JP2010218640A - Method for producing metal magnetic powder - Google Patents

Method for producing metal magnetic powder Download PDF

Info

Publication number
JP2010218640A
JP2010218640A JP2009065510A JP2009065510A JP2010218640A JP 2010218640 A JP2010218640 A JP 2010218640A JP 2009065510 A JP2009065510 A JP 2009065510A JP 2009065510 A JP2009065510 A JP 2009065510A JP 2010218640 A JP2010218640 A JP 2010218640A
Authority
JP
Japan
Prior art keywords
magnetic powder
metal magnetic
producing
solution
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009065510A
Other languages
Japanese (ja)
Inventor
Masahiro Goto
昌大 後藤
Takayuki Yoshida
貴行 吉田
Kazuyuki Matsumoto
和幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2009065510A priority Critical patent/JP2010218640A/en
Publication of JP2010218640A publication Critical patent/JP2010218640A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing metal magnetic powder by which a non-magnetic component on a surface layer part of the metal magnetic powder is easily leached out and eliminated without using any reducing agent, in leaching out and eliminating the non-magnetic component on the surface layer part of the metal magnetic powder into a solution for the purpose of reducing a particle size of the metal magnetic powder. <P>SOLUTION: The method for producing the metal magnetic powder includes: a metal magnetic powder producing step to bake raw material powder to which the non-magnetic component is added for the purpose of holding a shape and preventing sintering, and subsequently to reduce the baked powder so as to produce the metal magnetic powder including iron or iron and cobalt as main components, and including the non-magnetic component added for the purpose of holding the shape and preventing sintering; and a step to add a complexing agent for forming a complex with the non-magnetic component on the surface layer part of the metal magnetic powder, to add alkali thereto so as to adjust pH of the solution to 10-14, and to leach out and eliminate the non-magnetic component of the surface layer part of the metal magnetic powder into the solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属磁性粉末の製造方法に関し、特に、塗布型磁気記録媒体に使用される強磁性金属粉末の製造方法に関する。   The present invention relates to a method for producing a metal magnetic powder, and more particularly to a method for producing a ferromagnetic metal powder used in a coating type magnetic recording medium.

塗布型磁気記録媒体に使用される代表的な金属磁性粉末として、鉄を主成分として含有する鉄系磁性粉末がある。このような鉄系金属磁性粉末は、工業的には、オキシ水酸化鉄または酸化鉄を主体とした針状粉末に、形状保持のためにSiやAlなどを含有させるとともに、焼結防止のために希土類元素やアルカリ土類金属元素などを含有させて、焼成した後に還元することによって製造されている。このような鉄系金属磁性粉末を製造する従来の方法として、α−FeOOHにNi、Co、Al、Siおよび希土類元素の化合物を被着させ、非還元性雰囲気下で熱処理し、次いで還元性ガスで還元する方法(例えば、特許文献1参照)や、含水酸化鉄の粒子表面に希土類金属化合物やAl化合物などを被着させた後、不活性ガス雰囲気において加熱脱水し、次いで還元性ガスで還元する方法(例えば、特許文献2参照)が知られている。   As a typical metal magnetic powder used for a coating type magnetic recording medium, there is an iron-based magnetic powder containing iron as a main component. Industrially, such iron-based metal magnetic powders contain needle-like powders mainly composed of iron oxyhydroxide or iron oxide to contain Si, Al, etc. in order to maintain the shape and prevent sintering. It is manufactured by adding a rare earth element, an alkaline earth metal element, or the like, firing, and then reducing. As a conventional method for producing such iron-based metal magnetic powder, α-FeOOH is coated with a compound of Ni, Co, Al, Si and a rare earth element, heat-treated in a non-reducing atmosphere, and then reducing gas. (See, for example, Patent Document 1) or after depositing rare earth metal compounds or Al compounds on the surface of hydrous iron oxide particles, followed by heat dehydration in an inert gas atmosphere and then reducing with a reducing gas There is a known method (for example, see Patent Document 2).

近年、塗布型磁気記録媒体などの磁気記録媒体では、大容量化に伴って記録密度を高めることが要求されており、磁気記録媒体の記録密度を高めるためには、磁性粉末の粒子体積を小さくすることが必要になる。   In recent years, magnetic recording media such as coating-type magnetic recording media have been required to increase the recording density as the capacity increases, and in order to increase the recording density of the magnetic recording medium, the particle volume of the magnetic powder is reduced. It becomes necessary to do.

しかし、磁性粉末を微粒子化すると、磁性粉末の粒子の形状を保持し難くなるため、形状保持のために添加するSiやAlなどの量や、焼結防止のために添加する希土類元素などの量を増加させることが必要になる。しかし、形状保持のために添加するSiやAlなどや、焼結防止のために添加する希土類元素などは、熱処理工程後には既に役割を終えており、何ら磁性に影響を及ぼすものではなく、粒子体積を大きくするだけであり、粒子性ノイズの低減のためには少ない方がよい。特に、磁性粉末の粒子の表層部に存在する希土類元素などや、SiやAlなどの非磁性成分を除去して、粒子体積を小さくするのが望ましい。   However, when the magnetic powder is made into fine particles, it becomes difficult to maintain the shape of the magnetic powder particles. Therefore, the amount of Si or Al added to maintain the shape, the amount of rare earth elements added to prevent sintering, etc. Need to be increased. However, Si and Al added to maintain the shape, rare earth elements added to prevent sintering, etc. have already finished their roles after the heat treatment process and do not affect magnetism at all. It is only necessary to increase the volume, and it is better to reduce the particle noise. In particular, it is desirable to reduce the volume of the particles by removing rare earth elements, etc. present in the surface layer portion of the particles of the magnetic powder and nonmagnetic components such as Si and Al.

このような磁性粉末の粒子の表層部に存在する希土類元素などや、SiやAlなどの非磁性成分を除去して、粒子体積を小さくするために、鉄または鉄とコバルトを主成分として含有する金属磁性粉末の表層部に存在する非磁性成分を溶出除去する方法が提案されている(例えば、特許文献3参照)。この方法では、金属磁性粉末の表層部の非磁性成分と錯体を形成し得る錯化剤を添加した溶液に、非磁性成分を含有する金属磁性粉末を添加して分散させた後に、還元剤を添加することによって、金属磁性粉末の表層部の非磁性成分を浸出して溶液中に溶出除去している。   In order to reduce the volume of particles by removing rare-earth elements present in the surface layer of such magnetic powder particles and nonmagnetic components such as Si and Al, it contains iron or iron and cobalt as main components. There has been proposed a method of eluting and removing nonmagnetic components present in the surface layer portion of the metal magnetic powder (see, for example, Patent Document 3). In this method, after adding a metal magnetic powder containing a nonmagnetic component to a solution containing a complexing agent capable of forming a complex with a nonmagnetic component on the surface layer of the metal magnetic powder, the reducing agent is added. By adding, the nonmagnetic component in the surface layer portion of the metal magnetic powder is leached and removed in the solution.

特開平6−25702号公報(段落番号0006)JP-A-6-25702 (paragraph number 0006) 特開平11−189421号公報(段落番号0011)JP-A-11-189421 (paragraph number 0011) 特開2007−294841号公報(段落番号0033−0035)JP 2007-294841 A (paragraph number 0033-0035)

しかし、特許文献3の方法では、金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去する際に、溶液中に還元剤を添加する必要があり、また、還元能力が弱い還元剤を使用すると磁性元素の溶出が起こり易くなるので、溶液中にヒドラジン(N)、リチウムアルミニウムハイドライド(LiAlH)、ナトリウムボロンハイドライド(NaBH)などの強還元剤を添加する必要がある。そのため、金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去する工程がやや煩雑になり、また、強還元剤を使用して金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去した後の廃液の処理を行うために特殊な貯蔵方法が必要になる。 However, in the method of Patent Document 3, it is necessary to add a reducing agent to the solution when eluting and removing the nonmagnetic component of the surface layer portion of the metal magnetic powder into the solution, and a reducing agent having a weak reducing ability is used. If used, elution of the magnetic element is likely to occur, so it is necessary to add a strong reducing agent such as hydrazine (N 2 H 2 ), lithium aluminum hydride (LiAlH 4 ), sodium boron hydride (NaBH 4 ) to the solution. As a result, the process of eluting and removing the non-magnetic components of the surface layer of the metal magnetic powder into the solution becomes somewhat complicated, and the non-magnetic components of the surface layer of the metal magnetic powder are eluted into the solution using a strong reducing agent. A special storage method is required to treat the waste liquid after the removal.

したがって、本発明は、金属磁性粉末の粒子を小さくするために金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去する際に、還元剤を使用しなくても簡便に金属磁性粉末の表層部の非磁性成分を溶出除去することができる、金属磁性粉末の製造方法を提供することを目的とする。   Therefore, in the present invention, when the nonmagnetic component on the surface portion of the metal magnetic powder is eluted and removed in the solution in order to reduce the particle size of the metal magnetic powder, the metal magnetic powder can be easily obtained without using a reducing agent. It aims at providing the manufacturing method of a metal magnetic powder which can elute and remove the nonmagnetic component of a surface layer part.

本発明者らは、上記課題を解決するために鋭意研究した結果、金属磁性粉末の表層部の非磁性成分と錯体を形成し得る錯化剤を添加するとともにアルカリを添加してpH10〜14に調整した溶液に、非磁性成分を含有する金属磁性粉末を添加して分散させることによって、金属磁性粉末の粒子を小さくするために金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去する際に、還元剤を使用しなくても簡便に金属磁性粉末の表層部の非磁性成分を溶出除去することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have added a complexing agent capable of forming a complex with the non-magnetic component of the surface layer portion of the metal magnetic powder and added an alkali to adjust the pH to 10-14. In order to reduce the particle size of the metal magnetic powder, the nonmagnetic component in the surface layer of the metal magnetic powder is eluted and removed in the solution by adding and dispersing the metal magnetic powder containing the nonmagnetic component to the prepared solution. At this time, it was found that the nonmagnetic component in the surface layer portion of the metal magnetic powder can be easily eluted and removed without using a reducing agent, and the present invention has been completed.

すなわち、本発明による金属磁性粉末の製造方法は、鉄または鉄とコバルトを主成分として含有し且つ非磁性成分を含有する金属磁性粉末を製造する工程と、この金属磁性粉末の表層部の非磁性成分と錯体を形成し得る錯化剤を添加するとともにアルカリを添加してpH10〜14に調整した溶液に、非磁性成分を含有する金属磁性粉末を添加して分散させることによって、金属磁性粉末の表層部の非磁性成分を浸出して溶液中に溶出除去する工程とを備えている。   That is, the method for producing a metal magnetic powder according to the present invention comprises a step of producing a metal magnetic powder containing iron or iron and cobalt as main components and a nonmagnetic component, and a nonmagnetic property of the surface layer portion of the metal magnetic powder. A metal magnetic powder containing a non-magnetic component is added to and dispersed in a solution adjusted to pH 10 to 14 by adding a complexing agent capable of forming a complex with the component and adding alkali. And a step of leaching and removing the non-magnetic component of the surface layer portion into the solution.

この金属磁性粉末の製造方法において、非磁性成分が、(イットリウムを含む)希土類元素、アルミニウムおよび珪素からなる群から選ばれる1種以上であるのが好ましい。また、錯化剤が、酒石酸塩、クエン酸塩、リンゴ酸塩および乳酸塩からなる群から選ばれる1種以上であるのが好ましい。また、アルカリが、水酸化ナトリウムまたは水酸化カリウムであるのが好ましい。さらに、溶出除去の際に溶液の温度を10〜50℃にするのが好ましい。   In this metal magnetic powder production method, the nonmagnetic component is preferably at least one selected from the group consisting of rare earth elements (including yttrium), aluminum and silicon. The complexing agent is preferably at least one selected from the group consisting of tartrate, citrate, malate and lactate. The alkali is preferably sodium hydroxide or potassium hydroxide. Furthermore, the temperature of the solution is preferably 10 to 50 ° C. during elution removal.

また、上記の金属磁性粉末の製造方法は、金属磁性粉末の表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面を洗浄する工程を含むのが好ましい。この場合、金属磁性粉末の表面の洗浄が、アルカリ溶液からなる洗浄液を使用して行われるのが好ましく、アルカリ溶液が、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、セスキ炭酸ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサメタリン酸ナトリウム、アンモニア、エチルアミンおよびテトラメチルアンモニウムヒドロキシドからなる群から選ばれる1種以上の溶液であるのが好ましく、金属磁性粉末の表面の洗浄がpH12以上で行われるのが好ましい。   Moreover, it is preferable that the manufacturing method of said metal magnetic powder includes the process of wash | cleaning the surface of the metal magnetic powder after eluting and removing the nonmagnetic component of the surface layer part of metal magnetic powder. In this case, the surface of the metal magnetic powder is preferably cleaned using a cleaning solution made of an alkaline solution, and the alkaline solution is sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium sesquicarbonate, or trisodium phosphate. It is preferably one or more solutions selected from the group consisting of sodium pyrophosphate, sodium tripolyphosphate, sodium tetraphosphate, sodium hexametaphosphate, ammonia, ethylamine and tetramethylammonium hydroxide, and the surface of the metal magnetic powder is washed. Is preferably carried out at a pH of 12 or more.

また、上記の金属磁性粉末の製造方法は、金属磁性粉末の表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面に酸化膜を形成する工程を含むのが好ましく、酸化膜を形成した金属磁性粉末を還元処理した後に酸化処理する工程を含むのが好ましい。   In addition, the metal magnetic powder manufacturing method preferably includes a step of forming an oxide film on the surface of the metal magnetic powder after elution and removal of the non-magnetic component of the surface portion of the metal magnetic powder. It is preferable to include a step of subjecting the metal magnetic powder to a reduction treatment followed by an oxidation treatment.

本発明によれば、金属磁性粉末の粒子を小さくするために金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去する際に、還元剤を使用しなくても簡便に金属磁性粉末の表層部の非磁性成分を溶出除去することができる。   According to the present invention, in order to reduce the particle size of the metal magnetic powder, the nonmagnetic component of the surface portion of the metal magnetic powder is eluted and removed into the solution without using a reducing agent. It is possible to elute and remove non-magnetic components in the surface layer portion.

本発明による金属磁性粉末の製造方法の実施の形態は、形状保持や焼結防止のために非磁性成分が添加された原料粉末を焼成した後に還元して、鉄または鉄とコバルトを主成分として含有し且つ形状保持や焼結防止のために添加された非磁性成分を含有する金属磁性粉末を製造する金属磁性粉末製造工程と、この金属磁性粉末の表層部の非磁性成分と錯体を形成し得る錯化剤を添加するとともにアルカリを添加してpH10〜14に調整した溶液中に、金属磁性粉末の表層部の非磁性成分を浸出して溶出除去する溶出処理工程と、この溶出処理工程で表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面に酸化膜を形成する酸化処理工程と、この酸化処理工程で酸化膜を形成した金属磁性粉末を還元処理した後に酸化処理する再還元・安定化処理工程と、この再還元・安定化処理工程で還元処理した後に酸化処理した金属磁性粉末の表面を洗浄する洗浄工程とを備えている。以下、これらの工程について説明する。   In the embodiment of the method for producing a metal magnetic powder according to the present invention, the raw material powder to which a nonmagnetic component is added is sintered for shape retention and sintering prevention, and then reduced, and iron or iron and cobalt are the main components. A metal magnetic powder manufacturing process for manufacturing a metal magnetic powder containing a nonmagnetic component that is contained and added for shape retention and sintering prevention, and forms a complex with the nonmagnetic component of the surface layer portion of the metal magnetic powder. In the elution treatment step of leaching and removing the nonmagnetic components of the surface portion of the metal magnetic powder in a solution adjusted to pH 10 to 14 by adding the obtained complexing agent and adding alkali, and in this elution treatment step An oxidation treatment process for forming an oxide film on the surface of the metal magnetic powder after elution and removal of the non-magnetic components in the surface layer portion, and a reduction treatment of the metal magnetic powder on which the oxide film has been formed in this oxidation treatment process, followed by an oxidation treatment. reduction· And Joka process, and a cleaning step of cleaning the surface of the metallic magnetic powder oxidized after reduction treatment in this re-reduction and stabilization process. Hereinafter, these steps will be described.

(金属磁性粉末製造工程)
形状保持や焼結防止のために非磁性成分が添加された原料粉末を焼成した後に還元して、鉄または鉄とコバルトを主成分として含有し且つ形状保持や焼結防止のために添加された非磁性成分を含有する金属磁性粉末を製造するまでの工程としては、一般的な金属磁性粉末の製造工程を採用することができる。例えば、コバルトおよび焼結防止のために添加した希土類元素などを含有するオキシ水酸化鉄を250〜750℃で焼成して、α−Feなどの鉄酸化物にした後、この鉄酸化物を気相還元によって加熱還元して、α−Feを主成分として含有し且つ希土類元素などの非磁性成分を含有する金属磁性粉末(中間製品としての金属磁性粉末)を得る。
(Metal magnetic powder manufacturing process)
Raw material powder with non-magnetic components added for shape retention and sintering prevention was reduced after firing, and contained iron or iron and cobalt as main components and added for shape retention and sintering prevention As a process until a metal magnetic powder containing a nonmagnetic component is manufactured, a general process for manufacturing a metal magnetic powder can be employed. For example, iron oxyhydroxide containing cobalt and rare earth elements added to prevent sintering is baked at 250 to 750 ° C. to form iron oxides such as α-Fe 2 O 3, and the iron oxidation The product is heated and reduced by vapor phase reduction to obtain a metal magnetic powder containing α-Fe as a main component and a nonmagnetic component such as a rare earth element (metal magnetic powder as an intermediate product).

(溶出処理工程)
このようにして得られた金属磁性粉末に含まれる希土類元素(イットリウムを含む)、アルミニウム(Al)および珪素(Si)の少なくとも1種以上と錯体を形成し得る化合物(錯化剤)を溶解した溶液を処理液として用意する。この処理液は、室温付近の温度で調整することができる。錯化剤としては、無電解めっきにおいて錯化剤として通常使用されている薬品、例えば、酒石酸ナトリウムのような酒石酸塩、クエン酸ナトリウムのようなクエン酸塩、リンゴ酸塩、乳酸塩などを使用することができる。錯化剤の濃度は、0.01〜10モル/L程度でよい。
(Elution process)
A compound (complexing agent) capable of forming a complex with at least one of rare earth elements (including yttrium), aluminum (Al), and silicon (Si) contained in the metal magnetic powder thus obtained was dissolved. A solution is prepared as a processing solution. This treatment liquid can be adjusted at a temperature around room temperature. As the complexing agent, chemicals commonly used as complexing agents in electroless plating, such as tartrate such as sodium tartrate, citrate such as sodium citrate, malate, lactate, etc. are used. can do. The concentration of the complexing agent may be about 0.01 to 10 mol / L.

また、この処理液にアルカリを添加してpH10〜14の強アルカリ領域に調整する。このように処理液のpHを10〜14に調整することにより、従来のように強還元剤を使用しなくても、錯化剤による非磁性成分の浸出が起こり易くなる。この処理液に添加するアルカリとして、水酸化ナトリウムや水酸化カリウムなどを使用するのが好ましく、pHを確認しながらアルカリを添加するのが好ましい。   Further, an alkali is added to the treatment liquid to adjust to a strong alkali region of pH 10-14. By adjusting the pH of the treatment liquid to 10 to 14 in this way, leaching of nonmagnetic components by the complexing agent is likely to occur without using a strong reducing agent as in the conventional case. It is preferable to use sodium hydroxide or potassium hydroxide as the alkali to be added to the treatment liquid, and it is preferable to add the alkali while checking the pH.

次に、このようにpH10〜14に調整した処理液に金属磁性粉末を添加する。金属磁性粉末の添加量は、多過ぎると反応が不均一になる可能性があるので、処理液1L当たり1〜100g程度であるのが好ましく、5〜50g程度であるのがさらに好ましい。また、液中の反応の均一性を維持するため、撹拌または強制分散(例えば、超音波分散など)を行うのが好ましい。   Next, the metal magnetic powder is added to the treatment liquid adjusted to pH 10 to 14 in this way. If the addition amount of the metal magnetic powder is too large, the reaction may become non-uniform, so that it is preferably about 1 to 100 g, more preferably about 5 to 50 g, per liter of the treatment liquid. Further, in order to maintain the uniformity of the reaction in the liquid, it is preferable to perform stirring or forced dispersion (for example, ultrasonic dispersion).

処理液中に金属磁性粉末を均一に分散させた後、液温を10〜50℃、好ましくは15〜40℃に保持しながら、10〜300分間浸出操作を行う。この液温が高過ぎると、金属磁性粉末の粒子の表層部から非磁性成分が除去されるだけでなく、粒子の形状が崩壊して、磁気特性を維持することができなくなる場合がある。この浸出操作によって処理液中に非磁性成分が溶出し、金属磁性粉末の粒子中における磁性元素の量が相対的に上昇する。なお、この反応は、不活性ガス雰囲気において行うのが好ましい。   After the metal magnetic powder is uniformly dispersed in the treatment liquid, a leaching operation is performed for 10 to 300 minutes while maintaining the liquid temperature at 10 to 50 ° C., preferably 15 to 40 ° C. If the liquid temperature is too high, not only the nonmagnetic component is removed from the surface layer of the metal magnetic powder particles, but also the shape of the particles may collapse and the magnetic properties may not be maintained. By this leaching operation, the nonmagnetic component is eluted in the treatment liquid, and the amount of the magnetic element in the particles of the metal magnetic powder is relatively increased. This reaction is preferably performed in an inert gas atmosphere.

(酸化処理工程)
次に、必要に応じて、溶出処理した金属磁性粉末の粒子の表面に酸化膜を形成する酸化処理工程を行う。この酸化処理工程は、溶出処理後の液に酸化物を投入して湿式法で酸化処理する工程でもよいし、溶出処理後の液から分離して抽出した金属磁性粉末を乾式法で酸化処理する工程でもよい。
(Oxidation process)
Next, if necessary, an oxidation treatment step for forming an oxide film on the surface of the particles of the eluted metal magnetic powder is performed. This oxidation treatment step may be a step in which an oxide is added to the liquid after the elution treatment and is oxidized by a wet method, or the metal magnetic powder separated and extracted from the liquid after the elution treatment is oxidized by a dry method. It may be a process.

(再還元・安定化処理工程)
次に、必要に応じて、酸化処理した金属磁性粉末に再度還元処理を施し、その後、再度酸化雰囲気に曝す安定化処理を施す。この再還元・安定化処理工程によって先端部が丸みを帯びた粒子が得られ易くなるので好ましい。再還元工程は、水素ガスなどの還元雰囲気下において熱処理することによって行うことができる。熱処理温度は、150℃以上であるのが好ましいが、高温になり過ぎると粒子間焼結が起こり易くなるので、350℃以下にする必要があり、300℃以下にするのが好ましい。また、安定化処理は、酸化性ガス雰囲気において熱処理することによって行うことができる。この場合も、温度が高過ぎると焼結が生じ易いので、約150〜350℃で行うのが好ましい。
(Re-reduction / stabilization process)
Next, if necessary, the oxidized metal magnetic powder is subjected to reduction treatment again, and then subjected to stabilization treatment that is again exposed to an oxidizing atmosphere. This re-reduction / stabilization treatment step is preferable because it is easy to obtain particles with rounded tips. The re-reduction step can be performed by heat treatment in a reducing atmosphere such as hydrogen gas. The heat treatment temperature is preferably 150 ° C. or higher. However, if the temperature is too high, inter-particle sintering is likely to occur. Therefore, the heat treatment temperature needs to be 350 ° C. or lower, and preferably 300 ° C. or lower. The stabilization treatment can be performed by heat treatment in an oxidizing gas atmosphere. In this case as well, sintering is likely to occur if the temperature is too high, so it is preferable to carry out at about 150 to 350 ° C.

(洗浄工程)
最後に、溶出処理後または再還元・安定化処理後の金属磁性粉末を洗浄液に浸漬して、錯体形成時に金属磁性粉末の粒子の表面に付着した錯化剤の有機酸の量を減少させる。この洗浄液として、純水を使用してもよいが、有機酸の量をさらに減少させるために、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、セスキ炭酸ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサメタリン酸ナトリウム、アンモニア、エチルアミン、テトラメチルアンモニウムヒドロキシドなどのアルカリを含有する水溶液を使用するのが好ましい。
(Washing process)
Finally, the metal magnetic powder after the elution treatment or after the re-reduction / stabilization treatment is immersed in a cleaning solution to reduce the amount of the complexing agent organic acid adhering to the surface of the metal magnetic powder particles during complex formation. Pure water may be used as the cleaning solution, but in order to further reduce the amount of organic acid, sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium sesquicarbonate, trisodium phosphate, sodium pyrophosphate, tripolyphosphate It is preferable to use an aqueous solution containing an alkali such as sodium acid, sodium tetraphosphate, sodium hexametaphosphate, ammonia, ethylamine, tetramethylammonium hydroxide.

なお、この洗浄時のpHが12以上であれば、洗浄により有機酸を剥離する効果がより顕著になるので好ましい。また、この洗浄時の温度は、反応条件を最適に調整することができるように、できるだけ室温に近い方がよい。   In addition, if the pH at the time of this washing | cleaning is 12 or more, since the effect which peels an organic acid by washing | cleaning becomes more remarkable, it is preferable. The temperature at the time of washing should be as close to room temperature as possible so that the reaction conditions can be adjusted optimally.

このように、金属磁性粉末の表層部に存在する非磁性成分を溶出除去した後に、金属磁性粉末の表面を洗浄して表面に付着した錯化剤の有機酸を除去することにより、金属磁性粉末の粒子を小さくしても、粒子同士の凝集を防止するとともに、分散性を向上させることができる。   Thus, after eluting and removing the non-magnetic components present on the surface portion of the metal magnetic powder, the surface of the metal magnetic powder is washed to remove the organic acid of the complexing agent adhering to the surface, thereby removing the metal magnetic powder. Even if the particles are made smaller, aggregation of the particles can be prevented and dispersibility can be improved.

このように、本発明による金属磁性粉末の製造方法の実施の形態は、金属磁性粉末の表層部に存在する(焼結防止剤のために添加した)希土類元素や(形状保持のために添加した)AlやSiのような直接磁気特性への関与が薄い非磁性成分を選択的に溶出除去する工程と、この溶出の際に金属磁性粒子の表面に付着した錯化剤の有機酸を除去する工程とを備えているので、個々の粒子の分散を保持し易い金属磁性粉末を製造することができる。   As described above, the embodiment of the method for producing the metal magnetic powder according to the present invention includes the rare earth element (added for the sintering inhibitor) present in the surface layer portion of the metal magnetic powder (added for maintaining the shape). ) Selectively elute and remove non-magnetic components that are not directly involved in direct magnetic properties such as Al and Si, and remove the organic acid of the complexing agent adhering to the surface of the metal magnetic particles during this elution A metal magnetic powder that can easily maintain the dispersion of individual particles.

上述した本発明による金属磁性粉末の製造方法の実施の形態により製造された金属磁性粉末は、鉄または鉄とコバルトを主成分とする金属磁性相を有する粒子からなる金属磁性粉末である。すなわち、金属磁性相を構成する磁性元素(例えば、鉄、コバルト)のうち、鉄または鉄とコバルトの合計の原子割合が50%以上の金属磁性粉末である。この金属磁性粉末の表面には酸化膜が形成されており、鉄(Fe)とコバルト(Co)を主成分として含有する金属磁性粉末では、酸化膜と金属磁性相を含む金属磁性粉末の粒子全体に存在する元素のモル比として「Co含有量(at%)/Fe含有量(at%)×100」で表される、Feに対するCoの原子割合(以下「Co/Fe原子比」という)が、0〜50at%であるのが好ましく、5〜45at%であるのがさらに好ましく、10〜40at%であるのが最も好ましい。このような範囲であれば、安定した磁気特性が得られ易く、耐候性も良好になる。なお、酸化膜として鉄酸化物が検出されるが、その他の元素の酸化物が同時に存在してもよい。   The metal magnetic powder produced by the embodiment of the method for producing metal magnetic powder according to the present invention described above is a metal magnetic powder composed of particles having a metal magnetic phase mainly composed of iron or iron and cobalt. That is, it is a metal magnetic powder in which the total atomic ratio of iron or iron and cobalt among the magnetic elements (for example, iron and cobalt) constituting the metal magnetic phase is 50% or more. An oxide film is formed on the surface of the metal magnetic powder. In the metal magnetic powder containing iron (Fe) and cobalt (Co) as main components, the entire metal magnetic powder particles including the oxide film and the metal magnetic phase are used. The atomic ratio of Co to Fe (hereinafter referred to as “Co / Fe atomic ratio”) expressed as “Co content (at%) / Fe content (at%) × 100” as the molar ratio of the elements present in 0 to 50 at% is preferable, 5 to 45 at% is more preferable, and 10 to 40 at% is most preferable. Within such a range, stable magnetic characteristics can be easily obtained and weather resistance is also improved. Although iron oxide is detected as the oxide film, oxides of other elements may be present at the same time.

また、金属磁性粉末製造工程では、焼結防止のために(イットリウム(Y)を含む)希土類元素(R)、Al、Siなどの非磁性成分が添加されているが、金属磁性粉末の表層部の非磁性成分は、溶出処理工程において除去されているので、(R+Si+Al)/(Fe+Co)原子比が、20at%以下になり、好ましくは15at%以下、さらに好ましくは13at%以下、最も好ましくは12at%以下にすることができる。このように表層部の非磁性成分を除去することによって、従来の微粉化された金属磁性粉末と比べて、粒子体積が小さい割に飽和磁化が大きい粉末を得ることができる。   In addition, in the magnetic metal powder manufacturing process, non-magnetic components such as rare earth elements (R), Al and Si (including yttrium (Y)) are added to prevent sintering. Since the nonmagnetic component is removed in the elution treatment step, the (R + Si + Al) / (Fe + Co) atomic ratio is 20 at% or less, preferably 15 at% or less, more preferably 13 at% or less, and most preferably 12 at%. % Or less. Thus, by removing the nonmagnetic component in the surface layer portion, it is possible to obtain a powder having a large saturation magnetization for a small particle volume as compared with a conventional finely divided metal magnetic powder.

また、金属磁性粉末の粒子サイズについては、平均長軸長が10〜50nmであるのが好ましく、10〜40nmであるのがさらに好ましく、10〜35nmであるのが最も好ましい。平均長軸長が50nmを超えると、粒子体積が大きくなってしまい、磁気記録の高記録密度化に十分対応することが難しくなる。   In addition, regarding the particle size of the metal magnetic powder, the average major axis length is preferably 10 to 50 nm, more preferably 10 to 40 nm, and most preferably 10 to 35 nm. When the average major axis length exceeds 50 nm, the particle volume becomes large, and it becomes difficult to sufficiently cope with the increase in recording density of magnetic recording.

上述した本発明による金属磁性粉末の製造方法の実施の形態により製造された金属磁性粉末は、重層塗布型磁気記録媒体の磁性層に使用することができる。重層塗布型磁気記録媒体は、ベースフィルムの上に、下層として非磁性層を有し、その上に上層として磁性層を有するが、金属磁性粉末は、上層の磁性層を形成するための塗料中に配合させて使用することができる。   The metal magnetic powder produced by the embodiment of the method for producing metal magnetic powder according to the present invention described above can be used for the magnetic layer of the multilayer coating type magnetic recording medium. The multilayer coating type magnetic recording medium has a nonmagnetic layer as a lower layer on a base film and a magnetic layer as an upper layer on the base film, but the metal magnetic powder is contained in a paint for forming an upper magnetic layer. Can be used in combination.

なお、上層および下層のいずれの塗料も、各材料を所定組成となるような割合で配合し、ニーダーやサンドグラインダーを用いて混練・分散させる方法により調合することができる。ベースフィルムへの塗料の塗布は、下層が湿潤なうちに可及的に速やかに上層の磁性層を塗布する、所謂ウエット・オン・ウエット方式で行うことが好ましい。   It should be noted that both the upper layer paint and the lower layer paint can be blended by a method in which the respective materials are blended at a ratio such that a predetermined composition is obtained and kneaded and dispersed using a kneader or a sand grinder. The coating is preferably applied to the base film by a so-called wet-on-wet method in which the upper magnetic layer is applied as quickly as possible while the lower layer is wet.

重層塗布型磁気記録媒体では、ベースフィルムとして、例えば、ポリエチレンテレフタラート、ポリエチレンナフタレートなどのポリエステル類、ポリオレフィン類、セルローストリアセテート、ポリカーボネイト、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォンアラミド、芳香族ポリアミドなどの樹脂フィルムを使用することができる。また、下層の非磁性層用塗料として、例えば、非磁性粉末(DOWAエレクトロニクス(株)製のα−酸化鉄、平均長軸粒子径80nm)85質量部と、カーボンブラック20質量部と、アルミナ3質量部と、塩化ビニル樹脂(日本ゼオン(株)製の塩化ビニル系バインダーMR−110)15質量部と、ポリウレタン樹脂(東洋紡(株)製のポリウレタン樹脂UR−8200)15質量部と、メチルエチルケトン190質量部と、シクロヘキサノン80質量部と、トルエン110質量部とからなる組成の非磁性塗料を使用することができる。さらに、上層の磁性層用塗料として、例えば、金属磁性粉末100質量部と、カーボンブラック5質量部と、アルミナ3質量部と、塩化ビニル樹脂(日本ゼオン(株)製のMR−110)15質量部と、ポリウレタン樹脂(東洋紡(株)製のUR−8200)15質量部と、ステアリン酸1質量部と、アセチルアセトン1質量部と、メチルエチルケトン190質量部と、シクロヘキサノン80質量部と、トルエン110質量部とからなる組成の磁性塗料を使用することができる。   In the multilayer coating type magnetic recording medium, as the base film, for example, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone aramid, aromatic polyamide, etc. A resin film can be used. Examples of the coating material for the lower nonmagnetic layer include, for example, 85 parts by mass of nonmagnetic powder (α-iron oxide manufactured by DOWA Electronics Co., Ltd., average major axis particle size of 80 nm), 20 parts by mass of carbon black, and alumina 3 15 parts by mass of vinyl chloride resin (vinyl chloride binder MR-110 manufactured by Nippon Zeon Co., Ltd.), 15 parts by mass of polyurethane resin (polyurethane resin UR-8200 manufactured by Toyobo Co., Ltd.), and methyl ethyl ketone 190 A nonmagnetic paint having a composition composed of part by mass, 80 parts by mass of cyclohexanone, and 110 parts by mass of toluene can be used. Further, as the magnetic layer coating for the upper layer, for example, 100 parts by mass of metal magnetic powder, 5 parts by mass of carbon black, 3 parts by mass of alumina, and 15 parts by mass of vinyl chloride resin (MR-110 manufactured by Nippon Zeon Co., Ltd.) Parts, 15 parts by mass of polyurethane resin (UR-8200 manufactured by Toyobo Co., Ltd.), 1 part by mass of stearic acid, 1 part by mass of acetylacetone, 190 parts by mass of methyl ethyl ketone, 80 parts by mass of cyclohexanone, and 110 parts by mass of toluene A magnetic coating composition having the following composition can be used.

以下、本発明による金属磁性粉末の製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the manufacturing method of the metal magnetic powder by this invention is described in detail.

まず、5000mLのビーカーに純水3000mLを入れた後、温調機で30℃に維持しながら、0.03モル/Lの硫酸コバルト(特級試薬)溶液と0.15モル/Lの硫酸第一鉄(特級試薬)水溶液をCo:Fe=1:4の混合割合になるように混合した。この混合溶液500mLに、Fe+Coに対して炭酸が3当量になる量の顆粒状の炭酸ナトリウムを直接添加し、液中温度が40±5℃の範囲を超えないように調整しながら、炭酸鉄を主体とする懸濁液を作製した。この懸濁液を90分間熟成させた後、Feイオンの酸化率が20%になるように調整した量の空気を50mL/分の流量で添加して核晶を形成させ、60℃まで昇温させ、純酸素を50mL/分の流量で通気して60分間酸化を継続した。その後、純酸素を窒素に切り替えて、30分間程度熟成した。   First, after adding 3000 mL of pure water to a 5000 mL beaker, maintaining at 30 ° C. with a temperature controller, a 0.03 mol / L cobalt sulfate (special grade reagent) solution and 0.15 mol / L sulfuric acid first An aqueous solution of iron (special grade reagent) was mixed so as to have a mixing ratio of Co: Fe = 1: 4. To 500 mL of this mixed solution, granulated sodium carbonate in an amount of 3 equivalents of Fe + Co was directly added, and the temperature in the liquid was adjusted so as not to exceed the range of 40 ± 5 ° C. A main suspension was prepared. After aging this suspension for 90 minutes, air adjusted to an oxidation rate of Fe ions of 20% was added at a flow rate of 50 mL / min to form nuclei, and the temperature was raised to 60 ° C. Then, pure oxygen was aerated at a flow rate of 50 mL / min and oxidation was continued for 60 minutes. Thereafter, the pure oxygen was switched to nitrogen and aged for about 30 minutes.

次に、液温を40℃まで降温させて温度が安定した後、1.0質量%のAlの硫酸アルミニウム水溶液を5.0g/分の添加速度で20分間添加し続けてオキシ水酸化鉄を成長させた。その後、純酸素を50mL/分の流量で流し続け、酸化を完結させた。なお、酸化の終点の確認は、上澄み液を少量分取し、ヘキサシアノ酸鉄カリウム溶液を添加して、液色が変化しないことを確認することによって行った。   Next, after the liquid temperature was lowered to 40 ° C. and the temperature was stabilized, 1.0 mass% Al aluminum sulfate aqueous solution was continuously added at an addition rate of 5.0 g / min for 20 minutes, and iron oxyhydroxide was added. Grown up. Thereafter, pure oxygen was kept flowing at a flow rate of 50 mL / min to complete the oxidation. The end point of the oxidation was confirmed by taking a small amount of the supernatant and adding an iron potassium hexacyanoate solution to confirm that the liquid color did not change.

次に、酸化終了後の液に(イットリウムとして2.0質量%含有する)酸化イットリウムの硫酸水溶液300gを添加して、Alを固溶させ、イットリウムが表面に被着したオキシ水酸化鉄の粉末(ケーキ)を得た。   Next, 300 g of an aqueous solution of sulfuric acid of yttrium oxide (containing 2.0% by mass as yttrium) is added to the liquid after completion of oxidation to dissolve Al, and the iron oxyhydroxide powder deposited on the surface of yttrium (Cake) was obtained.

このオキシ水酸化鉄のケーキを濾過し、水洗した後、130℃で6時間乾燥させ、オキシ水酸化鉄の乾燥固形物を得た。この乾燥固形物10gをバケットに入れ、水の流量として1.0g/分で水蒸気を添加しながら大気中において400℃で焼成し、α−酸化鉄(ヘマタイト)を主成分とする鉄系酸化物を得た。   The iron oxyhydroxide cake was filtered, washed with water, and dried at 130 ° C. for 6 hours to obtain a dried solid product of iron oxyhydroxide. 10 g of this dry solid is put into a bucket and fired at 400 ° C. in the atmosphere while adding water vapor at a flow rate of 1.0 g / min, and an iron-based oxide mainly composed of α-iron oxide (hematite) Got.

このα−酸化鉄を主成分とする鉄系酸化物を通気可能なバケット内に投入した後、バケットを貫通型還元炉内に装入し、水素ガスを40L/分の流量で通気するとともに、水の流量として1.0g/分で水蒸気を添加しながら、400℃で30分間焼成させて還元処理を行った。この還元処理が終了した後、水蒸気の供給を停止し、水素雰囲気下において昇温速度10℃/分で600℃まで昇温させた。その後、水の流量として1.0g/分で水蒸気を添加しながら60分間高温還元処理を行い、鉄系合金粉末(中間製品としての金属磁性粉末)を得た。   After charging the iron-based oxide containing α-iron oxide as a main component into a bucket that can be ventilated, the bucket is charged into a through-type reduction furnace, and hydrogen gas is vented at a flow rate of 40 L / min. While water vapor was added at a flow rate of 1.0 g / min, the reduction treatment was performed by baking at 400 ° C. for 30 minutes. After the reduction treatment was completed, the supply of water vapor was stopped, and the temperature was raised to 600 ° C. at a temperature rising rate of 10 ° C./min in a hydrogen atmosphere. Thereafter, high-temperature reduction treatment was performed for 60 minutes while adding water vapor at a flow rate of water of 1.0 g / min to obtain an iron-based alloy powder (metal magnetic powder as an intermediate product).

次に、この粉末の溶出処理を行うために使用する処理液として、純水900mLに対して、錯化剤として酒石酸ナトリウムを0.03モル/L、緩衝剤として硫酸アンモニウムを0.05モル/Lになるように混合し、水酸化ナトリウムを加えてpH13程度に調整した処理液を用意した。この処理液に還元処理後の粉末10gを投入し、30℃で30分間撹拌しながら反応させてスラリーを得た。このスラリーを固液分離し、固形分を水洗し、濾過して濾過物を得た。   Next, as a treatment liquid used for the elution treatment of the powder, 0.03 mol / L of sodium tartrate as a complexing agent and 0.05 mol / L of ammonium sulfate as a buffering agent with respect to 900 mL of pure water. Then, a treatment liquid prepared by adding sodium hydroxide and adjusting the pH to about 13 was prepared. 10 g of the powder after the reduction treatment was added to this treatment liquid and reacted with stirring at 30 ° C. for 30 minutes to obtain a slurry. This slurry was subjected to solid-liquid separation, and the solid content was washed with water and filtered to obtain a filtrate.

次に、得られた濾過物を通気可能なバケット内に入れた後、バケットを貫通型還元炉内に装入し、50L/分の流量で窒素を導入しながら90℃で乾燥させて粉末を得た。その後、窒素と純酸素をそれぞれ50L/分および400mL/分の流量で混合したガスを炉内に添加し、水の流量として1.0g/分で水蒸気を添加しながら、水蒸気と酸素と窒素の混合雰囲気中において、粉末の表面に酸化膜を形成し、表面の酸化による発熱が抑制された段階で純酸素の流量を徐々に増加することによって、混合雰囲気中における酸素濃度を上昇させ、最終的な純酸素の流量を2.0L/分にした。なお、炉内に導入されるガスの総量は、窒素の流量を調整することによってほぼ一定に保たれるようにし、この酸化処理は、約90℃に維持される雰囲気下において1時間行った。   Next, after putting the obtained filtrate in a bucket that can be ventilated, the bucket is placed in a through-type reducing furnace, and dried at 90 ° C. while introducing nitrogen at a flow rate of 50 L / min to obtain a powder. Obtained. Thereafter, a gas in which nitrogen and pure oxygen are mixed at a flow rate of 50 L / min and 400 mL / min, respectively, is added to the furnace, and water vapor is added at a flow rate of 1.0 g / min. In the mixed atmosphere, an oxide film is formed on the surface of the powder, and the oxygen concentration in the mixed atmosphere is increased and finally increased by gradually increasing the flow rate of pure oxygen at the stage where heat generation due to surface oxidation is suppressed. The flow rate of pure oxygen was 2.0 L / min. The total amount of gas introduced into the furnace was kept substantially constant by adjusting the flow rate of nitrogen, and this oxidation treatment was performed for 1 hour in an atmosphere maintained at about 90 ° C.

次に、表面に酸化膜を形成した粉末を250℃の水素雰囲気下に30分間曝すことによって再還元処理を行った後、上記の酸化処理と同様の方法によって安定化処理を行った。   Next, after performing re-reduction treatment by exposing the powder having an oxide film formed on the surface in a hydrogen atmosphere at 250 ° C. for 30 minutes, stabilization treatment was performed by the same method as the oxidation treatment described above.

この安定化処理後の粉末をpH13程度に調整した0.1モル/Lの水酸化ナトリウム水溶液に浸漬し、30℃で30分間撹拌して、表面に付着した有機酸を剥離し、得られたスラリーから固形分を回収した。   The powder after stabilization treatment was immersed in a 0.1 mol / L sodium hydroxide aqueous solution adjusted to about pH 13, and stirred at 30 ° C. for 30 minutes to peel off the organic acid adhering to the surface. Solids were recovered from the slurry.

このようにして得られた金属磁性粉末(最終製品としての金属磁性粉末)について、組成分析および磁気特性の測定を行った。   The thus obtained metal magnetic powder (metal magnetic powder as a final product) was subjected to composition analysis and measurement of magnetic properties.

粉末の組成は、金属磁性相と酸化膜を含む粒子全体の質量分析を行うことによって求めた。なお、Co、Alおよび希土類元素(Yを含む)の定量は、日本ジャーレルアッシュ株式会社製の高周波誘導プラズマ発光分析装置ICP(IRIS/AP)を使用し、Feの定量は、平沼産業株式会社製の平沼自動滴定装置(CONTIME−980型)を使用して行った。また、粉末の磁気特性は、東英工業株式会社製のVSM装置(VSM−7P)を使用して外部磁場10kOe(795.8kA/m)で測定した。その結果を表1および表2に示す。   The composition of the powder was determined by performing mass analysis of the entire particle including the metal magnetic phase and the oxide film. Co, Al and rare earth elements (including Y) were quantified using a high frequency induction plasma emission analyzer ICP (IRIS / AP) manufactured by Nippon Jarrel Ash Co., and Fe was quantified by Hiranuma Sangyo Co., Ltd. This was carried out using a Hiranuma automatic titrator (CONTIME-980 type). The magnetic properties of the powder were measured with an external magnetic field of 10 kOe (795.8 kA / m) using a VSM device (VSM-7P) manufactured by Toei Kogyo Co., Ltd. The results are shown in Tables 1 and 2.

Figure 2010218640
Figure 2010218640

Figure 2010218640
Figure 2010218640

表1に示すように、金属磁性粉末中のFe、Co、Al、Yの含有量は、それぞれ56.3質量%、12.4質量%、2.2質量%、6.5質量%であった。また、表2に示すように、金属磁性粉末の保磁力は2122Oe(168.9kA/m)、飽和磁化は113.9Am/kg、角形比は0.51、保磁力分布SFDは1.19であった。 As shown in Table 1, the contents of Fe, Co, Al, and Y in the metal magnetic powder were 56.3% by mass, 12.4% by mass, 2.2% by mass, and 6.5% by mass, respectively. It was. Moreover, as shown in Table 2, the coercive force of the metal magnetic powder is 2122 Oe (168.9 kA / m), the saturation magnetization is 113.9 Am 2 / kg, the squareness ratio is 0.51, and the coercive force distribution SFD is 1.19. Met.

次に、得られた金属磁性粉末(最終製品としての金属磁性粉末)0.35gを秤量して(内径45mm、深さ13mmの)ポットに入れ、蓋を開けた状態で10分間放置した後、マイクロピペットでビヒクル(東洋紡製の塩化ビニル系樹脂MR−110(22質量%)と、シクロヘキサノン(38.7質量%)と、アセチルアセトン(0.3質量%)と、ステアリン酸−n−ブチル(0.3質量%)と、メチルエチルケトン(38.7質量%)の混合溶液)0.7mLを添加し、その直後にスチールボール(2φ)30g、ナイロンボール(8φ)10個をポットに加えて、蓋を閉じた状態で10分間静置した。その後、ポットを遠心式ボールミル(FRITSH P−6)にセットし、ゆっくりと回転数を上げて600rpmに調整し、60分間分散させた。遠心式ボールミルを停止した後、ポットを取り出し、予めメチルエチルケトンとトルエンを1:1で混合した調整液1.8mLをマイクロピペットで添加した。その後、再びポットを遠心式ボールミルにセットし、600rpmで5分間分散させ、磁性塗料を作製した。   Next, 0.35 g of the obtained metal magnetic powder (metal magnetic powder as a final product) was weighed and placed in a pot (inner diameter 45 mm, depth 13 mm) and left for 10 minutes with the lid open, A vehicle with a micropipette (vinyl chloride resin MR-110 (22% by mass), cyclohexanone (38.7% by mass), acetylacetone (0.3% by mass), stearic acid-n-butyl (0% by Toyobo) .3 mass%) and methyl ethyl ketone (38.7 mass%) mixed solution (0.7 mL) are added. Immediately thereafter, 30 g of steel balls (2φ) and 10 nylon balls (8φ) are added to the pot, Was allowed to stand for 10 minutes in a closed state. Thereafter, the pot was set on a centrifugal ball mill (FRITSH P-6), and the number of revolutions was slowly increased to 600 rpm and dispersed for 60 minutes. After stopping the centrifugal ball mill, the pot was taken out, and 1.8 mL of a preliminarily mixed solution of methyl ethyl ketone and toluene at 1: 1 was added with a micropipette. Thereafter, the pot was set again on the centrifugal ball mill, and dispersed at 600 rpm for 5 minutes to produce a magnetic paint.

次に、ポットの蓋を開けてナイロンボールを取り除き、スチールボールごと磁性塗料をアプリケータ(550μm)に入れ、ベースフィルム(東レ株式会社製のポリエチレンフィルム15C−B500、膜厚15μm)上に磁性塗料を塗布し、迅速に5.5kGの配向器のコイル中心に置いて磁場配向させた後、乾燥させて磁気テープを作製した。なお、ここでは金属磁性粉末の効果をより鮮明に確認するため、非磁性層を設けず、磁性層単層のテープを作製した。   Next, the pot lid is opened to remove the nylon ball, and the magnetic paint is put together with the steel ball into the applicator (550 μm), and the magnetic paint is applied on the base film (Toray Industries, Inc. polyethylene film 15C-B500, film thickness 15 μm). Was quickly placed on the center of the coil of a 5.5 kG aligner and magnetically oriented, and then dried to produce a magnetic tape. Here, in order to confirm the effect of the metal magnetic powder more clearly, a tape having a single magnetic layer was prepared without providing a nonmagnetic layer.

このようにして作製した媒体としての磁気テープについて、東英工業株式会社製のVSM装置(VSM−7P)を使用して磁気測定を行い、保磁力Hc、保磁力分布SFD、角形比、配向比を求めた。その結果を表3に示す。   The magnetic tape as the medium thus prepared was subjected to magnetic measurement using a VSM device (VSM-7P) manufactured by Toei Kogyo Co., Ltd., and coercive force Hc, coercive force distribution SFD, squareness ratio, orientation ratio. Asked. The results are shown in Table 3.

Figure 2010218640
Figure 2010218640

表3に示すように、磁気テープの保磁力Hcは2610Oe(207.7kA/m)、保磁力分布SFDは0.47、角形比は0.87、配向比は2.68であった。   As shown in Table 3, the magnetic tape had a coercive force Hc of 2610 Oe (207.7 kA / m), a coercive force distribution SFD of 0.47, a squareness ratio of 0.87, and an orientation ratio of 2.68.

また、比較例として、水酸化ナトリウムを加えてpH13程度に調整した処理液の代わりにアンモニアを加えてpH9に調整した処理液を使用し、この処理液に還元処理後の粉末を投入して30℃に保持した後に、還元剤として水素化ホウ素ナトリウムを0.3モル/Lになるように添加した以外は、実施例と同様の処理により、金属磁性粉末および磁気テープを作製し、実施例と同様の測定を行った。その結果を表1〜表3に示す。   Further, as a comparative example, instead of the treatment liquid adjusted to about pH 13 by adding sodium hydroxide, a treatment liquid adjusted to pH 9 by adding ammonia was used, and the powder after reduction treatment was added to this treatment liquid. A metal magnetic powder and a magnetic tape were prepared by the same treatment as in the Example except that sodium borohydride was added as a reducing agent to a concentration of 0.3 mol / L after being held at 0 ° C. Similar measurements were made. The results are shown in Tables 1 to 3.

表1に示すように、金属磁性粉末中のFe、Co、Al、Yの含有量は、それぞれ56.1質量%、12.9質量%、2.2質量%、6.3質量%であった。また、表2に示すように、金属磁性粉末の保磁力は2100Oe(167.1kA/m)、飽和磁化は113.3Am/kg、角形比は0.50、保磁力分布SFDは1.22であった。さらに、表3に示すように、磁気テープの保磁力Hcは2628Oe(209.1kA/m)、保磁力分布SFDは0.51、角形比は0.86、配向比は2.68であった。 As shown in Table 1, the contents of Fe, Co, Al, and Y in the metal magnetic powder were 56.1% by mass, 12.9% by mass, 2.2% by mass, and 6.3% by mass, respectively. It was. Further, as shown in Table 2, the coercive force of the metal magnetic powder is 2100 Oe (167.1 kA / m), the saturation magnetization is 113.3 Am 2 / kg, the squareness ratio is 0.50, and the coercive force distribution SFD is 1.22. Met. Furthermore, as shown in Table 3, the coercive force Hc of the magnetic tape was 2628 Oe (209.1 kA / m), the coercive force distribution SFD was 0.51, the squareness ratio was 0.86, and the orientation ratio was 2.68. .

上述したように、実施例と比較例で得られた金属磁性粉末の磁気特性には大きな変化がなく、その粒子の形状も大きな違いは確認されなかった。これらの結果から、金属磁性粉末の表層部の非磁性成分と錯体を形成し得る錯化剤を添加するとともにアルカリを添加して強アルカリ領域(pH10〜14)に調整した溶液に、非磁性成分を含有する金属磁性粉末を添加して分散させることによって、金属磁性粉末の粒子を小さくするために金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去する際に、還元剤を使用しなくても簡便に金属磁性粉末の表層部の非磁性成分を溶出除去することができることがわかった。   As described above, there was no significant change in the magnetic properties of the metal magnetic powders obtained in the examples and comparative examples, and no significant difference was observed in the shape of the particles. From these results, a non-magnetic component was added to a solution prepared by adding a complexing agent capable of forming a complex with a non-magnetic component on the surface portion of the metal magnetic powder and adding alkali to a strong alkali region (pH 10-14). In order to reduce the particles of the metal magnetic powder, the reducing agent is used to elute and remove the nonmagnetic components in the surface layer of the metal magnetic powder into the solution by adding and dispersing the metal magnetic powder containing It was found that the nonmagnetic component in the surface layer portion of the metal magnetic powder can be easily eluted and removed without the need.

Claims (10)

鉄または鉄とコバルトを主成分として含有し且つ非磁性成分を含有する金属磁性粉末を製造する工程と、この金属磁性粉末の表層部の非磁性成分と錯体を形成し得る錯化剤を添加するとともにアルカリを添加してpH10〜14に調整した溶液に、前記非磁性成分を含有する金属磁性粉末を添加して分散させることによって、前記金属磁性粉末の表層部の非磁性成分を浸出して前記溶液中に溶出除去する工程とを備えた、金属磁性粉末の製造方法。 A step of producing a metal magnetic powder containing iron or iron and cobalt as main components and a nonmagnetic component, and a complexing agent capable of forming a complex with the nonmagnetic component in the surface layer portion of the metal magnetic powder are added. In addition, by adding and dispersing the metal magnetic powder containing the non-magnetic component in a solution adjusted to pH 10 to 14 by adding alkali, the non-magnetic component in the surface portion of the metal magnetic powder is leached to And a step of eluting and removing the solution in a solution. 前記非磁性成分が、(イットリウムを含む)希土類元素、アルミニウムおよび珪素からなる群から選ばれる1種以上である、請求項1に記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to claim 1, wherein the nonmagnetic component is at least one selected from the group consisting of rare earth elements (including yttrium), aluminum, and silicon. 前記錯化剤が、酒石酸塩、クエン酸塩、リンゴ酸塩および乳酸塩からなる群から選ばれる1種以上である、請求項1または2に記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to claim 1 or 2, wherein the complexing agent is at least one selected from the group consisting of tartrate, citrate, malate and lactate. 前記アルカリが、水酸化ナトリウムまたは水酸化カリウムである、請求項1乃至3のいずれかに記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to any one of claims 1 to 3, wherein the alkali is sodium hydroxide or potassium hydroxide. 前記溶出除去の際に前記溶液の温度を10〜50℃にする、請求項1乃至4のいずれかに記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to any one of claims 1 to 4, wherein the temperature of the solution is set to 10 to 50 ° C during the elution removal. 前記金属磁性粉末の表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面を洗浄する工程を含む、請求項1乃至5のいずれかに記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to any one of claims 1 to 5, comprising a step of washing the surface of the metal magnetic powder after elution and removal of the non-magnetic component of the surface layer portion of the metal magnetic powder. 前記金属磁性粉末の表面の洗浄が、アルカリ溶液からなる洗浄液を使用して行われる、請求項6に記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to claim 6, wherein the surface of the metal magnetic powder is cleaned using a cleaning liquid comprising an alkaline solution. 前記アルカリ溶液が、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、セスキ炭酸ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサメタリン酸ナトリウム、アンモニア、エチルアミンおよびテトラメチルアンモニウムヒドロキシドからなる群から選ばれる1種以上の溶液である、請求項7に記載の金属磁性粉末の製造方法。 The alkaline solution is sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium sesquicarbonate, trisodium phosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium tetraphosphate, sodium hexametaphosphate, ammonia, ethylamine and tetramethylammonium hydroxide. The manufacturing method of the metal magnetic powder of Claim 7 which is 1 or more types of solutions chosen from the group which consists of. 前記金属磁性粉末の表面の洗浄がpH12以上で行われる、請求項6乃至8のいずれかに記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to any one of claims 6 to 8, wherein the surface of the metal magnetic powder is washed at a pH of 12 or more. 前記金属磁性粉末の表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面に酸化膜を形成する工程を含む、請求項1乃至5のいずれかに記載の金属磁性粉末の製造方法。
The method for producing a metal magnetic powder according to any one of claims 1 to 5, further comprising a step of forming an oxide film on the surface of the metal magnetic powder after the nonmagnetic component in the surface layer portion of the metal magnetic powder has been eluted and removed.
JP2009065510A 2009-03-18 2009-03-18 Method for producing metal magnetic powder Pending JP2010218640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065510A JP2010218640A (en) 2009-03-18 2009-03-18 Method for producing metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065510A JP2010218640A (en) 2009-03-18 2009-03-18 Method for producing metal magnetic powder

Publications (1)

Publication Number Publication Date
JP2010218640A true JP2010218640A (en) 2010-09-30

Family

ID=42977295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065510A Pending JP2010218640A (en) 2009-03-18 2009-03-18 Method for producing metal magnetic powder

Country Status (1)

Country Link
JP (1) JP2010218640A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114720A (en) * 1993-10-19 1995-05-02 Sony Corp Magnetic recording medium
JP2007294841A (en) * 2006-03-28 2007-11-08 Dowa Electronics Materials Co Ltd Metallic magnetic powder for magnetic recording medium, and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114720A (en) * 1993-10-19 1995-05-02 Sony Corp Magnetic recording medium
JP2007294841A (en) * 2006-03-28 2007-11-08 Dowa Electronics Materials Co Ltd Metallic magnetic powder for magnetic recording medium, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4758858B2 (en) Metallic magnetic powder for magnetic recording medium and method for producing the same
JP4534059B2 (en) Iron nitride magnetic powder and method for producing the same
US20140356642A1 (en) Metallic magnetic powder and manufacturing method of the same, magnetic painting, magnetic powder for magnetic therapy, and magnetic recording medium
US20110123830A1 (en) Metallic magnetic powder for magnetic recording and process for producing the metallic magnetic powder
JP2012212807A (en) Metallic magnetic powder and production method therefor
JP5090546B2 (en) Metallic magnetic powder for magnetic recording media
JP5189017B2 (en) Metallic magnetic powder and method for producing the same
JP5731483B2 (en) Metal magnetic powder and method for producing the same, magnetic paint, and magnetic recording medium
JP5280661B2 (en) Method for producing metal magnetic powder
US8852314B2 (en) Method of producing magnetic powder for magnetic recording medium
JP4758936B2 (en) Metallic magnetic powder for magnetic recording and method for producing the same
JP2010218640A (en) Method for producing metal magnetic powder
JP4677734B2 (en) Magnetic powder for magnetic recording media
JP5228212B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
EP1770722B1 (en) Magnetic powder for magnetic recording medium
JP5391415B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
CN1932981B (en) Magnetic powder for magnetic recording medium
JPH0651574B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JP2010225268A (en) Magnetic powder for magnetic recording medium, manufacturing method therefor, and magnetic recording medium using the powder
JPH0448602A (en) Manufacture of metallic magnetic powder for magnetic recording

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312