KR20100075738A - Method of manufacturing dielectric ceramic material - Google Patents

Method of manufacturing dielectric ceramic material Download PDF

Info

Publication number
KR20100075738A
KR20100075738A KR1020090125109A KR20090125109A KR20100075738A KR 20100075738 A KR20100075738 A KR 20100075738A KR 1020090125109 A KR1020090125109 A KR 1020090125109A KR 20090125109 A KR20090125109 A KR 20090125109A KR 20100075738 A KR20100075738 A KR 20100075738A
Authority
KR
South Korea
Prior art keywords
powder
ceramic material
dielectric ceramic
dielectric
earth metal
Prior art date
Application number
KR1020090125109A
Other languages
Korean (ko)
Other versions
KR101101598B1 (en
Inventor
노부타케 히라이
코타로 하타
켄 야마구치
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Publication of KR20100075738A publication Critical patent/KR20100075738A/en
Application granted granted Critical
Publication of KR101101598B1 publication Critical patent/KR101101598B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Abstract

PURPOSE: A producing method of a dielectric ceramic material is provided to reduce the lack of uniformity of the diameter of the material, and to produce the dielectric ceramic material with a proper reproducibility for the lamination of a dielectric layer. CONSTITUTION: A producing method of a dielectric ceramic material using the solid phase reaction of titanium dioxide and an alkali earth metal compound comprises a step of plasticizing for forming a mixture power of the titanium dioxide and the alkali earth metal compound, with the specific surface area over 35 square meters per gram. A layered ceramic condenser(1) includes a dielectric layer(3) formed with the dielectric ceramic material produced from the previous process.

Description

유전체 세라믹스 재료의 제조 방법 {Method of manufacturing dielectric ceramic material}Method of manufacturing dielectric ceramic material

이 발명은 입경이 작고 결정성이 높으며 또한 입경의 불균일이 적은 유전체층의 박층화에 적절한 유전체 세라믹스 재료의 제조 방법에 관한 것이다.The present invention relates to a method for producing a dielectric ceramic material suitable for thinning of a dielectric layer having a small particle size, high crystallinity, and low particle size nonuniformity.

종래의 적층 세라믹 콘덴서는 주성분으로서 티탄산바륨계 화합물을, 부성분으로서 특성 조정을 위한 금속 화합물을 함유하는 세라믹 유전체 재료를, 시트 형상으로 성형하여 그린 시트를 제작하고, 이 그린 시트 상에 전극을 인쇄한 것을 적층하는 공정을 반복함으로써 제작되고 있다.In the conventional multilayer ceramic capacitor, a sheet of a ceramic dielectric material containing a barium titanate-based compound as a main component and a metal compound for property adjustment as a subcomponent is formed into a sheet to produce a green sheet, and an electrode is printed on the green sheet. It is produced by repeating the process of laminating | stacking a thing.

최근, 전자기기 제품이 소형화 됨에 따라 전자 회로의 고밀도화가 진행되었고, 그 결과, 적층 세라믹 콘덴서의 소형 대용량화가 강하게 요구되고 있다. 그리고, 이 요망을 실현하기 위해, 내부 전극층과 유전체층의 박층화와 적층수의 증가가 시도되고 있다.In recent years, as electronic device products have been miniaturized, high-density electronic circuits have been advanced. As a result, there has been a strong demand for miniaturization of multilayer ceramic capacitors. In order to realize this demand, the thickness of the internal electrode layer and the dielectric layer is increased and the number of stacked layers is increased.

그러나 유전체층이 박층화된 경우, 주성분인 티탄산바륨계 화합물의 입경이 크면, 그린칩 소성 후의 특성이나 유전체층의 표면 거칠기에 불균일이 생기고, 쇼트율이 증가하여 절연 저항 불량이 많아진다. 이 때문에 주성분인 티탄산바륨계 화 합물의 미립자화가 요구되고 있다.However, when the dielectric layer is thinned, if the particle size of the barium titanate compound as a main component is large, non-uniformity occurs in the characteristics after the green chip firing and in the surface roughness of the dielectric layer, and the short rate increases to increase the insulation resistance defect. For this reason, the granulation of the barium titanate compound which is a main component is calculated | required.

특허문헌 1(일본특허공개 2008-222522)에는 특정한 비표면적을 가지는 이산화 티탄 분말과 탄산바륨 분말의 혼합 분말을 소성시키는 기술이 기재되어 있다. 그러나 이 방법으로는 입경이 작고 입경의 불균일도 적으며 또한 결정성이 높은 티탄산바륨계 분말을 재현성 좋게 얻을 수 없다.Patent Document 1 (Japanese Patent Laid-Open No. 2008-222522) describes a technique of firing a mixed powder of titanium dioxide powder and barium carbonate powder having a specific specific surface area. However, with this method, barium titanate powder having a small particle size, a small variation in particle diameter and high crystallinity cannot be obtained with good reproducibility.

본 발명은 상기 현상을 감안하여 이루어진 것으로, 입경이 작고 결정성이 높으며 또한 입경의 불균일이 적은 유전체층의 박층화에 적절한 유전체 세라믹스 재료의 제조 방법을 제공하는 것을 과제로 한다. This invention is made | formed in view of the said phenomenon, Comprising: It aims at providing the manufacturing method of the dielectric ceramic material suitable for thinning a dielectric layer with a small particle size, high crystallinity, and a nonuniformity of particle diameter.

본 발명에 관한 유전체 세라믹스 재료의 제조 방법은, 알칼리 토류 금속 화합물과 이산화 티탄을 고상 반응에 의해 반응시켜 유전체 세라믹스 재료를 제조하는 방법으로서, 비표면적이 35m2/g 이상이고, 입도 분포를 나타내는 D90/D50이 1.25 이하인, 상기 알칼리 토류 금속 화합물의 분말과 이산화 티탄의 분말의 혼합 분말을 소성하는 소성 공정을 갖추고 있는 것을 특징으로 한다. 여기서, 상기 비표면적은 건조한 상태의 상기 혼합 분말에 대해 측정한 값이고, 상기 D90/D50은 슬러리 상태의 상기 혼합 분말에 대해 측정한 값이다.The method for producing a dielectric ceramic material according to the present invention is a method for producing a dielectric ceramic material by reacting an alkaline earth metal compound with titanium dioxide by a solid phase reaction, having a specific surface area of 35 m 2 / g or more, and showing a particle size distribution. And a firing step of firing a mixed powder of the powder of the alkaline earth metal compound and the powder of titanium dioxide having a / D50 of 1.25 or less. Here, the specific surface area is a value measured for the mixed powder in a dry state, and the D90 / D50 is a value measured for the mixed powder in a slurry state.

이와 같은 방법이면, 비표면적이 35m2/g 이상이고, 입도 분포를 나타내는 D90/D50이 1.25 이하인 혼합 분말을 소성시킴으로써, 평균 입경이 100nm 이하이고, 입도 분포의 불균일을 나타내는 표준 편차 σ가 30 이하이면서, 또한, 결정성을 나타내는 c/a 축비가 예를 들면, 1.0075 이상인, 입경이 작고 입경의 불균일이 적으며 또한 결정성이 높은 티탄산 알칼리 토류 금속염 분말을 얻을 수 있다.In such a method, by firing a mixed powder having a specific surface area of 35 m 2 / g or more and a D90 / D50 representing a particle size distribution of 1.25 or less, an average particle diameter of 100 nm or less and a standard deviation sigma representing a nonuniformity of the particle size distribution of 30 or less On the other hand, an alkaline earth metal salt powder of titanic acid titanate having a small particle size, a small variation in particle diameter, and high crystallinity can be obtained, for example, having a c / a ratio of crystallinity of 1.0075 or more.

이와 같이, 입경이 작고 입경의 불균일이 적으며 또한 결정성이 높은 티탄산 알칼리 토류 금속염을 유전체층의 주성분으로서 이용함으로써, 쇼트율이 낮으며 절연 저항 불량도 억제될 뿐 아니라, 충분한 정전 용량을 구비한 적층 세라믹 콘덴서를 얻을 수 있다.Thus, by using alkaline titanic acid metal titanate salt having a small particle size, a small non-uniformity of particle diameter, and high crystallinity as the main component of the dielectric layer, the short rate is not only suppressed and the insulation resistance defect is suppressed, but also the laminate having sufficient capacitance A ceramic capacitor can be obtained.

본 발명에 관한 제조 방법에 의해 얻은 유전체 재료의 소결체로 이루어진 유전체층을 갖추고 있는 적층 세라믹 콘덴서 또한 본 발명 중 하나이다.One of the present invention is also a multilayer ceramic capacitor having a dielectric layer made of a sintered body of a dielectric material obtained by the manufacturing method according to the present invention.

본 발명에 따르면, 주성분인 티탄산 알칼리 토류 금속염의 입경이 작고 입경 분포도 협소하며 또한 결정성도 높으므로, 유전체층의 표면 거칠기의 불균일이 억제되어, 쇼트나 절연 저항 불량을 억제할 수 있다. 또한, 이러한 유전체 세라믹스 재료를 이용하여 제작된 그린 시트는 조직이 치밀하므로, 소성 후의 입경도 안정되어, 상기 특성이 안정됨과 함께, 유효한 소성 온도의 온도 범위도 넓어진다.According to the present invention, since the particle size of the alkaline titanate earth metal salt as the main component is small, the particle size distribution is narrow and the crystallinity is high, the nonuniformity of the surface roughness of the dielectric layer can be suppressed, and the short and the poor insulation resistance can be suppressed. In addition, since the green sheet produced using such a dielectric ceramic material has a dense structure, the particle size after firing is also stabilized, the characteristics are stabilized, and the temperature range of the effective firing temperature is also widened.

이하에서, 본 발명의 일실시 형태에 관한 적층 세라믹 콘덴서(1)에 대해 도면을 참조하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the multilayer ceramic capacitor 1 which concerns on one Embodiment of this invention is demonstrated with reference to drawings.

본 실시 형태에 관한 적층 세라믹 콘덴서(1)는, 도 1에 나타내는 바와 같이, 유전체층(3)과, 내부 전극(4)이 교대로 적층되는 콘덴서 칩체(2)와, 이 콘덴서 칩체(2)의 표면에 마련되어 내부 전극(4)과 도통하는 외부 전극(5)을 갖추고 있다. 내부 전극(4)은, 그 단부가 콘덴서 칩체(2)의 대향하는 2개의 표면에 교대로 노출되도록 적층되어, 콘덴서 칩체(2)의 당해 표면상에 형성되어 소정의 콘덴서 회로를 구성하는 외부 전극(5)와 전기적으로 접속되어 있다.As shown in FIG. 1, the multilayer ceramic capacitor 1 according to the present embodiment includes a capacitor chip body 2 in which a dielectric layer 3, an internal electrode 4 are alternately stacked, and a capacitor chip body 2. An external electrode 5 provided on the surface and conducting with the internal electrode 4 is provided. The internal electrodes 4 are laminated so that their ends are alternately exposed on two opposing surfaces of the capacitor chip body 2, and are formed on the surface of the capacitor chip body 2 to form a predetermined capacitor circuit. It is electrically connected with (5).

유전체층(3)은, 티탄산 알칼리 토류 금속염을 주성분으로 하는 유전체 세라믹스 재료의 소결체로 이루어진 것으로, 당해 티탄산 알칼리 토류 금속염은, 알칼리 토류 금속 화합물과 이산화 티탄(TiO2)을 고상 반응에 의해 반응시켜 얻을 수 있다.The dielectric layer 3 is composed of a sintered body of a dielectric ceramic material mainly composed of alkaline earth titanate metal salts. The alkaline titanate earth metal salt can be obtained by reacting an alkaline earth metal compound with titanium dioxide (TiO 2 ) by a solid phase reaction. have.

상기 알칼리 토류 금속 화합물로는, 예를 들면, 탄산바륨(BaCO3), 탄산칼슘(CaCO3), 탄산 스트론튬(SrCO3) 등을 들 수 있으며, 상기 티탄산 알칼리 토류 금속염으로는, 예를 들면, Ba1-x-yCaxSryTiO3(0≤x<1, 0≤y<1)을 들 수 있다.Examples of the alkaline earth metal compound include barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), and the like. As the alkaline earth titanate metal salt, for example, And Ba 1-xy Ca x Sr y TiO 3 (0 ≦ x <1, 0 ≦ y <1).

상기 고상 반응은, 비표면적이 35m2/g 이상, 바람직하게는 35~52m2/g이고, 입도 분포를 나타내는 D90/D50이 1.25 이하인, 상기 알칼리 토류 금속 화합물의 분말과 이산화 티탄의 분말의 혼합 분말을 소성하는 소성 공정을 갖춘 것이다. 비표면적이 35m2/g 미만이면 결정성이 높은 미립자를 얻을 수 없게 되고, D90/D50이 1.25를 넘으면 소성 후에 얻을 수 있는 티탄산 알칼리 토류 금속염의 입경의 불균일이 커진다. 또한, 당해 비표면적은, 건조한 상태의 상기 혼합 분말에 대해, 예를 들면 BET법 등을 이용하여 측정된 것이며, 당해 D90/D50은 슬러리 상태의 상기 혼합 분말에 대해, 예를 들면 레이저 회절·산란법 등을 이용하여 측정된 것으로, 입도 분포에 있어서 50체적%의 입경인 D50와 90체적%의 입경인 D90의 비이다.The solid phase reaction has a specific surface area of at least 35 m 2 / g, preferably 35 to 52 m 2 / g, and a mixture of the powder of the alkaline earth metal compound and the powder of titanium dioxide having a D90 / D50 of 1.25 or less, which exhibits a particle size distribution. It is equipped with the baking process which bakes a powder. If the specific surface area is less than 35 m 2 / g, fine particles having high crystallinity cannot be obtained, and if D90 / D50 exceeds 1.25, the particle size unevenness of the alkaline titanate alkaline earth metal salt obtained after firing becomes large. In addition, the said specific surface area is measured with respect to the said mixed powder of a dry state, for example using BET method etc., The said D90 / D50 is laser diffraction and scattering with respect to the said mixed powder of a slurry state, for example It is measured using the method and the like, and is a ratio of D50 which is 50 volume% of particle size and D90 which is 90 volume% in particle size distribution.

이러한 혼합 분말을 소성시킴으로써, 평균 입경이 100nm 이하이고, 입도 분포의 불균일을 나타내는 표준 편차(σ)가 30 이하이면서, 결정성을 나타내는 c/a 축비가 예를 들면 1.0075 이상인, 입경이 작고 입경의 불균일이 적으며 또한 결정성이 높은 티탄산 알칼리 토류 금속염 분말을 얻을 수 있다. 또한, 티탄산 알칼리 토류 금속염 분말의 평균 입경이 100nm을 넘으면 유전체층(3)의 박층화가 곤란하고, 표준 편차(σ)가 30을 넘으면 유전체층(3)의 표면 거칠기에 불균일이 생기고, c/a 축비가 1.0075 미만이면 결정성이 낮으므로, 그 결과, 적층 세라믹 콘덴서(1)의 정전 용량이 저하되는 경우가 있다. 또한, 당해 입경 및 그 표준 편차(σ)는, 예를 들면, 주사형 전자현미경(SEM)을 이용한 관찰에 의해 측정되고 산출되는 것이며, 당해 c/a 축비는, 예를 들면, X선회절(XRD)의 피크 강도의 해석 결과를 이용하여 산출되는 것이다.By firing such mixed powder, the average particle diameter is 100 nm or less, the standard deviation (σ) representing the nonuniformity of the particle size distribution is 30 or less, and the c / a axial ratio representing the crystallinity is, for example, 1.0075 or more. Alkali titanic acid earth metal salt powder having less unevenness and high crystallinity can be obtained. Further, when the average particle diameter of the alkaline titanate earth metal salt powder exceeds 100 nm, it is difficult to thin the dielectric layer 3, and when the standard deviation σ exceeds 30, unevenness occurs in the surface roughness of the dielectric layer 3, and the c / a ratio is increased. If it is less than 1.0075, crystallinity is low, and as a result, the electrostatic capacitance of the multilayer ceramic capacitor 1 may fall. In addition, the said particle diameter and its standard deviation ((sigma)) are measured and computed by the observation using the scanning electron microscope (SEM), for example, and the said c / a axial ratio is X-ray diffraction, for example ( It is computed using the analysis result of the peak intensity of XRD).

상기 소성 공정에 있어서는, 예를 들면, 20000Pa 이하, 바람직하게는 100Pa 이하의 진공 하에 810~1000℃, 바람직하게는 840~900℃에서 상기 혼합 분말을 약 3시간 가열한다.In the firing step, the mixed powder is heated at about 810 to 1000 ° C, preferably 840 to 900 ° C for about 3 hours under a vacuum of 20000 Pa or less, preferably 100 Pa or less.

또한, 본 실시 형태에 있어서의 고상 반응에 있어서는, 상기 소성 공정 외에, 예를 들면, 이하와 같은 각 공정이 행해진다.In addition, in solid-state reaction in this embodiment, each process as follows is performed besides the said baking process, for example.

우선, 상기 알칼리 토류 금속 화합물의 분말과 이산화 티탄의 분말을 소정량 칭량하고, 그 다음, 칭량된 상기 알칼리 토류 금속 화합물의 분말과 이산화 티탄의 분말에 물을 첨가하여 믹서로 혼합한다. 이어서, 얻은 혼합 분말을, 예를 들면, 비즈 밀, 볼 밀 등의 분산기를 이용하거나 고압 분산 처리를 행하여 물 등과 함께 습식으로 분산시킨다. 보다 구체적으로는, 비즈 밀을 이용하여 분산을 행하는 경우에는, 예를 들면, 직경 0.03~0.1mm의 비즈를 사용하여 5~15m/s의 주속(周速)으로 5~30패스로 분산 처리를 행하는 것이 바람직하다. 일반적으로 입수 가능한 비즈는 직경이 0.03mm 이상인 한편, 비즈 직경이 0.1mm을 넘으면 분산되지 않는다. 또한, 주속이 5m/s 미만이면 분산이 불충분해지는 한편, 장치의 성능상 주속이 15m/s를 넘는 것은 곤란하다. 또한, 패스 회수가 5패스 미만에서는 분산이 불충분하며, 30패스를 넘으면 공업적으로 시간이 너무 걸린다. 분산시킨 혼합 분말은 건조시키고 나서 건식 분쇄한다. 그리고, 건식 분쇄 후의 혼합 분말을 소성시켜 티탄산 알칼리 토류 금속염을 얻는다.First, a predetermined amount of the powder of the alkaline earth metal compound and the powder of titanium dioxide is weighed, and then water is added to the weighed powder of the alkaline earth metal compound and the powder of titanium dioxide and mixed with a mixer. Subsequently, the obtained mixed powder is wet-dispersed together with water or the like by using a disperser such as a bead mill or a ball mill or performing a high pressure dispersion treatment. More specifically, in the case of dispersing using a bead mill, for example, dispersion processing is performed in 5 to 30 passes at a peripheral speed of 5 to 15 m / s using beads having a diameter of 0.03 to 0.1 mm. It is preferable to carry out. Generally available beads have a diameter of 0.03 mm or more, while they are not dispersed when the beads diameter exceeds 0.1 mm. Further, if the circumferential speed is less than 5 m / s, dispersion is insufficient, while it is difficult for the circumferential speed of the device to exceed 15 m / s. In addition, when the number of passes is less than 5 passes, dispersion is insufficient, and when the number of passes exceeds 30 passes, it takes too much time industrially. The dispersed mixed powder is dried and then dry pulverized. Then, the mixed powder after the dry grinding is fired to obtain an alkali earth titanate metal salt.

상기 유전체 세라믹 재료는, 상기 티탄산 알칼리 토류 금속염 분말에 추가로, 필요에 따라 특성 조정을 위한 금속 화합물을 함유하고 있어도 된다. 상기 금속 화합물로는, 예를 들면, Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, Yb 중 1종 또는 복수종의 원소를 함유하는 산화물, 탄산염 등의 화합물을 들 수 있다.The dielectric ceramic material may contain, in addition to the alkaline titanate alkaline earth metal salt powder, a metal compound for adjusting properties as necessary. Examples of the metal compound include compounds such as oxides and carbonates containing one or a plurality of elements of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, and Yb. Can be.

상기 티탄산 알칼리 토류 금속염 분말에 상기 금속 화합물의 분말을 첨가하려면, 이와 함께 분산제를 첨가하는 것이 바람직하다.In order to add the powder of the metal compound to the alkaline titanate earth metal salt powder, it is preferable to add a dispersant together.

상기 분산제로는 특별히 한정되지 않으며, 예를 들면, 폴리비닐부틸계 분산제, 폴리비닐아세탈계 분산제, 폴리카르본산계 분산제, 말레산계 분산제, 폴리에틸렌글리콜계 분산제, 알릴에테르코폴리머계 분산제 등을 들 수 있다.The dispersant is not particularly limited, and examples thereof include a polyvinylbutyl dispersant, a polyvinyl acetal dispersant, a polycarboxylic acid dispersant, a maleic acid dispersant, a polyethylene glycol dispersant, an allyl ether copolymer dispersant, and the like. have.

상기 티탄산 알칼리 토류 금속염 분말에 상기 금속 화합물의 분말이나 분산제를 첨가하여, 예를 들면, 호모지나이저로 혼합하고 나서, 비즈 밀로 해쇄·분산시킴으로써, 유전체 세라믹스 재료를 얻을 수 있다. 이렇게 하여 얻은 유전체 세라믹스 재료에, 용제 및 바인더를 첨가하고, 볼 밀 등을 이용하여 혼합함으로써 그린 시트 형성용 슬러리를 얻을 수 있다.A dielectric ceramic material can be obtained by adding a powder or a dispersing agent of the metal compound to the alkali titanic acid earth metal salt powder, mixing it with a homogenizer, and then pulverizing and dispersing it in a bead mill. The slurry for green sheet formation can be obtained by adding a solvent and a binder to the dielectric ceramic material obtained in this way, and mixing using a ball mill etc.

상기 용제로는 특별히 한정되지 않으며, 예를 들면, 에틸 카비톨, 부탄디올, 2-부톡시에탄올 등의 글리콜류: 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올: 아세톤, 메틸에틸케톤, 디아세톤알코올 등의 케톤류: 아세트산 메틸, 아세트산 에틸 등의 에스테르류: 톨루엔, 크실렌, 아세트산 벤질 등의 방향족류 등을 들 수 있다. 이들 용제는, 단독으로 이용되어도 되고, 2종 이상이 병용되어도 된다.The solvent is not particularly limited, and for example, glycols such as ethyl carbitol, butanediol and 2-butoxyethanol: alcohols such as methanol, ethanol, propanol and butanol: acetone, methyl ethyl ketone, diacetone alcohol and the like Ketones: esters such as methyl acetate and ethyl acetate; aromatics such as toluene, xylene and benzyl acetate; and the like. These solvents may be used independently and 2 or more types may be used together.

상기 바인더로는 특별히 한정되지 않으며, 예를 들면, 아크릴 수지, 폴리비닐부틸 수지, 폴리비닐아세탈 수지, 에틸셀룰로스 수지 등을 들 수 있다.It does not specifically limit as said binder, For example, an acrylic resin, a polyvinyl butyl resin, a polyvinyl acetal resin, an ethyl cellulose resin, etc. are mentioned.

상기 바인더는, 미리, 상기 용제에 용해하고 여과하여 용액으로 해 두고, 그 용액에, 상기 유전체 세라믹스 재료를 첨가하는 것이 바람직하다. 고중합도 바인더 수지는 용제에 녹기 어려워, 통상의 방법에서는, 슬러리의 분산성이 악화되는 경향이다. 고중합도 바인더 수지를 용제에 용해하고 나서, 그 용액에 그 밖의 성분을 첨가함으로써, 그린 시트 형성용 슬러리에 있어서의 각 성분의 분산성을 개선할 수 있고, 또한 미용해 바인더 수지의 발생을 억제할 수도 있다. 상기 용제 외의 용제에서는, 고형분 농도를 늘릴 수 없을 뿐만 아니라, 래커(lacquer) 점도의 경시 변화가 증대되는 경향이 있다.It is preferable that the said binder melt | dissolves in the said solvent previously, makes it a solution, and adds the said dielectric ceramic material to this solution. High-polymerization binder resin is difficult to melt | dissolve in a solvent, and it is a tendency for the dispersibility of a slurry to deteriorate by a normal method. By dissolving the high-polymerization binder resin in a solvent and then adding other components to the solution, the dispersibility of each component in the green sheet forming slurry can be improved, and the generation of undissolved binder resin can be suppressed. It may be. In solvents other than the above-mentioned solvents, not only the solid content concentration can be increased but also the change over time of the lacquer viscosity tends to increase.

이렇게 하여 제조된 그린 시트 형성용 슬러리를, 폴리에틸렌테레프탈레이트 등으로 이루어진 기재상에 시트 형상으로 도포함으로써 그린 시트가 형성된다. 유전체층(3)은, 얻어진 그린 시트를 소성시킴으로써 얻어지는 소결체로 이루어진다. 유전체층(3) 한층 당 두께는 2μm 이하인 것이 바람직하다.The green sheet is formed by applying the thus prepared green sheet forming slurry to a substrate made of polyethylene terephthalate or the like in a sheet form. The dielectric layer 3 consists of a sintered compact obtained by baking the obtained green sheet. It is preferable that the thickness per one layer of the dielectric layers 3 is 2 m or less.

내부 전극(4)으로는 특별히 한정되지 않으며, 예를 들면, Cu, Ni, W, Mo, Ag 등의 금속 또는 이들의 합금 등을 들 수 있다.It does not specifically limit as the internal electrode 4, For example, metals, such as Cu, Ni, W, Mo, Ag, or these alloys, etc. are mentioned.

외부 전극(5)으로는 특별히 한정되지 않으며, 예를 들면, Cu, Ni, W, Mo, Ag 등의 금속 또는 이들의 합금; In-Ga, Ag-10Pd 등의 합금; 카본, 그래파이트, 카본과 그래파이트의 혼합물 등으로 이루어진 것을 들 수 있다.It does not specifically limit as the external electrode 5, For example, Metal, such as Cu, Ni, W, Mo, Ag, or alloys thereof; Alloys such as In-Ga and Ag-10Pd; Carbon, graphite, a mixture of carbon and graphite, etc. are mentioned.

본 실시 형태에 관한 적층 세라믹 콘덴서의 제조 방법으로는 특별히 한정되지 않지만, 예를 들면, 다음과 같이 제조된다. 우선, 상기 그린 시트 상에, 상기 각종 금속 등을 함유하는 내부 전극(4)용 도전 페이스트를 소정 형상으로 스크린 인쇄하여, 내부 전극(4)용 도전성 페이스트막을 형성한다.Although it does not specifically limit as a manufacturing method of the multilayer ceramic capacitor which concerns on this embodiment, For example, it is manufactured as follows. First, the electrically conductive paste for internal electrode 4 containing the said various metal etc. is screen-printed in the predetermined shape on the said green sheet, and the electrically conductive paste film for internal electrode 4 is formed.

이어서, 상기 서술한 바와 같이 내부 전극(4)용 도전성 페이스트막이 형성된 복수의 그린 시트를 적층함과 함께, 이들 그린 시트를 사이에 두도록, 도전성 페이스트막이 형성되어 있지 않은 그린 시트를 적층하여 압착시킨 후, 필요에 따라 컷 함으로써 적층체(그린칩)를 얻는다.Subsequently, as described above, the plurality of green sheets on which the conductive paste film for the internal electrode 4 is formed are laminated, and the green sheets on which the conductive paste film is not formed are laminated and pressed so as to sandwich these green sheets. The laminated body (green chip) is obtained by cutting as needed.

그리고, 얻어진 그린칩에 탈 바인더 처리를 실시한 후, 당해 그린칩을 예를 들면 환원성 분위기 중에 있어서 소성시켜 콘덴서 칩체(2)를 얻는다. 콘덴서 칩체(2)에는, 그린 시트를 소성시켜 된 소결체로 이루어진 유전체층(3)과 내부 전극(4)이 교대로 적층되어 있다.Then, after the binder removal process is performed on the obtained green chip, the green chip is baked in a reducing atmosphere, for example, to obtain the capacitor chip body 2. In the capacitor chip body 2, the dielectric layer 3 and the internal electrode 4 which consist of the sintered compact which baked the green sheet are laminated | stacked alternately.

얻은 콘덴서 칩체(2)에는, 유전체층(3)을 재산화시키기 위해 어닐 처리를 실시하는 것이 바람직하다.It is preferable to perform an annealing treatment on the obtained capacitor chip body 2 in order to regenerate the dielectric layer 3.

다음에, 콘덴서 칩체(2)의 단면으로부터 노출된 내부 전극(4)의 각 단끝 각 각에 외부 전극(5)이 전기적으로 접속하도록, 콘덴서 칩체(2)의 단면 상에, 상기의 각종 금속 등으로 이루어진 전극을 도포함으로써 외부 전극(5)을 형성한다. 또한 필요에 따라, 외부 전극(5) 표면에 도금 등에 의해 피복층을 형성한다.Next, on the cross section of the capacitor chip body 2, the above-described various metals and the like are electrically connected to each end of each end of the internal electrode 4 exposed from the end face of the capacitor chip body 2. The external electrode 5 is formed by applying the electrode which consists of these. If necessary, a coating layer is formed on the surface of the external electrode 5 by plating or the like.

이하, 실시예를 통해 본 발명을 더욱 상세하게 설명하지만, 본 발명은 이들 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

BaCO3의 분말과 TiO2의 분말을 준비하고, 준비한 분말을 Ba/Ti 비로 1.002가 되도록 칭량했다. 그 다음, 칭량한 분말을 비커에 넣고, 물을 첨가하여 믹서로 혼합했다. 이어서, 얻은 혼합 분말을 비즈 밀로 분산시켰다. 얻은 슬러리에 대해, 호리바 세이샤쿠쇼 제작의 LA-920을 이용하여 D90(μm)/D50(μm)를 측정했다. 다시, 얻은 혼합 분말을 건조시키고 나서 건식 분쇄했다. 얻은 건조 분말에 대해, BET법에 의해 비표면적(SSA)을 측정했다.A powder of BaCO 3 and a powder of TiO 2 were prepared, and the prepared powder was weighed to have a value of 1.002 in a Ba / Ti ratio. The weighed powder was then placed in a beaker, water was added and mixed with a mixer. The resulting mixed powder was then dispersed with a beads mill. About the obtained slurry, D90 (micrometer) / D50 (micrometer) was measured using LA-920 by Horiba Corporation. Again, the obtained mixed powder was dried and then dry pulverized. About the obtained dry powder, specific surface area (SSA) was measured by the BET method.

그리고, 건식 분쇄 후의 혼합 분말을 100Pa 이하의 진공 하에 하기 표 1에 나타내는 온도로 소성시켰다. 소성시켜 얻은 티탄산바륨 분말에 대해, BET법에 의해 비표면적(SSA)을 측정하고, SEM으로 입경 관찰을 행했다. 이 때, 100개 이상의 입자의 입경을 측정하여, 표준 편차(σ)를 산출했다. 또한, 티탄산바륨 분말의 구조 해석에는 XRD를 이용하고, 얻은 XRD의 차트로부터, 피팅 시스템 RIETAN-2000을 이용하여 c/a 축비를 산출했다. 얻은 측정 결과를 표 1에 나타냈다.And the mixed powder after dry grinding was baked at the temperature shown in following Table 1 under the vacuum of 100 Pa or less. About the barium titanate powder obtained by baking, the specific surface area (SSA) was measured by BET method, and particle size observation was performed by SEM. At this time, the particle diameter of 100 or more particles was measured and the standard deviation (σ) was calculated. In addition, cRD ratio was computed using the fitting system RIETAN-2000 from the chart of XRD which used XRD for the structural analysis of the barium titanate powder. The obtained measurement result is shown in Table 1.

혼합 분말Mixed powder 소성 온도(℃)Firing temperature (℃) 티탄산 바륨 분말Barium titanate powder SSA(m2/g)SSA (m 2 / g) D50/D50D50 / D50 SSA(m2/g)SSA (m 2 / g) c/a(20-145°)c / a (20-145 °) 입경(nm)Particle size (nm) 표준편차(σ)Standard deviation (σ) 평가evaluation 실시예Example 1One 51.451.4 1.22491.2249 840840 10.710.7 1.00801.0080 92.292.2 25.725.7 22 51.451.4 1.22491.2249 870870 7.27.2 1.00871.0087 99.699.6 29.629.6 33 50.650.6 1.22301.2230 840840 9.09.0 1.00831.0083 95.695.6 27.927.9 44 50.650.6 1.22301.2230 850850 7.77.7 1.00851.0085 99.799.7 29.829.8 55 40.440.4 1.22501.2250 870870 10.910.9 1.00751.0075 80.580.5 28.628.6 66 40.440.4 1.22501.2250 900900 9.19.1 1.00841.0084 83.783.7 29.529.5 비교예Comparative example 1One 30.030.0 1.30141.3014 835835 11.811.8 1.00661.0066 85.385.3 33.833.8 22 30.030.0 1.30141.3014 840840 9.99.9 1.00771.0077 107.1107.1 35.835.8

실시예 및 비교예에서 얻은 결과로부터, 혼합 분말이 비표면적이 35m2/g 이상이면서 입도 분포를 나타내는 D90/D50이 1.25 이하인 것이 아닐 경우에는 입도 분포의 불균일을 나타내는 표준 편차(σ)가 30 이하인 균일한 입경을 가지는 티탄산바륨 분말을 얻지 못하고, 또한, 평균 입경이 100nm 이하이면서, 결정성을 나타내는 c/a 축비가 1.0075 이상인, 소형이고 정전 용량이 많은 적층 세라믹 콘덴서를 얻기 위해 중요한 입자 특성을 가지는 티탄산바륨 분말을 얻을 수 없음이 분명해졌다.From the results obtained in Examples and Comparative Examples, when the mixed powder has a specific surface area of 35 m 2 / g or more and the D90 / D50 indicating the particle size distribution is not 1.25 or less, the standard deviation (σ) indicating the nonuniformity of the particle size distribution is 30 or less. Barium titanate powder having a uniform particle diameter is not obtained, and also has an important particle characteristic for obtaining a compact and high capacitance multilayer ceramic capacitor having an average particle diameter of 100 nm or less and a c / a ratio ratio of 1.0075 or more indicating crystallinity. It became clear that barium titanate powder could not be obtained.

추가로, 유전체층과 전극을 적층한 시료에 대한 각종 평가를 행했다.Furthermore, various evaluation was performed about the sample which laminated | stacked the dielectric layer and the electrode.

유전체층 한층 당 두께는 2μm이며, 유효 유전체층은 10층으로 했다. 또한, 한층 당 내부(대향) 전극 면적은, 0.91[mm2]로 했다. 유전체층은 다음과 같이 제작했다. 주성분으로서 실시예 3에서 얻은 티탄산바륨을, 부성분으로서 BaCO3, Dy2O3, MgO, Mn3O4를 포함하는 슬러리를 독터 블레이드법에 의해 페트 필름에 도포하고, 소성 후 2μm가 되는 그린 시트를 성형했다. 얻어진 그린 시트에 내부 전극인 Ni페이스트를 인쇄에 의해 형성했다. 이들을 10층으로 적층하고, 열압착함으로써 적층체를 얻었다. 그 다음, 이 적층체를 폭 2.0mm, 길이 3.8mm, 두께 0.6mm가 되도록 가공했다. 이어서, 이것을 대기 중에, 300℃에서 10시간 가열하여 유기 바인더(수지 성분)를 소각했다. 그 후, N2, H2 및 H2O로 이루어진 혼합 가스의 환원 분위기 중에서, 표 2에 나타내는 소성 온도로 2시간 소성시켰다. 다음에, 질소 가스 분위기 중에, 1000℃로 안정시키고 2시간 재산화 처리를 행했다. 그 후, 소결시킨 적층체의 외측면(대향하는 위치에 있는 절단면)에 Cu로 이루어진 도전성 페이스트를 도포하고, N2가스 분위기 중에서 650℃의 온도로 소부하여, 도 1에 나타내는 바와 같이 내부 전극과 전기적으로 접속된 외부 전극을 형성하여 적층 세라믹 콘덴서를 작성했다. 본 평가 시료에 있어서, 주성분에 대해, Ba원소의 첨가량은 Ba화합물의 Ba로 환산하여 1.0몰부이며, Dy원소의 첨가량은 Dy화합물의 Dy로 환산하여 0.9몰부이며, Mg원소의 첨가량은 Mg화합물의 Mg로 환산하여 1.1몰부이며, Mn원소의 첨가량은 Mn화합물의 Mn로 환산하여 0.2몰부이다. 각종 특성의 측정 방법에서, 비유전률 ε은, 온도 25(℃), 주파수 1(kHz), 전압 0.5(V/μm)의 조건에서, LCR 미터를 이용하여 정전 용량을 측정하고, 이 측정을 통해 얻은 정전 용량, 유전체층의 두께, 및 내부 전극 면적으로부터 산출했다. 유전손실 tanδ(%)는, 비유전률과 동일 조건 하에, LCR 미터를 이용하여 측정했다. 절연 저항 logR(Ω)는, 온도 25(℃), 직류 100(V)의 전압을 3분간 인가하여, 절연 저항계를 이용하여 측정했다. 용량 변화율은, 본 적층 세라믹 콘덴서를 항온조에 넣고, -55℃에서 85℃의 각 온도에 있어서 주파수 1(kHz), 전압 0.5(V/μm)의 조건으로 LCR 미터를 이용하여 정전 용량을 측정했다.The thickness of each dielectric layer was 2 m, and the effective dielectric layer was 10 layers. In addition, the inner (counter) electrode area per layer was set to 0.91 [mm 2 ]. The dielectric layer was produced as follows. Barium titanate obtained in Example 3 as a main component, auxiliary component as BaCO 3, Dy 2 O 3, MgO, a green sheet which is 2μm after coating, and baked on the PET film by a slurry containing Mn 3 O 4 to the doctor blade method Molded. Ni paste which is an internal electrode was formed in the obtained green sheet by printing. These were laminated | stacked in 10 layers and the laminated body was obtained by thermocompression bonding. Then, this laminated body was processed so that it might be set to width 2.0mm, length 3.8mm, and thickness 0.6mm. Subsequently, this was heated at 300 ° C. for 10 hours in the air to incinerate the organic binder (resin component). After that, N 2, in a reducing atmosphere of a gas mixture consisting of H 2 and H 2 O, was calcined 2 hours at a firing temperature shown in Table 2. Next, it was stabilized at 1000 degreeC in nitrogen gas atmosphere, and the reoxidation process was performed for 2 hours. Thereafter, a conductive paste made of Cu is applied to the outer surface (cutting surface at the opposite position) of the sintered laminate, and baked at a temperature of 650 ° C. in an N 2 gas atmosphere, as shown in FIG. The external electrode connected electrically was formed and the laminated ceramic capacitor was produced. In the evaluation sample, the amount of Ba element added to the main component was 1.0 mol part in terms of Ba of Ba compound, the amount of Dy element added was 0.9 mol part in Dy of Dy compound, and the amount of Mg element added was It is 1.1 mol part in conversion of Mg, and the addition amount of Mn element is 0.2 mol part in conversion of Mn of Mn compound. In the measurement method of various characteristics, the relative dielectric constant ε is measured under the conditions of temperature 25 (° C.), frequency 1 (kHz), and voltage 0.5 (V / μm) using an LCR meter to measure the capacitance. It calculated from the obtained capacitance, the thickness of the dielectric layer, and the internal electrode area. The dielectric loss tan δ (%) was measured using an LCR meter under the same conditions as the relative dielectric constant. Insulation resistance logR ((ohm)) applied the voltage of the temperature of 25 (degreeC) and DC 100 (V) for 3 minutes, and measured it using the insulation ohmmeter. The capacitance change rate was measured by using an LCR meter under the conditions of a frequency of 1 (kHz) and a voltage of 0.5 (V / μm) at a temperature of -55 ° C to 85 ° C in the multilayer ceramic capacitor in a thermostat. .

소성 온도(℃)Firing temperature (℃) 비유전률 εRelative permittivity ε 유전손실 tanδ(%)Dielectric loss tanδ (%) 절연 저항 logR(Ω)Insulation resistance logR (Ω) -55℃의 용량 변화율(%)% Capacity change at -55 ℃ 85℃의 용량 변화율(%)85% capacity change rate 11481148 26972697 5.45.4 10.310.3 -3.6-3.6 -13.7-13.7

표 2의 결과로부터, 실시예 3에서 얻은 티탄산바륨을 주성분으로 하여 이용한 적층체는, EIA(Electronic Industries Association)의 X5R 규격(-55℃에서 85℃의 용량 변화율(25℃기준)이 플러스마이너스 15%에 적합하다는 것이 확인되었다.From the results of Table 2, the laminate using the barium titanate obtained in Example 3 as a main component has a capacity change rate (25 ° C standard) of X5R specification (-55 ° C to 85 ° C) of the Electronic Industries Association (EIA). It was confirmed that it is suitable for%.

도 1은 본 발명의 일실시 형태에 관한 적층 세라믹 콘덴서의 모식 단면도이다.1: is a schematic cross section of the multilayer ceramic capacitor which concerns on one Embodiment of this invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1: 적층 세라믹 콘덴서 2: 콘덴서 칩체1: multilayer ceramic capacitor 2: capacitor chip

3: 적층체층 4: 내부 전극3: laminate layer 4: internal electrode

5: 외부 전극5: external electrode

Claims (2)

알칼리 토류 금속 화합물과 이산화 티탄을 고상 반응에 의해 반응시켜 유전체 세라믹스 재료를 제조하는 방법으로서, A method for producing a dielectric ceramic material by reacting an alkaline earth metal compound with titanium dioxide by a solid phase reaction, 비표면적이 35m2/g 이상이고, 입도 분포를 나타내는 D90/D50이 1.25 이하인, 상기 알칼리 토류 금속 화합물의 분말과 이산화 티탄의 분말의 혼합 분말을 소성하는 소성 공정을 갖추고 있는 것을 특징으로 하는 유전체 세라믹스 재료의 제조 방법.A dielectric ceramic having a firing step of firing a mixed powder of a powder of an alkaline earth metal compound and a powder of titanium dioxide having a specific surface area of 35 m 2 / g or more and a D90 / D50 having a particle size distribution of 1.25 or less. Method of making the material. 제1항에 기재된 제조 방법에 의해 얻은 유전체 세라믹스 재료의 소결체로 이루어진 유전체층을 갖추고 있는 것을 특징으로 하는 적층 세라믹 콘덴서.A multilayer ceramic capacitor comprising a dielectric layer made of a sintered body of a dielectric ceramic material obtained by the manufacturing method according to claim 1.
KR1020090125109A 2008-12-25 2009-12-15 Method of manufacturing dielectric ceramic material KR101101598B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-330072 2008-12-25
JP2008330072A JP5184333B2 (en) 2008-12-25 2008-12-25 Method for manufacturing dielectric ceramic material

Publications (2)

Publication Number Publication Date
KR20100075738A true KR20100075738A (en) 2010-07-05
KR101101598B1 KR101101598B1 (en) 2012-01-02

Family

ID=42569602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090125109A KR101101598B1 (en) 2008-12-25 2009-12-15 Method of manufacturing dielectric ceramic material

Country Status (2)

Country Link
JP (1) JP5184333B2 (en)
KR (1) KR101101598B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6559419B2 (en) * 2014-12-19 2019-08-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramics and method for manufacturing the same
JP7421313B2 (en) 2019-11-22 2024-01-24 太陽誘電株式会社 Ceramic electronic components and their manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277368A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Multilayer ceramic capacitor
JP2002234769A (en) 2001-02-01 2002-08-23 Murata Mfg Co Ltd Method for producing barium titanate powder, barium titanate powder, dielectric ceramic and multilayer ceramic capacitor
JP4200427B2 (en) * 2001-12-28 2008-12-24 株式会社村田製作所 Method for producing composite oxide powder
JP4141298B2 (en) * 2003-03-24 2008-08-27 太陽誘電株式会社 Method for producing dielectric ceramic powder having perovskite structure, method for producing ceramic electronic component, and method for producing multilayer ceramic capacitor
CN100509637C (en) * 2003-04-11 2009-07-08 昭和电工株式会社 Perovskite titanium-containing composite oxide particle, production process and uses thereof
KR100674846B1 (en) * 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
JP4658689B2 (en) 2005-05-27 2011-03-23 京セラ株式会社 Method for producing barium titanate powder, barium titanate powder, and sintered barium titanate
JP2007091505A (en) * 2005-09-27 2007-04-12 Kyocera Corp Barium titanate powder and method for producing the same
JP5037009B2 (en) * 2005-12-20 2012-09-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Sintered body, ceramic capacitor and manufacturing method thereof
JP2008127265A (en) * 2006-11-24 2008-06-05 Fuji Titan Kogyo Kk Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder and ceramic electronic component using the same
JP4859641B2 (en) * 2006-11-29 2012-01-25 京セラ株式会社 Barium titanate powder and method for producing the same, and dielectric ceramic
JP2008222522A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Barium titanate powder, its manufacturing method and multilayer ceramic capacitor using the same

Also Published As

Publication number Publication date
JP2010150082A (en) 2010-07-08
KR101101598B1 (en) 2012-01-02
JP5184333B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
EP1972605B1 (en) Dielectric ceramic composition and electronic device
JP2007331958A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2009143735A (en) Dielectric porcelain composition and electronic component
JP2006199534A (en) Dielectric ceramic composition and electronic component
JP2008247656A (en) Method for producing dielectric porcelain composition and method for manufacturing electronic component
JP2007063040A (en) Method for producing dielectric porcelain composition, and electronic component
JP6696267B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
KR101101598B1 (en) Method of manufacturing dielectric ceramic material
KR20110074486A (en) Method for manufacturing dielectric ceramic material
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP2007258476A (en) Laminated electronic component and manufacturing method thereof
US20220254567A1 (en) Dielectric composition, electronic device, and multilayer electronic device
JP2005033070A (en) Multilayer ceramic condenser and its manufacturing method
JP2008230928A (en) Dielectric ceramic composition and electronic component
JP2001110665A (en) Dielectric component and ceramic capacitor using the same
JP2007258477A (en) Laminated electronic component and manufacturing method thereof
KR101133358B1 (en) Method of manufacturing dielectric ceramic material
JP4788428B2 (en) Multilayer electronic component and manufacturing method thereof
JP2007180217A (en) Manufacturing method of laminated ceramic electronic components
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
KR100951319B1 (en) Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby
KR100951318B1 (en) Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry
JP5231387B2 (en) Method for manufacturing dielectric ceramic material
JP4677961B2 (en) Electronic component, dielectric ceramic composition and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151005

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee