JP2010162635A - 自走式ロボットの位置および姿勢の補正方法 - Google Patents

自走式ロボットの位置および姿勢の補正方法 Download PDF

Info

Publication number
JP2010162635A
JP2010162635A JP2009005893A JP2009005893A JP2010162635A JP 2010162635 A JP2010162635 A JP 2010162635A JP 2009005893 A JP2009005893 A JP 2009005893A JP 2009005893 A JP2009005893 A JP 2009005893A JP 2010162635 A JP2010162635 A JP 2010162635A
Authority
JP
Japan
Prior art keywords
self
error
traveling
robot
propelled robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009005893A
Other languages
English (en)
Inventor
Akira Nihei
亮 二瓶
Shinsuke Sakakibara
伸介 榊原
Kazukuni Ban
一訓 伴
Masahiro Morioka
昌宏 森岡
Satoshi Adachi
悟志 足立
Shota Takizawa
象太 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2009005893A priority Critical patent/JP2010162635A/ja
Publication of JP2010162635A publication Critical patent/JP2010162635A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

【課題】ロボットアームを搭載した自走式ロボットにおいて、走行に伴う滑りなどによる誤差に対処して、ロボットアームの確実な位置および姿勢の補正を可能とする。
【解決手段】自走式ロボット1は、自走可能な走行部2と、走行部2に搭載されたロボットアーム部3とを有している。走行経路上の走行誤差測定位置7で、カメラ13によって走行路面5上の検出マーク14を撮影することによって、走行部2の設定された位置および姿勢からの誤差を検出し、その誤差を走行部2の動作によって補正する。さらに、カメラ20によって作業対象物8を撮影することによって、ロボットアーム部3の設定された位置および姿勢からの誤差を検出し、その誤差をロボットアーム部3の動作によって補正する。
【選択図】図1

Description

本発明は自走式ロボットに関し、特に、ロボットアームを搭載し所定の場所を走行しつつ繰返し作業を行う自走式ロボットの位置および姿勢の補正方法に関する。
路面上を自由に走行可能な自走部上にロボットアームを搭載した自走式ロボットは、路面や天井に配置したレール上を移動するロボットよりも生産システムのレイアウトの変更に対する柔軟性に富む点で優れている。このため、自走式ロボットは、部品のロード・アンロードなどの作業に適しており、また、それ以外にも、生産現場において部品の搬送を伴う種々の作業への適用が期待されている。
一方、自走式ロボットでは、走行機構の構造により程度の違いはあるものの、走行路面に対してロボットが滑り、理論的な移動位置に対して実際の移動位置にずれを生じやすい。このため、このようなずれに対する対処技術として様々な手法が提案されている。
特許文献1では、所定箇所に記録されたマークをロボットアームに取り付けた画像検出手段で検出し、実作業時に検出したマーク位置と教示時に検出したマーク位置とのずれからロボットの実位置を補正する位置補正方法が提案されている。同文献の技術では、補正された実位置に基づいてロボットアームの動作を制御することによって、ロボットアームによる操作点が正確な位置となるようにしている。
また、特許文献2では、所定位置に設けられた較正マークを撮影し、較正マークが撮影画像における所定位置、所定形状および所定サイズに対して所定のずれ量の範囲内に入るようにロボットアームを粗位置決めしている。そして、再び撮影した撮影画像から検出した較正マークの所定位置、所定形状および所定サイズからのずれ量からより精度の高い位置および姿勢の較正量を求めている。この較正量によって、ロボットアームの教示データを三次元的に較正している。
また、特許文献3でも、所定位置に設けられたマークをロボットアームに取り付けられた画像入力手段によって撮影している。そして、自走式ロボットの位置・姿勢のずれにより、マークが撮影画像内に入りきらずに一部欠けていた場合、マークの全体が撮影画像内に入るようにロボットアームを移動させている。そして、その状態で撮影したマークの画像と教示時の補正マークの撮影画像を比較して、ロボットアームの位置補正を行っている。
その他、自走式ロボットの走行によって生じるずれに対する対処方法としては、走行路面にガイドラインを設置し、このガイドラインに磁気的手法や光学的手法により追従するように自走式ロボットを走行させる方法が考案されている。また、走行領域内で有効なGPS装置により現在位置を検出して位置・姿勢を補正しながら走行させる方法、走行領域付近の建屋の側壁などとの距離を検出して一定の距離を維持するように走行を制御する方法などが考案されている。
特許第2680298号 特許第3466340号 特許第2743613号
特許文献1,2に開示された手法では、自走式ロボット全体の位置・姿勢の誤差が小さければ問題はないが、誤差が大きくなった場合には、マークが撮影範囲から外れ、補正が困難となることが考えられる。特許文献3に開示された手法では、マークの一部が撮影範囲から外れた場合でも対応可能としているが、やはり、マークがある程度は撮影範囲内にある必要があり、誤差が大きくなると対応は困難になると考えられる。また、特許文献1〜3に開示された手法では、所定箇所のマークの撮影結果から算出した自走式ロボット全体の位置・姿勢の誤差をロボットアーム部の動作のみによって補正しているため、補正可能な誤差の範囲は、ロボットアーム部の動作可能範囲に限られる。
自走式ロボット全体の位置および姿勢の誤差については、特に、走行動作が繰返されることによって、ずれが蓄積され、誤差が大きくなっていくことが考えられる。したがって、特に、多数回の繰返し走行が必要な用途では、自走式ロボットの走行に伴う滑りなどに起因するずれに対してさらに改善された対処方法が望まれる。
また、磁気的手法や光学的手法により、走行路面に設置されたガイドラインに追従させて自走式ロボットを走行させる方法では、自走式ロボットの走行経路にわたってガイドラインを設置する必要がある。そのため、ガイドラインの設置に時間を要し、生産システムのレイアウトの変更に伴う自走式ロボットの走行経路の変更に柔軟に対応することが困難である。
また、走行領域内で有効なGPS装置を用いる方法では、位置および姿勢の検出精度があまり高くない。また、設備費用が高価となりがちである。
また、走行領域付近の側壁などとの距離を検出して走行を制御する方法では、例えば、検出対象とする側壁と自走式ロボットの間に障害物が置かれた場合、側壁の検出が妨げられて制御が困難となる。このため、自走式ロボットの走行領域周辺で生産システムのレイアウトを容易に変更できないという困難がある。
そこで、本発明は、上記に鑑み、ロボットアームを搭載した自走式ロボットにおいて、走行に伴う滑りなどによる誤差に対処して、ロボットアームの確実な位置および姿勢の補正が可能な自走式ロボットの位置および姿勢の補正方法を提供することを目的とする。
上述の目的を達成するため、本発明による自走式ロボットの位置および姿勢の補正方法は、自走可能な走行部と、走行部に搭載されたロボットアーム部とを有する自走式ロボットの位置および姿勢の補正方法であって、走行経路上の所定の位置で、走行部の設定された位置および姿勢からの誤差を第1の誤差として検出し、第1の誤差を補正するように走行部の動作を制御する工程と、ロボットアーム部が作業対象物に対して作業を行う走行経路上の所定の作業位置で、ロボットアーム部の設定された位置および姿勢からの誤差を第2の誤差として検出し、第2の誤差を補正するようにロボットアーム部の動作を制御する工程とを有することを特徴とする。
このように、本発明では、滑りによって誤差の生じやすい走行部の位置および姿勢に対して、その誤差をロボットアーム部の動作によって補正するだけでなく、走行部自体の動作によって補正する。それによって、ロボットアーム部のみの動作によって補正を行おうとした場合のように補正が困難となるのを抑制し、適切な動作制御が可能となる。
この際、走行経路全体にわたって動作誘導を行うのとは異なり、1ヶ所または数ヵ所の所定の位置で誤差の検出を行うので、生産システムのレイアウト変更への対応も容易であり、補正のために必要な構成要素も少なくて済む。
また、作業位置で、ロボットアーム部の位置および姿勢の誤差の補正を行うことによって高精度の作業が行われることが保証される。特に、上述のように走行経路上の所定の位置で検出された誤差を補正しても、その位置から作業位置に走行する際にも、走行位置および姿勢には、原理的に誤差が生じるので、その誤差も、作業位置でのロボットアーム部の誤差補正によって補償することができる。この際、本発明では、走行位置および姿勢の誤差が、走行部の動作によって補正されるので、ロボットアーム部の位置が、走行位置および姿勢の誤差のために大きくずれるのが抑制され、そのため、ロボットアーム部の位置および姿勢の誤差を適切に検出することができ、適切に補正を行うことができることが保証される。
本発明において、第1の誤差の検出は、自走式ロボットに搭載された第1の検出機器により走行経路の周辺に位置する所定の対象物を検出することによって行うことができる。あるいは、走行経路の周辺に配置された第1の検出機器により自走式ロボット上の所定の対象物を検出することによって、第1の誤差を検出してもよい。
第1の検出機器を自走式ロボットに搭載すれば、誤差の検出を互いに比較的大きく離れた複数の場所で行う必要がある場合でも、単一の検出機器で誤差の検出を行うことができる。一方、第1の検出機器を走行経路の周辺に配置すれば、1つの検出機器を複数の自走式ロボットの誤差を検出するのに共用することができる。
第1の検出機器を走行経路の周辺に配置する場合、第1の検出機器による検出情報を無線通信で自走式ロボットへ伝達するのが好ましい。それによって、自走式ロボットは、自身の自走部の位置および姿勢の誤差を即時に認識することができ、迅速かつ適切な補正を行うことができる。
第1の検出機器としては、具体的には撮像装置を用い、画像認識によって位置および姿勢を検出するのが好ましい。画像認識を用いれば、比較的容易かつ迅速に位置および姿勢の検出を行うことができる。
また、本発明において、第2の誤差の検出は、自走式ロボットに搭載された第2の検出機器により作業対象物を検出することによって行うのが好ましい。このように、作業位置での誤差の検出を自走式ロボットに搭載された検出機器により行うことによって、任意の作業位置で誤差の検出を行うことができる。したがって、複数の作業位置で作業を行う場合にも、単一の検出機器によって誤差を検出することができ、生産システムのレイアウト変更にも対処しやすい。第2の検出機器についても撮像装置を好適に用いることができる。
本発明では、第1の誤差の検出と第2の誤差の検出に共通の検出機器を用いることができる。それによって、必要な検出機器の数を減らし、コストの軽減を図ることができる。
走行部の位置および姿勢の誤差の補正は、走行部の設定された位置および姿勢からの誤差の検出を行う走行経路上の所定の位置から、ロボットアーム部が作業対象物に対して作業を行う走行経路上の所定の作業位置への走行時に、検出された走行部の位置および姿勢の誤差の分だけ走行の移動量を変化させることによって行うことができる。それによって、補正のための別途の動作が不要となり、作業効率を向上させることができる。
また、本発明では、特に、第1の誤差の検出を行う走行経路上の所定の位置を繰返し通るように自走式ロボットを繰返し動作させ、所定の位置を通るたびに、走行部の設定された位置および姿勢からの誤差を検出し、誤差を補正する動作を行うようにするのが好ましい。それによって、走行に伴う滑りなどによる誤差を、繰返し動作を行う毎に補正して、繰返し動作で誤差が蓄積されるのを抑制することができる。
本発明によれば、ロボットアームを搭載した自走式ロボットにおいて、走行に伴う滑りなどによる誤差に対処して、ロボットアームの確実な位置および姿勢の補正を行い、適切な動作制御を行うことができる。
本発明の一実施形態に係る自走式ロボットを用いた生産システムを示す斜視図である。 画像認識によって自走式ロボットの走行位置および姿勢を検出するための検出マークの一例を示す図である。 図1の自走式ロボットの一例の走行パターンを示す平面図である。 図3の停止位置30において生じる走行位置および姿勢のずれを例示する平面図である。 ロボットアームの動作を補正するためにロボットアーム部にカメラが搭載された図1の変形例の生産システムを示す斜視図である。 図1の他の変形例の生産システムを示す斜視図である。 自走式ロボットの走行位置および姿勢を検出するためのカメラを走行領域の周辺に設置した図1のさらに他の変形例の生産システムを示す斜視図である。 走行領域の周辺に設置したカメラによって複数台の自走式ロボットの走行位置および姿勢を検出する図1のさらに他の変形例の生産システムを示す斜視図である。 自走式ロボットの走行位置および姿勢を検出するための検出機器として距離センサを用いた図1のさらに他の変形例の生産システムを示す斜視図である。
以下、図面を参照して本発明の実施形態について説明する。
図1は、一実施形態に係る自走式ロボット1を用いた生産システムを示している。図1では、自走式ロボット1の走行動作を説明するために、便宜上、自走式ロボット1を互いに異なる2つの位置に示しているが、ここでは、1台の自走式ロボット1を用いた生産システムを想定している。
自走式ロボット1は、走行部2とロボットアーム部3を有している。走行部2は、自走式ロボット1全体を走行路面5上で走行させるための機構部である。走行部2については、これまで様々な構成が考案されているが、コストや制御性の面から、タイヤまたは車輪を走行路面5に接触するように配置し、モータなどの駆動源によって駆動する構成が最も一般的に用いられている。本実施形態における走行部2にも、このような構成を採用することができるが、これに限られるものではない。
ロボットアーム部3は走行部2上に取り付けられている。図には、垂直多関節型ロボットの形態のロボットアーム部3を示しているが、ロボットアーム部3は、プログラムに応じた自動制御により所望の作業を実行可能な機構であればよく、水平多関節型ロボットやパラレルリンクロボットなどの形態であってもよい。ロボットアーム部3は、走行部2上に複数取り付けられていてもよい。
ロボットアーム部3の先端には、ハンド4を装着することができる。ハンド4としては、用途に応じた構成のものを用いることができ、例えば、ロード・アンロードする部品に応じてそれを保持可能な種々の大きさおよび形状を有するものとすることができる。また、製品の自動組立や溶接・塗装などの処理をするための機構が組み込まれたハンド4を用いることもでき、それによって広範な用途へ自走式ロボット1を適用することができる。
また、自走式ロボット1の走行部2の内部には、走行部2とロボットアーム部3の両者を制御するための制御装置および駆動用バッテリ(不図示)が搭載されている。自走式ロボット1は、駆動用バッテリを搭載することによって電気供給のためのケーブルを通常は接続しない形態としているが、ケーブルを接続した状態で動作する構成としてもよい。また、制御装置を自走式ロボット1の外部に配置し、ケーブルなどの電気的接続手段によって自走式ロボット1に接続した構成としてもよい。
このような自走式ロボット1は、例えば、部品のロード・アンロード用途で用いるのに好適であり、すなわち、部品を互いに離れた所定の場所の間、例えば集積部と作業部の間で搬送するのに用いることができる。また、その他の用途として、溶接や塗装などの作業を行うハンド4を備えるロボットアーム部3を様々な場所に移動させて処理を行わせることが考えられる。それによって、作業が必要な場所毎にロボットを配置するのに比べて、ロボット導入数を減らし1台あたりの稼働率を向上させ、安価なコストで高い生産性を有する生産システムを構築することができる。
ここで、自走式ロボット1は、固定レール上を移動する構成ではなく、走行部2によって生産現場内の走行路面5上を自在に走行する構成である。このため、製品の構成や仕様の変更に伴って製造工程や必要な処理装置の配置などの生産システムのレイアウトの変更が行われる場合にも、自走式ロボット1は、動作手順を変更することで、引き続き使用することができる。したがって、自走式ロボット1の構成は、生産製品の変更に伴う生産システムのレイアウト変更が比較的頻繁に必要となる多品種少中量生産の生産現場において、非常に効率的なロボット構成の一つであると言える。
次に動作について説明すると、概して、自走式ロボット1は、走行部2によって作業位置6に移動し、ロボットアーム3によって作業対象物8に対して所定の作業を行う。ロボットアーム3による作業としては、部品のロード・アンロードや溶接・塗装など種々の作業を設定することができる。このようなロボットアーム3の動作は、公知のように実行することができ、本発明には直接関係しないので詳細な説明は省略する。
本実施形態では、自走式ロボット1は、作業位置6の他に、走行誤差測定位置7にも移動させられる。走行誤差測定位置7には、走行路面5上に検出マーク14が設けられている。自走式ロボット1の走行部2の一側面には、この検出マーク14を撮影するカメラ13が取り付けられている。カメラ13は、走行路面5上の検出マーク14を適切に撮影することができるように下向きに取り付けられている。
図2は、検出マーク14の一例を示している。この例のように、検出マーク14としては、所定の一方向を他の方向と異なる、したがって区別できる形状を有するものとするのが好ましい。それによって、検出マーク14を撮影し画像処理することによって、検出マーク14に対するカメラ13の位置だけでなく、姿勢(走行路面5に平行な面内での向き)も判定することができる。姿勢を検出するためには、複数個所に設けたマークを検出する構成としてもよいが、単一箇所の検出マーク14で姿勢を判定できるようにすることによって、検出速度を速めることができる。
実際には、自走式ロボット1は、通常、走行部2を有しているという利点を生かして、複数の作業位置6に移動して作業を行う。図3は、このような走行パターンの一例を示している。すなわち、同図に示す例では、自走式ロボット1は、走行誤差測定位置7に対応する停止位置30から2つの作業位置6に対応する停止位置31,32に順に移動し、停止位置30に戻るというパターンで繰返し動作する。
ここで、走行部2による走行位置および姿勢は、走行路面5上に設定された基準座標系10にしたがって表すことができる。すなわち、自走式ロボット1の水平面内での中心などの基準箇所の、基準座標系10にしたがった位置x,y、および、自走式ロボット1の基準面、例えば走行部2の一側面の、基準座標系10の例えばx軸に対する角度θによって表すことができる。図3において、(x30,y30,θ30)といった記載は、このような基準座標系10を用いて各停止位置30,31,32を表現したものである。
このようなx,y,θを用いた表現は、直感的にわかりやすく取り扱いやすいことから、オペレータによる動作位置の指定や、制御装置における停止位置の記憶情報の形式などとして利用するのに好ましい。実際の制御には、他の表現形式を用いることもできるのはもちろんである。
走行部2による各停止位置30,31,32間の走行は、各停止位置30,31,32の位置および姿勢の情報に応じて、走行部2の各車輪などを適切なパターンで動作させることによって実行することができる。しかしながら、原理的に、実際の動作位置には、誤差が生じるのを避けられない。したがって、図4に示すように、走行誤差測定位置7に対応する停止位置30で、自走式ロボット1は、停止位置31,32を経て停止位置30に戻る動作後には、理論的な位置および姿勢(x30,y30,θ30)からずれた位置および姿勢(x30’,y30’,θ30’)となる。
本実施形態では、走行誤差測定位置7における自走式ロボット1の走行位置および姿勢のこのようなずれ(第1の誤差)を、自走式ロボット1が走行誤差測定位置7に移動させられた状態で、検出マーク14をカメラ13によって撮影し、画像認識することによって検出する。すなわち、概して、撮影画像上での検出マーク14の位置および向きのずれは、自走式ロボット1の走行位置および姿勢のずれに対応している。したがって、例えば、自走式ロボット1を走行誤差測定位置7のずれの無い位置に配置した状態、例えば、教示時の位置にある状態でカメラ13によって撮影した検出マーク14の画像と、実稼動時に撮影した画像との比較によって、走行位置および姿勢のずれを求めることができる。あるいは、検出マーク14の実際の大きさなどに基づいて理論的にカメラ13と検出マーク14の位置関係を求め、それに基づいて走行位置および姿勢のずれを求めてもよい。
そして、次に、自走式ロボット1を走行部2の走行によって停止位置31に移動させる際、走行誤差測定位置7である停止位置30における自走式ロボット1の走行位置および姿勢の上述のように求めたずれ分だけ走行量を変化させることによって、ずれを補正することができる。あるいは、補正動作を独立して行い、すなわち、例えば、停止位置30において、求めた走行位置および姿勢のずれ分だけ、走行部2を動作させてもよい。しかし、停止位置31への移動量を補正する方法の方が、独立した補正動作が不要となり処理時間が長くなるのを抑制することができる点で好ましい。また、走行部2のタイヤや車輪の軸線方向にずれが生じていた場合の補正では、その場での補正動作は複雑になるが、停止位置30,31間での走行量を変化させる形での動作によれば、このような補正も比較的容易に実行可能である。
また、自走式ロボット1には、ロボットアーム部3にもカメラ20が取り付けられており、図5に示すように、作業位置6において、カメラ20によって画像が撮影され、それがロボットアーム部3の動作制御に用いられる。すなわち、作業位置6において、カメラ20によって、例えば、作業対象物8などの画像を撮影することによって、ロボットアーム部3の先端などの操作部の作業対象物8に対する位置や姿勢を判定することができる。そして、教示動作などによって設定された操作部の位置や姿勢とのずれ(第2の誤差)を求め、そのずれ分だけ、ロボットアーム部3の動作を補正することにより、ロボットアーム部3によって高い精度で所定の作業を行うことができる。
この際、走行誤差測定位置7である停止位置30で、またはそこから停止位置31へ移動する間に走行位置および姿勢のずれが補正されるものの、停止位置30から31や32に走行する間にも、滑りなどによる誤差が生じる。このため、ロボットアーム部3の位置や姿勢のずれには、自走式ロボット1の走行位置や姿勢のずれによるずれ分が含まれる。走行部2による走行では、特に滑りによって誤差を生じやすいのに対して、ロボットアーム部3の動作には誤差を生じにくい。したがって、カメラ20による作業対象物8の撮影によって求められる誤差においては、走行位置および姿勢の誤差が支配的である場合が多く、また、走行位置および姿勢の誤差を求めることができるように、ロボットアーム部3の動作の影響を受けないようにカメラ20を配置したり、誤差の演算処理を行ったりしてもよい。
また、本発明では、走行位置や姿勢のずれは、繰返し動作の各サイクル毎に補正されるため、蓄積されて大きくなることはなく、比較的小さく抑えられる。このため、作業対象物8などの所定の撮影対象物がカメラ20の撮影範囲から外れるほどカメラ20の位置および姿勢のずれが大きくなるのを抑制することができる。したがって、カメラ20によって適切に所定の撮影対象物を撮影することができ、その撮影画像に基づいてロボットアーム部3の動作を適切に補正して制御することができる。
ここで、ロボットアーム部3の動作制御に用いるカメラ20は、上記のような操作部の位置および姿勢の誤差を補正する以外の目的で用いられる場合がある。例えば、ロボットアーム部3によって部品のロード・アンロードを行う場合、作業対象物8が、部品が、いわゆる「バラ積み」をされ、正確に予め定められた位置に配置されるものではない場合がある。この場合、実稼動時に作業対象物8の正確な位置を認識する必要があり、そのために、カメラ20による画像認識を利用することができる。この際にも、走行位置および姿勢の誤差が小さく抑えられることによって、「バラ積み」された作業対象物8を適切にカメラ20によって撮影し、適切な作業を実行することができる。
この際、「バラ積み」される部品のロード・アンロードなどの作業を可能とするカメラは、部品の積載部に設置しておくことも考えられるが、自走式ロボット1に搭載したカメラ20を用いることで、任意の場所で作業が可能となる。それによって、生産システムのレイアウト変更に柔軟に対応できるなどの利点が得られる。
カメラ20を用いた画像認識による位置および姿勢の誤差の算出は、例えば、自走式ロボット1を正確に作業位置6に位置させた時、例えば教示時に、基準画像を撮影し、実稼動時に撮影した画像と基準画像との差に基づいて実行することができる。この際、「バラ積み」の場合には、稼動時の撮影画像と教示時の撮影画像の差は、作業対象物8が「バラ積み」されているために教示時とは位置がずれていることに基づく差と、カメラ20の位置のずれに基づく差とが足し合わされたものとなる。ロボットアーム部3によって作業対象物8のロード・アンロードを行う場合、ロボットアーム部3はこの足し合わされた差分を補正して作業対象物8をロードするが、ロードした作業対象物8を基準座標系10に対して位置が定義された所定の場所にアンロードする際は、アンロードする場所が所定の場所に対してカメラ20の位置のずれに基づく差の分ずれることとなる。この場合には、例えば作業対象物8の支持台の位置を用いるなどして、カメラ20の位置のずれ、すなわち、ロボットアーム部3の位置および姿勢のずれを必要に応じて求め、ロボットアーム部3の動作制御に利用することができる。
なお、ロボットアーム部3の動作の補正を行うためのカメラ20は、走行部2上に配置してもよい。また、ロボットアーム部3の動作の補正を行うのと、走行部2による走行位置および姿勢の補正を行うのとに、共用のカメラを用いてもよい。それによって、カメラの数を減らして生産システムのコストを低減することができる。カメラを共用とする場合、カメラは、ロボットアーム部3上に取り付けるのが好ましい。それによって、検出マーク14の検出時と作業対象物8の検出時とで、ロボットアーム部3の姿勢を、それぞれを撮影するのに適した姿勢に適宜変更して、適切な撮影を行うことができる。
以上説明した本実施形態によれば、自走式ロボット1の走行に伴う滑りなどによる走行位置および姿勢のずれに対して走行部2により補正動作を行うことによって、自走式ロボット1を精度よく動作させることができる。走行路面5上を自由に走行できる自走式ロボット1では、走行の自由度が高く走行に制限が加えられないことから、走行路面5上での滑りなどによって、特に高速での走行を行った場合、走行位置および姿勢に誤差を生じやすい。そのため、走行位置および姿勢のずれに対して補正を行うことによって、動作精度の向上に大きく貢献することができる。また、繰返し動作時の各サイクル毎に走行位置および姿勢のずれを補正することができるため、複数サイクルでのずれが蓄積されて、ずれが大きくなるのを回避することができる。
また、本実施形態では、走行誤差測定位置7でのみ走行誤差の測定を行っている。したがって、ガイドラインを設けたり、走行領域付近の側壁との距離を測定したりして、走行経路全体にわたって動作誘導を行う場合に比べて、生産システムのレイアウト変更に柔軟に対応することができる。すなわち、検出マーク14の近辺以外の部分であれば、走行誤差の補正に関する構成を変更することなく、レイアウトを変更することができる。そのため、生産システムのレイアウトを変更しても、誤差の補正が困難となったり、補正のための構成を変更する必要が生じたりしにくい。したがって、レイアウト変更時に、走行誤差の補正に関する構成については必要最小限の変更で済ませることができ、低費用かつ短時間で対応することができる。また、走行経路全体にわたってガイドラインを設けるのに比べて、所定の個所に検出マーク14を設ければ済むので、構成が簡素でありコストを抑えることができる。
なお、上述の実施形態は本発明を例示するものであり、特許請求の範囲に規定する本発明の範囲内で種々の変更が可能である。例えば、複数台の自走式ロボット1を同一の領域内で走行させる場合にも、本発明は適用可能である。
また、カメラ13は、走行位置および姿勢を検出するため、ロボットアーム部3の動作の影響を受けないように走行部2に取り付けるのが好ましいが、ロボットアーム部3に取り付けられた構成としてもよい。
また、走行誤差測定位置7は、作業位置6と別の位置ではなく、複数の作業位置6のうちの1つを走行誤差測定位置7とし、すなわち、当該作業位置6に検出マーク14を配置し、その撮影によって走行ロボット1の走行位置を検出してもよい。また、作業位置6は、3つ以上あってもよく、特に多数の作業位置6がある場合、幾つかの作業位置6毎に1つずつ、全体として複数の走行誤差測定位置7を設定してもよい。走行誤差測定位置7をどの程度設定するかは、走行部2のタイヤまたは車輪の形状や材質と走行路面5の路面状況に左右される両者の間の摩擦係数や、自走式ロボット1の走行速度などを考慮して、走行位置および姿勢の誤差が大きくなり過ぎないように適宜設定すればよい。また、繰返し動作の1サイクルで生じる走行位置および姿勢の誤差が十分に小さい場合には、補正動作を数サイクルに一度行うようにしてもよい。
また、上述の実施形態におけるように、検出マーク14を走行路面5上に配置すれば、例えば、生産システム内に複数の自走式ロボットを配置する場合でも、他の自走式ロボットに視野を遮られることなくカメラ13によって検出マーク14を撮影することができ好ましい。さらには、自走式ロボット1の位置や姿勢にずれが生じても、自らの走行部2およびロボットアーム部3や走行領域周辺の他の障害物などによってカメラ13の視野が遮られるのを抑制することができる。しかし、走行路面5上に検出マーク14を配置するのが困難な場合などには、図6に示すように、自走式ロボット1の走行領域の周辺の工作機械や建屋などの構造物の側面などに検出マーク14を配置してもよい。
また、図7に示すように、自走式ロボット1の走行領域の周辺にカメラ11を配置し、自走式ロボット1に設けた検出マーク24を撮影する構成としてもよい。この場合、カメラ11によって取得した情報を自走式ロボット1に伝達する必要があるが、特に無線通信を使うことにより、情報の即時性を失うことなく自走式ロボット1への伝達を行うことができる。ロボットアーム3の先端などの操作部の位置および姿勢の検出にも、自走式ロボット1の走行領域の周辺に配置したカメラを用いることも考えられる。
また、自走式ロボット1の走行領域の周辺にカメラ11を配置する場合、図8に示すように、複数の自走式ロボット1に対してカメラ11を共用してもよい。それによって、各自走式ロボット1にカメラ13を設けるよりも、カメラの台数を減らすことができ、全体として設備コストを安価に抑えることができる場合がある。
一方、自走式ロボット1の走行領域が広い場合や、多数の自走式ロボット1を用いる場合、自走式ロボット1がどの位置にいても確実に精度よく検出を行うことができるように、走行領域の周辺の複数個所にカメラ11を配置してもよい。自走式ロボット1にカメラ13を設ける構成では、走行範囲が広くてもカメラを増やす必要がなく、走行路面5上の検出マーク14だけを増やせば済む。このため、自走式ロボット1の台数が少なく、走行範囲が広い場合には、自走式ロボット1にカメラを設けた方が、生産システムの全体としてのコストや構築時間などの面で有利な場合もある。したがって、カメラを自走式ロボット1に設けるか、自走式ロボット1の走行領域の周辺に設けるかは、生産システムの構成に応じて適宜選択することができる。
また、カメラ13,11による自走式ロボット1の位置検出を行うのには、特別な検出マーク14,24を設けなくても、代わりに、画像などから識別できる特定の対象物を利用してもよい。すなわち、例えば、走行路面5、走行領域周辺の構造物、あるいは自走式ロボット1の特徴的な構造の部分や、元々存在している特徴的な塗装部などをカメラ13,11によって撮影して、位置の判定を行ってもよい。
また、カメラ13,11,20のような撮像装置を用い、画像認識によって位置および姿勢を検出する方法は、今日の技術としては、比較的容易で、かつ位置だけでなく姿勢も含めて迅速に検出を行うことができるものであり、優れた手法の一つであるが、他の検出機器を用いてもよい。このような例として、図9には、距離センサを用いた構成を示している。
位置および姿勢を検出するための検出機器として距離センサを用いる場合、走行部2に最低2個以上の距離センサを搭載する必要がある。また、距離センサによる被検出体も複数配置することで、自走式ロボット1の位置および姿勢を精度よく検出することができる。
すなわち、図9には、走行部2の一側面に2つの距離センサ11a,11bを設けた例を示している。2つの距離センサ11a,11bによって、走行領域の周辺の構造物に配置した被検出体12a,12bとの距離を検出する。すると、各距離センサ11a,11bと各被検出体12a,12bとの距離から、各距離センサ11a,11bの位置(xa,ya)、(xb,yb)を算出することができる。そして、これらの位置から、自走式ロボット1の位置および姿勢を算出することができる。
1 自走式ロボット
2 走行部
3 ロボットアーム部
13,20 カメラ
14 検出マーク

Claims (10)

  1. 自走可能な走行部と、該走行部に搭載されたロボットアーム部とを有する自走式ロボットの位置および姿勢の補正方法であって、
    走行経路上の所定の位置で、前記走行部の設定された位置および姿勢からの誤差を第1の誤差として検出し、該第1の誤差を補正するように前記走行部の動作を制御する工程と、
    前記ロボットアーム部が作業対象物に対して作業を行う前記走行経路上の所定の作業位置で、前記ロボットアーム部の設定された位置および姿勢からの誤差を第2の誤差として検出し、該第2の誤差を補正するように前記ロボットアーム部の動作を制御する工程と、
    を有する、自走式ロボットの位置および姿勢の補正方法。
  2. 前記自走式ロボットに搭載された第1の検出機器により走行経路の周辺に位置する所定の対象物を検出することによって前記第1の誤差を検出する、請求項1に記載の自走式ロボットの位置および姿勢の補正方法。
  3. 走行経路の周辺に配置された第1の検出機器により前記自走式ロボット上の所定の対象物を検出することによって前記第1の誤差を検出する、請求項1に記載の自走式ロボットの位置および姿勢の補正方法。
  4. 前記第1の検出機器による検出情報を無線通信で前記自走式ロボットへ伝達する、請求項3に記載の自走式ロボットの位置および姿勢の補正方法。
  5. 前記第1の検出機器が撮像装置であり、画像認識によって位置および姿勢を検出する、請求項2〜4のいずれか1項に記載の自走式ロボットの位置および姿勢の補正方法。
  6. 前記自走式ロボットに搭載された第2の検出機器により前記作業対象物を検出することによって、前記第2の誤差を検出する、請求項1〜5のいずれか1項に記載の自走式ロボットの位置および姿勢の補正方法。
  7. 前記第2の検出機器が撮像装置であり、画像認識によって位置および姿勢を検出する、請求項6に記載の自走式ロボットの位置および姿勢の補正方法。
  8. 前記第1の誤差の検出と、前記第2の誤差の検出とに共通の検出機器を用いる、請求項1〜7に記載の自走式ロボットの位置および姿勢の補正方法。
  9. 前記第1の誤差の検出を行う前記走行経路上の前記所定の位置から前記作業位置への走行時に、検出された前記第1の誤差の分だけ走行の移動量を変化させることによって当該第1の誤差の補正を行う、請求項1〜8のいずれか1項に記載の自走式ロボットの位置および姿勢の補正方法。
  10. 前記第1の誤差の検出を行う前記走行経路上の前記所定の位置を繰返し通るように前記自走式ロボットを繰返し動作させ、前記所定の位置を通るたびに、前記第1の誤差を検出し、該第1の誤差を補正する動作を行う、請求項1〜9のいずれか1項に記載の自走式ロボットの位置および姿勢の補正方法。
JP2009005893A 2009-01-14 2009-01-14 自走式ロボットの位置および姿勢の補正方法 Pending JP2010162635A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005893A JP2010162635A (ja) 2009-01-14 2009-01-14 自走式ロボットの位置および姿勢の補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005893A JP2010162635A (ja) 2009-01-14 2009-01-14 自走式ロボットの位置および姿勢の補正方法

Publications (1)

Publication Number Publication Date
JP2010162635A true JP2010162635A (ja) 2010-07-29

Family

ID=42579240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005893A Pending JP2010162635A (ja) 2009-01-14 2009-01-14 自走式ロボットの位置および姿勢の補正方法

Country Status (1)

Country Link
JP (1) JP2010162635A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176944A (ja) * 2013-03-15 2014-09-25 Yaskawa Electric Corp ロボットシステム、校正方法及び被加工物の製造方法
JP2017074631A (ja) * 2015-10-13 2017-04-20 富士電機株式会社 製造システム
CN107053218A (zh) * 2017-06-02 2017-08-18 西安热工研究院有限公司 一种检测光伏组件红外热斑的智能机器人及检测方法
WO2018024366A1 (de) * 2016-08-05 2018-02-08 Kuka Roboter Gmbh Robotersystem mit mobilern roboter
CN107891414A (zh) * 2016-10-04 2018-04-10 发那科株式会社 机器人***
WO2018050889A3 (en) * 2016-09-19 2018-04-26 Project Management Limited An autonomous sampling system
DE102017128543A1 (de) 2016-12-08 2018-06-14 Fanuc Corporation Störbereich-einstellvorrichtung für einen mobilen roboter
KR101884825B1 (ko) * 2017-12-28 2018-08-02 주식회사 로탈 무인운반차를 이용한 자동화 창고 시스템
WO2019049947A1 (ja) * 2017-09-07 2019-03-14 川崎重工業株式会社 ロボットシステム及びその運転方法
JP2019093533A (ja) * 2017-11-28 2019-06-20 ファナック株式会社 ロボットおよびロボットシステム
CN109927009A (zh) * 2019-03-05 2019-06-25 广东博智林机器人有限公司 搬运铝模板的控制方法和装置、搬运铝模板的***
JP2020073302A (ja) * 2017-11-28 2020-05-14 ファナック株式会社 ロボットおよびロボットシステム
JP2020181485A (ja) * 2019-04-26 2020-11-05 ファナック株式会社 無人搬送ロボットシステム
JP6957781B1 (ja) * 2021-06-14 2021-11-02 Dmg森精機株式会社 自走装置
WO2022014133A1 (ja) * 2020-07-16 2022-01-20 東京ロボティクス株式会社 モバイルマニピュレータ及びその制御方法及びプログラム
WO2022091767A1 (ja) * 2020-10-30 2022-05-05 Dmg森精機株式会社 画像処理方法、画像処理装置、ロボット搭載型搬送装置、及びシステム
WO2022097536A1 (ja) * 2020-11-05 2022-05-12 Dmg森精機株式会社 ロボット搭載移動装置及びシステムの位置決め制御方法
JP2022530589A (ja) * 2019-09-11 2022-06-30 Dmg森精機株式会社 ロボット搭載移動装置、システム及び工作機械
WO2023053374A1 (ja) * 2021-09-30 2023-04-06 ファナック株式会社 制御装置及びロボットシステム
JP7487478B2 (ja) 2020-01-23 2024-05-21 セイコーエプソン株式会社 移動ロボットの制御方法及び制御装置、並びに、ロボットシステム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017507A (ja) * 1983-07-11 1985-01-29 Daifuku Co Ltd 無人車の停止状態検出装置
JPS6455606A (en) * 1987-08-27 1989-03-02 Nissan Motor Running controller for automatically guided vehicle
JPH0448304A (ja) * 1990-06-18 1992-02-18 Hitachi Ltd 自走ロボットの位置補正方法及びその装置
JPH04155407A (ja) * 1990-10-19 1992-05-28 Hitachi Ltd 自走式部品搬送システムの位置決め方法
JPH07116972A (ja) * 1993-10-26 1995-05-09 Shinko Electric Co Ltd 建築内装用自走式ロボット
JPH10291179A (ja) * 1997-04-21 1998-11-04 Shinko Electric Co Ltd 作業装置の位置補正装置及びその方法
JPH11156764A (ja) * 1997-11-28 1999-06-15 Denso Corp 移動ロボット装置
JPH11175150A (ja) * 1997-12-09 1999-07-02 Shinko Electric Co Ltd 移動体の停止位置ズレ量検出装置
JP2000194418A (ja) * 1998-12-25 2000-07-14 Murata Mach Ltd 無人搬送車の位置補正システム
JP2001252883A (ja) * 2000-03-09 2001-09-18 Denso Corp 移動ロボットシステム
JP2002073171A (ja) * 2000-08-31 2002-03-12 Denso Corp 無人搬送車の走行制御方法
JP2003305676A (ja) * 2002-04-11 2003-10-28 Denso Wave Inc 移動ロボットの制御方法及び制御装置
JP2005275725A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 移動装置システム、移動装置および移動装置システムの制御方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017507A (ja) * 1983-07-11 1985-01-29 Daifuku Co Ltd 無人車の停止状態検出装置
JPS6455606A (en) * 1987-08-27 1989-03-02 Nissan Motor Running controller for automatically guided vehicle
JPH0448304A (ja) * 1990-06-18 1992-02-18 Hitachi Ltd 自走ロボットの位置補正方法及びその装置
JPH04155407A (ja) * 1990-10-19 1992-05-28 Hitachi Ltd 自走式部品搬送システムの位置決め方法
JPH07116972A (ja) * 1993-10-26 1995-05-09 Shinko Electric Co Ltd 建築内装用自走式ロボット
JPH10291179A (ja) * 1997-04-21 1998-11-04 Shinko Electric Co Ltd 作業装置の位置補正装置及びその方法
JPH11156764A (ja) * 1997-11-28 1999-06-15 Denso Corp 移動ロボット装置
JPH11175150A (ja) * 1997-12-09 1999-07-02 Shinko Electric Co Ltd 移動体の停止位置ズレ量検出装置
JP2000194418A (ja) * 1998-12-25 2000-07-14 Murata Mach Ltd 無人搬送車の位置補正システム
JP2001252883A (ja) * 2000-03-09 2001-09-18 Denso Corp 移動ロボットシステム
JP2002073171A (ja) * 2000-08-31 2002-03-12 Denso Corp 無人搬送車の走行制御方法
JP2003305676A (ja) * 2002-04-11 2003-10-28 Denso Wave Inc 移動ロボットの制御方法及び制御装置
JP2005275725A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 移動装置システム、移動装置および移動装置システムの制御方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176944A (ja) * 2013-03-15 2014-09-25 Yaskawa Electric Corp ロボットシステム、校正方法及び被加工物の製造方法
JP2017074631A (ja) * 2015-10-13 2017-04-20 富士電機株式会社 製造システム
WO2018024366A1 (de) * 2016-08-05 2018-02-08 Kuka Roboter Gmbh Robotersystem mit mobilern roboter
WO2018050889A3 (en) * 2016-09-19 2018-04-26 Project Management Limited An autonomous sampling system
US10500731B2 (en) 2016-10-04 2019-12-10 Fanuc Corporation Robot system including robot supported by movable carriage
CN107891414A (zh) * 2016-10-04 2018-04-10 发那科株式会社 机器人***
JP2018058142A (ja) * 2016-10-04 2018-04-12 ファナック株式会社 移動可能な台車に支持されたロボットを備えるロボットシステム
CN107891414B (zh) * 2016-10-04 2020-04-17 发那科株式会社 机器人***
US10675759B2 (en) 2016-12-08 2020-06-09 Fanuc Corporation Interference region setting apparatus for mobile robot
DE102017128543A1 (de) 2016-12-08 2018-06-14 Fanuc Corporation Störbereich-einstellvorrichtung für einen mobilen roboter
DE102017128543B4 (de) 2016-12-08 2022-02-03 Fanuc Corporation Störbereich-einstellvorrichtung für einen mobilen roboter
CN107053218A (zh) * 2017-06-02 2017-08-18 西安热工研究院有限公司 一种检测光伏组件红外热斑的智能机器人及检测方法
WO2019049947A1 (ja) * 2017-09-07 2019-03-14 川崎重工業株式会社 ロボットシステム及びその運転方法
JPWO2019049947A1 (ja) * 2017-09-07 2020-09-24 川崎重工業株式会社 ロボットシステム及びその運転方法
JP2019093533A (ja) * 2017-11-28 2019-06-20 ファナック株式会社 ロボットおよびロボットシステム
JP2020073302A (ja) * 2017-11-28 2020-05-14 ファナック株式会社 ロボットおよびロボットシステム
US11992962B2 (en) 2017-11-28 2024-05-28 Fanuc Corporation Robot and robot system
US11565421B2 (en) 2017-11-28 2023-01-31 Fanuc Corporation Robot and robot system
KR101884825B1 (ko) * 2017-12-28 2018-08-02 주식회사 로탈 무인운반차를 이용한 자동화 창고 시스템
CN109927009A (zh) * 2019-03-05 2019-06-25 广东博智林机器人有限公司 搬运铝模板的控制方法和装置、搬运铝模板的***
CN111923005A (zh) * 2019-04-26 2020-11-13 发那科株式会社 无人搬运机器人***
US11628573B2 (en) * 2019-04-26 2023-04-18 Fanuc Corporation Unmanned transfer robot system
JP7000378B2 (ja) 2019-04-26 2022-01-19 ファナック株式会社 無人搬送ロボットシステム
JP2020181485A (ja) * 2019-04-26 2020-11-05 ファナック株式会社 無人搬送ロボットシステム
JP2022530589A (ja) * 2019-09-11 2022-06-30 Dmg森精機株式会社 ロボット搭載移動装置、システム及び工作機械
JP7482364B2 (ja) 2019-09-11 2024-05-14 Dmg森精機株式会社 ロボット搭載移動装置及びシステム
JP7487478B2 (ja) 2020-01-23 2024-05-21 セイコーエプソン株式会社 移動ロボットの制御方法及び制御装置、並びに、ロボットシステム
WO2022014133A1 (ja) * 2020-07-16 2022-01-20 東京ロボティクス株式会社 モバイルマニピュレータ及びその制御方法及びプログラム
JP7475663B2 (ja) 2020-07-16 2024-04-30 東京ロボティクス株式会社 モバイルマニピュレータ及びその制御方法及びプログラム
WO2022091767A1 (ja) * 2020-10-30 2022-05-05 Dmg森精機株式会社 画像処理方法、画像処理装置、ロボット搭載型搬送装置、及びシステム
JP7133604B2 (ja) 2020-11-05 2022-09-08 Dmg森精機株式会社 ロボット搭載移動装置及びシステムの位置決め制御方法
JP2022074725A (ja) * 2020-11-05 2022-05-18 Dmg森精機株式会社 ロボット搭載移動装置及びシステムの位置決め制御方法
WO2022097536A1 (ja) * 2020-11-05 2022-05-12 Dmg森精機株式会社 ロボット搭載移動装置及びシステムの位置決め制御方法
JP6957781B1 (ja) * 2021-06-14 2021-11-02 Dmg森精機株式会社 自走装置
JP2022190478A (ja) * 2021-06-14 2022-12-26 Dmg森精機株式会社 自走装置
WO2023053374A1 (ja) * 2021-09-30 2023-04-06 ファナック株式会社 制御装置及びロボットシステム

Similar Documents

Publication Publication Date Title
JP2010162635A (ja) 自走式ロボットの位置および姿勢の補正方法
US9244463B2 (en) Automated guided vehicle and method of operating an automated guided vehicle
US11241796B2 (en) Robot system and method for controlling robot system
JP6599543B2 (ja) 自動搬送車
TWI637830B (zh) 自走式關節機器人
JP6664830B2 (ja) 製造システム
JP4930853B2 (ja) ウェハ搬送装置
JP4735476B2 (ja) 自律移動装置
JP2013063474A (ja) ロボットシステム及び撮像方法
JP2018194937A (ja) 無人搬送車の走行制御装置および走行制御方法
CN110740841A (zh) 作业***
CN112428248A (zh) 机器人***及控制方法
JP5869303B2 (ja) 自動搬送システム
JP4506255B2 (ja) ウェハ位置教示方法およびそのロボット
JP2020181485A (ja) 無人搬送ロボットシステム
JP7216582B2 (ja) 車両の走行制御システム
CN114450130A (zh) 高度校正***
CN110153995B (zh) 工业用机器人的修正值计算方法
JP5298959B2 (ja) 移動体
JP2009244965A (ja) 移動体
JP2010262461A (ja) 移動体
JP5118896B2 (ja) 搬送ロボットシステム
JP4862383B2 (ja) 協調搬送方法および協調搬送装置
JP2002073171A (ja) 無人搬送車の走行制御方法
JP2012027711A (ja) 移動体システム及びパネル、並びに位置補正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105