, 7 and the comparative example 3, and Ra value (surface roughness). 比較例3及び実施例1、7〜12の各導電体の写真である。It is a photograph of each conductor of comparative example 3 and examples 1 and 7-12. 比較例3及び実施例1、7〜12の各導電体について、成分(C)の含有量と表面粗さRa(μm)との関係を示すグラフである。It is a graph which shows the relationship between content of a component (C) and surface roughness Ra (micrometer) about each conductor of the comparative example 3 and Examples 1, 7-12. 各導電薄膜の焼成温度と比抵抗(Ω・cm)との関係を示すグラフである。It is a graph which shows the relationship between the calcination temperature of each conductive thin film, and specific resistance (ohm * cm). 比較例3及び実施例14,15の各導電体の写真である。It is a photograph of each conductor of Comparative Example 3 and Examples 14 and 15.

本発明の導電性組成物は、(A)第1の有機酸金属塩(以下、成分(A)とする)と、(B)脂肪族ポリアミン、脂環式ポリアミン及び少なくとも1個のアミノ基を有する含窒素複素環化合物から選択される少なくとも1種のアミン(以下、成分(B)とする)と、(C)金属アルコキシド又は第2の有機酸金属塩(ただし、第1の有機酸金属塩を除く)から選択される少なくとも1種の化合物(以下、成分(C)とする)とを含む。   The conductive composition of the present invention comprises (A) a first organic acid metal salt (hereinafter referred to as component (A)), (B) an aliphatic polyamine, an alicyclic polyamine, and at least one amino group. And at least one amine selected from nitrogen-containing heterocyclic compounds (hereinafter referred to as component (B)), and (C) a metal alkoxide or a second organic acid metal salt (provided that the first organic acid metal salt) And at least one compound selected from the following (hereinafter referred to as component (C)).

成分(A)の第1の有機酸金属塩は、成分(B)のアミンにより、溶解度が高められ、均一な溶液となるため、導電性組成物を基板に塗布して焼成した際に、第1の有機酸金属塩中に含まれていた金属が均一に伸展して薄膜化し、基材への密着性、表面平滑性及び金属光沢性に優れた導電膜を形成できる。
成分(A)の第1の有機酸金属塩としては、脂肪酸の金属塩であり、ルテニウム、アルミニウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛及びスズからなる群より選択された金属元素を含むものであることが好ましい。第1の有機酸金属塩としては、上記金属塩を含む酢酸金属塩、ギ酸金属塩、シュウ酸金属塩、カプリル酸金属塩、シクロヘキサンカルボン酸金属塩、シクロヘキサンプロピオン酸金属塩等が挙げられる。
The first organic acid metal salt of the component (A) has a solubility increased by the amine of the component (B) and becomes a uniform solution. Therefore, when the conductive composition is applied to the substrate and fired, The metal contained in 1 organic acid metal salt is uniformly stretched to form a thin film, and a conductive film excellent in adhesion to the substrate, surface smoothness and metallic gloss can be formed.
The first organic acid metal salt of component (A) is a metal salt of a fatty acid, and a metal element selected from the group consisting of ruthenium, aluminum, nickel, palladium, platinum, copper, silver, gold, zinc and tin It is preferable that it contains. Examples of the first organic acid metal salt include acetic acid metal salt, formic acid metal salt, oxalic acid metal salt, caprylic acid metal salt, cyclohexanecarboxylic acid metal salt, and cyclohexanepropionic acid metal salt containing the above metal salt.

成分(A)の第1の有機酸金属塩の具体例としては、酢酸パラジウム、酢酸銀、酢酸銅、酢酸スズ、酢酸ルテニウム、酢酸ニッケル等の酢酸金属塩、ギ酸パラジウム、ギ酸スズ、ギ酸銀、ギ酸ルテニウム等のギ酸金属塩、シュウ酸パラジウム、シュウ酸銀、シュウ酸銅、シュウ酸スズ、シュウ酸ルテニウム、シュウ酸ニッケル、シュウ酸亜鉛等のシュウ酸金属塩、カプリル酸ニッケル、カプリル酸銅、カプリル酸スズ、カプリル酸銀、カプリル酸パラジウム、カプリル酸白金、カプリル酸ルテニウム等のカプリル酸金属塩、シクロヘキサンカルボン酸ルテニウム、シクロヘキサンカルボン酸白金、シクロヘキサンカルボン酸パラジウム等のシクロヘキサンカルボン酸金属塩、シクロヘキサンプロピオン酸ルテニウム等が挙げられる。
中でも、成分(A)の第1の有機酸金属塩は、酢酸銀、ギ酸銀、シュウ酸銀又はカプリル酸銀であることが好ましい。
Specific examples of the first organic acid metal salt of component (A) include palladium acetate, silver acetate, copper acetate, tin acetate, ruthenium acetate, nickel acetate and other acetate metal salts, palladium formate, tin formate, silver formate, Metal formate such as ruthenium formate, palladium oxalate, silver oxalate, copper oxalate, tin oxalate, ruthenium oxalate, nickel oxalate, zinc oxalate and other metal oxalate, nickel caprylate, copper caprylate, Caprylic acid metal salts such as tin caprylate, silver caprylate, palladium caprylate, platinum caprylate, ruthenium caprylate, ruthenium cyclohexanecarboxylate, platinum cyclohexanecarboxylate, platinum cyclohexanecarboxylate, cyclohexanecarboxylate, cyclohexanepropion Examples thereof include ruthenium acid.
Especially, it is preferable that the 1st organic acid metal salt of a component (A) is silver acetate, silver formate, silver oxalate, or silver caprylate.

成分(A)の第1の有機酸金属塩は、1種を単独で用いてもよく、複数種を併用してもよい。また、上記の有機酸金属塩は水和物であってもよい。   The 1st organic acid metal salt of a component (A) may be used individually by 1 type, and may use multiple types together. The organic acid metal salt may be a hydrate.

成分(A)は、導電性組成物全量100質量%に対して、好ましくは5〜50質量%、より好ましくは10〜40質量%、さらに好ましくは15〜35質量%である。
導電性組成物中の成分(A)の含有量が上記範囲であると、第1の有機酸金属塩中に含まれていた金属が均一に薄膜化し、優れた導電膜を形成できる。成分(A)が、導電性組成物全量に対して5質量%未満であると、導電膜の基材への密着性、金属光沢が劣る場合があり、50質量%を超えると、導電膜の表面平滑性が劣る場合がある。
The component (A) is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and further preferably 15 to 35% by mass with respect to 100% by mass of the total amount of the conductive composition.
When the content of the component (A) in the conductive composition is within the above range, the metal contained in the first organic acid metal salt can be uniformly thinned to form an excellent conductive film. When the component (A) is less than 5% by mass relative to the total amount of the conductive composition, the adhesion of the conductive film to the substrate and the metallic luster may be inferior. The surface smoothness may be inferior.

成分(B)の脂肪族ポリアミン、脂環式ポリアミン及び少なくとも1個のアミノ基を有する含窒素複素環化合物からなる群より選択される少なくとも1種のアミンは、成分(A)の第1の有機酸金属塩の溶解度を高める。
成分(B)のアミンは、脂肪族ポリアミン、脂環式ポリアミン及び少なくとも1個のアミノ基を有する含窒素複素環化合物から選択された1種を単独で用いてもよく、複数種を併用してもよい。中でも、成分(A)の第1の有機酸金属塩の溶解度を高める効果に優れている脂環式ポリアミン及び/又は少なくとも1個のアミノ基を有する含窒素複素環化合物を選択することが好ましい。
At least one amine selected from the group consisting of aliphatic polyamines of component (B), alicyclic polyamines and nitrogen-containing heterocyclic compounds having at least one amino group is the first organic component of component (A). Increase the solubility of acid metal salts.
As the component (B) amine, one kind selected from an aliphatic polyamine, an alicyclic polyamine, and a nitrogen-containing heterocyclic compound having at least one amino group may be used alone, or a plurality of kinds may be used in combination. Also good. Among them, it is preferable to select an alicyclic polyamine and / or a nitrogen-containing heterocyclic compound having at least one amino group which is excellent in the effect of increasing the solubility of the first organic acid metal salt of the component (A).

成分(B)の脂肪族ポリアミンは、分子内にアミノ基を2個以上有する脂肪族アミンであり、脂肪族ポリアミンとしては、分子内に2個のアミノ基を有する脂肪族ジアミン、分子内に3個のアミノ基を有する脂肪族トリアミン等が挙げられる。中でも炭素数4〜8の直鎖の脂肪族ジアミンであることが好ましい。   The aliphatic polyamine of the component (B) is an aliphatic amine having two or more amino groups in the molecule. The aliphatic polyamine includes an aliphatic diamine having two amino groups in the molecule and 3 in the molecule. And an aliphatic triamine having one amino group. Among these, a linear aliphatic diamine having 4 to 8 carbon atoms is preferable.

成分(B)の脂肪族ジアミンの例として、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノへキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン等が挙げられる。中でも、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノへキサンが好ましい。   Examples of the aliphatic diamine of component (B) include 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane and the like. It is done. Among these, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane are preferable.

成分(B)の脂環式ポリアミンは、置換基としてアミノ基及び/又はアミノアルキル基を2個以上有する単又は多環式アミンであり、脂環式ポリアミンとしては、分子内に2個のアミノ基及び/アミノアルキル基を有する単又は多環式ジアミン、分子内に3個のアミノ基及び/又はアミノアルキル基を有する単又は多環式トリアミン等が挙げられ、中でも、炭素数6〜12の脂環骨格を有する単環式ジアミンであることが好ましい。   The alicyclic polyamine of component (B) is a mono- or polycyclic amine having two or more amino groups and / or aminoalkyl groups as substituents. As the alicyclic polyamine, two amino acids are included in the molecule. A mono- or polycyclic diamine having a group and / or an aminoalkyl group, a mono- or polycyclic triamine having three amino groups and / or an aminoalkyl group in the molecule, and among others, a carbon number of 6 to 12 A monocyclic diamine having an alicyclic skeleton is preferable.

成分(B)の単環式ジアミンとしては、1,2−ジアミノシクロヘキサン又は1,3−ビス(アミノメチル)シクロヘキサンが好ましい。   As the monocyclic diamine of the component (B), 1,2-diaminocyclohexane or 1,3-bis (aminomethyl) cyclohexane is preferable.

成分(B)の少なくとも1個のアミノ基を有する含窒素複素環化合物は、アミノ基を環構成原子として含んでいてもよく、複素環を構成する少なくとも1個の原子上で、アミノ基及び/又はアミノアルキル基により置換されていてもよい。成分(B)としては、少なくとも1個のアミノ基を環構成原子として含んでいる飽和含窒素複素環化合物であることが好ましく、環構成原子である少なくとも1個の窒素原子上で、アミノ基及び/又はアミノアルキル基により置換された飽和含窒素複素環化合物であることがより好ましい。置換基としてのアミノアルキル基は、炭素数1〜5の直鎖又は分岐鎖アルキルを含む基であることが好ましい。   The nitrogen-containing heterocyclic compound having at least one amino group as component (B) may contain an amino group as a ring-constituting atom. On at least one atom constituting the heterocyclic ring, an amino group and / or Alternatively, it may be substituted with an aminoalkyl group. Component (B) is preferably a saturated nitrogen-containing heterocyclic compound containing at least one amino group as a ring constituent atom, and on at least one nitrogen atom as the ring constituent atom, an amino group and More preferably, it is a saturated nitrogen-containing heterocyclic compound substituted with an aminoalkyl group. The aminoalkyl group as a substituent is preferably a group containing a linear or branched alkyl having 1 to 5 carbon atoms.

(B)少なくとも1個のアミノ基を有する含窒素複素環化合物としては、2−アミノメチルピペリジン、3−アミノメチルピペリジン、4−アミノメチルピペリジン、1−(2−アミノエチル)ピペリジン、N−(2−アミノエチル)ピペラジン又はN,N´−ビス(3−アミノプロピル)ピペラジン等が挙げられる。
中でも、環を構成する少なくとも1個の窒素原子がアミノアルキル基で置換された、1−(2−アミノエチル)ピペリジン、N−(2−アミノエチル)ピペラジンが好ましい。
(B) Nitrogen-containing heterocyclic compounds having at least one amino group include 2-aminomethylpiperidine, 3-aminomethylpiperidine, 4-aminomethylpiperidine, 1- (2-aminoethyl) piperidine, N- ( 2-aminoethyl) piperazine or N, N′-bis (3-aminopropyl) piperazine.
Of these, 1- (2-aminoethyl) piperidine and N- (2-aminoethyl) piperazine, in which at least one nitrogen atom constituting the ring is substituted with an aminoalkyl group, are preferable.

成分(B)は、成分(A)1モルに対して、好ましくは0.5〜10.0モル、より好ましくは0.8〜5.0モル、さらに好ましくは1.2〜3.0モル、特に好ましくは1.5〜2.0モルである。
成分(B)が、成分(A)1モルに対して、0.5モル未満であると、成分(A)の第1の有機酸金属塩を均一に溶解することができない場合がある。成分(B)が、成分(A)1モルに対して、10.0モルを超えると、導電性組成物中の金属含有率が低くなり過ぎて、良好な金属膜を形成できない場合があるだけでなく、(B)の成分が焼成時に金属の焼結を阻害する場合がある。
Component (B) is preferably 0.5 to 10.0 mol, more preferably 0.8 to 5.0 mol, and still more preferably 1.2 to 3.0 mol, per 1 mol of component (A). Particularly preferred is 1.5 to 2.0 mol.
When the component (B) is less than 0.5 mol relative to 1 mol of the component (A), the first organic acid metal salt of the component (A) may not be uniformly dissolved. If the component (B) exceeds 10.0 mol with respect to 1 mol of the component (A), the metal content in the conductive composition may be too low to form a good metal film. In addition, the component (B) may inhibit metal sintering during firing.

成分(C)の金属アルコキシド及び第2の有機酸金属塩(ただし、第1の有機酸金属塩に含まれる金属を含有する有機酸金属塩を除く)から選択される少なくとも1種の化合物は、焼成時に、成分(A)の第1の有機酸金属塩に含まれていた金属の凝集を抑制し、基材への密着性、表面平滑性及び金属光沢性を高めることができる。
成分(C)の化合物は、金属アルコキシド及び第2の有機酸金属塩から選択された1種を単独で用いてもよく、複数種を併用してもよい。
At least one compound selected from the metal alkoxide of component (C) and the second organic acid metal salt (excluding the organic acid metal salt containing a metal contained in the first organic acid metal salt), At the time of firing, aggregation of the metal contained in the first organic acid metal salt of the component (A) can be suppressed, and adhesion to the substrate, surface smoothness and metal gloss can be improved.
As the compound of component (C), one type selected from metal alkoxides and second organic acid metal salts may be used alone, or a plurality of types may be used in combination.

成分(C)の金属アルコキシドとしては、M(OR)(式中、Mはチタン、ビスマス、ジルコニウム、アルミニウム、ニオブ、ケイ素、ホウ素、インジウム及びスズからなる群より選択された金属元素であり、Rは炭素数1〜10の直鎖又は分岐鎖のアルキル基であり、nは金属元素Mの原子価である)で表されるものが挙げられる。 As the metal alkoxide of the component (C), M (OR) n (wherein M is a metal element selected from the group consisting of titanium, bismuth, zirconium, aluminum, niobium, silicon, boron, indium and tin, R is a linear or branched alkyl group having 1 to 10 carbon atoms, and n is a valence of the metal element M).

成分(C)の金属アルコキシドの具体例としては、チタンテトラメトキシド(Ti(OCH)、チタンテトラエトキシド(Ti(OC)、チタンテトラプロポキシド(Ti(OC)、チタンテトラブドキシド(Ti(OC)、ジルコニウムテトラメトキシド(Zr(OCH)、ジルコニウムテトラエトキシド(Zr(OC)、ジルコニウテトラプロポキシド(Zr(OC)、ジルコニウムブドキシド(Zr(OC)、アルミニウムトリメトキシド(Al(OCH)、アルミニウムトリエトキシド(Al(OC)、アルミニウムトリプロポキシド(Al(OC)、アルミニウムトリブトキシド(Al(OC)、ニオブペンタンメトキシド(Nb(OCH)、ニオブペンタンエトキシド(Nb(OC)、ニオブペンタンプロポキシド(Nb(OC)、ニオブペンタンブドキシド(Nb(OC)、ホウ素トリメトキシド(B(OCH)、ホウ素トリエトキシド(B(OC)、ホウ素トリノルマルプロポキシド(B(OC)、ホウ素トリノルマルブトキシド(B(OC)、インジウムトリメトキシド(In(OCH)、インジウムトリエトキシド(In(OC)、インジウムトリプロポキシド(In(OC)、インジウムブトキシド(In(OC)、スズテトラメトキシド(Sn(OCH)、スズテトラエトキシド(Sn(OC)、スズテトラプロポキシド(Sn(OC)、スズテトラブドキシド(Sn(OC)、トリ−2−エチルヘキシロキシビスマス等が挙げられる。
中でも、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド又はチタンテトラノルマルブドキシドが好ましい。
Specific examples of the component (C) metal alkoxide include titanium tetramethoxide (Ti (OCH 3 ) 4 ), titanium tetraethoxide (Ti (OC 2 H 5 ) 4 ), titanium tetrapropoxide (Ti (OC 3). H 7 ) 4 ), titanium tetrabutoxide (Ti (OC 4 H 9 ) 4 ), zirconium tetramethoxide (Zr (OCH 3 ) 4 ), zirconium tetraethoxide (Zr (OC 2 H 5 ) 4 ), zirconi Utetrapropoxide (Zr (OC 3 H 7 ) 4 ), zirconium butoxide (Zr (OC 4 H 9 ) 4 ), aluminum trimethoxide (Al (OCH 3 ) 3 ), aluminum triethoxide (Al (OC) 2 H 5) 3), aluminum tripropoxide (Al (OC 3 H 7) 3), aluminum tributoxyethyl (Al (OC 4 H 9) 3), niobium pentane methoxide (Nb (OCH 3) 5) , niobium pentane ethoxide (Nb (OC 2 H 5) 5), niobium pentane propoxide (Nb (OC 3 H 7 5 ), niobium pentambutoxide (Nb (OC 4 H 9 ) 5 ), boron trimethoxide (B (OCH 3 ) 3 ), boron triethoxide (B (OC 2 H 5 ) 3 ), boron tri-propoxide (B (OC 3 H 7 ) 3 ), boron tri-normal butoxide (B (OC 4 H 9 ) 3 ), indium trimethoxide (In (OCH 3 ) 3 ), indium triethoxide (In (OC 2 H 5 ) 3 ), indium tripropoxide (In (OC 3 H 7) 3), indium butoxide (In (OC 4 H 9) 3), scan Tetramethoxide (Sn (OCH 3) 4) , tin tetraethoxide (Sn (OC 2 H 5) 4), tin tetrapropoxide (Sn (OC 3 H 7) 4), tin tetrabutoxide Doki Sid (Sn (OC 4 H 9) 4), tri-2-ethyl-hexyloxy bismuth, and the like.
Among these, titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide or titanium tetranormal butoxide is preferable.

成分(C)の第2の有機酸金属塩としては、炭素数1〜8の脂肪酸金属塩であり、ビスマス、コバルト、チタン、ジルコニウムからなる群より選択された金属元素を含むものが挙げられる。
第2の有機酸金属塩としては、具体的には、酢酸ビスマス、酢酸コバルト、酢酸チタン、酢酸ジルコニウム、オクタン酸ビスマス、オクタン酸コバルト、オクタン酸チタン、オクタン酸ジルコニウム、2−エチルへキサン酸ビスマス、2−エチルへキサン酸コバルト、2−エチルヘキサン酸チタン、2−エチルヘキサン酸ジルコニウム等を用いることができ、中でも、2−エチルヘキサン酸コバルト、2−エチルヘキサン酸ビスマスが好ましい。
As a 2nd organic acid metal salt of a component (C), it is a C1-C8 fatty acid metal salt, and the thing containing the metal element selected from the group which consists of bismuth, cobalt, titanium, and a zirconium is mentioned.
Specific examples of the second organic acid metal salt include bismuth acetate, cobalt acetate, titanium acetate, zirconium acetate, bismuth octoate, cobalt octoate, titanium octoate, zirconium octoate, and bismuth 2-ethylhexanoate. , Cobalt 2-ethylhexanoate, titanium 2-ethylhexanoate, zirconium 2-ethylhexanoate, etc., among which cobalt 2-ethylhexanoate and bismuth 2-ethylhexanoate are preferable.

成分(C)は、金属換算で成分(A)100重量部に対して、好ましくは0.01〜50重量部、より好ましくは0.01〜20重量部含む。
成分(C)の含有量が、金属換算で成分(A)100重量部に対して0.01〜50重量部であると、成分(C)に含まれる金属が、焼成時に成分(A)に含まれる金属の凝集を抑制するため、基材への密着性、表面平滑性及び金属光沢性を高め、所望の比抵抗値を有する導電性に優れた導電膜を得ることができる。なお、導電膜の比抵抗値は、導電性組成物中の金属アルコキシド又は第2の有機酸金属塩中に含まれる金属の含有量、焼成温度等を変化させることによって、所望の比抵抗値を有する導電膜を得ることができる。
例えば、金属換算(Ag換算)で成分(A)100重量部に対して、金属換算(Ti換算)で成分(C)の含有量が1重量部である導電性組成物を、300℃で焼成して得られる導電膜の比抵抗値は、2.2×10−5Ω・cm程度であり、成分(C)の含有量が0.01重量部である導電性組成物を、300℃で焼成して得られる導電膜の比抵抗値は、4.7×10−6Ω・cm程度である。
The component (C) is preferably contained in an amount of 0.01 to 50 parts by weight, more preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the component (A) in terms of metal.
When the content of component (C) is 0.01 to 50 parts by weight in terms of metal with respect to 100 parts by weight of component (A), the metal contained in component (C) is converted into component (A) during firing. In order to suppress aggregation of the contained metal, it is possible to improve the adhesion to the base material, the surface smoothness and the metallic luster, and to obtain a conductive film having a desired specific resistance value and excellent conductivity. The specific resistance value of the conductive film can be set to a desired specific resistance value by changing the metal content, the firing temperature, etc. contained in the metal alkoxide or the second organic acid metal salt in the conductive composition. An electrically conductive film can be obtained.
For example, a conductive composition having a content of component (C) of 1 part by weight in terms of metal (Ti conversion) is calcined at 300 ° C. with respect to 100 parts by weight of component (A) in terms of metal (Ag conversion). The conductive film obtained has a specific resistance value of about 2.2 × 10 −5 Ω · cm, and a conductive composition having a component (C) content of 0.01 part by weight at 300 ° C. The specific resistance value of the conductive film obtained by firing is about 4.7 × 10 −6 Ω · cm.

本発明の導電性組成物は、さらに(D)有機溶媒(以下、成分(D)とする)を含有してもよい。
本発明の導電性組成物において、さらに成分(D)を含有することにより、有機酸金属塩の溶解性が増し、滑らかで伸展性に富む導電性組成物を得ることができ、印刷性の向上を図り、薄く均一な導電膜を形成することが可能となる。
The conductive composition of the present invention may further contain (D) an organic solvent (hereinafter referred to as component (D)).
In the conductive composition of the present invention, by further containing the component (D), the solubility of the organic acid metal salt is increased, and a conductive composition having a smooth and excellent extensibility can be obtained, thereby improving the printability. Thus, a thin and uniform conductive film can be formed.

成分(D)の有機溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、グリセリン等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテルアルコール類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル類、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート等のテルペン系化合物が挙げられる。
中でも、メタノール、エタノール等が好ましい。
As the organic solvent of component (D), alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl Ethers, ether alcohols such as diethylene glycol monoethyl ether and diethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether and other ethers, Ol, dihydroterpineol, terpene compounds such as dihydro terpineol acetate.
Of these, methanol, ethanol and the like are preferable.

上記の有機溶媒は、1種を単独で用いてもよく、複数種を併用してもよい。
成分(D)は、成分(A)1モルに対して、好ましくは0〜64モル、より好ましくは1〜20モル、更に好ましくは6〜16モルである。
The above organic solvents may be used alone or in combination of two or more.
Component (D) is preferably 0 to 64 mol, more preferably 1 to 20 mol, and still more preferably 6 to 16 mol, per 1 mol of component (A).

本発明の導電性組成物は、さらに必要に応じて、分散助剤、表面処理剤、消泡剤、シランカップリング剤等の添加剤を含有してもよい。   The conductive composition of the present invention may further contain additives such as a dispersion aid, a surface treatment agent, an antifoaming agent, and a silane coupling agent as necessary.

本発明の導電性組成物は、例えば、以下のように調製することができる。
本発明の導電性組成物は、フラスコなどの撹拌混合槽などを用いて成分(A)と成分(B)を攪拌・混合し、必要に応じて成分(D)加えて均一に攪拌・溶解する。得られた溶液に成分(C)を加え、15分〜3時間程度攪拌して均一な溶液を調製する。任意の添加剤は、成分(D)に溶解させてもよく、成分(A)、(B)、(C)を溶解させた混合物に溶解させてもよい。
The conductive composition of the present invention can be prepared, for example, as follows.
The conductive composition of the present invention stirs and mixes the component (A) and the component (B) using a stirring and mixing vessel such as a flask, and uniformly stirs and dissolves the component (D) as necessary. . Add component (C) to the resulting solution and stir for about 15 minutes to 3 hours to prepare a uniform solution. An arbitrary additive may be dissolved in the component (D), or may be dissolved in a mixture in which the components (A), (B), and (C) are dissolved.

本発明の導電性組成物は、電子回路や電極のような導電体、特に基材表面のパターン状の導電体の形成に好適に用いることができる。そのほか、本発明の導電性組成物は、メッキ下地用導電ペースト、抵抗ペースト、導電性接着剤等として用いることができる。   The electrically conductive composition of this invention can be used suitably for formation of conductors, such as an electronic circuit and an electrode, especially the patterned conductor of the base-material surface. In addition, the conductive composition of the present invention can be used as a conductive paste for plating base, a resistance paste, a conductive adhesive, and the like.

本発明の導電体は、導電性組成物を用いて形成された導電膜を有する。
導電膜は、厚さ0.1〜5.0μmの薄膜であることが好ましい。
The conductor of the present invention has a conductive film formed using a conductive composition.
The conductive film is preferably a thin film having a thickness of 0.1 to 5.0 μm.

本発明の導電体の製造方法は、例えば上記のように調製した導電性組成物を基材に塗布して塗膜を形成する工程と、上記塗膜が形成された基材を150〜900℃で焼成して導電膜を形成する工程とを含む。   The method for producing a conductor of the present invention includes, for example, a step of applying a conductive composition prepared as described above to a substrate to form a coating film, and a substrate on which the coating film is formed at 150 to 900 ° C. And baking to form a conductive film.

基材としては、アルミナ、窒化アルミニウム、炭化ケイ素等のセラミックス、ガラス、ガラス強化エポキシ樹脂、ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタラート等の樹脂が挙げられる。
塗膜の形成方法としては、スクリーン印刷機、ディスペンサー、スピンコーター等を用いて導電性組成物を基材等に塗布する方法等の任意の方法を用いることができる。
本発明の導電性組成物によれば、真空蒸着法やスパッタリング法で用いられるような高価な設備機器を使用することなく、厚さ0.1〜5.0μmの薄い導電膜を簡便に形成することができる。
Examples of the substrate include ceramics such as alumina, aluminum nitride, and silicon carbide, resins such as glass, glass-reinforced epoxy resin, polyimide, polyethylene naphthalate, and polyethylene terephthalate.
As a method for forming the coating film, any method such as a method of applying the conductive composition to a substrate or the like using a screen printer, a dispenser, a spin coater or the like can be used.
According to the conductive composition of the present invention, a thin conductive film having a thickness of 0.1 to 5.0 μm can be easily formed without using expensive equipment such as that used in vacuum deposition or sputtering. be able to.

塗膜が形成された基材を焼成する工程において、基材への密着性、表面平滑性、金属光沢に優れる薄膜を得るためには、150〜250℃で焼成することが好ましい。これらの特性に加えて、さらに例えば比抵抗値が2.2×10−5Ω・cm程度の導電性に優れた導電薄膜を得るためには、250〜900℃で焼成することが好ましい。 In the step of firing the base material on which the coating film is formed, it is preferable to fire at 150 to 250 ° C. in order to obtain a thin film having excellent adhesion to the base material, surface smoothness and metallic luster. In addition to these characteristics, for example, in order to obtain a conductive thin film excellent in conductivity having a specific resistance value of about 2.2 × 10 −5 Ω · cm, baking at 250 to 900 ° C. is preferable.

本発明の導電性組成物を用いて得られた導電膜は、特に限定されないが、例えばメッキ下地用膜、抵抗膜等に適用が可能である。   The conductive film obtained using the conductive composition of the present invention is not particularly limited, but can be applied to, for example, a plating base film, a resistance film, and the like.

以下、実施例及び比較例によって、本発明を更に詳細に説明する。本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.

(実施例1)
表1に示す組成により、成分(A)の酢酸銀と、成分(B)の1,2−ジアミノシクロヘキサンを攪拌・混合し、さらに成分(C)のチタンテトライソプロポキシドと、成分(D)のエタノールを加えて、室温で2時間程度混合し、攪拌して均一な溶液である導電性組成物を調製した。
実施例1の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.2質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが3.00重量部である。
Example 1
According to the composition shown in Table 1, component (A) silver acetate and component (B) 1,2-diaminocyclohexane are stirred and mixed, and component (C) titanium tetraisopropoxide and component (D) are mixed. Of ethanol was added, mixed at room temperature for about 2 hours, and stirred to prepare a conductive composition as a uniform solution.
In the conductive composition of Example 1, the component (A) is 19.2% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 3.00 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(実施例2)
表1に示す組成により、実施例1と同様にして、導電性組成物の溶液を調製した。
実施例2の導電性組成物は、組成物全量100質量%に対して、成分(A)が18.3質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが3.00重量部である。
(Example 2)
With the composition shown in Table 1, a conductive composition solution was prepared in the same manner as in Example 1.
In the conductive composition of Example 2, the component (A) is 18.3% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 3.00 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(実施例3)
表1に示す組成により、実施例1と同様にして、導電性組成物の溶液を調製した。
実施例3の導電性組成物は、組成物全量100質量%に対して、成分(A)が18.7質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが3.00重量部である。
(Example 3)
With the composition shown in Table 1, a conductive composition solution was prepared in the same manner as in Example 1.
In the conductive composition of Example 3, the component (A) is 18.7% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 3.00 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(実施例4)
表1に示す組成により、実施例1と同様にして、導電性組成物の溶液を調製した。
実施例4の導電性組成物は、組成物全量100質量%に対して、成分(A)が18.7質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが3.00重量部である。
Example 4
With the composition shown in Table 1, a conductive composition solution was prepared in the same manner as in Example 1.
In the conductive composition of Example 4, the component (A) is 18.7% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 3.00 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(実施例5)
表1に示す組成により、実施例1と同様にして、導電性組成物の溶液を調製した。
実施例5の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.6質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが3.00重量部である。
(Example 5)
With the composition shown in Table 1, a conductive composition solution was prepared in the same manner as in Example 1.
In the conductive composition of Example 5, the component (A) is 19.6% by mass relative to 100% by mass of the total composition, and the component (B) is 0.1 mol per component (A). The amount of titanium of component (C) is 3.00 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(比較例1)
(B)成分として、ジエタノールアミンを用いたこと以外は、実施例1と同様にして、表1に示す組成により、導電性樹脂組成物の溶液を調製した。
比較例1の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.5質量%であり、成分(A)0.1モルに対して、ジエタノールアミンが0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが3.00重量部である。
(Comparative Example 1)
(B) Except having used diethanolamine as a component, it carried out similarly to Example 1, and prepared the solution of the conductive resin composition by the composition shown in Table 1.
In the conductive composition of Comparative Example 1, the component (A) is 19.5% by mass with respect to 100% by mass of the total composition, and the diethanolamine is 0.15 with respect to 0.1 mol of the component (A). In terms of metal, the component (C) titanium is 3.00 parts by weight with respect to 100 parts by weight of the component (A) silver.

実施例1〜5及び比較例1の導電性組成物の状態を目視で観察した。結果を表1に示す。なお、表1中、○は、可溶化して均一な溶液となった状態を示し、×は、完全に溶解せず不均一な状態を示す。   The states of the conductive compositions of Examples 1 to 5 and Comparative Example 1 were visually observed. The results are shown in Table 1. In Table 1, ◯ indicates a state in which the solution is solubilized and becomes a uniform solution, and x indicates a non-uniform state in which the solution is not completely dissolved.

表1に示すように、実施例1〜5は、成分(B)により成分(A)の溶解度が高められて、完全に可溶化し、滑らかで伸展性に富む均一な溶液を得ることができた。一方、比較例1は、成分(A)が十分に溶解せず、均一な溶液とならなかった。   As shown in Table 1, in Examples 1 to 5, the solubility of the component (A) is increased by the component (B), so that it can be completely solubilized and a uniform solution having a smooth and excellent extensibility can be obtained. It was. On the other hand, in Comparative Example 1, the component (A) was not sufficiently dissolved and a uniform solution was not obtained.

(実施例6)
表2に示す組成により、実施例1〜5と同様にして、導電性組成物を調製した。実施例6の導電性組成物は、組成物全量100質量%に対して、成分(A)が12.3質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが3.00重量部である。
この導電性組成物を、液体状の導電性ペーストとして用いて、この導電性ペーストを幅10mm、長さ50mmのパターンで、厚さ約0.05mmに成るようにスライドガラス上に塗布して、500℃で20分焼成して、焼成後の膜厚が0.2μmである導電薄膜を形成した。なお、導電薄膜の膜厚は、表面粗さ・形状測定機(東京精密社製、SURFCOM 1500SD2−12)を用いて、平均膜厚を測定した。
(Example 6)
By the composition shown in Table 2, the electroconductive composition was prepared like Example 1-5. In the conductive composition of Example 6, the component (A) is 12.3% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 3.00 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.
Using this conductive composition as a liquid conductive paste, this conductive paste was applied to a slide glass in a pattern of width 10 mm and length 50 mm so as to have a thickness of about 0.05 mm, A conductive thin film having a thickness of 0.2 μm after baking was formed by baking at 500 ° C. for 20 minutes. In addition, the film thickness of the conductive thin film measured the average film thickness using the surface roughness and shape measuring machine (The Tokyo Seimitsu company make, SURFCOM 1500SD2-12).

(比較例2)
表2に示す組成により、成分(C)を含有しないこと以外は、実施例6と同様にして、液体状の導電性ペーストを調製した。この導電性ペーストを用いて、実施例6と同様にして、膜厚0.2μmの導電薄膜を形成した。
(Comparative Example 2)
A liquid conductive paste having the composition shown in Table 2 was prepared in the same manner as in Example 6 except that the component (C) was not contained. Using this conductive paste, a conductive thin film having a thickness of 0.2 μm was formed in the same manner as in Example 6.

実施例6及び比較例2について、走査型電子顕微鏡(FE−SEM(JSM−7500F)、日本電子社製)を用いて、倍率5000倍でSEM写真を撮影した。結果を図1及び図2に示す。   About Example 6 and Comparative Example 2, SEM photographs were taken at a magnification of 5000 times using a scanning electron microscope (FE-SEM (JSM-7500F), manufactured by JEOL Ltd.). The results are shown in FIGS.

図1に示すように、実施例6の導電体は、表面平滑性及び金属光沢に優れた導電薄膜が形成されていた。一方、図2に示すように、比較例2の導電体は、導電膜は形成されているものの、表面平滑性が悪く、表面に多数の孔(凹部)が存在するポーラスな状態となっていた。   As shown in FIG. 1, in the conductor of Example 6, a conductive thin film excellent in surface smoothness and metallic luster was formed. On the other hand, as shown in FIG. 2, the conductor of Comparative Example 2 had a conductive state, but had poor surface smoothness and a porous state in which a large number of holes (concave portions) existed on the surface. .

(実施例7)
表3に示す組成により、成分(C)の含有量を変えたこと以外は、実施例1と同様にして導電性組成物を調製した。実施例7の導電性組成物は、組成物全量100質量%に対して、成分(A)が18.7質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが6.00重量部である。
(Example 7)
A conductive composition was prepared in the same manner as in Example 1 except that the content of component (C) was changed according to the composition shown in Table 3. In the conductive composition of Example 7, the component (A) is 18.7% by mass relative to 100% by mass of the total composition, and the component (B) is 0.1 mol per component (A). It is 0.15 mol, and the titanium of the component (C) is 6.00 parts by weight with respect to 100 parts by weight of the silver of the component (A) in terms of metal.

(比較例3)
表3に示す組成で、成分(C)を含んでいないこと以外は、実施例1と同様にして、導電性組成物を調製した。比較例3の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.6質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルである。
(Comparative Example 3)
A conductive composition was prepared in the same manner as in Example 1 except that the composition shown in Table 3 did not contain the component (C). In the conductive composition of Comparative Example 3, the component (A) is 19.6% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). 0.15 mol.

実施例1,7及び比較例3の導電性組成物を導電性ペースとして用いて、焼成温度を表3に示す各温度で焼成したこと以外は、実施例6と同様にして、焼成後の膜厚が0.5μmの導電薄膜を形成した。この導電薄膜を形成した導電体について、導電薄膜の表面粗さRa(算術平均粗さ)を次の方法で測定した。結果を表3及び焼成温度と表面粗さRaの関係を示すグラフを図3に示す。   Films after baking in the same manner as in Example 6 except that the conductive compositions of Examples 1 and 7 and Comparative Example 3 were used as conductive paces and the baking temperatures were set at various temperatures shown in Table 3. A conductive thin film having a thickness of 0.5 μm was formed. For the conductor on which the conductive thin film was formed, the surface roughness Ra (arithmetic average roughness) of the conductive thin film was measured by the following method. The results are shown in Table 3 and a graph showing the relationship between the firing temperature and the surface roughness Ra is shown in FIG.

[表面粗さRaの測定方法]
本明細書において、表面粗さRaとは中心線平均粗さ(算術平均粗さ)をいい、表面粗さRaは、JIS B 0601(1994)に準拠して、表面粗さ・形状測定機(東京精密社製、SURFCOM 1500SD2−12)を用いて測定した。
[Measurement method of surface roughness Ra]
In this specification, surface roughness Ra means centerline average roughness (arithmetic average roughness), and surface roughness Ra is based on JIS B 0601 (1994). It was measured using Tokyo Seimitsu make, SURFCOM 1500SD2-12).

表3及び図3に示すように、本発明の導電性組成物を用いて形成した導電薄膜は、300℃の低温で焼成した場合においても、900℃の高温で焼成した場合においても、比較例と比べて、表面粗さRaの数値が低く、表面平滑性に優れていた。   As shown in Table 3 and FIG. 3, the conductive thin film formed using the conductive composition of the present invention is a comparative example whether it is baked at a low temperature of 300 ° C. or baked at a high temperature of 900 ° C. The surface roughness Ra was low and the surface smoothness was excellent.

(実施例8)
表4に示す組成により、成分(C)の含有量を変えたこと以外は、実施例1と同様にして導電性組成物を調製した。実施例8の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.6質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが0.01重量部である。
(Example 8)
A conductive composition was prepared in the same manner as in Example 1 except that the content of component (C) was changed according to the composition shown in Table 4. In the conductive composition of Example 8, the component (A) is 19.6% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). It is 0.15 mol, and the titanium of the component (C) is 0.01 part by weight with respect to 100 parts by weight of the silver of the component (A) in terms of metal.

(実施例9)
表4に示す組成により、成分(C)の含有量を変えたこと以外は、実施例1と同様にして導電性組成物を調製した。実施例9の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.6質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが0.10重量部である。
Example 9
A conductive composition was prepared in the same manner as in Example 1 except that the content of component (C) was changed according to the composition shown in Table 4. In the conductive composition of Example 9, the component (A) is 19.6% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 0.10 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(実施例10)
表4に示す組成により、成分(C)の含有量を変えたこと以外は、実施例1と同様にして導電性組成物を調製した。実施例10の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.5質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが0.50重量部である。
(Example 10)
A conductive composition was prepared in the same manner as in Example 1 except that the content of component (C) was changed according to the composition shown in Table 4. In the conductive composition of Example 10, the component (A) is 19.5% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 0.50 part by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(実施例11)
表4に示す組成により、成分(C)の含有量を変えたこと以外は、実施例1と同様にして導電性組成物を調製した。実施例11の導電性組成物は、組成物全量100質量%に対して、成分(A)が19.5質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが1重量部である。
(Example 11)
A conductive composition was prepared in the same manner as in Example 1 except that the content of component (C) was changed according to the composition shown in Table 4. In the conductive composition of Example 11, the component (A) is 19.5% by mass relative to 100% by mass of the total composition, and the component (B) is 0.1 mol per component (A). The amount of titanium of component (C) is 1 part by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

(実施例12)
表4に示す組成により、成分(C)の含有量を変えたこと以外は、実施例1と同様にして導電性組成物を調製した。実施例12の導電性組成物は、組成物全量100質量%に対して、成分(A)が17.9質量%であり、成分(A)0.1モルに対して、成分(B)が0.15モルであり、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが12重量部である。
(Example 12)
A conductive composition was prepared in the same manner as in Example 1 except that the content of component (C) was changed according to the composition shown in Table 4. In the conductive composition of Example 12, the component (A) is 17.9% by mass with respect to 100% by mass of the total composition, and the component (B) is 0.1 mol with respect to 0.1 mol of the component (A). The amount of titanium of component (C) is 12 parts by weight with respect to 100 parts by weight of silver of component (A) in terms of metal.

実施例1,7〜12及び比較例3の導電性組成物を導電性ペーストとして用いて、300℃で焼成したこと以外は、実施例6と同様にして、焼成後の膜厚が0.5μmの導電薄膜を形成した。   The film thickness after baking was 0.5 μm in the same manner as in Example 6 except that the conductive compositions of Examples 1 and 7 to 12 and Comparative Example 3 were used as a conductive paste and burned at 300 ° C. The conductive thin film was formed.

実施例1,7〜12及び比較例3の各導電体について、上記の方法により導電薄膜の表面粗さRa(算術平均粗さ)を測定した。また、下記の方法により、導電薄膜の比抵抗値を測定した。結果を表4に示す。また、表4中、○は、目視で見たとき、表面平滑性に優れ、金属光沢などが認められることを示し、△は、表面平滑性にやや優れ、金属光沢が若干認められることを示し、×は、表面がポーラスで平滑性がなく、金属光沢などが認められないことを示す。   About each conductor of Examples 1, 7-12, and the comparative example 3, surface roughness Ra (arithmetic mean roughness) of the electrically conductive thin film was measured by said method. Moreover, the specific resistance value of the conductive thin film was measured by the following method. The results are shown in Table 4. In Table 4, ○ indicates that the surface smoothness is excellent and metallic luster is recognized when visually observed, and Δ indicates that the surface smoothness is somewhat excellent and the metallic luster is slightly recognized. X indicates that the surface is porous and has no smoothness, and that no metallic luster is observed.

[比抵抗値の測定方法]
各導電薄膜の抵抗値を2001型デジタルマルチメーターを用いて、4端子法で測定した。また、各導電薄膜の膜厚を上記の表面粗さ・形状測定機で測定した。比抵抗値は、例えば3.2×10−6Ω・cmを「3.2E−06Ω・cm」と示す。
[Specific resistance measurement method]
The resistance value of each conductive thin film was measured by a 4-terminal method using a 2001 type digital multimeter. Moreover, the film thickness of each conductive thin film was measured with said surface roughness and shape measuring machine. The specific resistance value, for example, indicates 3.2 × 10 −6 Ω · cm as “3.2E-06 Ω · cm”.

図4に比較例3及び実施例1、7〜12の各導電体の写真を示す。また、図5に、各導電体について、成分(C)の含有量と比抵抗値との関係を示す。図6に、各導電体について、成分(C)の含有量と表面粗さRa(μm)との関係を示す。   The photograph of each conductor of the comparative example 3 and Example 1, 7-12 is shown in FIG. FIG. 5 shows the relationship between the content of the component (C) and the specific resistance value for each conductor. FIG. 6 shows the relationship between the content of the component (C) and the surface roughness Ra (μm) for each conductor.

表4及び図4に示すように、実施例1、7〜12は、表面平滑性に優れ、美しい金属光沢を有し、光が反射していることが確認できた。一方、比較例3の導電薄膜は、ポーラスで表面平滑性に優れておらず、表面が曇っていた。   As shown in Table 4 and FIG. 4, it was confirmed that Examples 1 and 7 to 12 were excellent in surface smoothness, had a beautiful metallic luster, and reflected light. On the other hand, the conductive thin film of Comparative Example 3 was porous and not excellent in surface smoothness, and the surface was cloudy.

表4及び図5に示すように、成分(C)の含有量が、金属換算で成分(A)100重量部に対して0.5重量部以上になると、表面粗さ(Ra)の数値が0.01μm以下と低くなっており、表面平滑性が優れていることが確認できた。この結果から、成分(C)の含有量は、金属換算で成分(A)100重量部に対して0.5重量部以上がより好ましいことが確認できた。   As shown in Table 4 and FIG. 5, when the content of the component (C) is 0.5 parts by weight or more with respect to 100 parts by weight of the component (A) in terms of metal, the numerical value of the surface roughness (Ra) is It was as low as 0.01 μm or less, and it was confirmed that the surface smoothness was excellent. From this result, it was confirmed that the content of the component (C) was more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the component (A) in terms of metal.

(実施例13)
成分(C)の含有量を変えたこと以外は、実施例1と同様にして、導電性組成物を調製した。実施例13の導電性組成物は、金属換算で成分(A)の銀100重量部に対して、成分(C)のチタンが12重量部である。
(Example 13)
A conductive composition was prepared in the same manner as in Example 1 except that the content of the component (C) was changed. In the conductive composition of Example 13, the component (C) titanium is 12 parts by weight with respect to 100 parts by weight of the component (A) silver in terms of metal.

実施例1,7,10,13及び比較例3の導電性組成物を導電性ペーストとして用いて、焼成温度を300℃、350℃、400℃、500℃、600℃、700℃、800℃、900℃の各温度で焼成したこと以外は、実施例6と同様にして、焼成後の膜厚が0.5μmの導電薄膜を形成した。これらの導電体について、上記の方法と同様にして、導電薄膜の比抵抗値を測定した。結果を図6に示す。   Using the conductive compositions of Examples 1, 7, 10, 13 and Comparative Example 3 as a conductive paste, the firing temperature was 300 ° C, 350 ° C, 400 ° C, 500 ° C, 600 ° C, 700 ° C, 800 ° C, A conductive thin film having a thickness of 0.5 μm after firing was formed in the same manner as in Example 6 except that firing was performed at each temperature of 900 ° C. About these conductors, it carried out similarly to said method, and measured the specific resistance value of the electrically conductive thin film. The results are shown in FIG.

図6に示すように、焼成温度が高くなるほど比抵抗値は低くなる。ただし、導電薄膜中に含まれるチタンの含有量が高くなるにつれて、比抵抗値は高くなるため、チタンの含有量は、金属換算で成分(A)100重量部に対して低い方が好ましいことが確認できた。チタンの含有量は、金属換算で成分(A)100重量部に対して、好ましくは20重量部以下である。   As shown in FIG. 6, the specific resistance value decreases as the firing temperature increases. However, since the specific resistance value increases as the content of titanium contained in the conductive thin film increases, the content of titanium is preferably lower with respect to 100 parts by weight of component (A) in terms of metal. It could be confirmed. The content of titanium is preferably 20 parts by weight or less with respect to 100 parts by weight of component (A) in terms of metal.

(実施例14)
成分(C)を2−エチルへキサン酸ビスマスに変えたこと以外は、実施例1と同様にして、導電性組成物を調製した。この導電性組成物は、金属換算で成分(A)の銀100重量部に対して、成分(C)のビスマスが2重量部である。
(Example 14)
A conductive composition was prepared in the same manner as in Example 1 except that the component (C) was changed to bismuth 2-ethylhexanoate. In this conductive composition, the bismuth of the component (C) is 2 parts by weight with respect to 100 parts by weight of the silver of the component (A) in terms of metal.

(実施例15)
成分(C)を2−エチルへキサン酸コバルトに変えたこと以外は、実施例1と同様にして、導電性組成物を調製した。この導電性組成物は、金属換算で成分(A)の銀100重量部に対して、成分(C)のコバルトが2重量部である。
(Example 15)
A conductive composition was prepared in the same manner as in Example 1 except that the component (C) was changed to cobalt 2-ethylhexanoate. In this conductive composition, 2 parts by weight of the cobalt of the component (C) is 100 parts by weight of the silver of the component (A) in terms of metal.

実施例14,15及び比較例3の各導電体について、上記の方法により導電薄膜の比抵抗値及び表面粗さRa(算術平均粗さ)を測定した。結果を表5に示す。また、表5中、○は目視で見たとき、表面平滑性に優れていることを示し、×は表面がポーラスで平滑性がないことを示す。   For each of the conductors of Examples 14 and 15 and Comparative Example 3, the specific resistance value and the surface roughness Ra (arithmetic average roughness) of the conductive thin film were measured by the above method. The results are shown in Table 5. In Table 5, ◯ indicates that the surface smoothness is excellent when visually observed, and x indicates that the surface is porous and has no smoothness.

図7に実施例14、15及び比較例3の各導電体の写真を示す。
表5及び図7に示すように、成分(C)として2−エチルへキサン酸ビスマス(実施例14)、2−エチルへキサン酸コバルト(実施例15)を用いた場合においても、表面平滑性に優れた導電薄膜を形成できることが確認できた。一方、比較例3の導電薄膜は、ポーラスで表面平滑性のない膜だった。
FIG. 7 shows photographs of the conductors of Examples 14 and 15 and Comparative Example 3.
As shown in Table 5 and FIG. 7, even when bismuth 2-ethylhexanoate (Example 14) and cobalt 2-ethylhexanoate (Example 15) were used as the component (C), surface smoothness was obtained. It was confirmed that an excellent conductive thin film can be formed. On the other hand, the conductive thin film of Comparative Example 3 was a porous film having no surface smoothness.

本発明の導電性組成物は、基材に対する密着性、表面平滑性及び金属光沢性に優れた導電薄膜を形成することができる。本発明の導電性組成物を用いる用途としては、特に限定されないが、メッキ下地用導電ペースト、抵抗ペースト、導電性接着剤等に適用することが可能であり、産業上有用である。また、本発明の導電体は、薄く均一な導電膜を有し、この導電膜の基材への密着性、表面平滑性及び金属光沢性に優れているので、メッキ下地用膜、抵抗膜等に適用することが可能であり、産業上有用である。   The conductive composition of the present invention can form a conductive thin film excellent in adhesion to a substrate, surface smoothness and metallic luster. Although it does not specifically limit as a use which uses the electrically conductive composition of this invention, It can apply to the conductive paste for plating bases, a resistance paste, a conductive adhesive, etc., and is industrially useful. In addition, the conductor of the present invention has a thin and uniform conductive film, and is excellent in adhesion to the base material, surface smoothness and metallic luster of the conductive film. It can be applied to and is industrially useful.

Claims (12)

(A)第1の有機酸金属塩と、(B)脂肪族ポリアミン、脂環式ポリアミン及び少なくとも1個のアミノ基を有する含窒素複素環化合物から選択される少なくとも1種のアミンと、(C)金属アルコキシド及び第2の有機酸金属塩(ただし、第1の有機酸金属塩に含まれる金属を含有する有機酸金属塩を除く)から選択される少なくとも1種の化合物とを含む導電性組成物。   (A) a first organic acid metal salt, (B) at least one amine selected from an aliphatic polyamine, an alicyclic polyamine, and a nitrogen-containing heterocyclic compound having at least one amino group, and (C ) A conductive composition comprising a metal alkoxide and a second organic acid metal salt (excluding an organic acid metal salt containing a metal contained in the first organic acid metal salt). object. 成分(A)の第1の有機酸金属塩が、脂肪酸の金属塩であり、ルテニウム、アルミニウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛及びスズからなる群より選択される金属元素を含む、請求項1に記載の導電性組成物。   The first organic acid metal salt of component (A) is a metal salt of a fatty acid, and a metal element selected from the group consisting of ruthenium, aluminum, nickel, palladium, platinum, copper, silver, gold, zinc and tin The electrically conductive composition of Claim 1 containing. 成分(B)が、炭素数4〜8の脂肪族ジアミンである脂肪族ポリアミン、置換基としてアミノ基及び/又はアミノアルキル基を有する炭素数6〜12の脂環骨格を有する単環式ジアミンである脂環式ポリアミン、アミノ基又はアミノアルキル基で環を構成する少なくとも1個の窒素原子が置換された含窒素複素環化合物から選択される少なくとも1種のアミンである、請求項1又は2に記載の導電性組成物。   Component (B) is an aliphatic polyamine which is an aliphatic diamine having 4 to 8 carbon atoms, a monocyclic diamine having an alicyclic skeleton having 6 to 12 carbon atoms having an amino group and / or an aminoalkyl group as a substituent. The alicyclic polyamine, at least one amine selected from nitrogen-containing heterocyclic compounds substituted with at least one nitrogen atom constituting a ring with an amino group or an aminoalkyl group, according to claim 1 or 2. The electroconductive composition as described. 成分(C)の金属アルコキシドが、M(OR)(式中、Mはチタン、ビスマス、ジルコニウム、アルミニウム、ニオブ、ケイ素、ホウ素、インジウム及びスズからなる群より選択された金属元素であり、Rは炭素数1〜10の直鎖又は分岐鎖のアルキル基であり、nは金属元素Mの原子価である)で表されるものである、請求項1〜3のいずれか1項に記載の導電性組成物。 The metal alkoxide of component (C) is M (OR) n (wherein M is a metal element selected from the group consisting of titanium, bismuth, zirconium, aluminum, niobium, silicon, boron, indium and tin, R Is a linear or branched alkyl group having 1 to 10 carbon atoms, and n is a valence of the metal element M), according to any one of claims 1 to 3. Conductive composition. 成分(C)の金属アルコキシドが、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド又はチタンテトラ−n−ブトキシドである、請求項4に記載の導電性組成物。   The electrically conductive composition of Claim 4 whose metal alkoxide of a component (C) is titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, or titanium tetra-n-butoxide. 成分(C)の第2の有機酸金属塩が、炭素数1〜8の脂肪酸の金属塩であり、ビスマス、コバルト、チタン、ジルコニウムからなる群より選択される金属元素を含む、請求項1〜5のいずれか1項に記載の導電性組成物。   The second organic acid metal salt of component (C) is a metal salt of a fatty acid having 1 to 8 carbon atoms, and contains a metal element selected from the group consisting of bismuth, cobalt, titanium, and zirconium. 6. The conductive composition according to any one of 5 above. 成分(A)を、組成物全量に対して5〜50質量%含む、請求項1〜6のいずれか1項に記載の導電性組成物。   The electrically conductive composition of any one of Claims 1-6 which contains 5-50 mass% of components (A) with respect to the composition whole quantity. 成分(B)を、成分(A)1モルに対して0.5〜10.0モル含む、請求項1〜7のいずれか1項に記載の導電性組成物。   The electrically conductive composition of any one of Claims 1-7 which contains 0.5-10.0 mol of components (B) with respect to 1 mol of components (A). 成分(C)を、金属換算で成分(A)100重量部に対して0.01〜50重量部含む、請求項1〜8のいずれか1項に記載の導電性組成物。   The electrically conductive composition of any one of Claims 1-8 which contains 0.01-50 weight part of component (C) with respect to 100 weight part of component (A) in metal conversion. さらに成分(D)の有機溶媒を含有する、請求項1〜9のいずれか1項に記載の導電性組成物。   Furthermore, the electroconductive composition of any one of Claims 1-9 containing the organic solvent of a component (D). 請求項1〜10のいずれか1項に記載の導電性組成物を用いて得られる導電膜を有する導電体。   The electrical conductor which has an electrically conductive film obtained using the electrically conductive composition of any one of Claims 1-10. 請求項1〜10いずれか1項に記載の導電性組成物を用いて基材上に塗膜を形成する工程と、塗膜が形成された基材を150〜900℃で焼成して導電膜を得る工程とを含む導電体の製造方法。   The process of forming a coating film on a base material using the electrically conductive composition of any one of Claims 1-10, and baking the base material in which the coating film was formed at 150-900 degreeC, and an electrically conductive film A process for producing a conductor, comprising:
JP2009178246A 2009-07-30 2009-07-30 Conductive composition, conductor and method for producing the same Active JP5431055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178246A JP5431055B2 (en) 2009-07-30 2009-07-30 Conductive composition, conductor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178246A JP5431055B2 (en) 2009-07-30 2009-07-30 Conductive composition, conductor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011034732A true JP2011034732A (en) 2011-02-17
JP5431055B2 JP5431055B2 (en) 2014-03-05

Family

ID=43763628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178246A Active JP5431055B2 (en) 2009-07-30 2009-07-30 Conductive composition, conductor and method for producing the same

Country Status (1)

Country Link
JP (1) JP5431055B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114925A1 (en) * 2011-02-23 2012-08-30 ナミックス株式会社 Conductive composition and external electrode using same
WO2013187450A1 (en) * 2012-06-14 2013-12-19 日産化学工業株式会社 Coating fluid for metal oxide coating film and metal oxide coating film
CN103578602A (en) * 2012-07-18 2014-02-12 三星电机株式会社 Conductive copper paste composition and method of forming metal thin film using same
JP2014082184A (en) * 2012-09-28 2014-05-08 Toppan Forms Co Ltd Silver ink composition and conductor
CN104217819A (en) * 2014-09-02 2014-12-17 上海交通大学 Organic metal silver salt based conductive thin film and preparation method thereof
KR20160031402A (en) * 2014-09-12 2016-03-22 제이에스알 가부시끼가이샤 Composition for forming conductive film, conductive film, method of manufacturing plating film, plating film and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162737A (en) * 1994-12-08 1996-06-21 Mitsubishi Materials Corp Formation of circuit pattern and paste therefor
JPH1072673A (en) * 1996-04-30 1998-03-17 Nippon Terupen Kagaku Kk Production of metallic paste and metallic coating
JP2002329419A (en) * 2001-04-27 2002-11-15 Namics Corp Metal element containing organic compound paste, its manufacturing method and its use
JP2004059987A (en) * 2002-07-29 2004-02-26 Namics Corp External electrode and electronic component having the same
JP2009158441A (en) * 2007-12-28 2009-07-16 Namics Corp Conductive paste, and formation method of copper film using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162737A (en) * 1994-12-08 1996-06-21 Mitsubishi Materials Corp Formation of circuit pattern and paste therefor
JPH1072673A (en) * 1996-04-30 1998-03-17 Nippon Terupen Kagaku Kk Production of metallic paste and metallic coating
JP2002329419A (en) * 2001-04-27 2002-11-15 Namics Corp Metal element containing organic compound paste, its manufacturing method and its use
JP2004059987A (en) * 2002-07-29 2004-02-26 Namics Corp External electrode and electronic component having the same
JP2009158441A (en) * 2007-12-28 2009-07-16 Namics Corp Conductive paste, and formation method of copper film using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960983B1 (en) * 2011-02-23 2019-03-21 나믹스 가부시끼가이샤 Conductive composition and external electrode using same
KR20140027116A (en) * 2011-02-23 2014-03-06 나믹스 가부시끼가이샤 Conductive composition and external electrode using same
JPWO2012114925A1 (en) * 2011-02-23 2014-07-07 ナミックス株式会社 Conductive composition and external electrode using the same
WO2012114925A1 (en) * 2011-02-23 2012-08-30 ナミックス株式会社 Conductive composition and external electrode using same
WO2013187450A1 (en) * 2012-06-14 2013-12-19 日産化学工業株式会社 Coating fluid for metal oxide coating film and metal oxide coating film
KR20150023644A (en) * 2012-06-14 2015-03-05 닛산 가가쿠 고교 가부시키 가이샤 Coating fluid for metal oxide coating film and metal oxide coating film
JPWO2013187450A1 (en) * 2012-06-14 2016-02-08 日産化学工業株式会社 Metal oxide coating liquid and metal oxide coating
KR102190716B1 (en) 2012-06-14 2020-12-14 닛산 가가쿠 가부시키가이샤 Coating fluid for metal oxide coating film and metal oxide coating film
CN103578602A (en) * 2012-07-18 2014-02-12 三星电机株式会社 Conductive copper paste composition and method of forming metal thin film using same
JP2014082184A (en) * 2012-09-28 2014-05-08 Toppan Forms Co Ltd Silver ink composition and conductor
CN104217819A (en) * 2014-09-02 2014-12-17 上海交通大学 Organic metal silver salt based conductive thin film and preparation method thereof
JP2016060906A (en) * 2014-09-12 2016-04-25 Jsr株式会社 Composition for forming conductive film, conductive film, manufacturing method of plating film, plating film and electronic device
KR20160031402A (en) * 2014-09-12 2016-03-22 제이에스알 가부시끼가이샤 Composition for forming conductive film, conductive film, method of manufacturing plating film, plating film and electronic device
KR102304865B1 (en) * 2014-09-12 2021-09-23 제이에스알 가부시끼가이샤 Composition for forming conductive film, conductive film, method of manufacturing plating film, plating film and electronic device

Also Published As

Publication number Publication date
JP5431055B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5431055B2 (en) Conductive composition, conductor and method for producing the same
JP3734731B2 (en) Ceramic electronic component and method for manufacturing the same
CN1316509C (en) Conductor composition and method for production thereof
JP5390408B2 (en) Thermosetting conductive paste and multilayer ceramic electronic component having external electrodes formed using the same
TWI798292B (en) Conductive paste, electronic parts and laminated ceramic capacitors
WO2017150438A1 (en) Electrically conductive paste, electronic component, and laminated ceramic capacitor
WO2010074119A1 (en) Conductive paste for external electrode, and multilayer ceramic electronic component comprising external electrode which is formed using same
US10113079B2 (en) Conductive composition
TWI801445B (en) Conductive paste, electronic parts, and laminated ceramic capacitors
JP4575617B2 (en) Metal element-containing organic compound paste, its production method and its use
CN110506083A (en) Conductive paste
US8911821B2 (en) Method for forming nanometer scale dot-shaped materials
TWI810336B (en) Conductive paste, electronic parts, and multilayer ceramic capacitors
WO2012114925A1 (en) Conductive composition and external electrode using same
TWI819190B (en) Conductive paste, electronic components, and laminated ceramic capacitors
EP3246115A1 (en) Silver powder
JP5776180B2 (en) Conductive ink composition and electrically conducting portion produced using the same
JP2008235035A (en) Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
JP3656558B2 (en) Conductive paste and electronic component using the same
JP2011198470A (en) Conductive paste for film electrode, conductive film for electrode, and film electrode
KR102304865B1 (en) Composition for forming conductive film, conductive film, method of manufacturing plating film, plating film and electronic device
CN112951476B (en) Tungsten slurry for printing black alumina multilayer ceramic substrate and preparation method thereof
JP4653971B2 (en) Nickel-containing paste for internal electrodes
JP2018092849A (en) Conductive paste and method for manufacturing electronic component using the same
JP2019151897A (en) Manufacturing method of conductor, manufacturing method of wiring board, and composition for conductor formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5431055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250