JP2010150082A - Method for manufacturing dielectric ceramic material - Google Patents

Method for manufacturing dielectric ceramic material Download PDF

Info

Publication number
JP2010150082A
JP2010150082A JP2008330072A JP2008330072A JP2010150082A JP 2010150082 A JP2010150082 A JP 2010150082A JP 2008330072 A JP2008330072 A JP 2008330072A JP 2008330072 A JP2008330072 A JP 2008330072A JP 2010150082 A JP2010150082 A JP 2010150082A
Authority
JP
Japan
Prior art keywords
powder
particle size
ceramic material
alkaline earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008330072A
Other languages
Japanese (ja)
Other versions
JP5184333B2 (en
Inventor
Nobutake Hirai
伸岳 平井
Kotaro Hatake
宏太郎 畠
Takeshi Yamaguchi
健 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Priority to JP2008330072A priority Critical patent/JP5184333B2/en
Priority to KR1020090125109A priority patent/KR101101598B1/en
Publication of JP2010150082A publication Critical patent/JP2010150082A/en
Application granted granted Critical
Publication of JP5184333B2 publication Critical patent/JP5184333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a dielectric ceramic material which has small particle size, high crystallinity and little variation in the particle size and is suited for forming a thin dielectric layer. <P>SOLUTION: The method for manufacturing the dielectric ceramic material by carrying out a solid state reaction of an alkaline earth metal compound and titanium dioxide comprises a firing step of firing a mixed powder which comprises a powder of the alkaline earth metal compound and a powder of titanium dioxide and has a specific surface area of ≥35 m<SP>2</SP>/g and a particle size distribution characterized by D90/D50 of ≤1.25. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、粒径が小さく、結晶性が高く、かつ、粒径のバラツキが少ない誘電体層の薄層化に適した誘電体セラミックス材料の製造方法に関するものである。   The present invention relates to a method for manufacturing a dielectric ceramic material suitable for thinning a dielectric layer having a small particle size, high crystallinity, and little variation in particle size.

従来の積層セラミックコンデンサは、主成分としてチタン酸バリウム系化合物を、副成分として特性調整のための金属化合物を含有するセラミック誘電体材料を、シート状に成形してグリーンシートを作製し、このグリーンシート上に電極を印刷したものを積層する工程を繰り返すことにより作製されている。   Conventional multilayer ceramic capacitors are produced by forming a green sheet by forming a ceramic dielectric material containing a barium titanate compound as a main component and a metal compound for adjusting characteristics as a subcomponent into a sheet shape. It is produced by repeating the process of laminating a sheet in which electrodes are printed on a sheet.

近時、電子機器製品の小型化に伴い、電子回路の高密度化が進み、この結果、積層セラミックコンデンサの小型大容量化が強く求められている。そして、この要望を実現するために、内部電極層と誘電体層の薄層化と積層数の増加が試みられている。   In recent years, with the miniaturization of electronic equipment products, the density of electronic circuits has been increasing, and as a result, there has been a strong demand for the reduction in size and capacity of multilayer ceramic capacitors. In order to realize this demand, attempts have been made to reduce the number of internal electrode layers and dielectric layers and increase the number of layers.

しかし、誘電体層が薄層化された場合、主成分であるチタン酸バリウム系化合物の粒径が大きいと、グリーンチップ焼成後の特性や誘電体層の表面粗さにバラツキが生じ、ショート率が増加し絶縁抵抗不良が多くなる。このため主成分であるチタン酸バリウム系化合物の微粒子化が求められている。   However, when the dielectric layer is thinned, if the particle size of the main component barium titanate compound is large, the characteristics after firing the green chip and the surface roughness of the dielectric layer will vary, resulting in a short circuit rate. Increases and the insulation resistance defect increases. For this reason, there is a demand for fine particles of the barium titanate compound as the main component.

特許文献1には、特定の比表面積を有する二酸化チタン粉末と炭酸バリウム粉末との混合粉末を焼成することが記載されている。しかしながら、この方法では粒径が小さく、粒径のバラツキも少なく、かつ、結晶性の高いチタン酸バリウム系粉末を再現性よく得ることができない。
特開2008−222522
Patent Document 1 describes firing a mixed powder of titanium dioxide powder and barium carbonate powder having a specific specific surface area. However, with this method, it is not possible to obtain a barium titanate-based powder having a small particle size, small particle size variation, and high crystallinity with good reproducibility.
JP2008-222522

そこで本発明は、上記現状に鑑み、粒径が小さく、結晶性が高く、かつ、粒径のバラツキが少ない誘電体層の薄層化に適した誘電体セラミックス材料の製造方法を提供することを課題とする。   Accordingly, in view of the above situation, the present invention provides a method for producing a dielectric ceramic material suitable for thinning a dielectric layer having a small particle size, high crystallinity, and small particle size variation. Let it be an issue.

すなわち本発明に係る誘電体セラミックス材料の製造方法は、アルカリ土類金属化合物と二酸化チタンとを固相反応により反応させて誘電体セラミックス材料を製造する方法であって、比表面積が35m/g以上で、粒度分布を表すD90/D50が1.25以下である、前記アルカリ土類金属化合物の粉末と二酸化チタンの粉末との混合粉末を焼成する焼成工程を備えていることを特徴とする。ここで、前記比表面積は、乾燥した状態の前記混合粉末について測定した値であり、前記D90/D50は、スラリー状態の前記混合粉末について測定した値である。 That is, the method for producing a dielectric ceramic material according to the present invention is a method for producing a dielectric ceramic material by reacting an alkaline earth metal compound and titanium dioxide by a solid phase reaction, and having a specific surface area of 35 m 2 / g. As described above, the method includes a firing step of firing a mixed powder of the alkaline earth metal compound powder and the titanium dioxide powder having a particle size distribution of D90 / D50 of 1.25 or less. Here, the specific surface area is a value measured for the mixed powder in a dry state, and the D90 / D50 is a value measured for the mixed powder in a slurry state.

このようなものであれば、比表面積が35m/g以上で、粒度分布を表すD90/D50が1.25以下である混合粉末を焼成することにより、平均粒径が100nm以下で、粒度分布のバラツキを表す標準偏差σが30以下で、かつ、結晶性を表すc/a軸比が1.0075以上であるような、粒径が小さく、粒径のバラツキが少なく、かつ、結晶性が高いチタン酸アルカリ土類金属塩の粉末を得ることができる。 In such a case, by firing a mixed powder having a specific surface area of 35 m 2 / g or more and a D90 / D50 representing a particle size distribution of 1.25 or less, the average particle size is 100 nm or less and the particle size distribution is The standard deviation σ representing the variation in the particle size is 30 or less, the c / a axial ratio representing the crystallinity is 1.0075 or more, the particle size is small, the particle size variation is small, and the crystallinity is A high alkaline earth metal titanate powder can be obtained.

このように、粒径が小さく、粒径のバラツキが少なく、かつ、結晶性が高いチタン酸アルカリ土類金属塩を誘電体層の主成分として用いることにより、ショート率が低く絶縁抵抗不良も抑制されるうえに充分な静電容量を備えた積層セラミックコンデンサを得ることができる。   In this way, by using alkaline earth metal titanate with small particle size, small particle size variation, and high crystallinity as the main component of the dielectric layer, the short-circuit rate is low and insulation resistance defects are also suppressed. In addition, a multilayer ceramic capacitor having sufficient capacitance can be obtained.

本発明に係る製造方法により得られた誘電体材料の焼結体からなる誘電体層を備えている積層セラミックコンデンサもまた、本発明の1つである。   A multilayer ceramic capacitor having a dielectric layer made of a sintered body of a dielectric material obtained by the manufacturing method according to the present invention is also one aspect of the present invention.

本発明によれば、主成分であるチタン酸アルカリ土類金属塩の粒径が小さく、粒径分布も狭小で、かつ、結晶性も高いので、誘電体層の表面粗さのバラツキが抑えられ、ショートや絶縁抵抗不良を抑制することができる。また、このような誘電体セラミックス材料を用いて作製されたグリーンシートは、組織が緻密であるので、焼成後の粒径も安定し、電気特性が安定するとともに、有効な焼成温度の温度範囲も広くなる。   According to the present invention, since the particle size of the alkaline earth metal titanate, which is the main component, is small, the particle size distribution is narrow, and the crystallinity is high, variations in the surface roughness of the dielectric layer can be suppressed. Short circuit and insulation resistance failure can be suppressed. In addition, since the green sheet produced using such a dielectric ceramic material has a dense structure, the particle size after firing is stable, the electrical characteristics are stable, and the temperature range of the effective firing temperature is also high. Become wider.

以下に本発明の一実施形態に係る積層セラミックコンデンサ1について図面を参照して説明する。   A multilayer ceramic capacitor 1 according to an embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る積層セラミックコンデンサ1は、図1に示すように、誘電体層3と内部電極4とが交互に積層されてなるコンデンサチップ体2と、このコンデンサチップ体2の表面に設けられ内部電極4と導通する外部電極5と、を備えている。内部電極4は、その端部がコンデンサチップ体2の対向する2つの表面に交互に露出するように積層されて、コンデンサチップ体2の当該表面上に形成されて所定のコンデンサ回路を構成する外部電極5と、電気的に接続している。   As shown in FIG. 1, the multilayer ceramic capacitor 1 according to this embodiment is provided on a capacitor chip body 2 in which dielectric layers 3 and internal electrodes 4 are alternately stacked, and on the surface of the capacitor chip body 2. An external electrode 5 electrically connected to the internal electrode 4. The internal electrodes 4 are laminated so that the ends thereof are alternately exposed on the two opposing surfaces of the capacitor chip body 2, and are formed on the surfaces of the capacitor chip body 2 to form a predetermined capacitor circuit. The electrode 5 is electrically connected.

誘電体層3は、チタン酸アルカリ土類金属塩を主成分とする誘電体セラミックス材料の焼結体からなるものであり、当該チタン酸アルカリ土類金属塩は、アルカリ土類金属化合物と二酸化チタン(TiO)とを固相反応により反応させることにより得ることができる。 The dielectric layer 3 is made of a sintered body of a dielectric ceramic material mainly composed of an alkaline earth metal titanate, and the alkaline earth metal titanate includes an alkaline earth metal compound and titanium dioxide. It can be obtained by reacting (TiO 2 ) with a solid phase reaction.

前記アルカリ土類金属化合物としては、例えば、炭酸バリウム(BaCO)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)等が挙げられ、前記チタン酸アルカリ土類金属塩としては、例えば、Ba1−x−yCaSrTiO(0≦x<1、0≦y<1)が挙げられる。 Examples of the alkaline earth metal compound include barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), and strontium carbonate (SrCO 3 ). Examples of the alkaline earth metal titanate include Ba. 1-x-y Ca x Sr y TiO 3 (0 ≦ x <1,0 ≦ y <1) can be mentioned.

前記固相反応は、比表面積が35m/g以上、好ましくは35〜52m/gで、粒度分布を表すD90/D50が1.25以下である、前記アルカリ土類金属化合物の粉末と二酸化チタンの粉末との混合粉末を焼成する焼成工程を備えたものである。比表面積が35m/g未満であると、結晶性の高い微粒子を得ることができなくなり、D90/D50が1.25を超えると、焼成後に得られるチタン酸アルカリ土類金属塩の粒径のバラツキが大きくなる。なお、当該比表面積は、乾燥した状態の前記混合粉末について、例えばBET法等を用いて測定されたものであり、当該D90/D50は、スラリー状態の前記混合粉末について、例えばレーザ回折・散乱法等を用いて測定されたものであり、粒度分布において50体積%の粒径であるD50と90体積%の粒径であるD90との比である。 The solid phase reaction has a specific surface area of 35m 2 / g or more, preferably at 35~52m 2 / g, D90 / D50 which represents the particle size distribution is 1.25 or less, of the alkaline earth metal compound powder and dioxide It comprises a firing step of firing a mixed powder with titanium powder. When the specific surface area is less than 35 m 2 / g, it becomes impossible to obtain fine particles having high crystallinity. When D90 / D50 exceeds 1.25, the particle diameter of the alkaline earth metal titanate obtained after firing Variations increase. The specific surface area is measured for the mixed powder in a dry state using, for example, the BET method, and the D90 / D50 is calculated using, for example, a laser diffraction / scattering method for the mixed powder in a slurry state. It is a ratio of D50 having a particle size of 50% by volume and D90 having a particle size of 90% by volume in the particle size distribution.

このような混合粉末を焼成することにより、平均粒径が100nm以下で、粒度分布のバラツキを表す標準偏差σが30以下で、かつ、結晶性を表すc/a軸比が1.0075以上であるような、粒径が小さく、粒径のバラツキが少なく、かつ、結晶性が高いチタン酸アルカリ土類金属塩の粉末を得ることができる。なお、チタン酸アルカリ土類金属塩の粉末の平均粒径が100nmを超えると、誘電体層3の薄層化が困難であり、標準偏差σが30を超えると、誘電体層3の表面粗さにバラツキが生じ、c/a軸比が1.0075未満であると、結晶性が低いので、その結果、積層セラミックコンデンサ1の静電容量が低下することがある。なお、当該粒径及びその標準偏差σは、例えば、走査型電子顕微鏡(SEM)を用いた観察により測定され算出されるものであり、当該c/a軸比は、例えば、X線回折(XRD)のピーク強度の解析結果を用いて算出されるものである。   By firing such a mixed powder, the average particle diameter is 100 nm or less, the standard deviation σ representing the variation in the particle size distribution is 30 or less, and the c / a axial ratio representing the crystallinity is 1.0075 or more. It is possible to obtain a powder of an alkaline earth metal titanate having a small particle size, a small variation in particle size, and high crystallinity. When the average particle size of the alkaline earth metal titanate powder exceeds 100 nm, it is difficult to make the dielectric layer 3 thinner. When the standard deviation σ exceeds 30, the surface roughness of the dielectric layer 3 is reduced. When the c / a axial ratio is less than 1.0075, the crystallinity is low, and as a result, the capacitance of the multilayer ceramic capacitor 1 may be reduced. The particle diameter and its standard deviation σ are measured and calculated by observation using a scanning electron microscope (SEM), for example, and the c / a axial ratio is calculated by, for example, X-ray diffraction (XRD). ) And the peak intensity analysis result.

前記焼成工程においては、例えば、20000Pa以下、好ましくは100Pa以下の真空下で、810〜1000℃、好ましくは840〜900℃で、約3時間、前記混合粉末を加熱する。   In the firing step, for example, the mixed powder is heated at 810 to 1000 ° C., preferably 840 to 900 ° C. for about 3 hours under a vacuum of 20000 Pa or less, preferably 100 Pa or less.

なお、本実施形態における固相反応においては、前記焼成工程以外に、例えば、以下のような各工程が行われる。   In the solid-phase reaction in the present embodiment, for example, the following steps are performed in addition to the firing step.

まず、前記アルカリ土類金属化合物の粉末と二酸化チタンの粉末とを所定量秤量し、次に、秤量した前記アルカリ土類金属化合物の粉末と二酸化チタンの粉末とに水を添加し、ミキサーで混合する。続いて、得られた混合粉末を、例えば、ビーズミル、ボールミル等の分散機を用いたり、高圧分散処理を行ったりして、水等とともに湿式で分散する。より具体的には、ビーズミルを用いて分散を行う場合は、例えば、直径0.03〜0.1mmのビーズを使用して、5〜15m/sの周速で、5〜30パスで分散処理を行うことが好ましい。一般に入手可能なビーズは直径が0.03mm以上のものであり、一方ビーズ径が0.1mmを超えると分散しない。また、周速が5m/s未満であると分散が不充分になり、一方装置の性能上周速が15m/sを超えることは困難である。更に、パス回数が5パス未満では分散が不充分であり、30パスを超えると工業的に時間がかかりすぎる。分散した混合粉末は乾燥させてから乾式粉砕する。そして、乾式粉砕後の混合粉末を焼成してチタン酸アルカリ土類金属塩を得る。   First, a predetermined amount of the alkaline earth metal compound powder and titanium dioxide powder are weighed, and then water is added to the weighed alkaline earth metal compound powder and titanium dioxide powder and mixed with a mixer. To do. Subsequently, the obtained mixed powder is wet-dispersed with water or the like by using a disperser such as a bead mill or a ball mill, or by performing a high-pressure dispersion treatment. More specifically, when dispersion is performed using a bead mill, for example, beads having a diameter of 0.03 to 0.1 mm are used and the dispersion treatment is performed at a peripheral speed of 5 to 15 m / s and 5 to 30 passes. It is preferable to carry out. Generally available beads have a diameter of 0.03 mm or more, while they do not disperse when the bead diameter exceeds 0.1 mm. Further, if the peripheral speed is less than 5 m / s, the dispersion becomes insufficient, while it is difficult for the peripheral speed to exceed 15 m / s due to the performance of the apparatus. Further, if the number of passes is less than 5 passes, the dispersion is insufficient, and if it exceeds 30 passes, it takes too much time industrially. The dispersed mixed powder is dried and then dry-pulverized. Then, the mixed powder after dry pulverization is fired to obtain an alkaline earth metal titanate.

前記誘電体セラミック材料は、前記チタン酸アルカリ土類金属塩の粉末に加えて、必要に応じて特性調整のための金属化合物を含有していてもよい。前記金属化合物としては、例えば、Mg、Ba、Ca、Si、Mn、Al、V、Dy、Y、Ho、Ybの1種又は複数種の元素を含有する酸化物、炭酸塩等の化合物が挙げられる。   In addition to the alkaline earth metal titanate powder, the dielectric ceramic material may contain a metal compound for adjusting characteristics as required. Examples of the metal compound include compounds such as oxides and carbonates containing one or more elements of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, and Yb. It is done.

前記チタン酸アルカリ土類金属塩の粉末に前記金属化合物の粉末を添加する際には、合わせて分散剤を添加することが好ましい。   When adding the metal compound powder to the alkaline earth metal titanate powder, it is preferable to add a dispersant.

前記分散剤としては特に限定されず、例えば、ポリビニルブチラール系分散剤、ポリビニルアセタール系分散剤、ポリカルボン酸系分散剤、マレイン酸系分散剤、ポリエチレングリコール系分散剤、アリルエーテルコポリマー系分散剤等が挙げられる。   The dispersant is not particularly limited. For example, polyvinyl butyral dispersant, polyvinyl acetal dispersant, polycarboxylic acid dispersant, maleic acid dispersant, polyethylene glycol dispersant, allyl ether copolymer dispersant, and the like. Is mentioned.

前記チタン酸アルカリ土類金属塩の粉末に前記金属化合物の粉末や分散剤を添加して、例えば、ホモジナイザーで混合してから、ビーズミルで解砕・分散することにより、誘電体セラミックス材料が得られる。このようにして得られた誘電体セラミックス材料に、溶剤及びバインダを添加し、ボールミル等を用いて混合することによりグリーンシート形成用のスラリーを得ることができる。   A dielectric ceramic material can be obtained by adding a powder or dispersant of the metal compound to the alkaline earth metal titanate powder, mixing with a homogenizer, and then crushing and dispersing with a bead mill. . A slurry for forming a green sheet can be obtained by adding a solvent and a binder to the dielectric ceramic material thus obtained and mixing them using a ball mill or the like.

前記溶剤としては特に限定されず、例えば、エチルカルビトール、ブタンジオール、2−ブトキシエタノール等のグリコール類:メタノール、エタノール、プロパノール、ブタノール等のアルコール:アセトン、メチルエチルケトン、ジアセトンアルコール等のケトン類:酢酸メチル、酢酸エチル等のエステル類:トルエン、キシレン、酢酸ベンジル等の芳香族類等が挙げられる。これらの溶剤は、単独で用いられてもよく、2種以上が併用されてもよい。   The solvent is not particularly limited. For example, glycols such as ethyl carbitol, butanediol, and 2-butoxyethanol: alcohols such as methanol, ethanol, propanol, and butanol: ketones such as acetone, methyl ethyl ketone, and diacetone alcohol: Esters such as methyl acetate and ethyl acetate: aromatics such as toluene, xylene and benzyl acetate. These solvents may be used independently and 2 or more types may be used together.

前記バインダとしては特に限定されず、例えば、アクリル樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、エチルセルロース樹脂等が挙げられる。   The binder is not particularly limited, and examples thereof include acrylic resin, polyvinyl butyral resin, polyvinyl acetal resin, and ethyl cellulose resin.

前記バインダは、予め、前記溶剤に溶解し濾過して溶液にしておき、その溶液に、前記誘電体セラミックス材料を添加することが好ましい。高重合度のバインダ樹脂は溶剤に溶け難く、通常の方法では、スラリーの分散性が悪化する傾向にある。高重合度のバインダ樹脂を溶剤に溶解してから、その溶液にその他の成分を添加することにより、グリーンシート形成用スラリーにおける各成分の分散性を改善することができ、また、未溶解バインダ樹脂の発生を抑制することもできる。なお、前記溶剤以外の溶剤では、固形分濃度を上げられないと共に、ラッカー粘度の経時変化が増大する傾向にある。   It is preferable that the binder is previously dissolved in the solvent and filtered to obtain a solution, and the dielectric ceramic material is added to the solution. A binder resin having a high degree of polymerization is difficult to dissolve in a solvent, and the dispersibility of the slurry tends to be deteriorated by an ordinary method. Dispersibility of each component in the slurry for green sheet formation can be improved by dissolving the binder resin having a high degree of polymerization in a solvent and then adding other components to the solution. Can also be suppressed. In addition, in solvents other than the said solvent, while a solid content concentration cannot be raised, it exists in the tendency for the time-dependent change of lacquer viscosity to increase.

このようにして製造されたグリーンシート形成用のスラリーを、ポリエチレンテレフタレート等からなる基材上にシート状に塗布することによりグリーンシートが形成される。誘電体層3は、得られたグリーンシートを焼成することにより得られる焼結体からなる。誘電体層3一層あたりの厚みは、2μm以下であることが好ましい。   The green sheet is formed by applying the slurry for forming the green sheet thus produced on a base material made of polyethylene terephthalate or the like. The dielectric layer 3 is made of a sintered body obtained by firing the obtained green sheet. The thickness per three dielectric layers is preferably 2 μm or less.

内部電極4としては特に限定されず、例えば、Cu、Ni、W、Mo、Ag等の金属又はこれらの合金等が挙げられる。   The internal electrode 4 is not particularly limited, and examples thereof include metals such as Cu, Ni, W, Mo, Ag, and alloys thereof.

外部電極5としては特に限定されず、例えば、Cu、Ni、W、Mo、Ag等の金属又はこれらの合金;In−Ga、Ag−10Pd等の合金;カーボン、グラファイト、カーボンとグラファイトとの混合物等からなるものが挙げられる。   The external electrode 5 is not particularly limited, and examples thereof include metals such as Cu, Ni, W, Mo, and Ag or alloys thereof; alloys such as In—Ga and Ag-10Pd; carbon, graphite, and a mixture of carbon and graphite. The thing which consists of etc. is mentioned.

本実施形態に係る積層セラミックコンデンサの製造方法としては特に限定されないが、例えば、以下のようにして製造される。まず、前記グリーンシート上に、上記の各種金属等を含有する内部電極4用導電ペーストを所定形状にスクリーン印刷して、内部電極4用導電性ペースト膜を形成する。   Although it does not specifically limit as a manufacturing method of the multilayer ceramic capacitor which concerns on this embodiment, For example, it manufactures as follows. First, the conductive paste for the internal electrode 4 containing the various metals described above is screen-printed in a predetermined shape on the green sheet to form the conductive paste film for the internal electrode 4.

次いで、上述のように内部電極4用導電性ペースト膜が形成された複数のグリーンシートを積層するとともに、これらグリーンシートを挟むように、導電性ペースト膜が形成されていないグリーンシートを積層して、圧着した後、必要に応じてカットすることによって、積層体(グリーンチップ)を得る。   Next, a plurality of green sheets on which the conductive paste film for the internal electrode 4 is formed as described above are stacked, and a green sheet on which no conductive paste film is formed is stacked so as to sandwich the green sheets. After pressure bonding, the laminate (green chip) is obtained by cutting as necessary.

そして、得られたグリーンチップに脱バインダ処理を施した後、当該グリーンチップを例えば還元性雰囲気中において焼成して、コンデンサチップ体2を得る。コンデンサチップ体2においては、グリーンシートを焼成してなる焼結体からなる誘電体層3と内部電極4とが交互に積層されている。   And after performing a binder removal process to the obtained green chip, the said green chip is baked, for example in reducing environment, and the capacitor chip body 2 is obtained. In the capacitor chip body 2, dielectric layers 3 and internal electrodes 4 made of a sintered body obtained by firing a green sheet are alternately laminated.

得られたコンデンサチップ体2には、誘電体層3を再酸化するためアニール処理を施すことが好ましい。   The obtained capacitor chip body 2 is preferably subjected to an annealing treatment to reoxidize the dielectric layer 3.

次に、コンデンサチップ体2の端面から露出した内部電極4の各端縁それぞれに外部電極5が電気的に接続するように、コンデンサチップ体2の端面上に、上記の各種金属等からなる電極を塗布することによって外部電極5を形成する。そして、必要に応じ、外部電極5表面に、めっき等により被覆層を形成する。   Next, an electrode made of the above-mentioned various metals or the like on the end surface of the capacitor chip body 2 so that the external electrode 5 is electrically connected to each end edge of the internal electrode 4 exposed from the end surface of the capacitor chip body 2. The external electrode 5 is formed by coating. Then, if necessary, a coating layer is formed on the surface of the external electrode 5 by plating or the like.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

BaCOの粉末とTiOの粉末とを用意し、用意した粉末をBa/Ti比で1.002となるように秤量した。次に、秤量した粉末をビーカに入れ、水を添加し、ミキサーで混合した。続いて、得られた混合粉末をビーズミルで分散した。得られたスラリーについて、堀場製作所製のLA−920を用いてD90(μm)/D50(μm)を測定した。更に、得られた混合粉末を乾燥させてから乾式粉砕した。得られた乾燥粉末について、BET法により比表面積(SSA)を測定した。 BaCO 3 powder and TiO 2 powder were prepared, and the prepared powder was weighed so that the Ba / Ti ratio was 1.002. Next, the weighed powder was put into a beaker, water was added and mixed with a mixer. Subsequently, the obtained mixed powder was dispersed by a bead mill. About the obtained slurry, D90 (micrometer) / D50 (micrometer) was measured using LA-920 by Horiba. Further, the obtained mixed powder was dried and then dry-pulverized. About the obtained dry powder, the specific surface area (SSA) was measured by BET method.

そして、乾式粉砕後の混合粉末を100Pa以下の真空下で下記表1に示す温度で焼成した。焼成して得られたチタン酸バリウム粉末について、BET法により比表面積(SSA)を測定し、SEMで粒径観察を行った。この際、100個以上の粒子の粒径を測定して、標準偏差σを算出した。また、チタン酸バリウム粉末の構造解析にはXRDを用い、得られたXRDのチャートより、フィッティングシステムRIETAN−2000を用いて、c/a軸比を算出した。得られた測定結果は表1に示した。   Then, the mixed powder after dry pulverization was fired at a temperature shown in Table 1 below under a vacuum of 100 Pa or less. About the barium titanate powder obtained by baking, the specific surface area (SSA) was measured by BET method, and the particle diameter was observed with SEM. At this time, the particle size of 100 or more particles was measured to calculate the standard deviation σ. In addition, XRD was used for the structural analysis of the barium titanate powder, and the c / a axial ratio was calculated from the obtained XRD chart using the fitting system RIEtan-2000. The obtained measurement results are shown in Table 1.

実施例及び比較例で得られた結果より、混合粉末が、比表面積が35m/g以上で、かつ、粒度分布を表すD90/D50が1.25以下であるものでないと、粒度分布のバラツキを表す標準偏差σが30以下である均一な粒径を有するチタン酸バリウム粉末を得ることはできず、また、平均粒径が100nm以下であり、かつ、結晶性を表すc/a軸比が1.0075以上である、小型で静電容量の高い積層セラミックコンデンサを得るために重要な粒子特性を有するチタン酸バリウム粉末を得ることはできないことが明らかとなった。 From the results obtained in the examples and comparative examples, the mixed powder has a specific surface area of 35 m 2 / g or more, and D90 / D50 representing the particle size distribution is not 1.25 or less. It is not possible to obtain a barium titanate powder having a uniform particle size with a standard deviation σ of 30 or less, an average particle size of 100 nm or less, and a c / a axial ratio representing crystallinity. It was revealed that it is impossible to obtain barium titanate powder having a particle characteristic important for obtaining a small-sized, high-capacitance multilayer ceramic capacitor of 1.0075 or more.

更に、誘電体層と電極とを積層した試料についての各種評価を行った。   Furthermore, various evaluations were performed on samples in which a dielectric layer and an electrode were laminated.

誘電体層一層あたりの厚さは2μmで、有効誘電体層は10層とした。また、一層あたりの内部(対向)電極面積は、0.91[mm]とした。誘電体層は、以下のようにして作製した。主成分として実施例3で得られたチタン酸バリウムを、副成分としてBaCO、Dy、MgO、Mnを含むスラリーをドクターブレード法によりペットフィルムに塗布し、焼成後2μmとなるグリーンシートを成形した。得られたグリーンシートに内部電極であるNiペーストを印刷により形成した。これらを10層に積層し、熱圧着することにより積層体を得た。次いで、この積層体を幅2.0mm、長さが3.8mm、厚さ0.6mmとなるように加工した。次にこれを大気中にて、300℃で10時間加熱して有機バインダ(樹脂成分)を焼却した。その後、N、H及びHOからなる混合ガスの還元雰囲気中で、表2に示す焼成温度で2時間焼成した。次に窒素ガス雰囲気中で、1000℃に安定させ2時間再酸化処理を行った。その後、焼結させた積層体の外側面(対向する位置にある切断面)にCuからなる導電性ペーストを塗布し、Nガス雰囲気中で650℃の温度で焼き付け、図1に示すように内部電極と電気的に接続された外部電極を形成し、積層セラミックコンデンサを作成した。本評価試料において、主成分に対して、Ba元素の添加量は、Ba化合物のBaに換算して1.0モル部であり、Dy元素の添加量は、Dy化合物のDyに換算して0.9モル部であり、Mg元素の添加量は、Mg化合物のMgに換算して1.1モル部であり、Mn元素の添加量は、Mn化合物のMnに換算して0.2モル部である。各種特性の測定方法で、比誘電率εは、温度25(℃)、周波数1(kHz)、電圧0.5(V/μm)の条件で、LCRメーターを用いて静電容量を測定し、この測定によって得られた静電容量、誘電体層の厚さ、及び内部電極面積から算出した。誘電損失tanδ(%)は、比誘電率と同一条件下で、LCRメーターを用いて測定した。絶縁抵抗logR(Ω)は、温度25(℃)、直流100(V)の電圧を3分間印加し、絶縁抵抗計を用いて測定した。容量変化率は、本積層セラミックコンデンサを恒温槽に入れ、−55℃から85℃の各温度において、周波数1(kHz)、電圧0.5(V/μm)の条件で、LCRメーターを用いて静電容量を測定した。 The thickness per dielectric layer was 2 μm, and the effective dielectric layer was 10 layers. Moreover, the internal (counter) electrode area per layer was set to 0.91 [mm 2 ]. The dielectric layer was produced as follows. A slurry containing barium titanate obtained in Example 3 as a main component and BaCO 3 , Dy 2 O 3 , MgO, Mn 3 O 4 as subcomponents was applied to a pet film by a doctor blade method, and after firing, 2 μm A green sheet was formed. Ni paste which is an internal electrode was formed on the obtained green sheet by printing. These were laminated into 10 layers, and a laminate was obtained by thermocompression bonding. Next, this laminate was processed to have a width of 2.0 mm, a length of 3.8 mm, and a thickness of 0.6 mm. Next, this was heated in the atmosphere at 300 ° C. for 10 hours to incinerate the organic binder (resin component). Then, in a reducing atmosphere of a mixed gas consisting of N 2, H 2 and H 2 O, and calcined for 2 hours at a firing temperature shown in Table 2. Next, it was stabilized at 1000 ° C. in a nitrogen gas atmosphere and re-oxidized for 2 hours. Thereafter, a conductive paste made of Cu is applied to the outer surface (cut surface at the opposite position) of the sintered laminate, and baked at a temperature of 650 ° C. in an N 2 gas atmosphere, as shown in FIG. An external electrode electrically connected to the internal electrode was formed to produce a multilayer ceramic capacitor. In this evaluation sample, with respect to the main component, the addition amount of Ba element is 1.0 mole part in terms of Ba of Ba compound, and the addition amount of Dy element is 0 in terms of Dy of Dy compound. 0.9 mol part, and the addition amount of Mg element is 1.1 mol part in terms of Mg of the Mg compound, and the addition amount of Mn element is 0.2 mol part in terms of Mn of the Mn compound. It is. In the measurement method of various characteristics, the relative permittivity ε is measured by using an LCR meter under conditions of a temperature of 25 (° C.), a frequency of 1 (kHz), and a voltage of 0.5 (V / μm). It calculated from the electrostatic capacitance obtained by this measurement, the thickness of a dielectric material layer, and an internal electrode area. The dielectric loss tan δ (%) was measured using an LCR meter under the same conditions as the relative dielectric constant. The insulation resistance logR (Ω) was measured using an insulation resistance meter after applying a voltage of 25 (° C.) and a direct current of 100 (V) for 3 minutes. Capacitance change rate is determined by placing the multilayer ceramic capacitor in a thermostatic chamber and using an LCR meter at a temperature of −55 ° C. to 85 ° C. under conditions of frequency 1 (kHz) and voltage 0.5 (V / μm). Capacitance was measured.

表2の結果より、実施例3で得られたチタン酸バリウムを主成分として用いた積層体は、EIA(Electronic Industries Association)のX5R規格(−55℃から85℃の容量変化率(25℃基準)がプラスマイナス15%)に適合することが確認された。   From the results shown in Table 2, the laminate using barium titanate obtained in Example 3 as a main component is an EIA (Electronic Industries Association) X5R standard (capacity change rate from −55 ° C. to 85 ° C. (25 ° C. standard) ) Is confirmed to be within ± 15%).

本発明の一実施形態に係る積層セラミックコンデンサの模式断面図。1 is a schematic cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

符号の説明Explanation of symbols

1・・・積層セラミックコンデンサ
2・・・コンデンサチップ体
3・・・積層体層
4・・・内部電極
5・・・外部電極
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 2 ... Capacitor chip body 3 ... Laminate body layer 4 ... Internal electrode 5 ... External electrode

Claims (2)

アルカリ土類金属化合物と二酸化チタンとを固相反応により反応させて誘電体セラミックス材料を製造する方法であって、
比表面積が35m/g以上で、粒度分布を表すD90/D50が1.25以下である、前記アルカリ土類金属化合物の粉末と二酸化チタンの粉末との混合粉末を焼成する焼成工程を備えていることを特徴とする誘電体セラミックス材料の製造方法。
A method for producing a dielectric ceramic material by reacting an alkaline earth metal compound and titanium dioxide by a solid phase reaction,
A firing step of firing a mixed powder of the alkaline earth metal compound powder and the titanium dioxide powder having a specific surface area of 35 m 2 / g or more and a D90 / D50 representing a particle size distribution of 1.25 or less; A method for producing a dielectric ceramic material, comprising:
請求項1記載の製造方法により得られた誘電体セラミックス材料の焼結体からなる誘電体層を備えていることを特徴とする積層セラミックコンデンサ。   A multilayer ceramic capacitor comprising a dielectric layer made of a sintered body of a dielectric ceramic material obtained by the manufacturing method according to claim 1.
JP2008330072A 2008-12-25 2008-12-25 Method for manufacturing dielectric ceramic material Expired - Fee Related JP5184333B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008330072A JP5184333B2 (en) 2008-12-25 2008-12-25 Method for manufacturing dielectric ceramic material
KR1020090125109A KR101101598B1 (en) 2008-12-25 2009-12-15 Method of manufacturing dielectric ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330072A JP5184333B2 (en) 2008-12-25 2008-12-25 Method for manufacturing dielectric ceramic material

Publications (2)

Publication Number Publication Date
JP2010150082A true JP2010150082A (en) 2010-07-08
JP5184333B2 JP5184333B2 (en) 2013-04-17

Family

ID=42569602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330072A Expired - Fee Related JP5184333B2 (en) 2008-12-25 2008-12-25 Method for manufacturing dielectric ceramic material

Country Status (2)

Country Link
JP (1) JP5184333B2 (en)
KR (1) KR101101598B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117605A (en) * 2014-12-19 2016-06-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic and production method thereof
KR20210063238A (en) 2019-11-22 2021-06-01 다이요 유덴 가부시키가이샤 Ceramic electronic component and method of manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277368A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Multilayer ceramic capacitor
JP2003252623A (en) * 2001-12-28 2003-09-10 Murata Mfg Co Ltd Method of manufacturing composite oxide powder and composite oxide powder
JP2004284897A (en) * 2003-03-24 2004-10-14 Taiyo Yuden Co Ltd Method of producing ceramic powder with perovskite structure, ceramic powder with perovskite structure, ceramic electronic component and its production method, and multilayer ceramic capacitor and its production method
JP2007091505A (en) * 2005-09-27 2007-04-12 Kyocera Corp Barium titanate powder and method for producing the same
JP2007169087A (en) * 2005-12-20 2007-07-05 Samsung Electro Mech Co Ltd Sintered compact, ceramic capacitor, and their production method
JP2008127265A (en) * 2006-11-24 2008-06-05 Fuji Titan Kogyo Kk Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder and ceramic electronic component using the same
JP2008133163A (en) * 2006-11-29 2008-06-12 Kyocera Corp Barium titanate powder, its producing method and dielectric porcelain
JP2008222522A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Barium titanate powder, its manufacturing method and multilayer ceramic capacitor using the same
JP2010042995A (en) * 2003-04-11 2010-02-25 Showa Denko Kk Calcium titanate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234769A (en) 2001-02-01 2002-08-23 Murata Mfg Co Ltd Method for producing barium titanate powder, barium titanate powder, dielectric ceramic and multilayer ceramic capacitor
KR100674846B1 (en) * 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
JP4658689B2 (en) 2005-05-27 2011-03-23 京セラ株式会社 Method for producing barium titanate powder, barium titanate powder, and sintered barium titanate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277368A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Multilayer ceramic capacitor
JP2003252623A (en) * 2001-12-28 2003-09-10 Murata Mfg Co Ltd Method of manufacturing composite oxide powder and composite oxide powder
JP2004284897A (en) * 2003-03-24 2004-10-14 Taiyo Yuden Co Ltd Method of producing ceramic powder with perovskite structure, ceramic powder with perovskite structure, ceramic electronic component and its production method, and multilayer ceramic capacitor and its production method
JP2010042995A (en) * 2003-04-11 2010-02-25 Showa Denko Kk Calcium titanate
JP2007091505A (en) * 2005-09-27 2007-04-12 Kyocera Corp Barium titanate powder and method for producing the same
JP2007169087A (en) * 2005-12-20 2007-07-05 Samsung Electro Mech Co Ltd Sintered compact, ceramic capacitor, and their production method
JP2008127265A (en) * 2006-11-24 2008-06-05 Fuji Titan Kogyo Kk Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder and ceramic electronic component using the same
JP2008133163A (en) * 2006-11-29 2008-06-12 Kyocera Corp Barium titanate powder, its producing method and dielectric porcelain
JP2008222522A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Barium titanate powder, its manufacturing method and multilayer ceramic capacitor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117605A (en) * 2014-12-19 2016-06-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic and production method thereof
KR20210063238A (en) 2019-11-22 2021-06-01 다이요 유덴 가부시키가이샤 Ceramic electronic component and method of manufacturing the same
US11688558B2 (en) 2019-11-22 2023-06-27 Taiyo Yuden Co., Ltd. Ceramic electronic component and method of manufacturing the same
JP7421313B2 (en) 2019-11-22 2024-01-24 太陽誘電株式会社 Ceramic electronic components and their manufacturing method

Also Published As

Publication number Publication date
JP5184333B2 (en) 2013-04-17
KR101101598B1 (en) 2012-01-02
KR20100075738A (en) 2010-07-05

Similar Documents

Publication Publication Date Title
JP7124528B2 (en) multilayer ceramic electronic components
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2009143735A (en) Dielectric porcelain composition and electronic component
JP2017178684A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP2011057511A (en) Ceramic electronic part and method for manufacturing the same
JP2007063040A (en) Method for producing dielectric porcelain composition, and electronic component
JP2008247657A (en) Dielectric porcelain composition and electronic component
JP2013211398A (en) Multilayer ceramic capacitor
JP2011132071A (en) Method for producing dielectric ceramic material
JP5184333B2 (en) Method for manufacturing dielectric ceramic material
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP5803694B2 (en) Dielectric ceramic composition and ceramic electronic component
JP5488118B2 (en) Dielectric porcelain composition and electronic component
JP2008230928A (en) Dielectric ceramic composition and electronic component
JP2007258477A (en) Laminated electronic component and manufacturing method thereof
JP4837721B2 (en) Method for manufacturing dielectric ceramic material
JP5231387B2 (en) Method for manufacturing dielectric ceramic material
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
JP5459952B2 (en) Method for manufacturing dielectric ceramic material
JP5459951B2 (en) Method for producing ceramic slurry
JP4677961B2 (en) Electronic component, dielectric ceramic composition and manufacturing method thereof
JP2008230883A (en) Dielectric ceramic composition and electronic component
JP2002293618A (en) Dielectric ceramic composition, multilayer ceramic capacitor and production method therefor
JP2013112536A (en) Method for manufacturing high dielectric constant ceramics
JP2006027939A (en) Method of manufacturing dielectric ceramic composition, electronic component and laminated ceramic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees