JP5280661B2 - Method for producing metal magnetic powder - Google Patents

Method for producing metal magnetic powder Download PDF

Info

Publication number
JP5280661B2
JP5280661B2 JP2007252450A JP2007252450A JP5280661B2 JP 5280661 B2 JP5280661 B2 JP 5280661B2 JP 2007252450 A JP2007252450 A JP 2007252450A JP 2007252450 A JP2007252450 A JP 2007252450A JP 5280661 B2 JP5280661 B2 JP 5280661B2
Authority
JP
Japan
Prior art keywords
magnetic powder
metal magnetic
iron
nonmagnetic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007252450A
Other languages
Japanese (ja)
Other versions
JP2009084600A (en
Inventor
崇 後藤
貴行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2007252450A priority Critical patent/JP5280661B2/en
Publication of JP2009084600A publication Critical patent/JP2009084600A/en
Application granted granted Critical
Publication of JP5280661B2 publication Critical patent/JP5280661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal magnetic powder capable of preventing aggregation among particles even if the particles are made small, and to provide a method for producing the metal magnetic powder. <P>SOLUTION: The method for producing the metal magnetic powder comprises: a metal magnetic powder producing stage where raw material powder admixed with nonmagnetic components for shape holding and sintering prevention is fired and is thereafter reduced, so as to produce metal magnetic powder essentially consisting of iron or iron and cobalt and comprising the nonmetallic components admixed for shape holding and sintering prevention; a solution treatment stage where the nonmagnetic components in the surface layer part of the metal magnetic powder are eluted away; an organic matter treatment stage where an organic matter is stuck to the surface of the metal magnetic powder after the nonmagnetic components in the surface layer part are eluted away; an oxidation treatment stage where an oxide film is formed on the surface of the metal magnetic powder to which the organic matter has been stuck; and a rereduction-stabilization treatment stage where the metal magnetic powder on which the oxide film has been formed is subjected to reduction treatment, and is thereafter subjected to oxidation treatment. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、金属磁性粉末およびその製造方法に関し、特に、塗布型磁気記録媒体に使用される強磁性金属粉末およびその製造方法に関する。   The present invention relates to a metal magnetic powder and a method for producing the same, and more particularly to a ferromagnetic metal powder used for a coating type magnetic recording medium and a method for producing the same.

塗布型磁気記録媒体に使用される代表的な金属磁性粉末として、鉄を主成分として含有する鉄系磁性粉末がある。このような鉄系金属磁性粉末は、工業的には、オキシ水酸化鉄または酸化鉄を主体とした針状粉末に、形状保持のためにSiやAlなどを含有させるとともに、焼結防止のために希土類元素やアルカリ土類金属元素などを含有させて、焼成した後に還元することによって製造されている。このような鉄系金属磁性粉末を製造する従来の方法として、α−FeOOHにNi、Co、Al、Siおよび希土類元素の化合物を被着させ、非還元性雰囲気下で熱処理し、次いで還元性ガスで還元する方法(例えば、特許文献1参照)や、含水酸化鉄の粒子表面に希土類金属化合物やAl化合物などを被着させた後、不活性ガス雰囲気において加熱脱水し、次いで還元性ガスで還元する方法(例えば、特許文献2参照)が知られている。   As a typical metal magnetic powder used for a coating type magnetic recording medium, there is an iron-based magnetic powder containing iron as a main component. Industrially, such iron-based metal magnetic powders contain needle-like powders mainly composed of iron oxyhydroxide or iron oxide to contain Si, Al, etc. in order to maintain the shape and prevent sintering. It is manufactured by adding a rare earth element, an alkaline earth metal element, or the like, firing, and then reducing. As a conventional method for producing such iron-based metal magnetic powder, α-FeOOH is coated with a compound of Ni, Co, Al, Si and a rare earth element, heat-treated in a non-reducing atmosphere, and then reducing gas. (See, for example, Patent Document 1) or after depositing rare earth metal compounds or Al compounds on the surface of hydrous iron oxide particles, followed by heat dehydration in an inert gas atmosphere and then reducing with a reducing gas There is a known method (for example, see Patent Document 2).

近年、塗布型磁気記録媒体などの磁気記録媒体では、大容量化に伴って記録密度を高めることが要求されており、磁気記録媒体の記録密度を高めるためには、磁性粉末の粒子体積を小さくすることが必要になる。   In recent years, magnetic recording media such as coating-type magnetic recording media have been required to increase the recording density as the capacity increases, and in order to increase the recording density of the magnetic recording medium, the particle volume of the magnetic powder is reduced. It becomes necessary to do.

しかし、磁性粉末を微粒子化すると、磁性粉末の粒子の形状を保持し難くなるため、形状保持のために添加するSiやAlなどの量や、焼結防止のために添加する希土類元素などの量を増加させることが必要になる。しかし、形状保持のために添加するSiやAlなどや、焼結防止のために添加する希土類元素などは、熱処理工程後には既に役割を終えており、何ら磁性に影響を及ぼすものではなく、粒子体積を大きくするだけであり、粒子性ノイズの低減のためには少ない方がよい。特に、磁性粉末の粒子の表層部に存在する希土類元素などや、SiやAlなどの非磁性成分を除去して、粒子体積を小さくするのが望ましい。   However, when the magnetic powder is made into fine particles, it becomes difficult to maintain the shape of the magnetic powder particles. Therefore, the amount of Si or Al added to maintain the shape, the amount of rare earth elements added to prevent sintering, etc. Need to be increased. However, Si and Al added to maintain the shape, rare earth elements added to prevent sintering, etc. have already finished their roles after the heat treatment process and do not affect magnetism at all. It is only necessary to increase the volume, and it is better to reduce the particle noise. In particular, it is desirable to reduce the volume of the particles by removing rare earth elements, etc. present in the surface layer portion of the particles of the magnetic powder and nonmagnetic components such as Si and Al.

本出願人は、このような磁性粉末の粒子の表層部に存在する希土類元素などや、SiやAlなどの非磁性成分を除去して、粒子体積を小さくするために、鉄または鉄とコバルトを主成分として含有する金属磁性粉末の表層部に存在する非磁性成分を溶出除去する方法を提案している(特願2006−261531)。   In order to reduce the particle volume by removing rare earth elements present in the surface layer portion of such magnetic powder particles and nonmagnetic components such as Si and Al, the applicant of the present invention uses iron or iron and cobalt. A method of eluting and removing nonmagnetic components present in the surface layer portion of the metal magnetic powder contained as the main component has been proposed (Japanese Patent Application No. 2006-261531).

特開平6−25702号公報(段落番号0006)JP-A-6-25702 (paragraph number 0006) 特開平11−189421号公報(段落番号0011)JP-A-11-189421 (paragraph number 0011)

しかし、金属磁性粉末の表層部に存在する非磁性成分を溶出除去して、金属磁性粉末の粒子を微細化すると、粒子同士が凝集して凝集体を形成し易くなる。このような凝集体が大量に存在する金属磁性粉末を、塗布型磁気記録媒体の表面の磁性層を形成するために使用すると、個々の粒子の粒度分布を改善しても、より薄層になる磁性層を形成するための塗料に使用するには適さない。   However, when the nonmagnetic component present in the surface layer portion of the metal magnetic powder is eluted and removed to make the particles of the metal magnetic powder finer, the particles tend to aggregate to form an aggregate. When a metal magnetic powder having a large amount of such aggregates is used to form a magnetic layer on the surface of a coating type magnetic recording medium, a thin layer is obtained even if the particle size distribution of individual particles is improved. Not suitable for use in paints for forming magnetic layers.

したがって、本発明は、粒子を小さくしても粒子同士の凝集を防止することができる、金属磁性粉末およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a metal magnetic powder and a method for producing the same, which can prevent aggregation of particles even when the particles are made smaller.

本発明者らは、上記課題を解決するために鋭意研究した結果、鉄または鉄とコバルトを主成分として含有し且つ非磁性成分を含有する金属磁性粉末の表層部に存在する非磁性成分を溶出除去するとともに、金属磁性粉末の表面に有機物を付着させることにより、金属磁性粉末の粒子を小さくしても粒子同士の凝集を防止することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have eluted non-magnetic components present in the surface layer portion of metal magnetic powder containing iron or iron and cobalt as main components and containing non-magnetic components. It was found that by removing and attaching organic matter to the surface of the metal magnetic powder, the particles could be prevented from aggregating even if the particles of the metal magnetic powder were made smaller, and the present invention was completed.

すなわち、本発明による金属磁性粉末の製造方法は、鉄または鉄とコバルトを主成分として含有し且つ非磁性成分を含有する金属磁性粉末を製造する工程と、この金属磁性粉末の表層部の非磁性成分を溶出除去する工程と、表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面に有機物を付着させる工程とを備えたことを特徴とする。   That is, the method for producing a metal magnetic powder according to the present invention comprises a step of producing a metal magnetic powder containing iron or iron and cobalt as main components and a nonmagnetic component, and a nonmagnetic property of the surface layer portion of the metal magnetic powder. A step of eluting and removing the components, and a step of attaching an organic substance to the surface of the metal magnetic powder after the nonmagnetic component of the surface layer portion is eluted and removed.

この金属磁性粉末の製造方法において、非磁性成分は、(イットリウムを含む)希土類元素、アルミニウムおよび珪素からなる群から選ばれる1種以上であるのが好ましい。また、非磁性成分を溶出除去する工程が、非磁性成分と錯体を形成し得る錯化剤を添加した溶液に、非磁性成分を含有する金属磁性粉末を添加して分散させた後、還元剤を添加し、浸出によって溶液中に非磁性成分を溶出除去する工程であるのが好ましい。また、金属磁性粉末の表面に有機物を付着させる工程は、非磁性成分を溶出除去する工程において使用した溶液中に、有機溶剤または高分子有機化合物を添加することによって、金属磁性粉末の表面に有機物を付着させる工程でもよいし、あるいは、非磁性成分を溶出除去する工程において使用した溶液から分離した金属磁性粉末に、有機溶剤または高分子有機化合物溶液を含浸させることによって、金属磁性粉末の表面に有機物を付着させる工程でもよい。これらの場合、有機溶剤または高分子有機化合物が、アルコール、エーテルおよびそれらの誘導体からなる群から選ばれる1種以上であるのが好ましい。さらに、有機物を付着させた金属磁性粉末の表面に酸化膜を形成する酸化処理工程を含むのが好ましく、酸化膜を形成した金属磁性粉末を還元処理した後に酸化処理する安定化処理工程を含むのが好ましい。   In this metal magnetic powder production method, the nonmagnetic component is preferably at least one selected from the group consisting of rare earth elements (including yttrium), aluminum and silicon. Further, the step of eluting and removing the nonmagnetic component comprises adding a metal magnetic powder containing the nonmagnetic component to a solution containing a complexing agent capable of forming a complex with the nonmagnetic component, and then dispersing the reducing agent. It is preferable that the nonmagnetic component is eluted and removed from the solution by leaching. In addition, the step of attaching the organic substance to the surface of the metal magnetic powder is performed by adding an organic solvent or a polymer organic compound to the solution used in the step of eluting and removing the non-magnetic component, thereby adding an organic substance to the surface of the metal magnetic powder. The surface of the metal magnetic powder may be applied by impregnating the metal magnetic powder separated from the solution used in the step of eluting and removing the nonmagnetic component with an organic solvent or a polymer solution of the organic compound. It may be a step of attaching an organic substance. In these cases, the organic solvent or the polymer organic compound is preferably at least one selected from the group consisting of alcohols, ethers and derivatives thereof. Furthermore, it is preferable to include an oxidation treatment step of forming an oxide film on the surface of the metal magnetic powder to which the organic matter is adhered, and a stabilization treatment step of oxidizing the metal magnetic powder having the oxide film formed thereon after the reduction treatment is included. Is preferred.

また、本発明による金属磁性粉末は、鉄または鉄とコバルトを主成分として含有するとともに、0.5〜4.0質量%の炭素を含有し、磁性成分の含有量に対する非磁性成分の含有量の割合が20%以下であることを特徴とする。   In addition, the metal magnetic powder according to the present invention contains iron or iron and cobalt as main components and also contains 0.5 to 4.0% by mass of carbon, and the content of the nonmagnetic component with respect to the content of the magnetic component. The ratio is 20% or less.

この金属磁性粉末において、磁性成分が、鉄または鉄とコバルトであり、非磁性成分が、(イットリウムを含む)希土類元素、アルミニウムおよび珪素からなる群から選ばれる1種以上と、炭素を含むのが好ましい。また、金属磁性粉末の粒子の平均長軸長が10〜50nmであるのが好ましい。   In this metal magnetic powder, the magnetic component is iron or iron and cobalt, the nonmagnetic component is one or more selected from the group consisting of rare earth elements (including yttrium), aluminum and silicon, and carbon. preferable. The average major axis length of the metal magnetic powder particles is preferably 10 to 50 nm.

本発明によれば、鉄または鉄とコバルトを主成分として含有し且つ非磁性成分を含有する金属磁性粉末の表層部に存在する非磁性成分を溶出除去するとともに、金属磁性粉末の表面に有機物を付着させることにより、金属磁性粉末の粒子を小さくしても粒子同士の凝集を防止することができる。   According to the present invention, the nonmagnetic component present in the surface layer portion of the metal magnetic powder containing iron or iron and cobalt as main components and containing the nonmagnetic component is eluted and removed, and an organic substance is applied to the surface of the metal magnetic powder. By making it adhere, even if it makes the particle | grains of metal magnetic powder small, aggregation of particle | grains can be prevented.

本発明による金属磁性粉末の製造方法の実施の形態は、形状保持や焼結防止のために非磁性成分が添加された原料粉末を焼成した後に還元して、鉄または鉄とコバルトを主成分として含有し且つ形状保持や焼結防止のために添加された非磁性成分を含有する金属磁性粉末を製造する金属磁性粉末製造工程と、この金属磁性粉末の表層部の非磁性成分を溶出除去する溶出処理工程と、表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面に有機物を付着させる有機物処理工程と、有機物を付着させた金属磁性粉末の表面に酸化膜を形成する酸化処理工程と、酸化膜を形成した金属磁性粉末を還元処理した後に酸化処理する再還元・安定化処理工程とを備えている。以下、これらの工程について説明する。   In the embodiment of the method for producing a metal magnetic powder according to the present invention, the raw material powder to which a nonmagnetic component is added is sintered for shape retention and sintering prevention, and then reduced, and iron or iron and cobalt are the main components. Metal magnetic powder manufacturing process for manufacturing metal magnetic powder containing nonmagnetic components that are contained and added for shape retention and prevention of sintering, and elution that elutes and removes nonmagnetic components in the surface layer of this metal magnetic powder Treatment step, organic matter treatment step for attaching organic matter to the surface of metal magnetic powder after elution and removal of non-magnetic components on the surface layer portion, and oxidation treatment step for forming an oxide film on the surface of metal magnetic powder to which organic matter is attached And a re-reduction / stabilization treatment step in which the metal magnetic powder on which the oxide film is formed is subjected to a reduction treatment and then an oxidation treatment. Hereinafter, these steps will be described.

(金属磁性粉末製造工程)
形状保持や焼結防止のために非磁性成分が添加された原料粉末を焼成した後に還元して、鉄または鉄とコバルトを主成分として含有し且つ形状保持や焼結防止のために添加された非磁性成分を含有する金属磁性粉末を製造するまでの工程としては、一般的な金属磁性粉末の製造工程を採用することができる。例えば、コバルトおよび焼結防止のために添加した希土類元素などを含有するオキシ水酸化鉄を250〜700℃で焼成して、α−Feなどの鉄酸化物にした後、この鉄酸化物を気相還元によって加熱還元して、α−Feを主成分として含有し且つ希土類元素などの非磁性成分を含有する金属磁性粉末(中間製品としての金属磁性粉末)を得る。
(Metal magnetic powder manufacturing process)
Raw material powder with non-magnetic components added for shape retention and sintering prevention was reduced after firing, and contained iron or iron and cobalt as main components and added for shape retention and sintering prevention As a process until a metal magnetic powder containing a nonmagnetic component is manufactured, a general process for manufacturing a metal magnetic powder can be employed. For example, iron oxyhydroxide containing cobalt and rare earth elements added to prevent sintering is baked at 250 to 700 ° C. to form iron oxides such as α-Fe 2 O 3, and the iron oxidation The product is heated and reduced by vapor phase reduction to obtain a metal magnetic powder containing α-Fe as a main component and a nonmagnetic component such as a rare earth element (metal magnetic powder as an intermediate product).

(溶出処理工程)
このようにして得られた金属磁性粉末に含まれる希土類元素(イットリウムを含む)、アルミニウム(Al)および珪素(Si)の少なくとも1種以上と錯体を形成し得る化合物(錯化剤)を溶解した溶液を処理液として用意する。この処理液は、室温付近の温度で調整することができる。錯化剤としては、無電解めっきにおいて錯化剤として通常使用されている薬品、例えば、酒石酸塩、クエン酸塩、リンゴ酸塩、乳酸塩などを使用することができる。錯化剤の濃度は、0.01〜10モル/L程度でよい。また、必要に応じて、pH緩衝効果がある物質、例えば、アンモニウム塩などを添加してもよい。
(Elution process)
A compound (complexing agent) capable of forming a complex with at least one of rare earth elements (including yttrium), aluminum (Al) and silicon (Si) contained in the metal magnetic powder thus obtained was dissolved. A solution is prepared as a processing solution. This treatment liquid can be adjusted at a temperature around room temperature. As the complexing agent, chemicals usually used as a complexing agent in electroless plating, such as tartrate, citrate, malate, lactate and the like can be used. The concentration of the complexing agent may be about 0.01 to 10 mol / L. Moreover, you may add the substance which has a pH buffer effect, for example, ammonium salt etc. as needed.

次に、この処理液に金属磁性粉末を添加する。金属磁性粉末の添加量は、多過ぎると反応が不均一になる可能性があるので、処理液1L当たり1〜100g程度であるのが好ましく、5〜50g程度であるのがさらに好ましい。また、液中の反応の均一性を維持するため、撹拌または強制分散(例えば、超音波分散など)を行うのが好ましい。   Next, a metal magnetic powder is added to the treatment liquid. If the addition amount of the metal magnetic powder is too large, the reaction may become non-uniform, so that it is preferably about 1 to 100 g, more preferably about 5 to 50 g, per liter of the treatment liquid. Further, in order to maintain the uniformity of the reaction in the liquid, it is preferable to perform stirring or forced dispersion (for example, ultrasonic dispersion).

処理液中に金属磁性粉末が均一に分散させた後、還元剤を添加する。この還元剤としては、ヒドラジン(N)、リチウムアルミニウムハイドライド(LiAlH)、ナトリウムボロンハイドライド(NaBH)のような強還元剤を使用することができる。還元能力が弱い還元剤を使用すると、磁性元素の溶出が起こり易くなるので好ましくない。また、還元剤の濃度は、濃過ぎると非磁性成分の溶出効果が低下するので好ましくなく、一方、薄過ぎると磁性元素が溶出し易くなるので好ましくない。そのため、還元剤の濃度は、0.01〜10モル/Lにするのが好ましく、0.05〜5モル/Lにするのがさらに好ましく、0.1〜5モル/Lにするのが最も好ましい。 After the metal magnetic powder is uniformly dispersed in the treatment liquid, a reducing agent is added. As this reducing agent, strong reducing agents such as hydrazine (N 2 H 2 ), lithium aluminum hydride (LiAlH 4 ), and sodium boron hydride (NaBH 4 ) can be used. Use of a reducing agent having a weak reducing ability is not preferable because elution of a magnetic element is likely to occur. On the other hand, if the concentration of the reducing agent is too high, the elution effect of the non-magnetic component is lowered, which is not preferable. Therefore, the concentration of the reducing agent is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L, and most preferably 0.1 to 5 mol / L. preferable.

この還元剤を添加した後、液温を10〜50℃、好ましくは15〜40℃に保持しながら、10〜300分間浸出操作を行う。この浸出操作によって処理液中に非磁性成分が溶出し、金属磁性粉末の粒子中における磁性元素の量が相対的に上昇する。なお、この反応は、不活性ガス雰囲気において行うのが好ましい。   After adding this reducing agent, a leaching operation is performed for 10 to 300 minutes while maintaining the liquid temperature at 10 to 50 ° C., preferably 15 to 40 ° C. By this leaching operation, the nonmagnetic component is eluted in the treatment liquid, and the amount of the magnetic element in the particles of the metal magnetic powder is relatively increased. This reaction is preferably performed in an inert gas atmosphere.

(有機物処理工程)
次に、溶出処理した金属磁性粉末に有機物を付着させる有機物処理工程を行う。この有機物処理工程として、溶出処理に使用した液に有機溶剤や高分子有機化合物を直接投入してもよいし、溶出処理液から分離した金属磁性粉末に有機溶剤や高分子有機化合物溶液を含浸させてもよい。この有機物処理工程によって、金属磁性粉末に炭素成分を含有させるので、金属磁性粉末に有機物を均一に付着させるために、攪拌または強制分散(例えば、超音波分散など)を行うのが好ましい。
(Organic treatment process)
Next, an organic substance treatment step is performed in which an organic substance is attached to the eluted magnetic metal powder. As the organic matter treatment step, an organic solvent or a polymer organic compound may be directly added to the liquid used for the elution treatment, or the metal magnetic powder separated from the elution treatment liquid is impregnated with the organic solvent or the polymer organic compound solution. May be. Since the carbon component is contained in the metal magnetic powder through this organic substance treatment step, it is preferable to perform stirring or forced dispersion (for example, ultrasonic dispersion) in order to uniformly attach the organic substance to the metal magnetic powder.

この有機物処理工程に使用する有機化合物としては、メタノールやエタノールなどのアルコール類またはその誘導体、ジメチルエーテルやジエチルエーテルなどのエーテル類またはその誘導体を使用するのが好ましい。   As the organic compound used in this organic substance treatment step, alcohols such as methanol and ethanol or derivatives thereof, ethers such as dimethyl ether and diethyl ether or derivatives thereof are preferably used.

(酸化処理工程)
次に、必要に応じて、有機物処理した金属磁性粉末の粒子の表面に酸化膜を形成する酸化処理工程を行う。この酸化処理工程は、有機物処理に使用した液に酸化物を投入して湿式法で酸化処理する工程でもよいし、有機物処理液から分離して抽出した金属磁性粉末を乾式法で酸化処理する工程でもよい。
(Oxidation process)
Next, if necessary, an oxidation treatment step of forming an oxide film on the surface of the particles of the metal magnetic powder treated with organic matter is performed. This oxidation treatment step may be a step in which an oxide is added to a liquid used for organic matter treatment and oxidation treatment is performed by a wet method, or a metal magnetic powder separated and extracted from an organic treatment liquid is oxidized by a dry method. But you can.

(再還元・安定化処理工程)
次に、必要に応じて、酸化処理した金属磁性粉末に再度還元処理を施し、その後、再度酸化雰囲気に曝す安定化処理を施す。この再還元・安定化処理工程によって先端部が丸みを帯びた粒子が得られ易くなるので好ましい。再還元工程は、水素ガスなどの還元雰囲気下において熱処理することによって行うことができる。熱処理温度は、150℃以上であるのが好ましいが、高温になり過ぎると粒子間焼結が起こり易くなるので、350℃以下にする必要があり、300℃以下にするのが好ましい。また、安定化処理は、酸化性ガス雰囲気において熱処理することによって行うことができる。この場合も、温度が高過ぎると焼結が生じ易いので、約150〜350℃で行うのが好ましい。
(Re-reduction / stabilization process)
Next, if necessary, the oxidized magnetic metal powder is subjected to reduction treatment again, and then subjected to stabilization treatment that is again exposed to an oxidizing atmosphere. This re-reduction / stabilization treatment step is preferable because particles having a rounded tip are easily obtained. The re-reduction step can be performed by heat treatment in a reducing atmosphere such as hydrogen gas. The heat treatment temperature is preferably 150 ° C. or higher. However, if the temperature is too high, inter-particle sintering is likely to occur. Therefore, the heat treatment temperature needs to be 350 ° C. or lower, and preferably 300 ° C. or lower. The stabilization treatment can be performed by heat treatment in an oxidizing gas atmosphere. In this case as well, sintering is likely to occur if the temperature is too high, so it is preferable to carry out at about 150 to 350 ° C.

このように、本発明による金属磁性粉末の製造方法の実施の形態は、金属磁性粉末の表層部に存在する(焼結防止剤のために添加した)希土類元素や(形状保持のために添加した)AlやSiのような直接磁気特性への関与が薄い非磁性成分を選択的に溶出除去する工程と、金属磁性粒子の表面に炭素化合物由来の被覆層を形成する工程とを備えているので、個々の粒子の分散を保持し易い金属磁性粉末を製造することができる。   As described above, the embodiment of the method for producing the metal magnetic powder according to the present invention includes the rare earth element (added for the sintering inhibitor) present in the surface layer portion of the metal magnetic powder (added for maintaining the shape). ) Because it includes a step of selectively eluting and removing nonmagnetic components that are not directly involved in direct magnetic properties such as Al and Si, and a step of forming a coating layer derived from a carbon compound on the surface of metal magnetic particles. A metal magnetic powder that can easily maintain dispersion of individual particles can be produced.

上述した本発明による金属磁性粉末の製造方法の実施の形態により製造された金属磁性粉末は、鉄または鉄とコバルトを主成分とする金属磁性相を有する粒子からなる金属磁性粉末である。すなわち、金属磁性相を構成する磁性元素(例えば、鉄、コバルト、ニッケル)のうち、鉄または鉄とコバルトの合計の原子割合が50%以上の金属磁性粉末である。この金属磁性粉末の表面には酸化膜が形成されており、鉄(Fe)とコバルト(Co)を主成分として含有する金属磁性粉末では、酸化膜と金属磁性相を含む金属磁性粉末の粒子全体に存在する元素のモル比として「Co含有量(at%)/Fe含有量(at%)×100」で表される、Feに対するCoの原子割合(以下「Co/Fe原子比」という)が、0〜50at%であるのが好ましく、5〜45at%であるのがさらに好ましく、10〜40at%であるのが最も好ましい。このような範囲であれば、安定した磁気特性が得られ易く、耐候性も良好になる。なお、酸化膜として鉄酸化物が検出されるが、その他の元素の酸化物が同時に存在してもよい。   The metal magnetic powder produced by the embodiment of the method for producing metal magnetic powder according to the present invention described above is a metal magnetic powder composed of particles having a metal magnetic phase mainly composed of iron or iron and cobalt. That is, among magnetic elements (for example, iron, cobalt, nickel) constituting the metal magnetic phase, it is a metal magnetic powder in which the total atomic ratio of iron or iron and cobalt is 50% or more. An oxide film is formed on the surface of the metal magnetic powder. In the metal magnetic powder containing iron (Fe) and cobalt (Co) as main components, the entire metal magnetic powder particles including the oxide film and the metal magnetic phase are used. The atomic ratio of Co to Fe (hereinafter referred to as “Co / Fe atomic ratio”) expressed as “Co content (at%) / Fe content (at%) × 100” as the molar ratio of the elements present in 0 to 50 at% is preferable, 5 to 45 at% is more preferable, and 10 to 40 at% is most preferable. Within such a range, stable magnetic characteristics can be easily obtained and weather resistance is also improved. Although iron oxide is detected as the oxide film, oxides of other elements may be present at the same time.

また、金属磁性粉末製造工程では、焼結防止のために(イットリウム(Y)を含む)希土類元素(R)、Al、Siなどの非磁性成分が添加されているが、これらの非磁性成分は、溶出処理工程において除去されているので、(R+Si+Al)/(Fe+Co)原子比が、20at%以下になり、好ましくは15at%以下、さらに好ましくは13at%以下、最も好ましくは12at%以下にすることができる。このように非磁性成分を除去することによって、従来の微粉化された金属磁性粉末と比べて、粒子体積が小さい割に飽和磁化が大きい粉末を得ることができる。   In addition, in the magnetic metal powder manufacturing process, non-magnetic components such as rare earth elements (R), Al, and Si (including yttrium (Y)) are added to prevent sintering. Since it is removed in the elution treatment step, the (R + Si + Al) / (Fe + Co) atomic ratio is 20 at% or less, preferably 15 at% or less, more preferably 13 at% or less, and most preferably 12 at% or less. Can do. By removing the nonmagnetic component in this way, it is possible to obtain a powder having a large saturation magnetization for a small particle volume as compared with a conventional finely divided metal magnetic powder.

また、上述した本発明による金属磁性粉末の製造方法の実施の形態により製造された金属磁性粉末には、有機物処理工程において有機物による表面被覆処理によって生じた炭素化合物成分が存在している。一般に、有機物処理を行わない金属磁性粉末には0.1質量%以下の炭素分が存在しているが、このように炭素分の含有量が少ないと、金属磁性粉末の個々の粒子の分散を保持するには不十分である。一方、炭素化合物は基本的には非磁性成分であるので、炭素化合物の被着量が多過ぎると、磁気特性を劣化させ、溶出処理工程において非磁性成分を除去した効果が損なわれるので好ましくない。そのため、金属磁性粉末中の炭素化合物として炭素の量は、0.5〜4.0質量%であるのが好ましく、1.0〜3.5質量%であるのがさらに好ましく、1.0〜3.0質量%であるのが最も好ましい。   In addition, the metal magnetic powder produced by the above-described embodiment of the method for producing metal magnetic powder according to the present invention contains a carbon compound component produced by surface coating treatment with an organic substance in the organic substance treatment step. In general, the metal magnetic powder not subjected to the organic treatment has a carbon content of 0.1% by mass or less. If the carbon content is so small, the dispersion of the individual particles of the metal magnetic powder is reduced. Insufficient to hold. On the other hand, since carbon compounds are basically non-magnetic components, if the amount of carbon compound deposited is too large, the magnetic properties are deteriorated and the effect of removing the non-magnetic components in the elution process is impaired, which is not preferable. . Therefore, the amount of carbon as the carbon compound in the metal magnetic powder is preferably 0.5 to 4.0% by mass, more preferably 1.0 to 3.5% by mass, and 1.0 to 1.0%. Most preferably, it is 3.0 mass%.

また、金属磁性粉末の粒子サイズについては、平均長軸長が10〜50nmであるのが好ましく、10〜40nmであるのがさらに好ましく、10〜35nmであるのが最も好ましい。平均長軸長が50nmを超えると、粒子体積が大きくなってしまい、磁気記録の高記録密度化に十分対応することが難しくなる。   In addition, regarding the particle size of the metal magnetic powder, the average major axis length is preferably 10 to 50 nm, more preferably 10 to 40 nm, and most preferably 10 to 35 nm. When the average major axis length exceeds 50 nm, the particle volume becomes large, and it becomes difficult to sufficiently cope with the increase in recording density of magnetic recording.

上述した本発明による金属磁性粉末の製造方法の実施の形態により製造された金属磁性粉末は、重層塗布型磁気記録媒体の磁性層に使用することができる。重層塗布型磁気記録媒体は、ベースフィルムの上に、下層として非磁性層を有し、その上に上層として磁性層を有するが、金属磁性粉末は、上層の磁性層を形成するための塗料中に配合させて使用することができる。   The metal magnetic powder produced by the embodiment of the method for producing metal magnetic powder according to the present invention described above can be used for the magnetic layer of the multilayer coating type magnetic recording medium. The multilayer coating type magnetic recording medium has a nonmagnetic layer as a lower layer on a base film and a magnetic layer as an upper layer on the base film, but the metal magnetic powder is contained in a paint for forming an upper magnetic layer. Can be used in combination.

なお、上層および下層のいずれの塗料も、各材料を所定組成となるような割合で配合し、ニーダーやサンドグラインダーを用いて混練・分散させる方法により調合することができる。ベースフィルムへの塗料の塗布は、下層が湿潤なうちに可及的に速やかに上層の磁性層を塗布する、所謂ウエット・オン・ウエット方式で行うことが好ましい。   It should be noted that both the upper layer paint and the lower layer paint can be blended by a method in which the respective materials are blended at a ratio such that a predetermined composition is obtained and kneaded and dispersed using a kneader or a sand grinder. The coating is preferably applied to the base film by a so-called wet-on-wet method in which the upper magnetic layer is applied as quickly as possible while the lower layer is wet.

重層塗布型磁気記録媒体では、ベースフィルムとして、例えば、ポリエチレンテレフタラート、ポリエチレンナフタレートなどのポリエステル類、ポリオレフィン類、セルローストリアセテート、ポリカーボネイト、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォンアラミド、芳香族ポリアミドなどの樹脂フィルムを使用することができる。また、下層の非磁性層用塗料として、例えば、非磁性粉末(DOWAエレクトロニクス(株)製のα−酸化鉄、平均長軸粒子径80nm)85質量部と、カーボンブラック20質量部と、アルミナ3質量部と、塩化ビニル樹脂(日本ゼオン(株)製の塩化ビニル系バインダーMR−110)15質量部と、ポリウレタン樹脂(東洋紡(株)製のポリウレタン樹脂UR−8200)15質量部と、メチルエチルケトン190質量部と、シクロヘキサノン80質量部と、トルエン110質量部とからなる組成の非磁性塗料を使用することができる。さらに、上層の磁性層用塗料として、例えば、金属磁性粉末100質量部と、カーボンブラック5質量部と、アルミナ3質量部と、塩化ビニル樹脂(日本ゼオン(株)製のMR−110)15質量部と、ポリウレタン樹脂(東洋紡(株)製のUR−8200)15質量部と、ステアリン酸1質量部と、アセチルアセトン1質量部と、メチルエチルケトン190質量部と、シクロヘキサノン80質量部と、トルエン110質量部とからなる組成の磁性塗料を使用することができる。   In the multilayer coating type magnetic recording medium, as a base film, for example, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone aramid, aromatic polyamide, etc. A resin film can be used. Examples of the coating material for the lower nonmagnetic layer include, for example, 85 parts by mass of nonmagnetic powder (α-iron oxide manufactured by DOWA Electronics Co., Ltd., average major axis particle size of 80 nm), 20 parts by mass of carbon black, and alumina 3 15 parts by mass of vinyl chloride resin (vinyl chloride binder MR-110 manufactured by Nippon Zeon Co., Ltd.), 15 parts by mass of polyurethane resin (polyurethane resin UR-8200 manufactured by Toyobo Co., Ltd.), and methyl ethyl ketone 190 A nonmagnetic paint having a composition composed of part by mass, 80 parts by mass of cyclohexanone, and 110 parts by mass of toluene can be used. Further, as the magnetic layer coating for the upper layer, for example, 100 parts by mass of metal magnetic powder, 5 parts by mass of carbon black, 3 parts by mass of alumina, and 15 parts by mass of vinyl chloride resin (MR-110 manufactured by Nippon Zeon Co., Ltd.) Parts, 15 parts by mass of polyurethane resin (UR-8200 manufactured by Toyobo Co., Ltd.), 1 part by mass of stearic acid, 1 part by mass of acetylacetone, 190 parts by mass of methyl ethyl ketone, 80 parts by mass of cyclohexanone, and 110 parts by mass of toluene A magnetic coating composition having the following composition can be used.

以下、本発明による金属磁性粉末およびその製造方法の実施例について詳細に説明する。   Examples of the magnetic metal powder and the method for producing the same according to the present invention will be described in detail below.

[実施例1]
まず、5000mLのビーカーに純水3000mLを入れた後、温調機で30℃に維持しながら、0.03モル/Lの硫酸コバルト(特級試薬)溶液と0.15モル/Lの硫酸第一鉄(特級試薬)水溶液をCo:Fe=1:4の混合割合になるように混合した。この混合溶液500mLに、Fe+Coに対して炭酸が3当量になる量の顆粒状の炭酸ナトリウムを直接添加し、液中温度が40±5℃の範囲を超えないように調整しながら、炭酸鉄を主体とする懸濁液を作製した。この懸濁液を90分間熟成させた後、Feイオンの酸化率が20%になるように調整した量の空気を50mL/分の流量で添加して核晶を形成させ、60℃まで昇温させ、純酸素を50mL/分の流量で通気して60分間酸化を継続した。その後、純酸素を窒素に切り替えて、30分間程度熟成した。
[Example 1]
First, after adding 3000 mL of pure water to a 5000 mL beaker, maintaining a temperature controller at 30 ° C., a 0.03 mol / L cobalt sulfate (special grade reagent) solution and 0.15 mol / L sulfuric acid first An aqueous solution of iron (special grade reagent) was mixed so as to have a mixing ratio of Co: Fe = 1: 4. To 500 mL of this mixed solution, granulated sodium carbonate in an amount of 3 equivalents of Fe + Co was directly added, and the temperature in the liquid was adjusted so as not to exceed the range of 40 ± 5 ° C. A main suspension was prepared. After aging this suspension for 90 minutes, air adjusted to an oxidation rate of Fe ions of 20% was added at a flow rate of 50 mL / min to form nuclei, and the temperature was raised to 60 ° C. Then, pure oxygen was aerated at a flow rate of 50 mL / min and oxidation was continued for 60 minutes. Thereafter, the pure oxygen was switched to nitrogen and aged for about 30 minutes.

次に、液温を40℃まで降温させて温度が安定した後、1.0質量%のAlの硫酸アルミニウム水溶液を5.0g/分の添加速度で20分間添加し続けてオキシ水酸化鉄を成長させた。その後、純酸素を50mL/分の流量で流し続け、酸化を完結させた。なお、酸化の終点の確認は、上澄み液を少量分取し、ヘキサシアノ酸鉄カリウム溶液を添加して、液色が変化しないことを確認することによって行った。   Next, after the liquid temperature was lowered to 40 ° C. and stabilized, 1.0 mass% Al aluminum sulfate aqueous solution was continuously added at an addition rate of 5.0 g / min for 20 minutes, and iron oxyhydroxide was added. Grown up. Thereafter, pure oxygen was kept flowing at a flow rate of 50 mL / min to complete the oxidation. The end point of the oxidation was confirmed by taking a small amount of the supernatant and adding an iron potassium hexacyanoate solution to confirm that the liquid color did not change.

次に、酸化終了後の液に(イットリウムとして2.0質量%含有する)酸化イットリウムの硫酸水溶液300gを添加して、Alを固溶させ、イットリウムが表面に被着したオキシ水酸化鉄の粉末(ケーキ)を得た。   Next, 300 g of an aqueous solution of sulfuric acid of yttrium oxide (containing 2.0% by mass as yttrium) is added to the liquid after completion of oxidation to dissolve Al, and iron oxyhydroxide powder with yttrium deposited on the surface (Cake) was obtained.

このオキシ水酸化鉄のケーキを濾過し、水洗した後、130℃で6時間乾燥させ、オキシ水酸化鉄の乾燥固形物を得た。この乾燥固形物10gをバケットに入れ、水の流量として1.0g/分で水蒸気を添加しながら大気中において400℃で焼成し、α−酸化鉄(ヘマタイト)を主成分とする鉄系酸化物を得た。   The iron oxyhydroxide cake was filtered, washed with water, and then dried at 130 ° C. for 6 hours to obtain a dried solid product of iron oxyhydroxide. 10 g of this dried solid substance is put in a bucket, and fired at 400 ° C. in the air while adding water vapor at a flow rate of 1.0 g / min, and an iron-based oxide containing α-iron oxide (hematite) as a main component. Got.

このα−酸化鉄を主成分とする鉄系酸化物を通気可能なバケット内に投入した後、バケットを貫通型還元炉内に装入し、水素ガスを40L/分の流量で通気しながら、水の流量として1.0g/分で水蒸気を添加しながら、400℃で30分間焼成させて還元処理を行った。この還元処理が終了した後、水蒸気の供給を停止し、水素雰囲気下において昇温速度10℃/分で600℃まで昇温させた。その後、水の流量として1.0g/分で水蒸気を添加しながら60分間高温還元処理を行い、鉄系合金粉末(中間製品としての金属磁性粉末)を得た。   After putting this iron-based oxide containing α-iron oxide as a main component into a bucket that can be ventilated, the bucket was charged into a through-type reduction furnace, and hydrogen gas was vented at a flow rate of 40 L / min. While adding water vapor at a water flow rate of 1.0 g / min, baking was performed at 400 ° C. for 30 minutes for reduction treatment. After the reduction treatment was completed, the supply of water vapor was stopped, and the temperature was raised to 600 ° C. at a temperature rising rate of 10 ° C./min in a hydrogen atmosphere. Thereafter, a high temperature reduction treatment was performed for 60 minutes while adding water vapor at a water flow rate of 1.0 g / min to obtain an iron-based alloy powder (metal magnetic powder as an intermediate product).

次に、この粉末の溶出処理を行うために使用する処理液として、純水900mLに対して、錯化剤として酒石酸ナトリウムを0.05モル/L、緩衝剤として硫酸アンモニウムを0.1モル/Lになるように混合し、NHでpH=9に調整した処理液を用意した。この処理液に還元処理後の粉末10gを投入して30℃に保持した後、還元剤として水素化ホウ素ナトリウムを0.3モル/Lになるように添加し、30℃で30分間撹拌しながら熟成させ、スラリーを得た。このスラリーを固液分離し、固形分を水洗し、濾過して濾過物を得た。 Next, as a treatment liquid used for the elution treatment of the powder, 0.05 mol / L of sodium tartrate as a complexing agent and 0.1 mol / L of ammonium sulfate as a buffering agent are used with respect to 900 mL of pure water. Then, a treatment liquid adjusted to pH = 9 with NH 3 was prepared. 10 g of the powder after the reduction treatment was added to this treatment liquid and kept at 30 ° C., then sodium borohydride was added as a reducing agent to 0.3 mol / L, and the mixture was stirred at 30 ° C. for 30 minutes. Aging was performed to obtain a slurry. This slurry was subjected to solid-liquid separation, and the solid content was washed with water and filtered to obtain a filtrate.

この濾過物を2.0質量%のポリビニルアルコール水溶液(分子量18000〜27000)に入れ、25℃で30分間攪拌して有機物処理を行い、得られたスラリーから固形分を回収した。   This filtrate was put into a 2.0% by mass aqueous polyvinyl alcohol solution (molecular weight: 18000-27000), stirred at 25 ° C. for 30 minutes for organic treatment, and solid content was recovered from the resulting slurry.

次に、回収した固形分を通気可能なバケット内に入れた後、バケットを貫通型還元炉内に装入し、50L/分の流量で窒素を導入しながら90℃で乾燥させて粉末を得た。その後、窒素と純酸素をそれぞれ50L/分および400mL/分の流量で混合したガスを炉内に添加し、水の流量として1.0g/分で水蒸気を添加しながら、水蒸気と酸素と窒素の混合雰囲気中において、粉末の表面に酸化膜を形成し、表面の酸化による発熱が抑制された段階で純酸素の流量を徐々に増加することによって、混合雰囲気中における酸素濃度を上昇させ、最終的な純酸素の流量を2.0L/分にした。なお、炉内に導入されるガスの総量は、窒素の流量を調整することによってほぼ一定に保たれるようにし、この酸化処理は、約90℃に維持される雰囲気下において1時間行った。   Next, after putting the collected solid content in a bucket that can be ventilated, the bucket is placed in a through-type reduction furnace and dried at 90 ° C. while introducing nitrogen at a flow rate of 50 L / min to obtain a powder. It was. Thereafter, a gas in which nitrogen and pure oxygen are mixed at a flow rate of 50 L / min and 400 mL / min, respectively, is added to the furnace, and water vapor is added at a flow rate of 1.0 g / min. In the mixed atmosphere, an oxide film is formed on the surface of the powder, and the oxygen concentration in the mixed atmosphere is increased and finally increased by gradually increasing the flow rate of pure oxygen at the stage where heat generation due to surface oxidation is suppressed. The flow rate of pure oxygen was 2.0 L / min. The total amount of gas introduced into the furnace was kept substantially constant by adjusting the flow rate of nitrogen, and this oxidation treatment was performed for 1 hour in an atmosphere maintained at about 90 ° C.

次に、表面に酸化膜を形成した粉末を250℃の水素雰囲気下に30分間曝すことによって再還元処理を行った後、上記の酸化処理と同様の方法によって安定化処理を行った。   Next, after performing re-reduction treatment by exposing the powder having an oxide film formed on the surface in a hydrogen atmosphere at 250 ° C. for 30 minutes, stabilization treatment was performed by the same method as the oxidation treatment described above.

このようにして得られた金属磁性粉末(最終製品としての金属磁性粉末)について、組成分析、炭素含有量および磁気特性などの測定を行った。粉末の組成は、金属磁性相と酸化膜を含む粒子全体の質量分析を行うことによって求めた。なお、Co、Alおよび希土類元素(Yを含む)の定量は、日本ジャーレルアッシュ株式会社製の高周波誘導プラズマ発光分析装置ICP(IRIS/AP)を使用し、Feの定量は、平沼産業株式会社製の平沼自動滴定装置(CONTIME−980型)を使用して行った。また、粉末中の炭素含有量は、堀場製作所製のC/S同時分析装置EMIA−220Vを使用して測定した。さらに、粉末の磁気特性は、東英工業株式会社製のVSM装置(VSM−7P)を使用して外部磁場10kOe(795.8kA/m)で測定した。その結果を表2および表3に示す。なお、本実施例において得られた金属磁性粉末の製造条件を表1に示し、表2の「非磁性/磁性」は、磁性成分(Fe、Co)に対する非磁性成分(Al、Y、C)の割合(百分率)を示している。   The thus obtained metal magnetic powder (metal magnetic powder as a final product) was measured for composition analysis, carbon content, magnetic properties, and the like. The composition of the powder was determined by performing mass analysis of the entire particle including the metal magnetic phase and the oxide film. Co, Al and rare earth elements (including Y) were quantified using a high frequency induction plasma emission analyzer ICP (IRIS / AP) manufactured by Nippon Jarrel Ash Co., and Fe was quantified by Hiranuma Sangyo Co., Ltd. This was carried out using a Hiranuma automatic titrator (CONTIME-980 type). Further, the carbon content in the powder was measured using a C / S simultaneous analyzer EMIA-220V manufactured by Horiba. Furthermore, the magnetic properties of the powder were measured with an external magnetic field of 10 kOe (795.8 kA / m) using a VSM apparatus (VSM-7P) manufactured by Toei Industry Co., Ltd. The results are shown in Tables 2 and 3. The production conditions of the metal magnetic powder obtained in this example are shown in Table 1, and “Nonmagnetic / Magnetic” in Table 2 is a nonmagnetic component (Al, Y, C) relative to a magnetic component (Fe, Co). The percentage (percentage) is shown.

Figure 0005280661
Figure 0005280661

Figure 0005280661
Figure 0005280661

Figure 0005280661
Figure 0005280661

表2に示すように、金属磁性粉末中のFe、Co、Al、Y、Cの含有量は、それぞれ57.56質量%、12.4質量%、1.81質量%、4.98質量%、2.46質量%であり、非磁性/磁性は13.2%であった。また、表3に示すように、金属磁性粉末の保磁力は1881Oe(149.8kA/m)、飽和磁化は123.6Am/kgであった。 As shown in Table 2, the contents of Fe, Co, Al, Y, and C in the metal magnetic powder were 57.56% by mass, 12.4% by mass, 1.81% by mass, and 4.98% by mass, respectively. It was 2.46% by mass, and nonmagnetic / magnetic was 13.2%. Further, as shown in Table 3, the coercive force of the metal magnetic powder was 1881 Oe (149.8 kA / m), and the saturation magnetization was 123.6 Am 2 / kg.

次に、得られた金属磁性粉末(最終製品としての金属磁性粉末)0.35gを秤量して(内径45mm、深さ13mmの)ポットに入れ、蓋を開けた状態で10分間放置した後、マイクロピペットでビヒクル(東洋紡製の塩化ビニル系樹脂MR−110(22質量%)と、シクロヘキサノン(38.7質量%)と、アセチルアセトン(0.3質量%)と、ステアリン酸−n−ブチル(0.3質量%)と、メチルエチルケトン(38.7質量%)の混合溶液)0.7mLを添加し、その直後にスチールボール(2φ)30g、ナイロンボール(8φ)10個をポットに加えて、蓋を閉じた状態で10分間静置した。その後、ポットを遠心式ボールミル(FRITSH P−6)にセットし、ゆっくりと回転数を上げて600rpmに調整し、60分間分散させた。遠心式ボールミルを停止した後、ポットを取り出し、予めメチルエチルケトンとトルエンを1:1で混合した調整液1.8mLをマイクロピペットで添加した。その後、再びポットを遠心式ボールミルにセットし、600rpmで5分間分散させ、磁性塗料を作製した。   Next, 0.35 g of the obtained metal magnetic powder (metal magnetic powder as a final product) was weighed and placed in a pot (inner diameter 45 mm, depth 13 mm) and left for 10 minutes with the lid open, A vehicle with a micropipette (vinyl chloride resin MR-110 (22% by mass), cyclohexanone (38.7% by mass), acetylacetone (0.3% by mass), stearic acid-n-butyl (0% by Toyobo) .3 mass%) and methyl ethyl ketone (38.7 mass%) mixed solution (0.7 mL) are added. Immediately thereafter, 30 g of steel balls (2φ) and 10 nylon balls (8φ) are added to the pot, Was allowed to stand for 10 minutes in a closed state. Thereafter, the pot was set on a centrifugal ball mill (FRITSH P-6), and the number of rotations was slowly increased to 600 rpm and dispersed for 60 minutes. After stopping the centrifugal ball mill, the pot was taken out, and 1.8 mL of a preliminarily mixed solution of methyl ethyl ketone and toluene at 1: 1 was added with a micropipette. Thereafter, the pot was set again on the centrifugal ball mill, and dispersed at 600 rpm for 5 minutes to produce a magnetic paint.

次に、ポットの蓋を開けてナイロンボールを取り除き、スチールボールごと磁性塗料をアプリケータ(550μm)に入れ、ベースフィルム(東レ株式会社製のポリエチレンフィルム15C−B500、膜厚15μm)上に磁性塗料を塗布し、迅速に5.5kGの配向器のコイル中心に置いて磁場配向させた後、乾燥させて磁気テープを作製した。なお、ここでは金属磁性粉末の効果をより鮮明に確認するため、非磁性層を設けず、磁性層単層のテープを作製した。   Next, the pot lid is opened, the nylon balls are removed, the steel ball and the magnetic paint are placed in the applicator (550 μm), and the magnetic paint is applied on the base film (polyethylene film 15C-B500 manufactured by Toray Industries, Inc., film thickness 15 μm). Was quickly placed on the center of the coil of a 5.5 kG aligner and magnetically oriented, and then dried to produce a magnetic tape. Here, in order to confirm the effect of the metal magnetic powder more clearly, a tape having a single magnetic layer was prepared without providing a nonmagnetic layer.

このようにして作製した媒体としての磁気テープについて、東英工業株式会社製のVSM装置(VSM−7P)を使用して磁気測定を行い、保磁力Hc、保磁力分布SFD、角形比SQ、配向比ORを求めた。その結果を表4に示す。   The magnetic tape as the medium thus produced was subjected to magnetic measurement using a VSM device (VSM-7P) manufactured by Toei Kogyo Co., Ltd., and coercive force Hc, coercive force distribution SFD, squareness ratio SQ, orientation The ratio OR was determined. The results are shown in Table 4.

Figure 0005280661
Figure 0005280661

表4に示すように、磁気テープの保磁力Hcは2533Oe(201.7kA/m)、保磁力分布SFDは0.70、角形比SQは0.788、配向比ORは2.32であった。   As shown in Table 4, the coercive force Hc of the magnetic tape was 2533 Oe (201.7 kA / m), the coercive force distribution SFD was 0.70, the squareness ratio SQ was 0.788, and the orientation ratio OR was 2.32. .

[実施例2〜7]
有機物処理において使用したポリビニルアルコール水溶液の代わりに、実施例2では2.0質量%のアセチレングリコール系分散剤水溶液(日信化学工業株式会社製のExp.4036)、実施例3では10質量%のビニルピロリドン水溶液(分子量111.14)、実施例4では25質量%のエチレングリコール水溶液(分子量62.07)、実施例5では25質量%のジエチレングリコール水溶液(分子量106.12)、実施例6では25質量%のポリエチレングリコール200水溶液(分子量190〜200)、実施例7ではエタノールを使用した以外は、実施例1と同様の処理により、金属磁性粉末および磁気テープを作製し、実施例1と同様の測定を行った。その製造条件および結果を表1〜表4に示す。
[Examples 2 to 7]
Instead of the aqueous polyvinyl alcohol solution used in the organic substance treatment, in Example 2, a 2.0% by mass acetylene glycol-based dispersant aqueous solution (Exp. 4036 manufactured by Nissin Chemical Industry Co., Ltd.), in Example 3, 10% by mass Vinylpyrrolidone aqueous solution (molecular weight 111.14), 25 mass% ethylene glycol aqueous solution (molecular weight 62.07) in Example 4, 25 mass% diethylene glycol aqueous solution (molecular weight 106.12) in Example 5, 25 in Example 6 A metal magnetic powder and a magnetic tape were prepared in the same manner as in Example 1 except that ethanol was used in mass% of polyethylene glycol 200 aqueous solution (molecular weight 190 to 200) and Example 7 except that ethanol was used. Measurements were made. The production conditions and results are shown in Tables 1 to 4.

[実施例8〜10]
有機物処理において使用したポリビニルアルコール水溶液の代わりに25質量%のエチレングリコール水溶液(分子量62.07)を使用し、回収した固形分を乾燥させる前に、メタノール(実施例8)、アセトン(実施例9)、イソプロピルアルコール(実施例10)中で攪拌して後処理を行った以外は、実施例1と同様の処理により、金属磁性粉末および磁気テープを作製し、実施例1と同様の測定を行った。その製造条件および結果を表1〜表4に示す。
[Examples 8 to 10]
A 25% by mass ethylene glycol aqueous solution (molecular weight 62.07) was used in place of the polyvinyl alcohol aqueous solution used in the organic treatment, and methanol (Example 8) and acetone (Example 9) were dried before the collected solid was dried. ) A metal magnetic powder and a magnetic tape were prepared by the same treatment as in Example 1 except that the post-treatment was performed by stirring in isopropyl alcohol (Example 10), and the same measurement as in Example 1 was performed. It was. The production conditions and results are shown in Tables 1 to 4.

[比較例1、2]
有機物処理において使用したポリビニルアルコール水溶液の代わりに、比較例1では2.0質量%のポリビニルピロリドンK30水溶液(分子量40000)、比較例2では25質量%ポリエチレングリコール400水溶液(分子量380〜400)を使用した以外は、実施例1と同様の処理により、金属磁性粉末および磁気テープを作製し、実施例1と同様の測定を行った。その製造条件および結果を表1〜表4に示す。
[Comparative Examples 1 and 2]
Instead of the polyvinyl alcohol aqueous solution used in the organic treatment, Comparative Example 1 uses a 2.0% by weight polyvinylpyrrolidone K30 aqueous solution (molecular weight 40000), and Comparative Example 2 uses a 25% by weight polyethylene glycol 400 aqueous solution (molecular weight 380 to 400). Except for the above, a metal magnetic powder and a magnetic tape were produced by the same treatment as in Example 1, and the same measurement as in Example 1 was performed. The production conditions and results are shown in Tables 1 to 4.

[比較例3]
溶出処理と有機物処理を行わなかった以外は、実施例1と同様の処理により、金属磁性粉末および磁気テープを作製し、実施例1と同様の測定を行った。その製造条件および結果を表1〜表4に示す。
[Comparative Example 3]
A metal magnetic powder and a magnetic tape were produced by the same treatment as in Example 1 except that the elution treatment and the organic matter treatment were not performed, and the same measurement as in Example 1 was performed. The production conditions and results are shown in Tables 1 to 4.

[比較例4]
有機物処理を行わなかった以外は、実施例1と同様の処理により、金属磁性粉末および磁気テープを作製し、実施例1と同様の測定を行った。その製造条件および結果を表1〜表4に示す。
[Comparative Example 4]
A metal magnetic powder and a magnetic tape were produced by the same treatment as in Example 1 except that the organic matter treatment was not performed, and the same measurement as in Example 1 was performed. The production conditions and results are shown in Tables 1 to 4.

また、実施例1〜10および比較例1〜4で得られた金属磁性粉末の炭素含有量と、保磁力Hc、飽和磁化、磁気テープの保磁力分布SFDなどの各特性との関係を図1〜図3に示し、非磁性成分/磁性成分と各特性との関係を図4〜図6に示す。   Further, the relationship between the carbon content of the metal magnetic powders obtained in Examples 1 to 10 and Comparative Examples 1 to 4 and respective characteristics such as the coercive force Hc, the saturation magnetization, and the coercive force distribution SFD of the magnetic tape is shown in FIG. To FIG. 3, and the relationship between the nonmagnetic component / magnetic component and each characteristic is shown in FIGS.

図1〜図3に示すように、金属磁性粉末中の炭素含有量が4.0質量%を超える領域では、各特性が飽和または低下している。この領域では、有機物処理による効果が飽和していると考えられ、過剰の炭素分が磁気特性を悪くする方向に働いている。また、炭素含有量が0.5質量%未満の領域では、磁気記録に重要な特性である保磁力Hcを始め、各特性が悪化する傾向が見られる。また、炭素含有量が5.0質量%を超える領域では、各特性間のバランスが悪くなる。例えば、金属磁性粉末の磁気特性が実施例1〜10と同等である比較例2でも、媒体の保磁力分布が悪化し、実施例1〜10のような金属磁性粉末と媒体のバランスがとれていないことがわかる。   As shown in FIGS. 1 to 3, each characteristic is saturated or lowered in a region where the carbon content in the metal magnetic powder exceeds 4.0 mass%. In this region, it is considered that the effect of organic matter treatment is saturated, and excess carbon works in the direction of deteriorating magnetic properties. Also, in the region where the carbon content is less than 0.5 mass%, each characteristic tends to deteriorate, including the coercive force Hc which is an important characteristic for magnetic recording. Moreover, in the area | region where carbon content exceeds 5.0 mass%, the balance between each characteristic will worsen. For example, even in Comparative Example 2 in which the magnetic properties of the metal magnetic powder are equivalent to those of Examples 1 to 10, the coercive force distribution of the medium deteriorates, and the metal magnetic powder and the medium as in Examples 1 to 10 are balanced. I understand that there is no.

また、実施例1で得られた金属磁性粉末の粒子の30,000倍と174,000倍の透過型電子顕微鏡(TEM)写真をそれぞれ図7および図8に示し、比較例3で得られた金属磁性粉末の粒子の30,000倍と174,000倍のTEM写真をそれぞれ図9および図10に示す。比較例3で得られた金属磁性粉末の粒子のTEM写真には、焼結によると考えられる粒子集団(数十個の粒子の塊)が所々に観察されるのに対し、実施例1で得られた金属磁性粉末の粒子のTEM写真には、そのような粒子集団が殆ど観察されないので、実施例1で得られた金属磁性粉末では、このような良好な分散性が配向性を向上させるのに働いていると考えられ、粒子の独立性が担保できる。   Further, transmission electron microscope (TEM) photographs of 30,000 times and 174,000 times the particles of the metal magnetic powder obtained in Example 1 are shown in FIGS. 7 and 8, respectively, and obtained in Comparative Example 3. FIGS. 9 and 10 show TEM photographs of 30,000 times and 174,000 times the metal magnetic powder particles, respectively. In the TEM photograph of the particles of the metal magnetic powder obtained in Comparative Example 3, a particle population (several tens of particles) considered to be due to sintering is observed in some places, whereas it is obtained in Example 1. Since such a population of particles is hardly observed in the TEM photograph of the particles of the obtained metal magnetic powder, such good dispersibility improves the orientation in the metal magnetic powder obtained in Example 1. The independence of the particles can be guaranteed.

また、実施例5、7および比較例3で得られた金属磁性粉末の粒子のX線回折図を図11に示す。得られた回折線をJCPDS(Joint Committee on Powder Deffraction Standards)で確認したところ、いずれのピークもFeのみを示す回折線になり、FeとCは炭化鉄のような化合物に変化していないことが確認された。   Moreover, the X-ray-diffraction figure of the particle | grains of the metal magnetic powder obtained in Examples 5 and 7 and Comparative Example 3 is shown in FIG. When the obtained diffraction lines were confirmed by JCPDS (Joint Committee on Powder Deflection Standards), all the peaks were diffraction lines showing only Fe, and Fe and C were not changed to compounds such as iron carbide. confirmed.

実施例1〜10および比較例1〜4で得られた金属磁性粉末について炭素含有量と保磁力Hcの関係を示すグラフである。It is a graph which shows the relationship between carbon content and coercive force Hc about the metal magnetic powder obtained in Examples 1-10 and Comparative Examples 1-4. 実施例1〜10および比較例1〜4で得られた金属磁性粉末について炭素含有量と飽和磁化の関係を示すグラフである。It is a graph which shows the relationship between carbon content and saturation magnetization about the metal magnetic powder obtained in Examples 1-10 and Comparative Examples 1-4. 実施例1〜10および比較例1〜4で得られた金属磁性粉末を使用した磁気テープについて金属磁性粉末中の炭素含有量と保磁力分布SFDの関係を示すグラフである。It is a graph which shows the relationship between the carbon content in a metal magnetic powder, and the coercive force distribution SFD about the magnetic tape using the metal magnetic powder obtained in Examples 1-10 and Comparative Examples 1-4. 実施例1〜10および比較例1〜4で得られた金属磁性粉末について非磁性成分/磁性成分と保磁力Hcの関係を示すグラフである。It is a graph which shows the relationship between a nonmagnetic component / magnetic component and coercive force Hc about the metal magnetic powder obtained in Examples 1-10 and Comparative Examples 1-4. 実施例1〜10および比較例1〜4で得られた金属磁性粉末について非磁性成分/磁性成分と飽和磁化の関係を示すグラフである。It is a graph which shows the relationship between a nonmagnetic component / magnetic component, and saturation magnetization about the metal magnetic powder obtained in Examples 1-10 and Comparative Examples 1-4. 実施例1〜10および比較例1〜4で得られた金属磁性粉末を使用した磁気テープについて金属磁性粉末中の非磁性成分/磁性成分と保磁力分布SFDの関係を示すグラフである。It is a graph which shows the relationship between the nonmagnetic component / magnetic component in metal magnetic powder, and the coercive force distribution SFD about the magnetic tape using the metal magnetic powder obtained in Examples 1-10 and Comparative Examples 1-4. 実施例1で得られた金属磁性粉末の粒子の30,000倍のTEM写真である。3 is a 30,000 times TEM photograph of metal magnetic powder particles obtained in Example 1. FIG. 実施例1で得られた金属磁性粉末の粒子の174,000倍のTEM写真である。4 is a 174,000 times TEM photograph of metal magnetic powder particles obtained in Example 1. FIG. 比較例3で得られた金属磁性粉末の粒子の30,000倍のTEM写真である。4 is a 30,000 times larger TEM photograph of metal magnetic powder particles obtained in Comparative Example 3; 比較例3で得られた金属磁性粉末の粒子の174,000倍のTEM写真である。7 is a 174,000 times TEM photograph of metal magnetic powder particles obtained in Comparative Example 3. 実施例5、7および比較例3で得られた金属磁性粉末の粒子のX線回折図である。FIG. 4 is an X-ray diffraction pattern of metal magnetic powder particles obtained in Examples 5 and 7 and Comparative Example 3.

Claims (7)

鉄または鉄とコバルトを主成分として含有し且つ非磁性成分を含有する金属磁性粉末を製造する工程と、この金属磁性粉末の非磁性成分と錯体を形成し得る錯化剤を添加した溶液に、前記金属磁性粉末を添加して分散させた後、還元剤を添加し、浸出によって溶液中に金属磁性粉末の表層部の非磁性成分を溶出除去する工程と、表層部の非磁性成分を溶出除去した後の金属磁性粉末の表面に有機物を付着させる工程とを備えた、金属磁性粉末の製造方法。 A step of producing a metal magnetic powder containing iron or iron and cobalt as main components and containing a nonmagnetic component, and a solution to which a complexing agent capable of forming a complex with the nonmagnetic component of the metal magnetic powder is added, After the metal magnetic powder is added and dispersed, a reducing agent is added and the nonmagnetic component of the surface portion of the metal magnetic powder is eluted and removed by leaching, and the nonmagnetic component of the surface layer portion is eluted and removed. And a step of attaching an organic substance to the surface of the metal magnetic powder after the process. 前記非磁性成分が、(イットリウムを含む)希土類元素、アルミニウムおよび珪素からなる群から選ばれる1種以上である、請求項1に記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to claim 1, wherein the nonmagnetic component is at least one selected from the group consisting of rare earth elements (including yttrium), aluminum, and silicon. 前記金属磁性粉末の表面に有機物を付着させる工程が、前記非磁性成分を溶出除去する工程において使用した前記溶液中に、有機溶剤または高分子有機化合物を添加することによって、前記金属磁性粉末の表面に有機物を付着させる工程である、請求項1または2に記載の金属磁性粉末の製造方法。 The step of attaching an organic substance to the surface of the metal magnetic powder adds the organic solvent or the polymer organic compound to the solution used in the step of eluting and removing the non-magnetic component, whereby the surface of the metal magnetic powder The manufacturing method of the metal magnetic powder of Claim 1 or 2 which is the process of making an organic substance adhere to this. 前記金属磁性粉末の表面に有機物を付着させる工程が、前記非磁性成分を溶出除去する工程において使用した前記溶液から分離した金属磁性粉末に、有機溶剤または高分子有機化合物溶液を含浸させることによって、前記金属磁性粉末の表面に有機物を付着させる工程である、請求項1または2に記載の金属磁性粉末の製造方法。 In the step of attaching an organic substance to the surface of the metal magnetic powder, the metal magnetic powder separated from the solution used in the step of eluting and removing the nonmagnetic component is impregnated with an organic solvent or a polymer organic compound solution. The manufacturing method of the metal magnetic powder of Claim 1 or 2 which is a process which makes organic substance adhere to the surface of the said metal magnetic powder. 前記有機溶剤または高分子有機化合物が、アルコール、エーテルおよびそれらの誘導体からなる群から選ばれる1種以上である、請求項またはに記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to claim 3 or 4 , wherein the organic solvent or the polymer organic compound is at least one selected from the group consisting of alcohol, ether and derivatives thereof. 前記有機物を付着させた金属磁性粉末の表面に酸化膜を形成する酸化処理工程を含む、請求項1乃至のいずれかに記載の金属磁性粉末の製造方法。 Comprising an oxidation treatment step of forming an oxide film on the surface of the metallic magnetic powder obtained by attaching the organic method of the metallic magnetic powder according to any one of claims 1 to 5. 前記酸化膜を形成した金属磁性粉末を還元処理した後に酸化処理する安定化処理工程を含む、請求項に記載の金属磁性粉末の製造方法。 The manufacturing method of the metal magnetic powder of Claim 6 including the stabilization process process which oxidizes after reducing the metal magnetic powder in which the said oxide film was formed.
JP2007252450A 2007-09-27 2007-09-27 Method for producing metal magnetic powder Expired - Fee Related JP5280661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252450A JP5280661B2 (en) 2007-09-27 2007-09-27 Method for producing metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252450A JP5280661B2 (en) 2007-09-27 2007-09-27 Method for producing metal magnetic powder

Publications (2)

Publication Number Publication Date
JP2009084600A JP2009084600A (en) 2009-04-23
JP5280661B2 true JP5280661B2 (en) 2013-09-04

Family

ID=40658411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252450A Expired - Fee Related JP5280661B2 (en) 2007-09-27 2007-09-27 Method for producing metal magnetic powder

Country Status (1)

Country Link
JP (1) JP5280661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285633A (en) * 2009-06-09 2010-12-24 Kobe Steel Ltd Method of producing powder mixture for powder metallurgy, and method of producing sintered body
JP5781276B2 (en) 2010-05-12 2015-09-16 ジ・アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・ザ・ユニバーシティ・オブ・アリゾナThe Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing metal magnetic powder
JP5577851B2 (en) * 2010-05-28 2014-08-27 セイコーエプソン株式会社 Pretreatment liquid, printing method and printed matter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816001A (en) * 1981-07-17 1983-01-29 Fuji Photo Film Co Ltd Production of ferromagnetic powder consisting essentially of iron
JPH0643601B2 (en) * 1985-06-12 1994-06-08 戸田工業株式会社 Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPH06279803A (en) * 1993-03-29 1994-10-04 Kanto Denka Kogyo Co Ltd Metallic powder for magnetic recording and production thereof
JP4358016B2 (en) * 2004-03-31 2009-11-04 明久 井上 Iron-based metallic glass alloy
JP2006291257A (en) * 2005-04-07 2006-10-26 Sumitomo Metal Mining Co Ltd Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP4758858B2 (en) * 2006-03-28 2011-08-31 Dowaエレクトロニクス株式会社 Metallic magnetic powder for magnetic recording medium and method for producing the same

Also Published As

Publication number Publication date
JP2009084600A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4758858B2 (en) Metallic magnetic powder for magnetic recording medium and method for producing the same
JP4534059B2 (en) Iron nitride magnetic powder and method for producing the same
EP2320435A1 (en) Metallic magnetic powder for magnetic recording and process for producing the metallic magnetic powder
US20140356642A1 (en) Metallic magnetic powder and manufacturing method of the same, magnetic painting, magnetic powder for magnetic therapy, and magnetic recording medium
JP5905205B2 (en) Metallic magnetic powder and method for producing the same
JP5280661B2 (en) Method for producing metal magnetic powder
JP5090546B2 (en) Metallic magnetic powder for magnetic recording media
JP5189017B2 (en) Metallic magnetic powder and method for producing the same
EP2555194A1 (en) Metallic magnetic powder, process for producing same, magnetic coating composition, and magnetic recording medium
US8852314B2 (en) Method of producing magnetic powder for magnetic recording medium
JP5418754B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP4758936B2 (en) Metallic magnetic powder for magnetic recording and method for producing the same
JP2006190842A (en) Magnetic metal powder and magnetic recording medium using the same
JP4677734B2 (en) Magnetic powder for magnetic recording media
EP1770722B1 (en) Magnetic powder for magnetic recording medium
JP5228212B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
JP5447767B2 (en) Method for producing ferromagnetic metal particle powder
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP2010218640A (en) Method for producing metal magnetic powder
JP5391415B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
CN1932981B (en) Magnetic powder for magnetic recording medium
JP5700191B2 (en) Method for producing ferromagnetic metal particle powder, magnetic recording medium
JP5082045B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH1027705A (en) Iron oxide magnetic powder and magnetic recording medium formed thereof
JPH0448602A (en) Manufacture of metallic magnetic powder for magnetic recording

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees