JPH0448602A - Manufacture of metallic magnetic powder for magnetic recording - Google Patents

Manufacture of metallic magnetic powder for magnetic recording

Info

Publication number
JPH0448602A
JPH0448602A JP2155655A JP15565590A JPH0448602A JP H0448602 A JPH0448602 A JP H0448602A JP 2155655 A JP2155655 A JP 2155655A JP 15565590 A JP15565590 A JP 15565590A JP H0448602 A JPH0448602 A JP H0448602A
Authority
JP
Japan
Prior art keywords
magnetic powder
acid
metal
metallic
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2155655A
Other languages
Japanese (ja)
Inventor
Masatake Maruo
丸尾 正剛
Masaharu Hirai
平井 正治
Haruki Ichinose
一ノ瀬 治紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2155655A priority Critical patent/JPH0448602A/en
Publication of JPH0448602A publication Critical patent/JPH0448602A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain metallic magnetic powder having high resistance to oxidation suitable for magnetic recording by carrying thermal decomposition residue of ammine complex of component metal on the particle surface of metallic magnetic powder. CONSTITUTION:Thermal decomposition residue of amine complex of component metal is carried on the particle surface of metallic magnetic powder by bringing one of the following: (1) magnetic salt of organic or inorganic acid and alkali compound containing nitrogen, (2) organic or inorganic acid, alkali compound containing nitrogen, and metallic hydroxide, or (3) compound containing nitrogen of organic or inorganic acid and metallic hydroxide, into contact with metallic magnetic powder and thermally decomposing them. Metallic magnetic powder used as substances to be processed are metallic magnetic powder of iron or iron-based metals having iron as their main body. Organic or inorganic acids used, metallic salts thereof or compound thereof containing nitrogen includes acetic acid, oxalic acid, tartaric acid, malonic acid, hydrochloric acid, sulfuric acid, nitric acid, or carbonic acid.

Description

【発明の詳細な説明】 〔発明の技術的分野) 本発明は、耐酸化性に優れた磁気記録用に好適な金属磁
性粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a metal magnetic powder having excellent oxidation resistance and suitable for magnetic recording.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、近年高記録密度化による小型化、高性
能化の指向が一段と強まってきている。
In recent years, there has been an increasing trend toward miniaturization and higher performance of magnetic recording media due to higher recording densities.

これとあいまって磁気記録用磁性粉末として、従来の酸
化鉄系磁性粉末に比し、飽和磁化が大きく、かつ高保磁
力化が容易な鉄または鉄系金属磁性粉末(以下金属磁性
粉末という)が注目されており、デジタルオーディオチ
ーブや8 m/mビデオテープなどへの実用化がはから
れつつあるが、近時さらに高画質ビデオテープ、高記録
密度ディスク用など高性能記録媒体への通用が一層期待
されている。
In conjunction with this, iron or iron-based metal magnetic powders (hereinafter referred to as metal magnetic powders) are attracting attention as magnetic powders for magnetic recording, as they have larger saturation magnetization and are easier to increase coercive force than conventional iron oxide-based magnetic powders. Although it is being put to practical use in digital audio chips and 8 m/m video tapes, it has recently become more popular for high-performance recording media such as high-definition video tapes and high-density discs. It is expected.

ところで、このような金属磁性粉末は、通常約0.5μ
m以下(長径)、さらには0.3μm以下の微細粒子で
あるのが望ましく、かつこのものを磁気塗料としたとき
の分散性、塗膜での配向性、充填性等に優れたものであ
ることが望まれている。しかしながらこのような微細粒
子は表面活性が強く、このために経時的に酸化が進むこ
とにより、これにともなって飽和磁化、保磁力などの磁
気特性が低下し、いわゆる経時安定性(以下面1酸化性
という)の悪化がさけられなかったりする。またさらに
著しい場合には、前記酸化反応が急激に進むと自然発火
、燃焼に至るなど取扱操作、工程管理上種々のトラブル
を惹起したりする。
By the way, such metal magnetic powder usually has a thickness of about 0.5μ.
Preferably, the particles are fine particles with a diameter of 1.5 m or less (longer diameter), and more preferably 0.3 μm or less, and have excellent dispersibility, orientation in a coating film, filling property, etc. when used as a magnetic coating. It is hoped that However, such fine particles have strong surface activity, and as a result, oxidation progresses over time, resulting in a decrease in magnetic properties such as saturation magnetization and coercive force. In some cases, the deterioration of the condition (called sexual) cannot be avoided. In even more severe cases, if the oxidation reaction rapidly progresses, it may lead to spontaneous combustion and combustion, causing various troubles in handling operations and process control.

これらの問題点を改良するために、既に多くの提案がな
されている。例えば、(1)還元により製造した直後の
金属磁性粉末の粒子表面を、徐酸化して薄い酸化被膜を
形成させたり、(2)金属磁性粉末の粒子表面を例えば
シリコン系化合物や高級脂肪酸系化合物等の有機物質で
被覆したり、さらには(3)金属磁性粉末の粒子表面に
、耐食性金属化合物を湿式あるいは乾式の種々の方法に
よって被着せしめる方法等が知られている。しかしなが
ら、これらの方法によっても耐酸化性が十分満足される
ものでなかったり、十分な耐酸化性を付与しようとする
と金属磁性粉末のもつ高飽和磁化、高保磁力などの優れ
た磁気特性や塗料化時の分散性などが損なわれ易かった
りするなど、未だ改善を要する問題点が少なくない。こ
とに、さらに高S/N比化、高出力化が一段と要請され
ることとあいまって、金属磁性粉末のより微粒子化が指
向されており前記問題点の解決が強く希求されている。
Many proposals have already been made to improve these problems. For example, (1) the particle surface of the metal magnetic powder immediately after being produced by reduction may be slowly oxidized to form a thin oxide film, or (2) the particle surface of the metal magnetic powder may be coated with, for example, a silicon-based compound or a higher fatty acid-based compound. There are also known methods in which (3) a corrosion-resistant metal compound is deposited on the surface of the metal magnetic powder particles by various wet or dry methods. However, even with these methods, the oxidation resistance cannot be fully satisfied, and when trying to impart sufficient oxidation resistance, it is difficult to obtain the excellent magnetic properties of metal magnetic powder such as high saturation magnetization and high coercive force, or to make it into a paint. There are still many problems that need to be improved, such as the fact that the dispersibility of the liquid is easily impaired. In particular, in conjunction with the demand for higher S/N ratios and higher outputs, there is a trend toward finer particles of metal magnetic powder, and there is a strong desire to solve the above-mentioned problems.

〔発明の目的〕[Purpose of the invention]

本発明は、前記問題点を解決し、耐酸化性に優れた磁気
記録媒体用に好適な金属磁性粉末の製造方法を提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for producing metal magnetic powder suitable for use in magnetic recording media with excellent oxidation resistance.

〔発明の概要〕[Summary of the invention]

本発明は、本発明者等がかねてより、金属磁性粉末本来
の優れた特性を損なうことなく、前記問題点を解決すべ
く種々検討を進めてきており、先に、特定の金属水酸化
物と、特定の有機金属化合物を形成するたとえば錯化剤
や、特定の金属錯化合物とを金属磁性粉末粒子と加熱接
触させて、金属錯体を生成させつつ、かつ該生成金属錯
体を熱分解せしめて、その熱分解残渣物を金属磁性粉末
粒子表面に担持させることにより、効率的に耐酸化性の
改善をはかることについて提案している。
The present invention has been carried out by the present inventors for some time in order to solve the above-mentioned problems without impairing the inherent excellent properties of metal magnetic powder. , for example, a complexing agent that forms a specific organometallic compound or a specific metal complex compound is heated and brought into contact with metal magnetic powder particles to generate a metal complex, and the generated metal complex is thermally decomposed, It is proposed to efficiently improve oxidation resistance by supporting the thermal decomposition residue on the surface of metal magnetic powder particles.

本発明者等は、前記の提案に関しその工業的適用の最適
化についてさらに検討を進めた結果、金属磁性粉末の基
体粒子表面上でアンミン錯体金属化合物を熱分解させる
ことによって、その熱分解残渣物を該粒子表面に担持せ
しめる場合には、加熱分解処理温度を比較的低下せしめ
ることができ、粒子形状崩れや、担持金属の基体粒子内
部への拡散を抑制して磁気特性や耐酸化性効果を損なう
ことなく、経済的有利に耐酸化性の優れた金属磁性粉を
製造し得ることの知見を得、本発明を完成したものであ
る。すなわち、本発明は、 有機酸もしくは無機酸の金属塩および含窒素アルカリ性
化合物、(2)有機酸もしくは無機酸、含窒素アルカリ
性化合物および金属水酸化物、または(3)有機酸もし
くは無機酸の含窒素化合物および金属水酸化物を、金属
磁性粉末と接触させかつ加熱分解して該構成金属のアン
ミン錯体の熱分解残渣物を、該金属磁性粉末の粒子表面
に担持処理することを特徴とする磁気記録用金属磁性粉
末の製造方法に関する。
As a result of further studies regarding the optimization of industrial application of the above proposal, the present inventors have found that by thermally decomposing the ammine complex metal compound on the surface of the base particle of metal magnetic powder, the thermal decomposition residue can be removed. When supported on the particle surface, the thermal decomposition temperature can be relatively lowered, suppressing particle shape deformation and diffusion of the supported metal into the base particle, improving magnetic properties and oxidation resistance. The present invention was completed based on the knowledge that metal magnetic powder with excellent oxidation resistance can be produced economically and advantageously without any damage to the powder. That is, the present invention provides a metal salt of an organic or inorganic acid and a nitrogen-containing alkaline compound, (2) an organic or inorganic acid, a nitrogen-containing alkaline compound, and a metal hydroxide, or (3) a metal salt of an organic or inorganic acid. A magnetism characterized by bringing a nitrogen compound and a metal hydroxide into contact with a metal magnetic powder and thermally decomposing it to carry a thermal decomposition residue of an ammine complex of the constituent metal on the particle surface of the metal magnetic powder. The present invention relates to a method for producing metal magnetic powder for recording.

本発明において、被処理物として使用する金属磁性粉末
(以下基体構成粒子という)は、種々の方法によって製
造される鉄または鉄を主体とする鉄系合金類の金属磁性
粉末であって、もっとも−船釣には針状晶の形状のもの
であるが、さらに前記針状晶形状のもののほか、例えば
紡錘状、米粒状、球状、棒状、平板状、サイコロ状など
種々の形状のものを使用することができる。なお、これ
らの基体構成粒子は、担持処理に先立って、必要に応じ
たとえば酸素含有ガスで徐酸化処理しておくこともでき
る。
In the present invention, the metal magnetic powder (hereinafter referred to as substrate constituent particles) used as the object to be processed is a metal magnetic powder of iron or an iron-based alloy mainly composed of iron, which is manufactured by various methods, and most For boat fishing, needle-shaped crystals are used, but in addition to the above-mentioned needle-shaped crystals, various other shapes such as spindle-shaped, rice-grain-shaped, spherical, rod-shaped, plate-shaped, dice-shaped, etc. are also used. be able to. Note that, prior to the supporting treatment, these substrate constituent particles may be subjected to a gradual oxidation treatment, for example, with an oxygen-containing gas, if necessary.

本発明において、使用する有機酸または無機酸、それら
の金属塩もしくはそれらの含窒素化合物としては、種々
のものを使用し得るが、(11有機酸としては、たとえ
ば通常、酢酸、蓚酸、酒石酸、マロン酸などが挙げられ
る。
In the present invention, various organic acids or inorganic acids, metal salts thereof, or nitrogen-containing compounds thereof may be used. Examples of organic acids include acetic acid, oxalic acid, tartaric acid, Examples include malonic acid.

(2)有機酸金属塩としては、たとえばCo、Ni、C
u、月n。
(2) Examples of organic acid metal salts include Co, Ni, C
u, month n.

Cr、 Mg、 Ca、 Zn、 Tt + A I+
 Zr等の金属の酢酸塩、蓚酸塩、酒石酸塩、マロン酸
塩などが挙げられる。
Cr, Mg, Ca, Zn, Tt + A I+
Examples include acetates, oxalates, tartrates, and malonates of metals such as Zr.

(3)有機酸の含窒素化合物としては、たとえば酢酸ア
ンモニウム、蓚酸アンモニウム、酒石酸アンモニウムな
どが挙げられる。
(3) Examples of the nitrogen-containing organic acid compound include ammonium acetate, ammonium oxalate, and ammonium tartrate.

また(4)無機酸としては、たとえば塩酸、硫酸、硝酸
、炭酸、臭化水素酸、沃化水素酸などが挙げられる。
Examples of the inorganic acid (4) include hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, hydrobromic acid, and hydroiodic acid.

(5)無機酸の金属塩としては、たとえばCo+Ni+
Cu+Mn、Cr、Mg、Ca、Zn、Ti、AI、Z
rなどの塩化物、硫酸塩、硝酸塩、炭酸塩、臭化物、沃
化物などが挙げられる。
(5) Examples of metal salts of inorganic acids include Co+Ni+
Cu+Mn, Cr, Mg, Ca, Zn, Ti, AI, Z
Examples include chlorides, sulfates, nitrates, carbonates, bromides, iodides, etc. of r.

(6)無機酸の含窒素化合物としては、たとえば塩化ア
ンモニウム、硫酸アンモニウム、炭酸アンモニウム、臭
化アンモニウム、沃化アンモニウムなどが挙げられる。
(6) Examples of the nitrogen-containing inorganic acid compound include ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium bromide, and ammonium iodide.

次に(7)含窒素アルカリ性化合物としては、たとえば
アンモニア、アンモニア水、エチレンジアミンなどの有
機アミン類、ヒドラジン、ピリジン、ジピリジルなどが
挙げられる。さらに(8)金属水酸化物としては、たと
えばCo、Ni、Cu、Mn+Cr、 Mg+ Ca、
 Zn+ Tt + AI + Zr等の金属の水酸化
物などが挙げられる。
Examples of the nitrogen-containing alkaline compound (7) include ammonia, aqueous ammonia, organic amines such as ethylenediamine, hydrazine, pyridine, and dipyridyl. Furthermore, (8) metal hydroxides include, for example, Co, Ni, Cu, Mn+Cr, Mg+Ca,
Examples include metal hydroxides such as Zn+Tt+AI+Zr.

本発明において、担持金属で構成されるアンミン錯体の
熱分解残渣物を前記基体構成粒子表面に担持処理させる
には、該基体構成粒子粉末を液相系で、(1)有機酸も
しくは無機酸の金属塩および含窒素アリカリ性化合物、
(2)有機酸もしくは無機酸、含窒素アルカリ性化合物
および金属水酸化物または(3)有機酸もしくは無機酸
の含窒素化合物および金属水酸化物を、接触させるとと
もに加熱処理して該構成金属のアンミン錯体を生成させ
つつ、かつ該生成アンミン錯体を熱分解させることによ
っておこなうことができる。前記液相系処理に用いる溶
媒としては、たとえば脂肪族炭化水素類、芳香族炭化水
素類、ケトン類、エーテル類、アルコール類など種々の
ものを使用することができる。
In the present invention, in order to support the thermal decomposition residue of the ammine complex composed of the supported metal on the surface of the base constituent particles, the base constituent particle powder is treated in a liquid phase by (1) organic acid or inorganic acid. metal salts and nitrogen-containing alkaline compounds,
(2) An organic or inorganic acid, a nitrogen-containing alkaline compound, and a metal hydroxide, or (3) a nitrogen-containing compound of an organic or inorganic acid, and a metal hydroxide are brought into contact with each other and heat-treated to form ammines of the constituent metals. This can be carried out by generating a complex and thermally decomposing the generated ammine complex. As the solvent used in the liquid phase treatment, various solvents can be used, such as aliphatic hydrocarbons, aromatic hydrocarbons, ketones, ethers, and alcohols.

しかして前記処理方法としては、種々の方法によってお
こなうことができるが、たとえば(a)前記(1)〜(
3)の場合の各県の処理剤を、予め前記溶媒中で懸濁せ
しめるとともに、該懸濁液中へ前記基体構成粒子粉末を
添加し、次いで窒素ガスなどの不活性ガスを通気させな
がら必要に応じ加熱処理して混合するか、あるいは(b
l前記(1)〜(3)の場合の各県の処理剤を、窒素ガ
スなどの不活性ガスを通気させながら必要に応じ加熱処
理して予め前記溶媒中で構成金属のアンミン錯体を形成
せしめ、次いで前記基体構成粒子粉末を添加し、しかる
後前記(a)または(blの処理物を所定温度で加熱処
理する。
The treatment method can be carried out by various methods, such as (a) (1) to (1) above.
In the case of 3), the processing agent of each prefecture is suspended in the above-mentioned solvent in advance, and the base material constituent particle powder is added to the suspension, and then an inert gas such as nitrogen gas is aerated as necessary. Depending on the conditions, heat treatment and mixing or (b
l The treatment agent of each prefecture in the cases of (1) to (3) above is heat-treated as necessary while passing an inert gas such as nitrogen gas to form an ammine complex of the constituent metal in the solvent in advance. Next, the base material forming particle powder is added, and the treated product of (a) or (bl) is then heat-treated at a predetermined temperature.

前記加熱処理は、密閉系反応容器中でおこなってもよい
が、密閉系の場合は、通常50〜200℃、好ましくは
100〜150℃で1〜8時間加熱処理する。
The heat treatment may be performed in a closed system reaction vessel, but in the case of a closed system, the heat treatment is usually performed at 50 to 200°C, preferably 100 to 150°C for 1 to 8 hours.

また開放系の場合は、通常50℃以上、好ましくは70
℃以上で、1〜8時間加熱処理する。これによって、構
成金属のアンミン錯体を形成しかつこのものが、該基体
構成粒子粉末の粒子表面で熱分解されてその熱分解残渣
物が担持される。
In addition, in the case of an open system, it is usually 50°C or higher, preferably 70°C or higher.
Heat treatment is performed at a temperature of 1 to 8 hours at a temperature of 1 to 8 hours. As a result, an ammine complex of the constituent metals is formed, which is thermally decomposed on the particle surface of the base constituent particle powder, and its thermal decomposition residue is supported.

本発明において、前記熱分解残渣物の担持量は、基体構
成粒子の金属磁性粉末の粒子の形状、大きさ、比表面積
などによって異なり、−概に言えないが、該基体構成粒
子の重量基準に対して金属として1〜20%、望ましく
は3〜15%である。担持量が前記範囲より少なきにす
ぎると所望の効果がもたらされず、また前記範囲より多
きにすぎると飽和磁化などの磁気特性や塗料化時の分散
性などが損なわれ易かったりする。なお前記の熱分解残
渣物を担持処理した金属磁性粉末は、さらに必要に応じ
該粒子表面を窒素含有ガス雰囲気下で加熱処理したり、
あるいは該粒子表面を酸化性ガス雰囲気中で徐酸化した
り、さらにそれらを併せおこなったりすることによって
、耐酸化性を一層好ましいものとすることができる。
In the present invention, the amount of the thermal decomposition residue supported varies depending on the shape, size, specific surface area, etc. of the metal magnetic powder particles constituting the base body particles, and although it cannot be generalized, it is based on the weight of the base body particles. In contrast, the amount of metal is 1 to 20%, preferably 3 to 15%. If the supported amount is too small than the above range, the desired effect will not be produced, and if the supported amount is too large, magnetic properties such as saturation magnetization, dispersibility when forming into a paint, etc. may be easily impaired. Note that the metal magnetic powder that has been treated to support the thermal decomposition residue may be further heat-treated on the particle surface in a nitrogen-containing gas atmosphere, if necessary, or
Alternatively, the oxidation resistance can be made more preferable by slowly oxidizing the surface of the particles in an oxidizing gas atmosphere, or by carrying out a combination of these.

本発明において、使用する金属のアンミン錯体の熱分解
残渣物とは、該金属アンミン錯体の熱分解によって、基
体構成粒子の金属磁性粉末の粒子表面に形成される実質
的に当該構成金属成分よりなる耐食性金属あるいはその
金属化合物の表面層のことを謂うものである。前記の熱
分解残渣物の担持処理によって奏される本発明の耐酸化
性等のきわめて優れた特性の改善がもたらされる作用機
作は、未だ十分解明するには至っていないが、均一膜厚
の緻密な耐食性被膜が形成され易いためではないかと推
定される。また前記熱分解残渣物を担持処理した金属磁
性粉末を、酸化性ガス雰囲気中や窒素ガスなどの不活性
ガス雰囲気中で加熱処理することによって金属磁性粉末
の耐酸化性が一層増大し得ることの所以は、前記基体構
成粒子表面の耐食性被膜がより緻密化されたり、さらに
はより安定な酸化被膜が形成されたりすることによるの
ではないかとみられる。
In the present invention, the thermal decomposition residue of the metal ammine complex to be used refers to the thermal decomposition residue of the metal ammine complex that is formed on the particle surface of the metal magnetic powder of the base particle and consists essentially of the constituent metal component. It refers to the surface layer of a corrosion-resistant metal or its metal compound. Although the mechanism by which the extremely excellent properties such as oxidation resistance of the present invention are brought about by the above-mentioned supporting treatment of thermal decomposition residues has not yet been fully elucidated, It is presumed that this is because a corrosion-resistant film is easily formed. Furthermore, the oxidation resistance of the metal magnetic powder can be further increased by heat-treating the metal magnetic powder that has been treated to support the thermal decomposition residue in an oxidizing gas atmosphere or an inert gas atmosphere such as nitrogen gas. The reason seems to be that the corrosion-resistant film on the surface of the substrate constituent particles becomes more dense, and that a more stable oxide film is formed.

前記の本発明の方法にもとづいて製造される金属磁性粉
末は、種々のバインダー樹脂、例えば塩化ビニル−酢酸
ビニル共重合体系樹脂、ポリウレタン系樹脂、ポリエス
テル系樹脂、アクリル系樹脂、セルローズ系樹脂などの
バインダー成分と、種々の添加剤、例えば分散剤、潤滑
剤、研磨剤、帯電防止剤などを添加して磁性塗料を調製
し、ポリエチレンテレフタレートフィルム、アセテート
フィルムなど種々の非磁性支持体上に、所定厚み(通常
は乾燥後の厚み2〜5μm)に塗布し、配向処理後乾燥
して磁性層を形成し、さらにカレンダー処理、スリッテ
ィング加工を経て磁気記録媒体、例えば磁気テープを得
ることができる。なお、前記磁気テープは、必要に応じ
さらに帯電防止、走行安定性等をはかるべく、該支持体
の磁性層側の反対の面に、いわゆるバックコート層を形
成してもよい。
The metal magnetic powder produced according to the method of the present invention described above can be made of various binder resins, such as vinyl chloride-vinyl acetate copolymer resins, polyurethane resins, polyester resins, acrylic resins, cellulose resins, etc. A magnetic paint is prepared by adding a binder component and various additives, such as a dispersant, a lubricant, an abrasive, an antistatic agent, etc., and applied onto various non-magnetic supports such as polyethylene terephthalate film and acetate film. A magnetic recording medium such as a magnetic tape can be obtained by applying the magnetic layer to a thickness (usually 2 to 5 μm thick after drying) and drying after orientation treatment to form a magnetic layer, followed by calendering and slitting. In addition, the magnetic tape may be provided with a so-called back coat layer on the opposite surface of the support from the magnetic layer side in order to further improve antistatic properties, running stability, etc., if necessary.

以下に実施例及び比較例を挙げて本発明をさらに説明す
る。
The present invention will be further explained by giving examples and comparative examples below.

c本発明の実施例〕 実施例1 硫酸第一鉄水溶液を水酸化ナトリウム水溶液で中和し、
さらに酸化性ガスを導入し酸化してα−Fe00Hを生
成し、次いでこのものを加熱脱水してα−Fe00Hと
し、しかる後水素気流中で加熱還元して針状の金属鉄磁
性粉末(比表面積(BET) 65.5m”7g、平均
長軸粒子径0.16μ、平均軸比9、保磁力1 、30
00 e、飽和磁化182.4gmu/g、角形比0.
482)を得た。このものの15gを基体構成粒子とし
、エチルセロソルブ500d、濃アンモニア水(N)1
3として28%)16.4−および酢酸コバルト(Go
 (C83COO) z・4FizO) 10gを仕込
んだオートクレーブ中に添加して懸濁液を得、ここに窒
素ガスを導入して非酸化性雰囲気を保持しながら、攪拌
上昇温し、130℃で2時間、加熱処理した。しかる後
、室温まで冷却し、該懸濁液を濾過し、さらにエチルセ
ロソルブで洗浄して、コバルトのアンミン錯体の熱分解
残渣物を粒子表面に担持した金属磁性粉末のケーキを得
た。次いで該ケーキを、管状電気炉中で窒素ガスを通気
しながら500℃で2時間加熱処理して、目的の金属磁
性粉末を得た(試料A)。
c Examples of the present invention] Example 1 A ferrous sulfate aqueous solution was neutralized with a sodium hydroxide aqueous solution,
Further, an oxidizing gas is introduced and oxidized to produce α-Fe00H, which is then heated and dehydrated to form α-Fe00H, and then heated and reduced in a hydrogen stream to form an acicular metallic iron magnetic powder (specific surface area: (BET) 65.5m” 7g, average major axis particle diameter 0.16μ, average axial ratio 9, coercive force 1, 30
00 e, saturation magnetization 182.4 gmu/g, squareness ratio 0.
482) was obtained. 15 g of this material was used as the base constituent particles, 500 d of ethyl cellosolve, and 1 liter of concentrated ammonia water (N).
3 (28%) 16.4- and cobalt acetate (Go
(C83COO) z・4FizO) was added to an autoclave containing 10 g to obtain a suspension, and while nitrogen gas was introduced thereto to maintain a non-oxidizing atmosphere, the temperature was stirred and raised to 130°C for 2 hours. , heat treated. Thereafter, the suspension was cooled to room temperature, filtered, and further washed with ethyl cellosolve to obtain a cake of metal magnetic powder in which the thermal decomposition residue of the cobalt ammine complex was supported on the particle surface. The cake was then heat-treated at 500° C. for 2 hours in a tubular electric furnace while nitrogen gas was passed through it to obtain the desired metal magnetic powder (Sample A).

実施例2 実施例1において、得られたコバルトのアンミン錯体の
熱分解残渣物を粒子表面に担持した金属磁性粉のケーキ
を、窒素気流中で加熱処理することなく、さらにエタノ
ールで洗浄し、ひきつづきトルエンで洗浄した後風乾し
て、目的の金属磁性粉末を得た(試料B)。
Example 2 In Example 1, the cake of metal magnetic powder carrying the thermal decomposition residue of the cobalt ammine complex on the particle surface was further washed with ethanol without being heat-treated in a nitrogen stream, and then further washed with ethanol. The desired metal magnetic powder was obtained by washing with toluene and air drying (Sample B).

実施例3 実施例1において、酢酸コバルトの代わりに酢酸ニッケ
ル(Ni (C1l:+C00) z・411□O)1
0gを用いたことおよびオートクレーブでの加熱処理温
度を110℃としたことのほかは、同例の場合と同様に
処理して、目的の金属磁性粉末を得た(試料c)。
Example 3 In Example 1, nickel acetate (Ni (C1l:+C00) z・411□O)1 was used instead of cobalt acetate.
The desired metal magnetic powder was obtained by processing in the same manner as in the same example, except that 0 g was used and the heat treatment temperature in the autoclave was 110° C. (sample c).

実施例4 実施例1において、酢酸コバルトの代わりに、酢酸量(
Cu(CLCOO) ! ・IIzO) 8.04gを
用いたことおよびオートクレーブでの加熱処理を110
℃としたことのほかは同例の場合と同様に処理して、目
的の金属磁性粉末を得た(試料D)。
Example 4 In Example 1, the amount of acetic acid (
Cu(CLCOO)!・IIzO) 8.04g was used and heat treatment in an autoclave was
The desired metal magnetic powder was obtained by processing in the same manner as in the same example except that the temperature was changed to 0.degree. C. (Sample D).

実施例5 実施例1において、濃アンモニア水および酢酸コバルト
の代わりに、水酸化第一コパル) (Co(OH) 2
)3.6gと、掘アンモニア水(Nlhとして28%’
l 5.5dおよび酢酸(CH3COO11) 4.6
1nlを用いたことのほかは同例の場合と同様に処理し
て、目的の金属磁性粉末を得た(試料E)。
Example 5 In Example 1, instead of concentrated aqueous ammonia and cobalt acetate, copal hydroxide) (Co(OH) 2
) 3.6g and ammonia water (28% as Nlh)
l 5.5d and acetic acid (CH3COO11) 4.6
The desired metal magnetic powder was obtained by processing in the same manner as in the same example except that 1 nl was used (sample E).

実施例6 実施例1において、濃アンモニア水および酢酸コバルト
の代わりに、水酸化第一コバルト(Co (011) 
2)3.6gと酢酸アンモニウム(CH:+C00NL
)6.2 gを用いたことのほかは同例の場合と同様に
処理して、目的の金属磁性粉末を得た(試料F)。
Example 6 In Example 1, cobaltous hydroxide (Co(011)) was used instead of concentrated ammonia water and cobalt acetate.
2) 3.6g and ammonium acetate (CH:+C00NL
) 6.2 g was used, but the same treatment as in the same example was carried out to obtain the desired metal magnetic powder (Sample F).

実施例7 実施例1において、エチルセロソルブ500d、濃アン
モニア水(N)Iffとして28%)16.4−および
酢酸コバルト10gをオートクレーブに仕込む前に、こ
れらを撹拌機を付した四ツロフラスコに入れ、窒素ガス
を導入しながら110℃まで昇温加熱し、得られた濃縮
物をエチルセロソルブで希釈して500−としたものを
オートクレーブに仕込んだほかは同例の場合と同様に処
理して、目的の金属磁性粉末を得た(試料G)。
Example 7 In Example 1, before charging 500 d of ethyl cellosolve, concentrated aqueous ammonia (N) (28% as Iff) 16.4-, and 10 g of cobalt acetate into the autoclave, they were placed in a four-way flask equipped with a stirrer, The temperature was raised to 110°C while introducing nitrogen gas, and the resulting concentrate was diluted with ethyl cellosolve to give a 500-. A metal magnetic powder was obtained (Sample G).

実施例8 実施例1において、濃アンモニア水(NH,とじて28
%) 16.4−を仕込む代わりに、アンモニアガスを
吹き込んだほかは、同例の場合と同様に処理して、目的
の金属磁性粉末を得た(試料H)。
Example 8 In Example 1, concentrated ammonia water (NH, total 28
%) 16.4-, except that ammonia gas was blown into the sample, and the same process as in the same example was carried out to obtain the desired metal magnetic powder (Sample H).

実施例9 実施例1において、濃アンモニア水(NH3として28
%) 16.、i*の代わりに、エチレンジアミン8.
1triを用いたことおよびオートクレーブでの加熱処
理温度を140℃としたことのほかは、同例の場合と同
様に処理して、目的の金属磁性粉末を得た(試料I)。
Example 9 In Example 1, concentrated ammonia water (NH3 as 28
%) 16. , i* instead of ethylenediamine8.
The desired metal magnetic powder was obtained by processing in the same manner as in the same example, except that 1tri was used and the heat treatment temperature in the autoclave was 140° C. (Sample I).

実施例10 実施例1において、酢酸コバルトおよび濃アンモニア水
の代わりに、塩化コバルト(CoCI□・6H20) 
9.6 gとエチレンジアミン8.lv+1を用いたこ
とおよびオートクレーブでの加熱処理温度を140℃と
したことのほかは、同例の場合と同様に処理して、目的
の金属磁性粉末を得た(試料J)。
Example 10 In Example 1, cobalt chloride (CoCI□・6H20) was used instead of cobalt acetate and concentrated ammonia water.
9.6 g and 8. ethylenediamine. The desired metal magnetic powder was obtained by processing in the same manner as in the same example, except that lv+1 was used and the heat treatment temperature in the autoclave was 140° C. (Sample J).

実施例11 実施例工において、酢酸コバルトの代わりに、硫酸コバ
ルト(COSO4・78zO) 11.3gを用いたこ
とおよびオートクレーブでの加熱処理温度を140℃と
したことのほかは、同例の場合と同様に処理して、目的
の金属磁性粉末を得た(試料K)。
Example 11 The same procedure was carried out as in the same example except that 11.3 g of cobalt sulfate (COSO4.78zO) was used instead of cobalt acetate and the heat treatment temperature in the autoclave was 140°C. The desired metal magnetic powder was obtained by the same treatment (Sample K).

比較例1 実施例1において、オートクレーブでの加熱処理の代わ
りに、撹拌機を付した四ツ目フラスコ中で、窒素ガスを
導入しながら撹拌下40℃まで昇温し、2時間加熱処理
したことのほかは、同例の場合と同様に処理して、金属
磁性粉末を得た(試料L)。
Comparative Example 1 In Example 1, instead of the heat treatment in an autoclave, the temperature was raised to 40°C with stirring while introducing nitrogen gas in a four-eye flask equipped with a stirrer, and heat treatment was performed for 2 hours. Other than this, the same treatment as in the same example was carried out to obtain a metal magnetic powder (sample L).

比較例2 実施例1において、濃アンモニア水(NH3とし、て2
8%> 16.4idおよび酢酸コバルト(Co(CH
zCOO) t・4)120) 10 gの添加を行わ
なかったことのほかは、同例の場合と同様に処理して、
金属磁性粉末を得た(試料M)。
Comparative Example 2 In Example 1, concentrated ammonia water (NH3,
8%>16.4id and cobalt acetate (Co(CH
zCOO) t・4)120) The same process as in the same example was carried out, except that 10 g was not added.
A metal magnetic powder was obtained (sample M).

比較例3 基体構成粒子の金属磁性粉末Logをトルエン300d
に浸漬後、室温で風乾した(試料N)。
Comparative Example 3 Metal magnetic powder Log of base material particles was mixed with toluene 300d
After soaking in water, it was air-dried at room temperature (sample N).

前記実施例及び比較例の金属磁性粉末試料と、前記試料
中、A−HおよびL−Nの試料を用いて、下記の配合組
成物を混合分散させて磁性塗料を調製し、次いで、前記
磁性塗料をポリエステルフィルム上に、乾燥膜厚10μ
mとなるように塗布し、配向処理後乾燥して作製した磁
気テープとについて、常法により飽和磁化(σs : 
emu/g)、保磁力(Hc : Oe)、飽和磁束密
度(B m : Gauss)、角形比(Rs、 S 
Q)を測定した。また酸化安定性を評価するために、温
度60℃、相対湿度80%の環境下で、4週間放置して
σ5SHC% R5,Bmについて促進経時変化を測定
し、飽和磁化の劣化率ΔσS (%)、ΔBm(%)を
下記の式によって求めた。これらの結果を表1 (粉末
特性)及び表2 (テープ特性)に示す。
A magnetic paint was prepared by mixing and dispersing the following blended composition using the metal magnetic powder samples of the Examples and Comparative Examples and the samples A-H and L-N among the samples. Apply the paint onto the polyester film to a dry film thickness of 10 μm.
The saturation magnetization (σs:
emu/g), coercive force (Hc: Oe), saturation magnetic flux density (Bm: Gauss), squareness ratio (Rs, S
Q) was measured. In addition, in order to evaluate the oxidation stability, the accelerated aging change of σ5SHC%R5,Bm was measured after leaving it for 4 weeks in an environment with a temperature of 60°C and a relative humidity of 80%, and the deterioration rate of saturation magnetization ΔσS (%) , ΔBm (%) were determined by the following formula. These results are shown in Table 1 (powder properties) and Table 2 (tape properties).

磁性粉末          5 重量部分散剤   
        0.25  〃ポリウレタン樹脂 (
30%溶液)        2.96−混合溶媒” 
         13.4  〃” トルエン/ME
K/ンクロヘキサノン(4,5/4.5/1)(式中、
σs0は経時前のσSであり、σS経時後のσSである
) は (式中、Bm’は経時前のBmであり、Bm’ は経時
後のBmである) 〔発明の効果〕 本発明によって得られる金属錯体の熱分解残渣物を担持
した金属磁性粉末は、耐酸化性が著しく改善されたもの
であり、したがって優れた磁気特性を長期間保持し得る
とともに、それ自体貯蔵安定性に優れ、取扱い操作上、
工程管理上甚だ好ましいものであること、さらに媒体へ
の分散性も良好なものであって高出力の高記録密度磁気
媒体を製造する上で極めて好適なものである。また本発
明は、比較的簡素な手段でもって粒子表面に耐酸化性付
与金属成分を均一に担持することができ、優れた性能の
磁性粉末を経済的に有利に製造することができるもので
あり、甚だ工業的意義の大きいものである。
Magnetic powder 5 Weight part dispersant
0.25 Polyurethane resin (
30% solution) 2.96-Mixed solvent”
13.4 〃” Toluene/ME
K/nclohexanone (4,5/4.5/1) (in the formula,
σs0 is σS before aging, σS is σS after aging) (In the formula, Bm' is Bm before aging, and Bm' is Bm after aging.) The obtained metal magnetic powder supporting the thermal decomposition residue of the metal complex has significantly improved oxidation resistance, and therefore can maintain excellent magnetic properties for a long period of time, and has excellent storage stability. During handling,
It is extremely preferable in terms of process control, and has good dispersibility into the medium, making it extremely suitable for producing high-output, high-recording-density magnetic media. In addition, the present invention enables the oxidation resistance imparting metal component to be uniformly supported on the particle surface using relatively simple means, and enables the economically advantageous production of magnetic powder with excellent performance. , is of great industrial significance.

Claims (1)

【特許請求の範囲】[Claims] (1)有機酸もしくは無機酸の金属塩および含窒素アル
カリ性化合物、(2)有機酸もしくは無機酸、含窒素ア
ルカリ性化合物および金属水酸化物、または(3)有機
酸もしくは無機酸の含窒素化合物および金属水酸化物を
、金属磁性粉末と接触させかつ加熱分解して該構成金属
のアンミン錯体の熱分解残渣物を、該金属磁性粉末の粒
子表面に担持処理することを特徴とする磁気記録用金属
磁性粉末の製造方法。
(1) a metal salt of an organic or inorganic acid and a nitrogen-containing alkaline compound; (2) an organic or inorganic acid, a nitrogen-containing alkaline compound and a metal hydroxide; or (3) a nitrogen-containing compound of an organic or inorganic acid; A metal for magnetic recording, characterized in that a metal hydroxide is brought into contact with a metal magnetic powder and thermally decomposed to carry a thermal decomposition residue of an ammine complex of the constituent metal on the particle surface of the metal magnetic powder. Method for producing magnetic powder.
JP2155655A 1990-06-14 1990-06-14 Manufacture of metallic magnetic powder for magnetic recording Pending JPH0448602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2155655A JPH0448602A (en) 1990-06-14 1990-06-14 Manufacture of metallic magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155655A JPH0448602A (en) 1990-06-14 1990-06-14 Manufacture of metallic magnetic powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPH0448602A true JPH0448602A (en) 1992-02-18

Family

ID=15610713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155655A Pending JPH0448602A (en) 1990-06-14 1990-06-14 Manufacture of metallic magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0448602A (en)

Similar Documents

Publication Publication Date Title
US4306921A (en) Production of magnetic powder
JPS5814729B2 (en) Kiyoji Seifun Matsuno Seizou Hohou
US4262037A (en) Method of producing ferromagnetic metal powder
JPH0145202B2 (en)
JPS5853493B2 (en) Kiyoji Seifun Matsuno Seiho
JP5280661B2 (en) Method for producing metal magnetic powder
JPH0448602A (en) Manufacture of metallic magnetic powder for magnetic recording
JPH02162703A (en) Manufacture of metallic magnetic powder
JPS6411577B2 (en)
JPS62204B2 (en)
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP2965606B2 (en) Method for producing metal magnetic powder
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JPH01274402A (en) Magnetic metal powder
JPH0312125B2 (en)
JPS6349722B2 (en)
JPH01222407A (en) Metal magnetic powder, and manufacture and usage thereof
JPS6350842B2 (en)
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS63213905A (en) Manufacture of metal magnetic powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder