JP4677734B2 - Magnetic powder for magnetic recording media - Google Patents

Magnetic powder for magnetic recording media Download PDF

Info

Publication number
JP4677734B2
JP4677734B2 JP2004122504A JP2004122504A JP4677734B2 JP 4677734 B2 JP4677734 B2 JP 4677734B2 JP 2004122504 A JP2004122504 A JP 2004122504A JP 2004122504 A JP2004122504 A JP 2004122504A JP 4677734 B2 JP4677734 B2 JP 4677734B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
particles
magnetic powder
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004122504A
Other languages
Japanese (ja)
Other versions
JP2005310856A (en
JP2005310856A5 (en
Inventor
慎一 紺野
健一 井上
俊彦 上山
憲司 正田
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2004122504A priority Critical patent/JP4677734B2/en
Publication of JP2005310856A publication Critical patent/JP2005310856A/en
Publication of JP2005310856A5 publication Critical patent/JP2005310856A5/ja
Application granted granted Critical
Publication of JP4677734B2 publication Critical patent/JP4677734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は磁気記録媒体用磁性粉末に係り,とくに重層塗布型磁気記録媒体の上層記録
層を構成するのに適する磁気記録用磁性粉末に関する。
The present invention relates to a magnetic powder for a magnetic recording medium, and more particularly to a magnetic powder for magnetic recording suitable for constituting an upper recording layer of a multilayer coating type magnetic recording medium.

家庭用AV機器用テープや,データバックアップ用ストレージテープと言った磁気記録媒体は,高密度記録化と高画質化を目的として電磁変換特性の向上が試みられている。従来から汎用の塗布型磁気記録媒体では,高密度記録化には,できるだけ粒子径の小さな磁性粉末を使用することが望ましく,このため,昨今では日進月歩のペースで粒子サイズの
低減が図られてきているのが実状である。
Magnetic recording media such as household AV equipment tapes and data backup storage tapes have been attempted to improve electromagnetic conversion characteristics for the purpose of high density recording and high image quality. Conventionally, in general-purpose coated magnetic recording media, it is desirable to use magnetic powder with as small a particle diameter as possible for high density recording. For this reason, the particle size has been reduced at an ever-increasing pace. The reality is.

一般に,金属磁性粉末の作成手順としては各種文献等に例示されているとおり,第一鉄塩水溶液と炭酸もしくは水酸化アルカリ,あるいはそれらの併用により炭酸鉄もしくは水酸化鉄を水中で生成させ,そうした前駆体に対して空気等の酸化ガスを通気することによって,オキシ水酸化鉄を生成させ,得られた針状のオキシ水酸化鉄を原料として脱水・還
元操作を経て金属磁性微粒子いわゆるメタル粉を生成させるのが通常である。
In general, as illustrated in various literatures as a procedure for preparing metal magnetic powder, ferrous salt aqueous solution and carbonic acid or alkali hydroxide, or combination thereof, produce iron carbonate or iron hydroxide in water. By passing an oxidizing gas, such as air, through the precursor, iron oxyhydroxide is produced, and the obtained needle-shaped iron oxyhydroxide is used as a raw material to undergo dehydration and reduction operations. Usually it is generated.

ところが,粒子径が小さくなるに伴って金属磁性粉末の表面活性が非常に高くなり,ハンドリング雰囲気中に酸素の存在がある場合,急激に酸化が進んでしまい,磁気特性の著
しい低下がもたらされてしまうことが知られている。
However, as the particle size decreases, the surface activity of the magnetic metal powder becomes very high, and if oxygen is present in the handling atmosphere, the oxidation proceeds rapidly, resulting in a significant decrease in magnetic properties. It is known that

このメタル粉の耐酸化安定性すなわち耐候性の向上に関しては磁気記録媒体自体の保存安定性にも直結する問題でもあるので,精力的に多角的な検討が行われてきた。例えば,TG/DTAを使用した発火温度に着目し,その値を規定することで耐酸化性の向上させたもの(特許文献1),酸化雰囲気の相違に変化に着目して高温酸化安定性を検討したもの(特許文献2),酸化反応前後のX線回折強度に着目して組成を検討したもの(特許文献3および4),酸化皮膜の組成を検討したもの(特許文献5) ,表面に耐酸化性を付与する物質で被覆処理を検討したもの(特許文献6) ,酸化皮膜の厚さを適正化したもの(
特許文献7) 等がある。
特開2003-59707号公報 特開2002-367142 号公報 特開2001-313207 号公報 特開2004-13975号公報 特開2001-237115 号公報 特開平5-144618号公報 特開2003-119503 号公報
The improvement of the oxidation resistance, that is, the weather resistance of the metal powder is also a problem directly related to the storage stability of the magnetic recording medium itself. For example, focusing on the ignition temperature using TG / DTA and improving its oxidation resistance by defining the value (Patent Document 1), focusing on changes in the oxidizing atmosphere, high temperature oxidation stability Examined (Patent Document 2), studied composition by focusing on X-ray diffraction intensity before and after oxidation reaction (Patent Documents 3 and 4), studied oxide film composition (Patent Document 5), surface Investigation of coating treatment with a substance that imparts oxidation resistance (Patent Document 6), optimized thickness of oxide film (
Patent Document 7) and the like.
Japanese Patent Laid-Open No. 2003-59707 JP 2002-367142 A JP 2001-313207 A Japanese Patent Laid-Open No. 2004-13975 JP 2001-237115 A Japanese Patent Laid-Open No. 5-144618 JP 2003-119503 A

メタル粉の微粒子化と耐酸化性の関連について,本願発明者らの検討によれば,ただTG/DTAの結果や発火温度を検討するだけでは,耐酸化安定性について議論することは難しいことが分かってきた。すなわち,発火温度が高くとも耐酸化性が必ずしも良好でない場合もある。また,酸化膜厚に関しては酸化時間を変えることなどで調整が可能であるが,膜厚を厚くすれば,磁性を有するコアの体積が小さくなってしまい,結果として磁気特性の低下が起きるという問題がある。酸化皮膜の組成を変更するためには異種金属の添加などが必要となるが,異種金属の添加については,磁性粉の耐酸化性には有効に働くが,媒体化した際に,媒体特性を劣化させることや,場合によっては作成時に発生する廃液の問題が伴い,既存の浄化設備では足らず,新規投資を必要とするなどの点で負担増とな
ることがある。
Regarding the relationship between metal powder micronization and oxidation resistance, it is difficult to discuss oxidation resistance stability simply by examining the results of TG / DTA and ignition temperature. I understand. In other words, even if the ignition temperature is high, the oxidation resistance may not always be good. In addition, the oxide film thickness can be adjusted by changing the oxidation time. However, if the film thickness is increased, the volume of the magnetic core decreases, resulting in a decrease in magnetic properties. There is. In order to change the composition of the oxide film, it is necessary to add dissimilar metals. However, the addition of dissimilar metals is effective for the oxidation resistance of the magnetic powder, but when it is made into a medium, the characteristics of the medium are reduced. There is a problem of waste liquid that occurs at the time of preparation due to deterioration, and it may increase the burden because it is not sufficient with existing purification equipment and requires new investment.

従って本発明の課題は,耐酸化性と磁気特性を両立しかつ経済的に見ても有利な磁気記録媒体用金属磁性粉末を得ること,またそれにより信頼性を向上させた磁気記録媒体を提
供することにある。
Accordingly, an object of the present invention is to provide a metal magnetic powder for a magnetic recording medium that has both oxidation resistance and magnetic properties and is advantageous from an economical viewpoint, and also provides a magnetic recording medium with improved reliability. There is to do.

本発明によれば,そうした技術的課題は,Feを主体とする針状粒子からなる磁気記録媒体用磁性粉末において,該粉末をTG測定に供したときに低温側酸化開始点と高温側酸化開始点の少なくとも2段の酸化開始点を示す磁気記録媒体用磁性粉末によって解決できる。ここで,TG測定は,試料粉末10mgを大気雰囲気下において昇温速度10℃/分
で昇温してその重量変化を測定する。
According to the present invention, such a technical problem is that, in a magnetic powder for magnetic recording media composed of needle-like particles mainly composed of Fe, when the powder is subjected to TG measurement, a low-temperature side oxidation start point and a high-temperature side oxidation start point. This can be solved by a magnetic powder for magnetic recording media showing at least two stages of oxidation starting points. Here, in the TG measurement, 10 mg of the sample powder is heated at a heating rate of 10 ° C./min in the air atmosphere, and the weight change is measured.

この磁性粉末は低温側酸化開始点〔みかけの発火点(IT(i) )という〕と高温側酸化
開始点〔実質発火点(IT(ii))という〕との間で,
IT(ii)−IT(i) >10℃ ・・(1) 式
の関係を満たす。また,該TG測定において,測定開始から300℃に至るまでの重量増加量が10wt%以上を示す。さらに,この磁性粉末は,温度60℃,湿度90%RHの恒温恒湿下に一週間保持したときの飽和磁化量の低下量Δσs が15%未満である。ただし
,該恒温恒湿に保持する前の飽和磁化量をσs(i),一週間保持後の飽和磁化量をσs(ii)
としたとき,Δσs =100×〔σs(i)−σs(ii) 〕/σs(i)で表される。
This magnetic powder is between the low temperature side oxidation start point (referred to as the apparent ignition point (IT (i))) and the high temperature side oxidation start point (referred to as the real ignition point (IT (ii))).
IT (ii) −IT (i)> 10 ° C. ·· Satisfies the relationship of equation (1). In the TG measurement, the weight increase from the start of measurement to 300 ° C. is 10 wt% or more. Further, this magnetic powder has a decrease in saturation magnetization amount Δσs of less than 15% when held for one week at a constant temperature and humidity of 60 ° C. and 90% humidity. However, the saturation magnetization before holding at the constant temperature and humidity is σs (i), and the saturation magnetization after holding for one week is σs (ii)
.DELTA..sigma.s = 100.times. [. Sigma.s (i)-. Sigma.s (ii)] /. Sigma.s (i).

この磁性粉末は,好ましくは該粒子中にCoをCo/Fe比で50at.%以下の範囲で含
有し,そのCoの含有形態が粒子のコア部より表層部の方が高い濃度を有する。
The magnetic powder preferably contains Co in the particles in a Co / Fe ratio of 50 at.% Or less, and the Co content is higher in the surface layer than in the core of the particle.

Feを主体とするメタル粉において,Coの添加量を適正にすると耐酸化性と磁気特性の両立を図ることができる。特に平均長軸長が0.1μm未満の該メタル粉において,CoをCo/Fe比で50at.%以下の範囲で添加し,且つそのCoの含有形態として,コア部より表層部の方が高い濃度を有するように含有していると,良好な磁気特性を維持しな
がら,顕著に耐酸化性を向上させることができることがわかった。
In the metal powder mainly composed of Fe, if the addition amount of Co is made appropriate, both oxidation resistance and magnetic properties can be achieved. In particular, in the metal powder having an average major axis length of less than 0.1 μm, Co is added in a Co / Fe ratio of 50 at.% Or less, and the Co content is higher in the surface layer than in the core. It has been found that the oxidation resistance can be remarkably improved while maintaining good magnetic properties when contained so as to have a concentration.

コア部より表層部の方が高いCo濃度を有するとは,Coが全体の含有割合と比較して粒子の表面近くに比較的多く存在することを意味しており,具体的には,粒子表層のCo含有量の測定値が,粒子内部におけるCoの組成値として算出される値よりも大きいこと(前者の表層Co量/後者の全体Co含有量の比が1より大きいこと)を意味している。表層におけるCo量はESCAによって測定することができ,また粒子の組成におけるCo量の値はICPもしくは蛍光X線等を用いて測定できる。このメタル粉は,その試料粉末10mgを大気雰囲気下において昇温速度10℃/分で昇温してその重量変化を測定するTG測定に供したときに,低温側酸化開始点と高温側酸化開始点の少なくとも2段の酸
化開始点を示す。すなわち,TG測定における重量増加曲線が二段階の傾きを有する。
The fact that the surface layer portion has a higher Co concentration than the core portion means that Co is present in a relatively large amount near the surface of the particle as compared with the total content, specifically, the particle surface layer. This means that the measured value of the Co content in the particles is larger than the value calculated as the Co composition value inside the particles (the ratio of the former Co layer content / the latter total Co content is greater than 1). Yes. The amount of Co in the surface layer can be measured by ESCA, and the value of the amount of Co in the composition of the particles can be measured using ICP or fluorescent X-rays. When this metal powder was subjected to a TG measurement in which 10 mg of the sample powder was heated in an air atmosphere at a heating rate of 10 ° C./min and the weight change was measured, the low-temperature side oxidation start point and the high-temperature side oxidation start point The oxidation starting point of at least two stages of points is shown. That is, the weight increase curve in the TG measurement has a two-stage slope.

このように,コバルトを表面近くに比較的多く存在させることにより,酸化の進行を抑制することが出来る。また,こうすることで,安定化時の温度レベルを抑制しても実質的に酸化レベルを上げることができ,表面に強固で厚い酸化皮膜を形成するときと同等もしくはそれ以上の耐酸化性が得られることがわかった。このため,発火温度を上昇させるべく磁気特性を犠牲にして耐酸化安定性を得ていた従来技術に比べると酸化膜の生成を抑制することが出来るので,磁気特性が維持された磁性粉を得ることが出来る。 Thus, cobalt by relatively abundant near the surface, it is possible to suppress the progress of oxidation. Moreover, doing so, even to suppress the temperature level at the time of stabilization can be substantially increased resistance to oxidation levels, when forming a strong, thick oxide film on the surface equal to or higher oxidation resistance Was found to be obtained. For this reason, it is possible to suppress the formation of an oxide film compared to the conventional technology that has obtained oxidation resistance stability at the expense of magnetic characteristics in order to increase the ignition temperature, so that a magnetic powder maintaining magnetic characteristics can be obtained. I can do it.

以下に本発明で特定する事項について説明する。
本発明はFeを主体とする針状のメタル粉において,表層部分に他の金属成分を比較的多く含むことを特徴とする。とくにCoについて説明すると,耐酸化性と磁気特性の向上を図るためにCoをFeに対する原子百分率で,すなわちFe/Co比で50at.%以下,好ましくは2〜45at.%含有させる。Co含有量が2at.%未満ではこの目的が達成できず,50at.%を超えるとその効果が飽和するので,この範囲のCo量とするが,そのCoの粒子中の含有形態を,コア部より表層部の方が高濃度でCoが存在するようにした点に本
発明の一つの特徴がある。
The matters specified by the present invention will be described below.
The present invention is characterized in that the needle-shaped metal powder mainly composed of Fe contains a relatively large amount of other metal components in the surface layer portion. In particular, for Co, in order to improve oxidation resistance and magnetic characteristics, Co is contained in an atomic percentage with respect to Fe, that is, Fe / Co ratio of 50 at.% Or less, preferably 2 to 45 at.%. If the Co content is less than 2 at.%, This purpose cannot be achieved. If the Co content exceeds 50 at.%, The effect is saturated, so the Co content is within this range. One feature of the present invention is that Co is present at a higher concentration in the surface layer portion.

このようにCoの含有形態を制御することによって,このメタル粉をTG測定に供すると,酸化開始点が少なくとも二段に表れるようになり,このことが微粒子であってもその
耐酸化性を非常に向上させ得ることがわかった。
By controlling the Co-containing form in this way, when this metal powder is subjected to TG measurement, the oxidation start point appears in at least two stages, and even if this is a fine particle, its oxidation resistance is very high. It was found that it can be improved.

本発明にしたがう磁性粉末の例として,オキシ水酸化鉄から針状の鉄合金磁性粉末を得
る例を説明する。この場合には,先駆物質としてオキシ水酸化鉄をまず製造する。
As an example of the magnetic powder according to the present invention, an example of obtaining a needle-like iron alloy magnetic powder from iron oxyhydroxide will be described. In this case, iron oxyhydroxide is first produced as a precursor.

オキシ水酸化鉄の製法としては,炭酸塩水溶液に第一鉄塩を添加して炭酸鉄を生成させ(そのさい,苛性アルカリを併用することも出来る),この液に酸素含有ガスを通気して酸化反応を起こさせてオキシ水酸化鉄とする方法,第一鉄塩と苛性アルカリの反応によりオキシ水酸化鉄とする方法,炭酸鉄の懸濁液に酸化剤を添加してオキシ水酸化鉄とする方法などで作成できる。これらのうちでも,苛性アルカリを用いた場合には,針状比の高い針状のオキシ水酸化鉄が生成し,炭酸鉄を経由する場合には,両端がとがった円柱形状(紡錘状)の粒子が得られやすく,場合によっては,条件を適宜調整することにより,平針
状の粒子を得ることもできる。
To make iron oxyhydroxide, ferrous salt is added to an aqueous carbonate solution to produce iron carbonate (in this case, caustic can be used in combination), and oxygen-containing gas is passed through this solution. A method of producing iron oxyhydroxide by causing an oxidation reaction, a method of producing iron oxyhydroxide by reacting ferrous salt and caustic, and adding an oxidizing agent to a suspension of iron carbonate to produce iron oxyhydroxide Can be created by the method of Among these, when caustic is used, acicular iron oxyhydroxide with a high acicular ratio is formed, and when passing through iron carbonate, a cylindrical shape (spindle shape) with both ends sharpened. Particles are easily obtained, and in some cases, flat needle-like particles can be obtained by appropriately adjusting the conditions.

粒子表面にコバルトを多く含んだ磁性鉄合金粒子を得るには,上記のオキシ水酸化物作成段階の中間乃至最終酸化段階での液中にコバルトを添加もしくは追添する方法が好適である。コバルトの添加速度や添加形態(錯体などを形成させる) を変えることによっても粒子表層でのコバルト濃度を高めることができる。別法として,生成したオキシ水酸化鉄に対してコバルトを後に被着する方法でも特に問題はない。そのさい,元の粒子の核にあ
たる部分にもコバルトを含有させておいてもよい。
In order to obtain magnetic iron alloy particles containing a large amount of cobalt on the particle surface, a method of adding or adding cobalt to the liquid in the middle or final oxidation stage of the oxyhydroxide preparation stage is preferable. The cobalt concentration in the particle surface layer can also be increased by changing the addition rate of cobalt and the addition form (forming a complex and the like). As an alternative method, there is no particular problem even if cobalt is subsequently applied to the produced iron oxyhydroxide. At that time, cobalt may also be contained in the portion corresponding to the core of the original particle.

粒子全体へのCo含有量の目安としては,Feに対する原子百分率(at.%)で,すなわちCo/Fe比で50at.%以下,好ましくは2〜45at.%,より好ましくは10〜40at.%とするのが適当である。この範囲でCoを含有する条件で,粒子表面の方がコア部より多量のCoが存在するように調整することにより,飽和磁化ならびに保磁力,さらには耐
酸化性をバランスよく向上させることができる。
As a measure of the Co content in the whole particle, atomic percentage (at.%) With respect to Fe, that is, Co / Fe ratio is 50 at.% Or less, preferably 2-45 at.%, More preferably 10-40 at.%. Is appropriate. Saturation magnetization, coercive force, and oxidation resistance can be improved in a well-balanced manner by adjusting the particle surface so that a larger amount of Co is present on the particle surface than in the core under conditions containing Co in this range. .

Coに加えて,本発明に従う磁性粒子はAlを含有することができる。アルミニウムの添加により,磁性粉の耐摩耗性の改善や焼結防止効果が得られ,バインダーに対する分散性を改善することができる。このためのAl含有量としては,Al/(Fe+Co)比で50at.%以下,好ましくは1〜40at.%,より好ましくは2〜30at.%である。Al含有量が過剰になると,粒子の硬さは高くなるものの,粒子における非磁性成分の割合が増加するため,磁気特性とりわけ飽和磁化の低下が見られるので,過剰のAlの添加は好ましくない。アルミニウムの添加時期についてはオキシ水酸化鉄の形成初期の段階で行わないのがよい。アルミニウムを初期に大量添加した場合には針状性の維持が出来なくなる。このため,好ましくはオキシ水酸化鉄の成長段階から酸化終了段階にかけてAlを添加する
のがよい。
In addition to Co, the magnetic particles according to the invention can contain Al. By adding aluminum, it is possible to improve the wear resistance of the magnetic powder and to prevent sintering, and to improve the dispersibility in the binder. For this purpose, the Al content is 50 at.% Or less, preferably 1 to 40 at.%, More preferably 2 to 30 at.% In terms of Al / (Fe + Co) ratio. When the Al content is excessive, the hardness of the particles is increased, but the proportion of nonmagnetic components in the particles is increased, so that the magnetic properties, particularly the saturation magnetization, is decreased. Therefore, the addition of excessive Al is not preferable. It is better not to add aluminum at the initial stage of formation of iron oxyhydroxide. If a large amount of aluminum is added in the initial stage, the acicularity cannot be maintained. For this reason, Al is preferably added from the growth stage to the oxidation end stage of the iron oxyhydroxide.

そのほか,製造上不可避に含まれる成分のほか,磁気特性もしくはバインダーへの分散性改善等を目的とした成分元素が含まれていてもよい。例えば,Si,Zn,Cu,Ti,Niなどが適量含まれていてもよい。しかしこれらの元素は,大量に添加した場合には
磁気特性などのバランスが崩れるので粒子の要求特性に応じた量の添加が必要である。
In addition, in addition to components inevitably included in production, component elements for the purpose of improving magnetic properties or dispersibility in a binder may be included. For example, an appropriate amount of Si, Zn, Cu, Ti, Ni or the like may be included. However, when these elements are added in large quantities, the balance of magnetic properties and the like is lost, so it is necessary to add them in an amount corresponding to the required characteristics of the particles.

希土類元素(Yを含む)については,オキシ水酸化鉄の脱水・加熱還元時の焼結防止効果があるほか,粒度分布改善にも効果を示す。このために添加するのが好ましいが,添加する場合には,Yを含む希土類元素をRで表示すると,R/(Fe+Co)比で25at.%以下,好ましくは1〜20at.%,より好ましくは2〜15at.%とするのがよい。Rの過剰の添加は,Alの場合と同様に,飽和磁化の低下が著しくなるので好ましくない。適切な希土類元素としてはY,Gd,Yb,La,Sc(スカンジウム)を例示出来る。本発明者らの経験では原子量の大きな希土類であるほど低σs 領域では好適な磁気特性を示すことがわかった。Rの添加時期としてはオキシ水酸化鉄の成長段階で添加して固溶させても
よいし,成長完了後に添加して被着してもよい。
Rare earth elements (including Y) have the effect of preventing sintering during the dehydration and heat reduction of iron oxyhydroxide, as well as improving the particle size distribution. For this purpose, it is preferable to add, but when it is added, when the rare earth element containing Y is represented by R, the R / (Fe + Co) ratio is 25 at.% Or less, preferably 1 to 20 at.%, More preferably It should be 2-15 at.%. Excessive addition of R is not preferable because the saturation magnetization is remarkably lowered as in the case of Al. Examples of suitable rare earth elements include Y, Gd, Yb, La, and Sc (scandium). From the experience of the present inventors, it has been found that a rare earth having a larger atomic weight shows more favorable magnetic properties in a low σs region. R may be added during the growth stage of iron oxyhydroxide to be dissolved, or may be added and deposited after the growth is completed.

少なくともコバルトを含有したオキシ水酸化鉄を得たあとは,そのオキシ水酸化鉄スラリーをろ過,洗浄し,均一に熱がかかるような処理を施した後に,これを80〜300℃,好ましくは120〜250℃,より好ましくは150〜220℃の条件にて6時間以上不活性ガスもしくは空気中で乾燥させるのがよい。これによって,オキシ水酸化鉄の乾燥固形物が得られるが,次いで,これを250〜700℃の温度条件でコバルト含有オキシ水酸化鉄を窒素中で加熱脱水し,α−Fe23 等の酸化鉄へと変化させる。この加熱脱
水時には雰囲気中に水蒸気,酸素,炭酸ガスなどが含まれることを妨げない。
After obtaining iron oxyhydroxide containing at least cobalt, the iron oxyhydroxide slurry is filtered and washed, and subjected to a treatment that uniformly heats, and then this is treated at 80 to 300 ° C., preferably 120 ° C. It is good to dry in inert gas or air for 6 hours or more on the conditions of -250 degreeC, More preferably, 150-220 degreeC. This gives a dry solid of iron oxyhydroxide, which is then dehydrated by heating the cobalt-containing iron oxyhydroxide in nitrogen under a temperature condition of 250 to 700 ° C. to obtain α-Fe 2 O 3 or the like. Change to iron oxide. During this heating and dehydration, it does not prevent the atmosphere from containing water vapor, oxygen, carbon dioxide, and the like.

次いで,得られた鉄系酸化物を気相還元により還元する。還元性ガスとしては一酸化炭素,アセチレン,水素などが例示出来る。この還元は,一段目の還元と二段目の還元の温度を変化させる多段還元を用いて行うことも出来る。多段還元とは初期に還元を比較的低温を維持しながら行って,ついで昇温工程を経て高温維持しながら還元を行うものである
。この還元についても雰囲気中に水蒸気や炭酸ガスが存在することを妨げない。
Next, the obtained iron-based oxide is reduced by gas phase reduction. Examples of the reducing gas include carbon monoxide, acetylene, and hydrogen. This reduction can also be performed using multistage reduction in which the temperature of the first stage reduction and the second stage reduction is changed. In multistage reduction, reduction is performed while maintaining a relatively low temperature in the initial stage, and then the reduction is performed while maintaining a high temperature through a temperature raising step. This reduction also does not prevent the presence of water vapor or carbon dioxide in the atmosphere.

還元後に得られる合金粉末は非常に活性が高いので,そのまま大気中でハンドリングすると発火する恐れがある。そこで,徐酸化工程により粒子表面に緻密な酸化物層を形成させ,こうした磁性粒子を大気中でのハンドリングに耐えるようにすることが望ましい。表面に緻密な膜を形成する為には,前記の還元処理のあと50〜200℃の任意の温度まで冷却し,弱酸化性ガス例えば不活性ガス中に適量の酸素や含有させたガスや空気等を導入して,安定な酸化物膜を形成することが望ましい。この際には炭酸ガス,水蒸気などが存
在してもかまわない。
The alloy powder obtained after reduction is very active and may ignite if handled in the atmosphere. Therefore, it is desirable to form a dense oxide layer on the particle surface by a slow oxidation process so that these magnetic particles can withstand handling in the atmosphere. In order to form a dense film on the surface, it is cooled to an arbitrary temperature of 50 to 200 ° C. after the reduction treatment, and an appropriate amount of oxygen, gas or air contained in a weak oxidizing gas such as an inert gas. It is desirable to form a stable oxide film by introducing the above. At this time, carbon dioxide gas, water vapor, etc. may be present.

このようにして得られた磁性粉末は,これをTG測定に供したときに,具体的には,試料10mgを分取し大気雰囲気下で10℃/minの昇温速度にて昇温して重量増加のプロファイルを測定するTG測定に供したときに,試料が完全に酸化されるまでにその曲線が特徴のある変曲点を有するようになり,この場合に,磁気特性と耐酸化性の両立した磁性粉末となり,この粉末を用いると保存安定性に優れた塗布型磁気記録媒体を得ることができ
る。
When the magnetic powder thus obtained was subjected to TG measurement, specifically, 10 mg of a sample was sampled and heated at a heating rate of 10 ° C./min in an air atmosphere. When subjected to a TG measurement that measures the profile of weight increase, the curve has a characteristic inflection point until the sample is completely oxidized, in which case the magnetic properties and oxidation resistance A compatible magnetic powder is obtained, and when this powder is used, a coating type magnetic recording medium excellent in storage stability can be obtained.

粒子中にCoを含有する場合について言えば,コバルトの含有形態が粒子表層部に濃化していることに起因して該曲線が二段階以上の変曲点を有する場合に,磁気特性と耐酸化性の両立を図ることができることがわかった。粒子表面部のコバルトの含有量はESCAを用いて測定することができ,また,粒子全体のコバルトの含有量はICPもしくは蛍光X線を用いて測定できる。すなわち(ESCAにて測定した表層Co量)/(ICPもしくは蛍光X線で測定した内部Co量)の比が1より大きな場合に,この比≦1のときよりも,耐酸化性を向上させることができる。この比が1のときは,粒子中にコバルトが均一に分布していることを意味し,この場合のTG曲線は一段階のみ変曲点を有するようになり,本発明に従う少なくとも2段階の変曲点のものよりも,耐酸化性は劣ることになる。また該比が1よりも小さい場合は,粒子表面に酸素が多く存在した状態,すなわち酸化膜が厚く存在している状態にあり,この場合には耐酸化性は向上するものの磁気特性として
は良好なものが得難くなる。
Speaking of the case where Co is contained in the particles, the magnetic properties and oxidation resistance are obtained when the curve has two or more inflection points due to the concentration of cobalt in the particle surface layer. It was found that both sexes can be achieved. The cobalt content in the particle surface can be measured using ESCA, and the cobalt content in the entire particle can be measured using ICP or fluorescent X-rays. That is, when the ratio of (surface layer Co amount measured by ESCA) / (internal Co amount measured by ICP or fluorescent X-ray) is larger than 1, the oxidation resistance should be improved as compared with the ratio ≦ 1. Can do. When this ratio is 1, it means that cobalt is uniformly distributed in the particles. In this case, the TG curve has an inflection point in only one step, and the change in at least two steps according to the present invention. The oxidation resistance is inferior to that of the inflection point. When the ratio is less than 1, there is a large amount of oxygen on the particle surface, that is, a thick oxide film. In this case, although the oxidation resistance is improved, the magnetic properties are good. It becomes difficult to get something.

本発明の磁性粉末において,該比が1より大きいことは,該粉末製造の最終還元のあとの徐酸化工程において表面を酸化させて酸化膜を形成したあとでも,該比が1より大きいことを意味している。該酸化膜を有する状態では表層に酸素が存在しているので,仮にコバルトが粒子中に均一に分布していれば,表層でのコバルト量は相対的に減少するので,該比は1より小さくなる。本発明の磁性粉末にあっては,この表層の酸素を加味しても十
分に該比が1より大きくなっている。
In the magnetic powder of the present invention, that the ratio is greater than 1 means that the ratio is greater than 1 even after the surface is oxidized to form an oxide film in the gradual oxidation step after the final reduction of the powder production. I mean. Since oxygen is present in the surface layer in the state having the oxide film, if the cobalt is uniformly distributed in the particles, the amount of cobalt in the surface layer is relatively reduced, so the ratio is smaller than 1. Become. In the magnetic powder of the present invention, the ratio is sufficiently larger than 1 even when the surface oxygen is added.

本発明に従うFeを主体とする針状粒子からなる磁気記録媒体用磁性粉末では,前記のように該粒子中にCoをCo/Fe比で50at.%以下の範囲で含有すること,Fe中へのCoの含有形態が粒子のコア部より表層部の方が高い濃度を有すること,該粉末をTG測定に供したときに低温側酸化開始点と高温側酸化開始点の少なくとも2段の酸化開始点を示すこと,に特徴を有する。その際,低温側酸化開始点〔みかけ発火点(IT(i) )〕と
高温側酸化開始点〔実質発火点(IT(ii))〕との間で,
IT(ii)−IT(i) ≧10℃,好ましくは≧15℃,より好ましくは≧20℃の関係を満たす場合に,優れた磁気特性を維持しながら十分な耐酸化性を有することができる。両酸化開始点の差が10℃未満の場合には,耐酸化層の形成が不十分な状態にあり,磁気特性としては優れるものの耐酸化は不十分なものとなる。図1にTG測定における〔みかけ発
火点IT(i) 〕と〔実質発火点IT(ii)〕との代表例を図解的に示した。
In the magnetic powder for magnetic recording media comprising needle-like particles mainly composed of Fe according to the present invention, Co is contained in the particles in a Co / Fe ratio of 50 at. The Co content of the surface layer has a higher concentration than the core part of the particle, and when the powder is subjected to TG measurement, at least two stages of oxidation start of the low temperature side oxidation start point and the high temperature side oxidation start point It is characterized by showing points. At that time, between the low temperature side oxidation start point [apparent ignition point (IT (i))] and the high temperature side oxidation start point [real ignition point (IT (ii))],
IT (ii) -IT (i) ≧ 10 ° C., preferably ≧ 15 ° C., more preferably ≧ 20 ° C., sufficient oxidation resistance can be maintained while maintaining excellent magnetic properties . When the difference between the two oxidation start points is less than 10 ° C., the formation of the oxidation resistant layer is insufficient, and the oxidation resistance is insufficient although the magnetic characteristics are excellent. FIG. 1 schematically shows representative examples of [apparent ignition point IT (i)] and [substantial ignition point IT (ii)] in TG measurement.

TG測定時において,酸化開始より300℃までに見られる主に酸素由来の重量増加は,全体で10wt%以上,好ましくは15wt%以上であるのがよい。全体の重量増加が10wt%未満の場合にはもともとの酸素含有量が高いこと,すなわち粒子の表面に既に厚い酸化膜の層が形成されていることを表しており,この場合には磁性粒子コア部分の体積が相対的に低下しているので,十分な磁気特性は得られない。なお,本発明に従う磁性粉末の平均長軸長は10〜200nm,好ましくは15〜150nm,さらに好ましくは20〜100nmである。10nmより小さい平均長軸長であれば粒子形状として針状のものが得難くなって形状磁気異方性が発現し難くなり,他方,平均長軸長が200nmより大き
いと高密度記録には適さない粉体となるので好ましくない。
At the time of TG measurement, the weight increase mainly derived from oxygen seen from the start of oxidation to 300 ° C. should be 10 wt% or more, preferably 15 wt% or more as a whole. When the total weight increase is less than 10 wt%, it means that the original oxygen content is high, that is, a thick oxide layer is already formed on the surface of the particle. Since the volume of the portion is relatively reduced, sufficient magnetic properties cannot be obtained. The average major axis length of the magnetic powder according to the present invention is 10 to 200 nm, preferably 15 to 150 nm, and more preferably 20 to 100 nm. If the average major axis length is less than 10 nm, it is difficult to obtain a needle-like particle shape, and shape magnetic anisotropy is difficult to develop. On the other hand, if the average major axis length is greater than 200 nm, it is suitable for high-density recording. It is not preferable because it becomes a powder.

このような要件を備えた本発明の磁性粉末は,平均長軸長が0.1μm未満の微粒子であっても,温度60℃,湿度90%RHの恒温恒湿下に一週間保持したときの飽和磁化量の低下量Δσs が15%未満,好ましくは10%未満となり,耐候性に優れる。ただし,Δσs =100×〔σs(i)−σs(ii) 〕/σs(i)で表される。σs(i)は恒温恒湿に保持す
る前の飽和磁化量,σs(ii) は一週間保持後の飽和磁化量である。
The magnetic powder of the present invention having such a requirement is a fine powder having an average major axis length of less than 0.1 μm when kept at a constant temperature and humidity of 60 ° C. and a humidity of 90% for one week. The amount of saturation magnetization decrease Δσs is less than 15%, preferably less than 10%, and the weather resistance is excellent. However, Δσs = 100 × [σs (i) −σs (ii)] / σs (i). σs (i) is the saturation magnetization before holding at constant temperature and humidity, and σs (ii) is the saturation magnetization after holding for one week.

以下に実施例を挙げるが,各実施例で採用した各特性値の評価法を先ず説明する。
〔粒子の長軸長及び短軸長〕
平均長軸長並びに短軸長は透過型電子顕微鏡(日本電子株式会社製100CXMark−II型)にて観察された視野を 174,000倍に拡大した写真を使用し,500 個の粒子について測定した平均で示した。測定は粒子の重なりなどの写真の写り方によって境界のはっきりしないもの,写真の端で粒子の端が不正確になっているものに関しては測定を避け,分
散のよい単独粒子のみを選択して計測している。
Examples will be given below. First, the evaluation methods for the characteristic values employed in each example will be described.
[Long axis length and short axis length of particles]
The average major axis length and minor axis length are the average values measured for 500 particles using a photograph of the field of view observed with a transmission electron microscope (100CXMark-II type manufactured by JEOL Ltd.) magnified 174,000 times. Indicated. Measurement should be performed only for single particles with good dispersion, avoiding measurements where the boundary is not clear due to the way the photo is taken, such as particle overlap, or where the edge of the particle is inaccurate at the edge of the photo. is doing.

〔粒子表面の組成分析〕
粒子表面の組成分析にはESCAすなわちX線光電子分光法(XPS)を用いて解析を行った。測定条件としては,アルバック・ファイ株式会社製の5800を使用し,X線源はAl陽極線源150W,分析面積は800μmφ,中和銃を使用,取り出し角は45°に設定し,試料はホルダー上にセッティングした。スキャニング速度は5eV/min, エッチングはSiO2換算で2nm /cycle の割合で行った。そのときの測定範囲は下記のとおりで
ある。
Fe(2p): 740 〜700 (eV)
Co(3s): 810 〜770 (eV)
Al(2p): 88 〜68 (eV)
Y (3d): 172〜152 (eV)
O (1s): 545〜525 (eV)
[Composition analysis of particle surface]
The composition analysis of the particle surface was performed using ESCA, that is, X-ray photoelectron spectroscopy (XPS). As measurement conditions, 5800 manufactured by ULVAC-PHI Co., Ltd. is used, the X-ray source is an Al anode source 150 W, the analysis area is 800 μmφ, a neutralization gun is used, the take-off angle is set to 45 °, and the sample is a holder. Set above. The scanning rate was 5 eV / min, and the etching was performed at a rate of 2 nm / cycle in terms of SiO 2 . The measurement range at that time is as follows.
Fe (2p): 740 to 700 (eV)
Co (3s): 810-770 (eV)
Al (2p): 88-68 (eV)
Y (3d): 172-152 (eV)
O (1s): 545-525 (eV)

〔全体の組成分析〕
粒子全体の組成分析については,Co,AlおよびYの定量は日本ジャーレルアッシュ株式会社製高周波誘導プラズマ発光分析装置(IRIS/AP) (ICP)を用いて,Feの定量は平沼産業株式会社製平沼自動滴定装置(COMTIME-980) を用いて行ない,酸素の定量はLECO Corporation製のNITROGEN/OXYGEN DETERMETER (TC-436型) を用いて行った。これらの定量結果はwt%として与えられるので,Feに対する原子百分率の比(at.%)の算出は一
旦全元素の割合をwt%からat.%に変換したうえで行なった。
[Total composition analysis]
For composition analysis of the whole particle, Co, Al, and Y were quantified using a high frequency induction plasma emission spectrometer (IRIS / AP) (ICP) manufactured by Japan Jarrel Ash Co., and Fe was quantified by Hiranuma Sangyo Co., Ltd. Hiranuma automatic titrator (COMTIME-980) was used, and oxygen was quantified using LEIT Corporation NITROGEN / OXYGEN DETERMETER (TC-436). Since these quantitative results are given as wt%, the ratio of atomic percentage to Fe (at.%) Was calculated once the ratio of all elements was converted from wt% to at.%.

〔粒子表面のCo/Fe存在比〕
粒子にイオンスパッタを施さず測定を行い,それらのピークの結果を用い,エリア分析の手法を使用して,再表層におけるCoおよびFeの存在量について定量分析を行う。その結果から得られた原子量換算の値で得た結果から,表層におけるCo/Feにより存在
量の比(ESCA Co/Feと記す)を得た。
[Co / Fe abundance ratio of particle surface]
The particles are measured without ion sputtering, and the results of those peaks are used to quantitatively analyze the abundance of Co and Fe in the surface layer using the area analysis technique. The abundance ratio (denoted as ESCA Co / Fe) was obtained from Co / Fe in the surface layer from the result obtained from the result obtained in terms of atomic weight.

〔粉体の磁気特性〕
粉体の磁気特性は,東栄工業株式会社製のVSM 装置(VSM-7P)を使用して外部磁場796kA/m(10kOe )で測定した。
[Magnetic properties of powder]
The magnetic properties of the powder were measured with an external magnetic field of 796 kA / m (10 kOe) using a VSM device (VSM-7P) manufactured by Toei Kogyo Co., Ltd.

〔粉体の耐酸化性評価〕
供試粉末を温度60℃・ 相対湿度90%の恒温恒湿条件下に一週間保存した前後の飽
和磁化を測定し,保存前後の飽和磁化との値からΔσs(%)を算出する。
[Evaluation of oxidation resistance of powder]
Measure the saturation magnetization before and after storage of the sample powder under constant temperature and humidity conditions of 60 ° C and 90% relative humidity for one week, and calculate Δσs (%) from the value of saturation magnetization before and after storage.

〔粉体pH〕
粉体pHは JIS-K5101-1991 に準拠した方法にて測定する。具体的には試料5gを硬質三角フラスコに取り,純水100mLを加えて約5分間加熱して煮沸する。煮沸後, 栓を
して常温まで放冷した後, 栓を開いて減量分を, 煮沸により炭酸ガスを除去した純水で,
補填し,値を正確に調整する。そのあと三角フラスコに栓をして1分間振り混ぜてから5
分間静置する。その後,水性懸濁液のpHを JIS-Z8802に従って測定する。
〔比表面積〕
湯浅イオニクス株式会社製の4ソープUSを用いて,BET法により比表面積を算出す
る。
〔結晶子Dx〕
X線回折装置 (理学電気株式会社製のRAD−2C)で得られるFe(110) 面の回折ピークの半価幅からDxを求める。すなわち2θ式からから,D(110)=Kλ/β cosθ(式中Kはシェラー定数=0.9,λは照射X線波長,βH回折ピークの半価幅:ラジアン径
に補正して用いる,θは回折角を表す) に従って求める。
[Powder pH]
The powder pH is measured by a method based on JIS-K5101-1991. Specifically, 5 g of a sample is placed in a hard Erlenmeyer flask, 100 mL of pure water is added, and the mixture is heated for about 5 minutes to boil. After boiling, stopper and let it cool to room temperature, then open the stopper and reduce the weight with pure water from which carbon dioxide has been removed by boiling.
Make up and adjust the value accurately. Then cap the Erlenmeyer flask and shake for 1 minute, then 5
Let stand for a minute. Then measure the pH of the aqueous suspension according to JIS-Z8802.
〔Specific surface area〕
The specific surface area is calculated by the BET method using 4 soap US manufactured by Yuasa Ionics Co., Ltd.
[Crystallite Dx]
Dx is obtained from the half-value width of the diffraction peak of the Fe (110) surface obtained by an X-ray diffractometer (RAD-2C manufactured by Rigaku Corporation). That is, from the 2θ formula, D (110) = Kλ / β cosθ (where K is the Scherrer constant = 0.9, λ is the irradiation X-ray wavelength, and the half-value width of the βH diffraction peak is used by correcting to the radian diameter. θ represents the diffraction angle).

〔テープ評価〕
供試粉末100重量部に対し以下の材料を下記組成となるような割合で配合して遠心ボールミルで1時間分散させて磁性塗料を作製する。得られた磁性塗料をポリエチレンテレフタレートからなるベースフイルム上にアプリケーターを用いて塗布して磁気テープを作製し,その保磁力Hcxを測定し,また,そのヒステリシスループからSFDx値を算出する。磁気テープの磁気特性は前掲のVSM装置を使用し,外部磁場796kA/m(10kOe )で測定した。
強磁性鉄合金粉末 100重量部(表2に記載の各例で得られた粉末)
ポリウレタン樹脂 30重量部(東洋紡株式会社製のUR−8200)
塩化ビニル系樹脂 30重量部(日本ゼオン株式会社製のMR−110)
メチルエチルケトン 190重量部
シクロヘキサノン 80重量部
トルエン 110重量部
ステアリン酸 1重量部
アセチルアセトン 1重量部
アルミナ 3重量部
カーボンブラック 2重量部
[Tape evaluation]
The following materials are blended in a proportion of the following composition with respect to 100 parts by weight of the test powder and dispersed in a centrifugal ball mill for 1 hour to produce a magnetic coating. The obtained magnetic paint is applied on a base film made of polyethylene terephthalate using an applicator to produce a magnetic tape, its coercive force Hcx is measured, and the SFDx value is calculated from its hysteresis loop. The magnetic properties of the magnetic tape were measured using the VSM apparatus described above and an external magnetic field of 796 kA / m (10 kOe).
100 parts by weight of ferromagnetic iron alloy powder (powder obtained in each example shown in Table 2)
30 parts by weight of polyurethane resin (UR-8200 manufactured by Toyobo Co., Ltd.)
30 parts by weight of vinyl chloride resin (MR-110 manufactured by Zeon Corporation)
Methyl ethyl ketone 190 parts by weight Cyclohexanone 80 parts by weight Toluene 110 parts by weight Stearic acid 1 part by weight Acetylacetone 1 part by weight Alumina 3 parts by weight Carbon black 2 parts by weight

〔実施例1〕
核粒子として用いるオキシ水酸化鉄ケーキを準備した。このオキシ水酸化鉄ケーキは,鉄とコバルトを含む水溶液に,炭酸ナトリウムを添加して炭酸鉄を生成させたうえ,酸素含有ガス(空気)の通気により酸化し且つ熟成を経て形成されたものである。ケーキ内の
オキシ水酸化鉄粒子粉末は次の特性を有している。
平均長軸長=0.087μm,
軸比=8.5,
BET法による比表面積=129.7m2/ g,
Co含有量=Co/Feの原子百分比で21.4at.%,
〔ESCA Co/Fe〕/〔ICP Co/Fe 〕=表層Co/コアCo=0.95
[Example 1]
An iron oxyhydroxide cake used as a core particle was prepared. This iron oxyhydroxide cake is formed by adding sodium carbonate to an aqueous solution containing iron and cobalt to produce iron carbonate, and then oxidizing and aging by aeration of oxygen-containing gas (air). is there. The iron oxyhydroxide particle powder in the cake has the following characteristics.
Average long axis length = 0.087 μm,
Axial ratio = 8.5
Specific surface area by BET method = 129.7 m 2 / g,
Co content = 21.4 at.% In atomic percent of Co / Fe,
[ESCA Co / Fe] / [ICP Co / Fe] = surface layer Co / core Co = 0.95

前記のオキシ水酸化鉄ケーキをミキサー(特殊機化工業株式会社製のホモミサー)を用いて,回転速度5000rpm×10分間で水中に解膠・分散させ,スラリー濃度20g/Lのスラリー1Lを得た。 The iron oxyhydroxide cake using a mixer (Homomi key Sir manufactured by Tokushu Kika Kogyo Co., Ltd.), was peptized, dispersed in water at a rotational speed 5000 rpm × 10 min, the slurry 1L slurry concentration 20 g / L Obtained.

得られたスラリーを気泡塔に入れ,スラリー中に窒素ガスを気泡状にして40L/分の流量で導入することにより溶存酸素を系外へ排出させた。ついで,窒素ガスを通気させな
がら,5%NH3水溶液に特級硫酸コバルトを溶解させたコバルトアンミン錯体溶液200mL
を,最終生成オキシ水酸化鉄の組成でCo/Fe=31.4at.%になる量で(すなわちCo/Fe で10at% 相当を上乗せ出来るように),該スラリーに添加した。その際,Coの被着効率については,あらかじめ実施した予備試験の結果により75%程度であると判明していたので,被着に使用する溶液の濃度はそのことを勘案してやや高めの濃度に調整した。すなわち,特級試薬硫酸コバルト七水和物3.55g を5%アンモニア水200ml に投入し、室温
の条件で10分間撹拌して混合した。
The obtained slurry was put in a bubble column, and nitrogen gas was bubbled into the slurry and introduced at a flow rate of 40 L / min to discharge dissolved oxygen out of the system. Next, 200 mL of cobalt ammine complex solution in which special grade cobalt sulfate was dissolved in 5% NH 3 aqueous solution while nitrogen gas was passed.
Was added to the slurry in such an amount that the composition of the final iron oxyhydroxide was Co / Fe = 31.4 at.% (Ie, 10 /% equivalent of Co / Fe could be added). At that time, the Co deposition efficiency was found to be about 75% from the results of preliminary tests carried out in advance, so the concentration of the solution used for deposition was slightly higher in consideration of that. It was adjusted. Specifically, 3.55 g of the special grade reagent cobalt sulfate heptahydrate was added to 200 ml of 5% aqueous ammonia, and the mixture was stirred for 10 minutes at room temperature.

その後,特級無水炭酸ナトリウム 51.61g(これはCO2/(Fe+Co)の原子比で2に相当する)を添加した。その際に炭酸の溶解に発生する熱による影響を緩和するため,液温が20℃よりも高くならないように調整した。このあと,温度の上昇を抑制しながら混合を15分間実施し,オキシ水酸化鉄の表面にコバルトの炭酸塩で被覆を行ったあと,酢酸を用い
て35℃,pH7.5に調整し,3時間熟成を施した。
Thereafter, 51.61 g of special grade anhydrous sodium carbonate (this corresponds to an atomic ratio of CO 2 / (Fe + Co) of 2) was added. In this case, the liquid temperature was adjusted not to be higher than 20 ° C. in order to alleviate the influence of heat generated in the dissolution of carbonic acid. Thereafter, mixing was carried out for 15 minutes while suppressing the temperature rise, the surface of the iron oxyhydroxide was coated with cobalt carbonate, adjusted to 35 ° C. and pH 7.5 with acetic acid, and 3 Aged for time.

熟成後,Al/(Fe+Co)=8.9at.%になるようにアルミニウムイオン濃度を調整した硫酸アルミニウム水溶液(無水硫酸アルミニウム 3.76gを純水 100 mL に溶解) を徐々に追加した。その後,アンモニア水(23%)を添加してpHを9.5まで上昇させ
,温度が安定になるまで熟成を施した。
After aging, an aluminum sulfate aqueous solution (3.76 g of anhydrous aluminum sulfate dissolved in 100 mL of pure water) whose aluminum ion concentration was adjusted to Al / (Fe + Co) = 8.9 at.% Was gradually added. Thereafter, aqueous ammonia (23%) was added to raise the pH to 9.5, and aging was performed until the temperature became stable.

ついで酸化イットリウム1.70 gを100 mLの希硫酸に溶解した酸化イットリウム溶液(この濃度はY/(Fe+Co)=6.2 at.%に相当する) を一挙に添加してYをオキシ水酸化
鉄の表面に被着させた。
Next, an yttrium oxide solution in which 1.70 g of yttrium oxide was dissolved in 100 mL of dilute sulfuric acid (this concentration corresponds to Y / (Fe + Co) = 6.2 at.%) Was added all at once, and Y was added to the surface of the iron oxyhydroxide. Adhered.

Yの被着操作の後,熟成を1時間行って二層構造を有するオキシ水酸化鉄粒子を得た。
得られた二層構造を有するオキシ水酸化鉄粒子は,
Co/Fe=30.6at.%,
Al/(Co+Fe)=8.7at.%,
Y/(Co+Fe)=6.0at.%,
の量比でCo,AlおよびYを含有したものであり,
長軸長=0.095μm,
軸比=8,
BET法による比表面積=118.3m2/ g,
Dx=127オングストローム
であった。
これらの特性値を,出発材の針状晶核晶オキシ水酸化鉄と,生成した二層構造の針状晶
オキシ水酸化鉄とに分けて表1に示した。
After the Y deposition operation, aging was performed for 1 hour to obtain iron oxyhydroxide particles having a two-layer structure.
The obtained iron oxyhydroxide particles having a two-layer structure are
Co / Fe = 30.6 at.%,
Al / (Co + Fe) = 8.7 at.%,
Y / (Co + Fe) = 6.0 at.%,
Containing Co, Al and Y in a quantity ratio of
Long axis length = 0.095 μm,
Axial ratio = 8,
Specific surface area according to BET method = 118.3 m 2 / g,
Dx = 127 angstroms.
These characteristic values are shown in Table 1 separately for the needle-like crystal nucleus iron oxyhydroxide as a starting material and the needle-like iron oxyhydroxide having a two-layer structure.

〔実施例2〜5〕
核粒子として用いたオキシ水酸化鉄を,表1の実施例2〜5の「針状晶核晶オキシ水酸化鉄特性」欄に示した組成のものに変えた以外は,実施例1を繰り返して二層構造を有するオキシ水酸化鉄粒子を得た。得られた二相構造のオキシ水酸化鉄粒子の特性を,実施例
1の場合と同様に,表1の「針状晶オキシ水酸化鉄」の欄に記載した。
[Examples 2 to 5]
Example 1 was repeated except that the iron oxyhydroxide used as the core particles was changed to the composition shown in the column of “Acicular crystal nucleus iron oxyhydroxide characteristics” in Examples 2 to 5 of Table 1. Thus, iron oxyhydroxide particles having a two-layer structure were obtained. The characteristics of the obtained iron oxyhydroxide particles having a two-phase structure are described in the column “Acicular iron oxyhydroxide” in Table 1 in the same manner as in Example 1.

〔実施例6〕
核粒子としてオキシ水酸化鉄ケーキ(ケーキ中に含まれる粒子の物性は表1の「針状晶核晶オキシ水酸化鉄特性」に示したとおりであるが,〔ESCA Co/Fe〕/〔ICP Co/Fe 〕=表層Co/コアCoの比は0.93)を準備し,これを特殊機化工業製ホモミクサーを用いて5000rpm 、10分間の条件にて水中に均一に解謬した(スラリー濃度:20g/L, スラリー
量1L)。
Example 6
Iron oxyhydroxide cake as the core particle (The physical properties of the particles contained in the cake are as shown in Table 1, “Acicular nucleated iron oxyhydroxide properties”, but [ESCA Co / Fe] / [ICP Co / Fe] = surface layer Co / core Co ratio of 0.93) was prepared, and this was uniformly dissolved in water at 5000 rpm for 10 minutes using a homomixer manufactured by Tokushu Kika Kogyo Co., Ltd. (slurry concentration) : 20 g / L, slurry amount 1 L).

得られたスラリーを気泡塔に入れ,スラリー中に窒素ガスを気泡状にして40L/分の流量で導入することにより溶存酸素を系外へ排出させた。ついで,5%NH3水溶液に特級試薬硫酸コバルト七水和物15.28gを溶解したコバルトアンミン錯体溶液200mLを,
窒素ガスを通気させながら該スラリー中に添加し,室温で10分間撹拌して混合した。
The obtained slurry was put in a bubble column, and nitrogen gas was bubbled into the slurry and introduced at a flow rate of 40 L / min to discharge dissolved oxygen out of the system. Next, 200 mL of cobalt ammine complex solution in which 15.28 g of the special grade reagent cobalt sulfate heptahydrate was dissolved in 5% NH 3 aqueous solution,
Nitrogen gas was bubbled into the slurry and mixed with stirring at room temperature for 10 minutes.

その後,特級無水炭酸ナトリウム56.23 g(この炭酸塩の添加量はCO2/(Fe+Co)の原子量比で2に相当) を添加した。その際に炭酸の溶解時の発生熱による影響を緩和するため,液温が20℃よりも高くならないように調整した。このあと,温度の上昇を抑制しながら混合を15分間実施し,オキシ水酸化鉄の表面に鉄・コバルトの炭酸塩で被覆
を行ったあと,酢酸を用いて35℃,pH=7.5に調整し,3時間の熟成を施した。
Thereafter, 56.23 g of special grade anhydrous sodium carbonate (the amount of carbonate added corresponds to a CO 2 / (Fe + Co) atomic weight ratio of 2) was added. At that time, the liquid temperature was adjusted so as not to be higher than 20 ° C. in order to alleviate the influence of the heat generated when carbonic acid was dissolved. After that, mixing was carried out for 15 minutes while suppressing the temperature rise, and the surface of the iron oxyhydroxide was coated with iron / cobalt carbonate, and then adjusted to 35 ° C. and pH = 7.5 using acetic acid. Adjusted and aged for 3 hours.

熟成後,酸素含有ガス(空気)を通気して徐々に酸化を行い,酸化開始より30分経過後,Al/(Fe+Co)=8.5at.%になるようにアルミニウムイオン濃度を調整した硫酸アルミニウム水溶液(無水硫酸アルミニウム3.86g を純水100 mLに溶解)を徐々に追加(酸化割合85%までの区間で酸化が終了するように調整)したあとで,アンモニア水(濃度23%)を使用してpHを9.5に調整し,温度が安定するまで熟成させた。ついで酸化イットリウム1.86gを100mL の希硫酸に溶解した酸化イットリウム溶液(この濃度はY/(Fe+Co)=6.2at.% に相当する)を一挙に添加して、Yをオキシ水酸化鉄の表面に被着させた。Yの被着操作の後,熟成を1時間行って二層構造を有するオキシ水酸化鉄粒子を得た。得られた二層構造を有するオキシ水酸化鉄粒子は,表1に示したように,Co/Fe=30.3at.%,Al/(Fe+Co)=8.3at.%,Y/(Fe+Co)=6.0at.%の組成を有し,平均長軸長=0.098μm,軸比=7,BET値=114
.3m2/gであり,Dx=118オングストロームであった。
After aging, oxygen-containing gas (air) is ventilated to gradually oxidize, and after 30 minutes from the start of oxidation, aluminum sulfate with aluminum ion concentration adjusted to Al / (Fe + Co) = 8.5 at.% After gradually adding an aqueous solution (dissolving 3.86 g of anhydrous aluminum sulfate in 100 mL of pure water) (adjusting so that the oxidation is completed until the oxidation rate reaches 85%), use aqueous ammonia (concentration 23%). The pH was adjusted to 9.5 and aged until the temperature was stable. Next, an yttrium oxide solution in which 1.86 g of yttrium oxide was dissolved in 100 mL of dilute sulfuric acid (this concentration corresponds to Y / (Fe + Co) = 6.2 at.%) Was added all at once, and Y was added to the surface of the iron oxyhydroxide. Adhered. After the Y deposition operation, aging was performed for 1 hour to obtain iron oxyhydroxide particles having a two-layer structure. As shown in Table 1, the obtained iron oxyhydroxide particles having a two-layer structure were Co / Fe = 30.3 at.%, Al / (Fe + Co) = 8.3 at.%, Y / (Fe + Co). = 6.0 at.% Composition, average long axis length = 0.098 μm, axial ratio = 7, BET value = 114
. 3 m 2 / g, Dx = 118 angstroms.

〔実施例7〕
実施例1で得られた二層構造を持つオキシ水酸化鉄粉末を大気雰囲気下、475℃で30分間加熱して酸化鉄粉末とした。得られた酸化鉄粉末をステンレスボード中に入れて石英管に挿入した上で電気炉に装入し,炉内に水素ガスを50L/minの流量で通気しながら加熱還元を行った。この還元の間は,還元開始から15分間は500 ℃に保持し,次い
で1℃/minの昇温速度で600℃まで昇温した後,その温度に30分維持した。その後,
得られた還元粉末を窒素ガス雰囲気中で70℃まで冷却したあと,70℃の温度に維持しながら,窒素:酸素の割合を9:1とした酸素含有ガスを55L/minの割合で90分間通
気し,還元粉末の表面に酸化膜を形成させた。
Example 7
The iron oxyhydroxide powder having a two-layer structure obtained in Example 1 was heated at 475 ° C. for 30 minutes in an air atmosphere to obtain an iron oxide powder. The obtained iron oxide powder was placed in a stainless steel board and inserted into a quartz tube, and then charged into an electric furnace. Heat reduction was performed while hydrogen gas was passed through the furnace at a flow rate of 50 L / min. During this reduction, the temperature was maintained at 500 ° C. for 15 minutes from the start of reduction, then heated to 600 ° C. at a rate of 1 ° C./min, and maintained at that temperature for 30 minutes. afterwards,
The obtained reduced powder was cooled to 70 ° C. in a nitrogen gas atmosphere, and then maintained at a temperature of 70 ° C., an oxygen-containing gas with a nitrogen: oxygen ratio of 9: 1 was maintained at a rate of 55 L / min for 90 minutes. Aeration was performed to form an oxide film on the surface of the reduced powder.

得られた針状晶鉄合金粉末は,表2に示したように,
Co/Fe=30.5at.%,
Al/(Fe+Co)=8.7at.%,
Y/(Fe+Co)=6.1at.%の組成を有し,
平均長軸長=0.092μm,軸比=6.8,保磁力Hc=202.9kA/m(2549Oe ),飽和磁化値σs=163Am2/kg(163emu/g ),BET値=42m2/g,Δσs=5.3%,Dx=168オングストローム,粉体pH=8.9, 〔ESCA Co/Fe〕/〔ICP Co/Fe〕=1.56であった。表3にこの針状晶鉄合金粉末を用いて作成
したテープの磁気特性を示した。
As shown in Table 2, the obtained acicular iron alloy powder was
Co / Fe = 30.5 at.%,
Al / (Fe + Co) = 8.7 at.%,
Y / (Fe + Co) = 6.1 at.
Average major axis length = 0.092 μm, Axial ratio = 6.8, Coercive force Hc = 202.9 kA / m (2549 Oe), Saturation magnetization value σs = 163 Am 2 / kg (163 emu / g), BET value = 42 m 2 / g, Δσs = 5.3%, Dx = 168 Å, powder pH = 8.9, [ESCA Co / Fe] / [ICP Co / Fe] = 1.56. Table 3 shows the magnetic properties of tapes made using this acicular iron alloy powder.

また,得られた針状晶鉄合金粉末をTG測定に供したところ,図2にそのTG曲線を示したように,見かけの発火温度=142℃,実質発火温度=189℃であり,よって、実
質発火点と見かけの発火点の差は47℃であって、重量増加量=15.4wt%であった。
Further, when the obtained acicular iron alloy powder was subjected to TG measurement, as shown in the TG curve in FIG. 2, the apparent ignition temperature = 142 ° C. and the actual ignition temperature = 189 ° C., The difference between the real ignition point and the apparent ignition point was 47 ° C., and the weight increase was 15.4 wt%.

〔実施例8〜12〕
実施例2〜6で得られた二層構造を持つオキシ水酸化鉄粉末を用いた以外は,実施例7を繰り返した。得られた各針状晶鉄合金粉末(実施例8〜12)の特性を表2に示した。
また,各針状晶鉄合金粉末を用いて作成したテープの磁気特性を表3に示した。
[Examples 8 to 12]
Example 7 was repeated except that the iron oxyhydroxide powder having a two-layer structure obtained in Examples 2 to 6 was used. Table 2 shows the characteristics of the obtained acicular iron alloy powders (Examples 8 to 12).
In addition, Table 3 shows the magnetic properties of tapes made using each acicular iron alloy powder.

〔比較例1〕
鉄とコバルトの割合がCo/Fe=30.4at.%となるように,0.15 mol/Lの硫酸第1
鉄水溶液 2900mLと 0.1 mol/Lの硫酸コバルト水溶液1300 mLを混合し,毎分25L/minの割合で窒素を導入して液中の溶存酸素を除去したあと,炭酸ナトリウムを鉄とコバルトの総量に対して3当量となる量( すなわち、179.65g)添加することにより,主成分が炭酸鉄からなる懸濁液を作成し,このスラリーに空気を通気して酸化すると共に,この酸化処理中に硫酸アルミニウムを,Al/(Fe+Co)の比が8.6at.% となる量(すなわち、8.31g の無水硫酸アルミニウムを純水100ml に溶解)で徐々に添加した。その後,熟成を経た後、酸化イットリウム3.57g を100mL の希硫酸に溶解した溶液(この濃度はY/(Fe+Co)=5.6at%に相当する)を添加したあと,ろ過,水洗,乾燥を経て,表1に示す物性のオキシ水酸化鉄を得た。このオキシ水酸化鉄は,コバルトの添加操作が前記実施
例とは異なるので,前記実施例のような二重構造を有するものではない。
[Comparative Example 1]
First, 0.15 mol / L sulfuric acid first so that the ratio of iron and cobalt is Co / Fe = 30.4 at.%.
Mix 2900 mL of iron aqueous solution and 1300 mL of 0.1 mol / L cobalt sulfate aqueous solution, introduce nitrogen at a rate of 25 L / min to remove dissolved oxygen in the solution, and then add sodium carbonate to the total amount of iron and cobalt. By adding 3 equivalents (ie, 179.65 g), a suspension composed mainly of iron carbonate is prepared, and air is passed through the slurry to oxidize, and sulfuric acid is added during the oxidation treatment. Aluminum was gradually added in such an amount that the Al / (Fe + Co) ratio was 8.6 at.% (Ie, 8.31 g of anhydrous aluminum sulfate was dissolved in 100 ml of pure water). After aging, after adding a solution of 3.57 g of yttrium oxide dissolved in 100 mL of dilute sulfuric acid (this concentration corresponds to Y / (Fe + Co) = 5.6 at%), it is filtered, washed with water, and dried. The physical properties of iron oxyhydroxide shown in Table 1 were obtained. This iron oxyhydroxide does not have a double structure as in the above example because the operation of adding cobalt is different from that in the above example.

〔比較例2〜5〕
使用した試薬は同じであるが,その使用量を種々変化させた以外は比較例1と同じ操作
を繰り返して,表1に示した物性のオキシ水酸化鉄(比較例2〜5)を得た。
[Comparative Examples 2 to 5]
Although the reagents used were the same, the same operations as in Comparative Example 1 were repeated except that the amounts used were variously changed, and the physical properties of iron oxyhydroxides (Comparative Examples 2 to 5) shown in Table 1 were obtained. .

〔比較例6〕
比較例1で得られたオキシ水酸化鉄をステンレスボード中に入れて石英管に挿入した上で電気炉に装入し、大気中475℃に30分間加熱して酸化鉄粒子にした。炉内に水素ガスを50L/minの流量で通気しながら加熱還元を行った。この還元の間は,還元開始から15分間は500℃に保持し,次いで1℃/minの昇温速度で600℃まで昇温した後,その温度に30分維持した。その後, 得られた還元粉末を窒素ガス雰囲気中で70℃まで冷却したあと,70℃の温度に維持しながら,窒素:酸素の割合を9:1とした酸素含
有ガスを55L/minの割合で90分間通気し,還元粉末の表面に酸化膜を形成させた。
[Comparative Example 6]
The iron oxyhydroxide obtained in Comparative Example 1 was placed in a stainless steel board and inserted into a quartz tube, and then charged in an electric furnace, and heated to 475 ° C. in the atmosphere for 30 minutes to form iron oxide particles. Heat reduction was carried out while ventilating hydrogen gas in the furnace at a flow rate of 50 L / min. During this reduction, the temperature was maintained at 500 ° C. for 15 minutes from the start of reduction, then heated to 600 ° C. at a rate of 1 ° C./min, and maintained at that temperature for 30 minutes. Thereafter, the obtained reduced powder was cooled to 70 ° C. in a nitrogen gas atmosphere, and then maintained at a temperature of 70 ° C., an oxygen-containing gas with a nitrogen: oxygen ratio of 9: 1 was added at a rate of 55 L / min. Aeration was carried out for 90 minutes to form an oxide film on the surface of the reduced powder.

得られた針状晶鉄合金粉末は,表2に示したように,
Co/Fe=30.1at.%,
Al/(Fe+Co)=8.6at.%,
Y/(Fe+Co)=5.5at.%の組成を有し,
平均長軸長=0.097μm,軸比=6.3,保磁力Hc=209.0kA/m(2625Oe ),飽和磁化値σs=152Am2/kg(152emu/g ),BET値=47.3m2/g,Dx=173オングストローム,粉体pH=9.2,〔ESCA Co/Fe〕/〔ICP Co/Fe〕=1.02であり,Δσs=18.9%と高くなった。なお,表3にこの針状晶
鉄合金粉末を用いて作成したテープの磁気特性を示した。
As shown in Table 2, the obtained acicular iron alloy powder was
Co / Fe = 30.1 at.%,
Al / (Fe + Co) = 8.6 at.%,
Y / (Fe + Co) = 5.5 at.% Composition,
Average major axis length = 0.097 μm, Axial ratio = 6.3, Coercive force Hc = 209.0 kA / m (2625 Oe), Saturation magnetization value σs = 152 Am 2 / kg (152 emu / g), BET value = 47.3 m 2 / g, Dx = 173 angstrom, powder pH = 9.2, [ESCA Co / Fe] / [ICP Co / Fe] = 1.02, and Δσs = 18.9%. Table 3 shows the magnetic properties of tapes made using this acicular iron alloy powder.

また,得られた針状晶鉄合金粉末をTG測定に供したところ,図3にそのTG曲線を示したように,1段だけの酸化開始(発火温度=163℃)によって酸化し,その重量増加
量は23.5wt%となった。
Further, when the obtained acicular iron alloy powder was subjected to TG measurement, as shown in the TG curve in FIG. 3, it was oxidized by the start of oxidation in only one stage (ignition temperature = 163 ° C.), and its weight The increase amount was 23.5 wt%.

〔比較例7〜10〕
比較例2〜5で得られたオキシ水酸化鉄を用いた以外は,比較例6を繰り返した。得られた各針状晶鉄合金粉末(比較例7〜10)の特性を表2に示した。また,各針状晶鉄合
金粉末を用いて作成したテープの磁気特性を表3に示した。
[Comparative Examples 7 to 10]
Comparative Example 6 was repeated except that the iron oxyhydroxide obtained in Comparative Examples 2 to 5 was used. The characteristics of the obtained acicular iron alloy powders (Comparative Examples 7 to 10) are shown in Table 2. In addition, Table 3 shows the magnetic properties of tapes made using each acicular iron alloy powder.

〔比較例11〕
比較例1で得られたオキシ水酸化鉄を使用したが,還元終了後,還元温度から窒素ガス雰囲気中で200℃まで冷却し,この温度で,酸素:窒素=1:9の酸素含有ガスを通気
して表面を酸化鉄に変化させた以外は,比較例6を繰り返した。
[Comparative Example 11]
Although the iron oxyhydroxide obtained in Comparative Example 1 was used, after the reduction was completed, it was cooled from the reduction temperature to 200 ° C. in a nitrogen gas atmosphere, and at this temperature, an oxygen-containing gas of oxygen: nitrogen = 1: 9 Comparative Example 6 was repeated except that the surface was changed to iron oxide by aeration.

得られた針状晶鉄合金粉末は,表2に示したように,
Co/Fe=30.2at.%,
Al/(Fe+Co)=8.4at.%,
Y/(Fe+Co)=5.8at.%の組成を有し,
平均長軸長=0.095μm,軸比=6.4,保磁力Hc=202.1kA/m(2539Oe ),飽和磁化値σs=127Am2/kg(127emu/g ),Δσs=4.9%,BET値=46.7m2/ g,Dx=185オングストローム,粉体pH=9.2,〔ESCA Co/Fe〕/〔ICP Co/Fe〕=0.78であった。表3にこの針状晶鉄合金粉末を用い
て作成したテープの磁気特性を示した。
As shown in Table 2, the obtained acicular iron alloy powder was
Co / Fe = 30.2 at.%,
Al / (Fe + Co) = 8.4 at.%,
Y / (Fe + Co) = 5.8 at.% Composition,
The average long axis length = 0.095 m, the axial ratio = 6.4, the coercive force Hc = 202.1kA / m (2539Oe) , saturation magnetization σs = 127Am 2 / kg (127emu / g), Δσs = 4.9% BET value = 46.7 m 2 / g, Dx = 185 Å, powder pH = 9.2, [ESCA Co / Fe] / [ICP Co / Fe] = 0.78. Table 3 shows the magnetic properties of tapes made using this acicular iron alloy powder.

また,得られた針状晶鉄合金粉末をTG測定に供したところ,図4にそのTG曲線を示したように,1段だけの酸化開始(発火温度=192℃)によって酸化し,その重量増加量は4.2wt%となった。この試験結果から,本例の針状晶鉄合金粉末は,粒子表面の酸化層が厚くなっており,このために重量増加量が少なくなっていることがわかる。このため,Δσsは4.9%と低いが,飽和磁化値σsが低く,テープ特性においてもSFD値
が高くなっている。
Further, when the obtained acicular iron alloy powder was subjected to TG measurement, as shown in the TG curve in FIG. 4, it was oxidized by the start of oxidation in only one stage (ignition temperature = 192 ° C.), and its weight The increase amount was 4.2 wt%. From this test result, it can be seen that the acicular iron alloy powder of this example has a thick oxide layer on the particle surface, which reduces the weight increase. Therefore, Δσs is as low as 4.9%, but the saturation magnetization value σs is low, and the SFD value is also high in the tape characteristics.

〔比較例12〜15〕
比較例2〜5で得られたオキシ水酸化鉄を用いた以外は,比較例11を繰り返した。得られた各針状晶鉄合金粉末(比較例12〜15)の特性を表2に示した。また,各針状晶
鉄合金粉末を用いて作成したテープの磁気特性を表3に示した。
[Comparative Examples 12-15]
Comparative Example 11 was repeated except that the iron oxyhydroxide obtained in Comparative Examples 2 to 5 was used. The properties of the obtained acicular iron alloy powders (Comparative Examples 12 to 15) are shown in Table 2. In addition, Table 3 shows the magnetic properties of tapes made using each acicular iron alloy powder.

Figure 0004677734
Figure 0004677734

Figure 0004677734
Figure 0004677734

Figure 0004677734
Figure 0004677734

これら表1〜3の結果から次のことがわかる。
・実施例7〜12で得られた針状晶鉄合金粉末は,比較例6〜10のものに比べると,酸
化開始温度が二段であることによって耐酸化性が向上していることがわかる。
・実施例7〜12で得られた針状晶鉄合金粉末は,比較例11〜15のものに比べると,粒子の表層におけるCo/Feが全体のCo/Feに比較して相対的に高いことにより,
耐酸化性と磁気特性が共に向上しているいることがわかる。
・比較例11〜15のように,TG測定時における重量増加幅が5.0wt%未満では,耐酸化性は向上するが,飽和磁化σs は低い値となって良好な磁気特性を得難いのに対し,
実施例7〜12のものは,重量増加量が高く,十分な飽和磁化量を有している。
The following can be understood from the results of Tables 1 to 3.
-It can be seen that the acicular iron alloy powders obtained in Examples 7 to 12 have improved oxidation resistance due to the two-stage oxidation start temperature as compared with those in Comparative Examples 6 to 10. .
The needle-like iron alloy powders obtained in Examples 7 to 12 have a relatively high Co / Fe in the surface layer of the particles compared to the overall Co / Fe compared to those in Comparative Examples 11 to 15 By
It can be seen that both oxidation resistance and magnetic properties are improved.
・ As in Comparative Examples 11 to 15, when the weight increase during TG measurement is less than 5.0 wt%, the oxidation resistance is improved, but the saturation magnetization σs is low and it is difficult to obtain good magnetic properties. In contrast,
Examples 7 to 12 have a high weight increase and a sufficient saturation magnetization.

TG測定で得られるプロファイル(TG曲線)で使用する用語を説明するための図である。It is a figure for demonstrating the term used by the profile (TG curve) obtained by TG measurement. 本発明に従う磁性粉末のTG曲線の例を示した図である。It is the figure which showed the example of the TG curve of the magnetic powder according to this invention. 比較例に従う磁性粉末のTG曲線の例を示した図である。It is the figure which showed the example of the TG curve of the magnetic powder according to a comparative example. 比較例に従う磁性粉末のTG曲線の例を示した図である。It is the figure which showed the example of the TG curve of the magnetic powder according to a comparative example.

Claims (5)

還元性雰囲気中で多段還元法により形成されるFeを主体とする針状粒子からなる磁気記録媒体用磁性粉末において、該粒子の表層部のCo含有率/コア部のCo含有率比が1.23〜1.89で且つ該粒子の平均長軸長が0.1μm未満であり、該粉末をTG測定に供したときに低温側酸化開始点と高温側酸化開始点の少なくとも2段の酸化開始点を示すこと、を特徴とする磁気記録媒体用磁性粉末。
ここで、TG測定とは、試料粉末10mgを大気雰囲気下において昇温速度10℃/分で昇温し、その重量変化を測定することをいう。
In a magnetic powder for magnetic recording media composed of needle-like particles mainly composed of Fe formed by a multistage reduction method in a reducing atmosphere, the ratio of Co content in the surface layer portion / Co content in the core portion of the particles is 1. 23 to 1.89 and the average major axis length of the particles is less than 0.1 μm, and when the powder is subjected to TG measurement, at least two stages of oxidation start of the low temperature side oxidation start point and the high temperature side oxidation start point A magnetic powder for a magnetic recording medium, characterized by showing a point.
Here, the TG measurement means that 10 mg of the sample powder is heated at a rate of temperature increase of 10 ° C./min in an air atmosphere and the change in weight is measured.
低温側酸化開始点〔みかけの発火点(IT(i))という〕と高温側酸化開始点〔実質発火点(IT(ii))という〕との間で、
IT(ii)−IT(i)>10℃・・(1)式
の関係を満たす請求項1に記載の磁気記録媒体用磁性粉末。
Between the low temperature side oxidation start point (referred to as the apparent ignition point (IT (i))) and the high temperature side oxidation start point (referred to as the real ignition point (IT (ii))),
The magnetic powder for a magnetic recording medium according to claim 1, wherein IT (ii) −IT (i)> 10 ° C.
該TG測定において、測定開始から300℃に至るまでの重量増加量が10wt%以上である請求項1または2に記載の磁気記録媒体用磁性粉末。   3. The magnetic powder for magnetic recording medium according to claim 1, wherein in the TG measurement, a weight increase from the start of measurement to 300 ° C. is 10 wt% or more. 温度60℃、湿度90%RHの恒温恒湿下に一週間保持したときの飽和磁化量の低下量Δσsが15%未満である請求項1ないし3のいずれかに記載の磁気記録媒体用磁性粉末。ただし、該恒温恒湿に保持する前の飽和磁化量をσs(i)、一週間保持後の飽和磁化量をσs(ii)としたとき、Δσs=100×〔σs(i)−σs(ii)〕/σs(i)で表される。   The magnetic powder for a magnetic recording medium according to any one of claims 1 to 3, wherein a decrease amount Δσs of saturation magnetization when held at a constant temperature and humidity of 60 ° C and humidity of 90% RH for less than 15% is less than 15%. . However, Δσs = 100 × [σs (i) −σs (ii) where σs (i) is the saturation magnetization before holding at the constant temperature and humidity, and σs (ii) is the saturation magnetization after holding for one week. )] / Σs (i). 磁性層を構成する磁性粉末として請求項1ないし4のいずれかに記載の磁性粉末を用いた磁気記録媒体。   A magnetic recording medium using the magnetic powder according to claim 1 as a magnetic powder constituting the magnetic layer.
JP2004122504A 2004-04-19 2004-04-19 Magnetic powder for magnetic recording media Expired - Lifetime JP4677734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122504A JP4677734B2 (en) 2004-04-19 2004-04-19 Magnetic powder for magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122504A JP4677734B2 (en) 2004-04-19 2004-04-19 Magnetic powder for magnetic recording media

Publications (3)

Publication Number Publication Date
JP2005310856A JP2005310856A (en) 2005-11-04
JP2005310856A5 JP2005310856A5 (en) 2005-12-15
JP4677734B2 true JP4677734B2 (en) 2011-04-27

Family

ID=35439301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122504A Expired - Lifetime JP4677734B2 (en) 2004-04-19 2004-04-19 Magnetic powder for magnetic recording media

Country Status (1)

Country Link
JP (1) JP4677734B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138189B (en) * 2008-08-05 2014-04-02 同和电子科技有限公司 Metallic magnetic powder for magnetic recording and process for producing the metallic magnetic powder
JP5556982B2 (en) * 2008-10-15 2014-07-23 戸田工業株式会社 Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
CN103999170B (en) * 2013-03-13 2016-06-15 同和电子科技有限公司 The soft magnetic metal powder that magnetic part and magnetic part use and manufacture method thereof
JP6607751B2 (en) * 2015-09-25 2019-11-20 Dowaエレクトロニクス株式会社 Fe-Co alloy powder, manufacturing method thereof, antenna, inductor, and EMI filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302445A (en) * 1999-04-19 2000-10-31 Toda Kogyo Corp Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP2000327334A (en) * 1999-05-20 2000-11-28 Toda Kogyo Corp Spindle-shaped goethite grain, spindle-shaped hematite grain, spindle-shaped metal magnetic grain consisting essentially of iron and production thereof
JP2001068318A (en) * 1999-08-27 2001-03-16 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic record medium using the same
JP2001357511A (en) * 2000-06-15 2001-12-26 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2003247002A (en) * 2001-12-04 2003-09-05 Toda Kogyo Corp Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP2003303710A (en) * 2002-04-12 2003-10-24 Fuji Photo Film Co Ltd Ferromagnetic metal powder, and magnetic recording medium containing the same powder
JP2004035939A (en) * 2002-07-02 2004-02-05 Toda Kogyo Corp Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626729A (en) * 1979-08-11 1981-03-14 Tdk Corp Powdered magnetic material for magnetic recording medium
JPS60141624A (en) * 1983-12-27 1985-07-26 Ishihara Sangyo Kaisha Ltd Manufacture of acicular magnetic iron oxide containing cobalt
JP3473874B2 (en) * 1995-07-04 2003-12-08 富士写真フイルム株式会社 Magnetic recording media
JP3473877B2 (en) * 1995-10-13 2003-12-08 富士写真フイルム株式会社 Magnetic recording media

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302445A (en) * 1999-04-19 2000-10-31 Toda Kogyo Corp Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP2000327334A (en) * 1999-05-20 2000-11-28 Toda Kogyo Corp Spindle-shaped goethite grain, spindle-shaped hematite grain, spindle-shaped metal magnetic grain consisting essentially of iron and production thereof
JP2001068318A (en) * 1999-08-27 2001-03-16 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic record medium using the same
JP2001357511A (en) * 2000-06-15 2001-12-26 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2003247002A (en) * 2001-12-04 2003-09-05 Toda Kogyo Corp Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP2003303710A (en) * 2002-04-12 2003-10-24 Fuji Photo Film Co Ltd Ferromagnetic metal powder, and magnetic recording medium containing the same powder
JP2004035939A (en) * 2002-07-02 2004-02-05 Toda Kogyo Corp Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process

Also Published As

Publication number Publication date
JP2005310856A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4534059B2 (en) Iron nitride magnetic powder and method for producing the same
JP4758858B2 (en) Metallic magnetic powder for magnetic recording medium and method for producing the same
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JP5090546B2 (en) Metallic magnetic powder for magnetic recording media
JP5731483B2 (en) Metal magnetic powder and method for producing the same, magnetic paint, and magnetic recording medium
JP4677734B2 (en) Magnetic powder for magnetic recording media
JP4505638B2 (en) Metal magnetic powder and magnetic recording medium using the same
JP2008103510A (en) Iron-nitride magnetic powder and manufacturing method therefor
US8852314B2 (en) Method of producing magnetic powder for magnetic recording medium
JP3428351B2 (en) Spindle-shaped metal magnetic particles containing iron as a main component and method for producing the same
JP5280661B2 (en) Method for producing metal magnetic powder
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JP4758936B2 (en) Metallic magnetic powder for magnetic recording and method for producing the same
JP5337286B2 (en) Metal magnetic powder
EP1770722B1 (en) Magnetic powder for magnetic recording medium
JP2767056B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JP4356139B2 (en) Spindle-shaped goethite particles, spindle-shaped hematite particles, spindle-shaped metal magnetic particles containing iron as a main component, and methods for producing them
JP5228212B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JP5102485B2 (en) Manufacturing method of metal magnetic powder
CN1932981B (en) Magnetic powder for magnetic recording medium
JP2001192211A (en) Method for manufacturing powdery particle of iron- based compound
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4677734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250