JP2010134997A - Cpp構造の磁気抵抗効果型ヘッド - Google Patents

Cpp構造の磁気抵抗効果型ヘッド Download PDF

Info

Publication number
JP2010134997A
JP2010134997A JP2008309726A JP2008309726A JP2010134997A JP 2010134997 A JP2010134997 A JP 2010134997A JP 2008309726 A JP2008309726 A JP 2008309726A JP 2008309726 A JP2008309726 A JP 2008309726A JP 2010134997 A JP2010134997 A JP 2010134997A
Authority
JP
Japan
Prior art keywords
layer
element height
height direction
longitudinal bias
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008309726A
Other languages
English (en)
Inventor
Katsuro Watanabe
克朗 渡邉
Shinko Osugi
眞弘 大杉
Atsushi Kato
篤 加藤
Nobuo Yoshida
伸雄 芳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2008309726A priority Critical patent/JP2010134997A/ja
Priority to US12/631,295 priority patent/US9230574B2/en
Publication of JP2010134997A publication Critical patent/JP2010134997A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】
読み滲みが小さく、再生特性の安定性に優れたCPP構造の磁気抵抗効果型ヘッドを、提供する。
【解決手段】
下部シールド層11と上部シールド層との間に磁気抵抗効果センサ膜20が配置されており、その両脇にトラック幅方向絶縁膜22を介して縦バイアス印加層23が設けてあるCPP構造の磁気抵抗効果型ヘッドにおいて、縦バイアス印加層23の素子高さ方向の長さ112を、磁気抵抗効果センサ膜20を構成する層の一つで、外部磁界に対して磁化が回転する第2の強磁性層16の素子高さ方向の長さ111よりも長くし、そのときに、縦バイアス印加層23の膜表面が素子高さ方向において段差を有し、縦バイアス印加層23の膜厚がその段差に対応して変わっており、かつ、媒体対向面における膜厚が最も厚い構造とする。
【選択図】図1

Description

本発明は、磁気抵抗効果膜の積層面を貫くようにセンス電流を流すCPP (Current perpendicular to the plane) 構造の磁気抵抗効果型ヘッドに関するものである。
外部磁界の変化に応じて、電気抵抗が変化する磁気抵抗効果を利用した磁気抵抗センサは、優れた磁界センサとして知られており、磁気記録再生装置の主要な部品である磁気ヘッドの再生ヘッドとして実用化されている。
磁気記録再生装置は小型化が進展しているため、情報を読み書きする磁気ヘッドに対しても性能向上が求められている。現在の磁気ヘッドは、情報を読む再生ヘッドと、情報を書く記録ヘッドの2つのヘッドで構成されており、そのうち、再生ヘッドについては、高い再生分解能が達成できるCPP構造の磁気抵抗効果型ヘッドが広く用いられている。
さらなる高記録密度を実現するためには、再生ヘッドとしても幾つか解決しなければならない課題があるが、その中に、再生ヘッド素子部の高精度形成と、再生特性の安定性の向上がある。
高記録密度に伴い、再生トラック幅も狭小化する必要がある。ここで、再生トラック幅とは、記録媒体からの信号を検知する磁気抵抗効果センサ膜のトラックの幅のことである。再生トラック幅の形成に関しては、生産性を考慮すると、簡便なプロセスであるリフトオフプロセスを用いて形成することが好ましく、そのためには、リフトオフマスク材の高さは、ある程度以上の高さが必要である。狭い再生トラック幅を形成するためには、リフトオフマスク材のパターン幅も狭くする必要があり、そのときには、リフトオフマスク材のパターン幅に対する高さの比(アスペクト比)が大きくなり、リフトオフマスク材が曲がりなどによりパターン精度が劣化したり、パターンが崩れたりする。また、再生ヘッドの性能に影響する幾何学寸法としては、素子高さもあり、これについても、より高い精度で形成することが求められる。なお、素子高さとは、磁気抵抗効果センサ膜の奥行き方向の長さである。
再生トラック幅の狭小化は、再生特性の安定性にも影響を及ぼす。一般に、ノイズが十分に抑制された良好な再生波形を安定して得るためには、再生トラック幅が狭くなるのに伴い、素子高さも短くする必要がある。これは、磁気抵抗効果センサ膜を構成する強磁性層の一つで、記録媒体からの磁界でその磁化の方向が回転する自由層の形状によって決まる形状異方性が、安定動作に影響する要素の一つになっているからである。
さらに、自由層には、その両脇にトラック幅方向絶縁層を介して縦バイアス印加層を設けて、縦バイアス磁界を付加して、ノイズが発生することなく磁化回転が起こるようにしている。素子高さが短くなると、縦バイアス印加層の素子高さ方向の長さも必然的に短くなるので、縦バイアス印加層が熱揺らぎの影響を受け易くなる。
特開2005-346869号公報、および、特開2008-84373号公報に、磁気抵抗効果センサ膜の素子高さよりも縦バイアス印加層の素子高さが長い構造を有するCPP構造の磁気抵抗効果型ヘッドが開示されている。
特開2005-346869号公報 特開2008-84373号公報
従来技術の特開2005-346869号公報および特開2008-84373号公報には、縦バイアス印加層の素子高さ方向の高さが低くならないように、縦バイアス印加層の素子高さ方向の長さを磁気抵抗効果センサ膜の素子高さよりも長くした構造が開示されている。
特開2005-346869号公報では、磁気抵抗効果センサ膜をエッチングで所望の寸法に形成する際に、縦バイアス印加層である硬磁性層がエッチングされないように、硬磁性層の上に保護層として絶縁層を設けており、磁気抵抗効果センサ膜のパターン形成が完了した後もその絶縁層を残した構造にしている。この場合、媒体対向面では、この絶縁層はエッチングされず成膜した厚さがそのまま残っているので、媒体対向面における縦バイアス印加層、特に磁気抵抗効果センサ膜近傍では、上部シールド層と下部シールド層の間隔が、磁気抵抗効果センサ膜が配置されている位置での上部シールド層と下部シールド層の間隔に比べて、広くなってしまう。
特開2008-84373号公報においても、上述の保護層が絶縁膜ではなく、Crなどの金属を用いることが開示されており、媒体対向面において、縦バイアス印加層が配置されている位置での上下シールド層の間隔は、磁気抵抗効果センサ膜が配置されている位置での間隔よりも広くなることは同様である。
上記のように磁気抵抗効果センサ膜の両脇において上下のシールド間隔が広くなると、読み滲みが生じるので、再生分解能が劣化したり、トラック端部あるいは隣接トラックからの雑音信号も感知したりするため、信号雑音比SNRが劣化してしまう。
また、特開2008-84373号公報には、保護膜を設けずに、十分に厚い縦バイアス印加層を成膜しておき、磁気抵抗効果センサ膜を所望の寸法に形成する際に同時に縦バイアス印加層もエッチングし、所望の厚さの縦バイアス印加層を残す製造方法も開示されている。この場合には、リフトオフマスク材を除去する工程で縦バイアス印加層表面全体が露出してしまい、腐食の発生により歩留まりを低下させることが懸念される。
本発明の目的は、磁気抵抗効果センサ膜の幾何学寸法が高い精度で形成されており、かつ、読み滲みが抑制された優れた再生性能を有し、かつ、その安定性に優れ、さらに、高い歩留まりで製造することが可能なCPP構造の磁気抵抗効果型ヘッドを提供することにある。
上記目的は、下部シールド層と上部シールド層との間に、少なくともピニング層と第1の強磁性層と中間層と第2の強磁性層が積層されている磁気抵抗効果センサ膜が配置されており、磁気抵抗効果センサ膜の両脇にトラック幅方向絶縁膜を介して縦バイアス印加層が設けてあり、第1の強磁性層と中間層と第2の強磁性層の界面を貫くようにセンス電流を流し、磁気抵抗効果センサ膜が外部磁界の変化によって発生する抵抗変化を検出する磁気抵抗効果型ヘッドにおいて、縦バイアス印加層の素子高さ方向の長さを第2の強磁性層の素子高さ方向の長さよりも長くし、そのときに、縦バイアス印加層の膜表面が素子高さ方向において段差を有し、縦バイアス印加層の膜厚がその段差に対応して変わっており、かつ、媒体対向面における膜厚が最も厚い構造とすることによって達成できる。
ここで、縦バイアス印加層の構成としては、硬磁性層を用いる構成と、強磁性層と反強磁性層との積層体を用いる構成がある。
前者の場合には、媒体対向面において、硬磁性層の上に必要に応じて保護膜を設け、その膜厚は10nm以下が好ましい。縦バイアス印加層の素子高さ方向の長さについては、第2の強磁性層の素子高さ方向の長さよりも長くし、第1の強磁性層の素子高さ方向の長さよりも長く、あるいは、略等しくする。
後者の場合には、縦バイアス印加層の媒体対向面の厚さよりも薄くなっている領域では、高抵抗の反強磁性材料が積層されている構造とする。このとき、第1の強磁性層の素子高さ方向の長さは、縦バイアス印加層の素子高さ方向の長さよりも短いことが好ましい。
本発明の磁気抵抗効果型ヘッドは、縦バイアス印加層上の保護膜を薄くすることができ、上下のシールド層の間隔を近づけることができるので、読み滲みが抑制された優れた再生性能を有し、かつ、再生特性の安定性を向上させることができる。また、本発明の磁気抵抗効果型ヘッドの製造方法によれば、再生性能を決定する磁気抵抗効果センサ膜の幾何学寸法を高い精度で形成でき、かつ、腐食が発生し難いため、高い歩留まりで製造することができる。
まず、磁気抵抗効果センサ膜の幾何学寸法を高い精度で形成する方法について述べる。磁気抵抗効果センサ膜を形成する方法としては、(1)トラック幅方向を先に形成する方法と、(2)素子高さ方向を先に形成する方法の二つの方法がある。それぞれ図2および図3に、基板上面から見た工程の概略を示す。なお、図においては、縦横の倍率を変えていたり、パターン形状を矩形にしたりしているが、説明を分かり易くするためのもので、実際にはこれらが変わっていることがあっても構わない。
トラック幅方向を先に形成する方法では、磁気抵抗効果センサ膜20が形成されている領域(図2(a))にトラック幅形成用マスク材25を形成する(図2(b))。ここで、図中央付近の二つの四角の領域がマスク材が形成されていない部分であり、この部分にある磁気抵抗効果センサ膜20は次の工程でエッチングされる。続いて、トラック幅方向絶縁層22と縦バイアス印加層23を成膜した後、トラック幅形成用マスク材25をリフトオフする。なお、トラック幅方向絶縁層22は、縦バイアス印加層23の基板側に形成されているため、基板上面にはその端部のみ出ているだけで、大部分は表れていない(図2(c))。次に、素子高さ方向形成用マスク材26を所定の位置に形成する(図2(d))。図中央の四角の領域がマスク材が形成されている部分で、これ以外の部分に存在する膜はエッチングされ、続いて素子高さ方向絶縁層24が形成される(図2(e))。素子高さ方向形成用マスク材26をリフトオフすると、図2(f)のように、磁気抵抗効果センサ膜20と縦バイアス印加層23の素子高さ方向の長さが略等しいパターンが形成される。
素子高さ方向を先に形成する方法では、磁気抵抗効果センサ膜20が形成されている領域(図3(a))に素子高さ方向形成用マスク材26を形成する(図3(b))。図中央の四角の領域がマスク材が形成されている部分で、これ以外の部分に存在する磁気抵抗効果センサ膜20はエッチングされる。続いて素子高さ方向絶縁層24を成膜した後、素子高さ方向形成用マスク材26をリフトオフする(図3(c))。次に、トラック幅形成用マスク材25を所定の位置に形成する。図中央付近の二つの四角の領域がマスク材が形成されていない部分であり、この部分に存在する膜はエッチングされることになる(図3(d))。トラック幅方向絶縁層22と縦バイアス印加層23を成膜し(図3(e)、図では基板上面側に配置されている縦バイアス印加層23と記載)、トラック幅形成用マスク材25をリフトオフする(図3(f))と、磁気抵抗効果センサ膜20の素子高さ方向の長さよりも縦バイアス印加層の素子高さ方向の長さが長いパターンが形成される。
一般に、ウェハプロセスにおいては、トラック幅となる部分のパターンの幅の方が、素子高さとなる部分のパターンの高さよりも狭いので、前者の方がより精度高くパターンを形成する必要がある。トラック幅方向を形成するときのマスク材を形成する工程を、上述の二つの方法で比較してみる。トラック幅方向を先に形成する方法では図2(b)、素子高さ方向を先に形成する方法では図3(d)になる。
図2(b)でトラック幅となる部分は、図中央付近の2つの四角の領域で挟まれている部分である。トラック幅形成用マスク材25のトラック幅となる部分は、磁気抵抗効果センサ膜20の上に形成されており、光学的に見て均質な材料の上に形成されることになる。また、この後でエッチングしてトラック幅を形成する際にも、エッチングされる膜は磁気抵抗効果センサ膜20と、金属材料が主である。このような状況は、パターン形成という観点では好ましい状況ということができる。
一方、図3(d)のトラック幅形成用マスク材25を見てみると、磁気抵抗効果センサ膜20と素子高さ方向絶縁層24に跨って形成されており、前者は金属材料、後者は絶縁材料と光学的にも性質が異なる材料である。また、トラック幅を形成するエッチングでも、一般的には、絶縁材料は金属材料よりも物理的なエッチング速度が遅く、このことは、マスク材への再付着や、再付着物の再度のエッチングなどで、トラック幅の形成の精度にも影響を与える。磁気抵抗効果センサ膜20の境界線のうち、トラック幅形成用マスク材25の下に存在する部分は、素子高さを決める重要な境界であるが、マスク材あるいはエッチングが均一に行われないために、この近傍で、磁気抵抗効果膜20や縦バイアス印加層24の配置が乱れてしまう懸念がある。
図4は、素子高さ方向を先に形成する方法において、トラック幅形成用マスク材25をマスクとしてエッチングした後に、磁気抵抗効果センサ膜20の素子高さ方向の境界線近傍のSEM写真である。図の上下方向にトラック幅形成用マスク材25が形成されており、図の上側が素子高さ方向絶縁層24、下側が下部シールド層11(磁気抵抗効果センサ膜20が全てエッチングされて、その下の下部シールド層が現れた)である。なお、下部シールド層11は、図3(a)で磁気抵抗効果センサ膜20が形成される際に、その基板側に形成されている層である。トラック幅形成用マスク材25は、素子高さ方向絶縁層24の上でのパターン幅が、下部シールド層11の上よりも細くなっており、この後の工程で縦バイアス印加層23が形成されると、素子高さ方向絶縁層24側では、その間隔が狭くなる。この間隔はウェハ面内でばらついており、これは縦バイアス磁界をばらつかせ、歩留まりを劣化させることになる。また、素子高さ方向絶縁層24と下部シールド層11との境界線は、トラック部に近づくに従って、磁気抵抗効果センサ膜の境界線200を底部とする凹形状になっている。この凹形状はウェハ面内でもばらつきがあり、必ずしも一定ではないので、磁気抵抗効果センサ膜の境界線200がばらついていると考えられる。このことは、磁気抵抗効果ヘッドでは、磁気抵抗効果センサ膜の素子高さがばらつくことになるので、再生特性のばらつきの原因となる。
以上のように、トラック幅および素子高さの高精度形成という観点では、トラック幅を先に形成する方法が望ましいことが分かったが、次に、縦バイアス磁界の安定性という観点で考えてみる。
磁気抵抗効果素子の構造は、トラック幅方向を先に形成する方法では図2(f)、素子高さ方向を先に形成する方法では図3(f)である。縦バイアス印加層23の素子高さ方向の長さを比較すると、図2(f)は、磁気抵抗効果センサ膜の素子高さと略等しいのに対し、図3(f)は、それよりも長くなっている。
再生特性の安定性を確保するためには、再生トラック幅の狭小化に伴い、素子高さも短くする必要がある。さらには、図5に示すように、媒体対向面側には浮上面加工によるダメージ層30が、素子高さ方向の奥側にはエッチング加工によるダメージ層31が存在するため、縦バイアス印加層23の実効的な素子高さ方向の長さは、物理的な長さよりも短くなる。なお、図5において、101がトラック幅を、111が第2の強磁性層(及び縦バイアス印加層)の素子高さ方向の長さを示す。
このように、より高い記録密度で再生特性の安定性を維持するためには、上述のダメージ層の影響も考慮すると、縦バイアス印加層23の素子高さ方向が短くなる トラック幅方向を先に形成する方法では、縦バイアス磁界の安定性が劣化する懸念がある
以上述べたように、幾何学寸法の高い精度での形成、縦バイアス磁界の安定性の二つを両立させ、さらに高記録密度に対応するためには、新規な構造が必要である。
以下において、図面を用いて、本発明の具体的な実施例を説明する。
図1に、本発明の磁気抵抗効果型ヘッドの磁気抵抗効果センサ膜20および縦バイアス印加層23近傍の斜視図を示す。この斜視図は、縦バイアス印加層23の形成が完了した時点の図である。また、図6には工程の概略図を示す。図においては、縦横及び厚さ方向の倍率を変えていたり、パターン形状を矩形にしたりしているが、説明を分かり易くするためのもので、実際にはこれらが変わっていることがあっても構わない。
アルミナとチタンカーバイドを含有する焼結体などからなる基板の上に、アルミナなどの絶縁膜を被覆し、その表面を精密研磨により平坦にした後、Ni-Fe系合金などからなる下部シールド層11を形成する。これは、例えば、スパッタリング法、イオンビームスパッタリング法、あるいは、めっき法で成膜した膜を、所定の形状にパターニングした後に、アルミナなどの絶縁膜を基板全面に形成し、化学的機械研磨法(CMP)によって平坦化することによって、その周囲に設けられた絶縁膜とほぼ同じ高さにする。このとき、さらに下部シールド層11の表面凹凸の大きさも所定の大きさ以下になるように制御される。
成膜装置内でこの上の表面酸化層などをクリーニングした後、シード層12、ピニング層13、第1の強磁性層14、中間層15、第2の強磁性層16、キャップ層17を、基板側からこの順に成膜する。ここで、シード層12およびキャップ層17としては、Cu、Ta、Ru、Rh、Ni-Cr-Fe系合金あるいはこれらの積層膜を用いることができ、ピニング層13としてはPt-Mn系合金、Mn-Ir系合金などの反強磁性膜、Co-Pt系合金やCo−Cr−Pt系合金などの硬磁性膜を用いることができる。第1の強磁性層14は、ピニング層側強磁性層、スペーサ層および中間層側強磁性層からなる積層膜を用いることもできる。ピニング層側強磁性層、中間層側強磁性層および第2の強磁性層としては、Ni-Fe系合金、Co-Fe系合金、Co-Fe-B系合金、Co-Ni-Fe系合金、例えばマグネタイトやホイスラー合金などの高分極率材料、および、これらの積層膜を用いることができる。スペーサ層としては、Ru、Rh、Ir、および、少なくともこれらを1種類以上含む金属を用い、その厚さは10オングストローム以下が好ましい。中間層15は、TMR効果を用いる場合にはトンネル障壁層であり、具体的には、Al、Mg、Si、Zr、Ti、これらの混合物の酸化物、あるいはこれらの酸化物の積層体である。CPP−GMR効果を用いる場合には、導電層あるいは電流狭窄層を有する導電層であり、具体的には、Al、Cu、Ag、Au、あるいはこれらの混合物や積層体の他、これらの一部を部分的に酸化、窒化などによって電流狭窄を行う層などを挿入してもよい。以上のように、シード層12からキャップ層17までの磁気抵抗効果センサ膜を成膜した後、必要に応じて、第1の強磁性層の磁化を特定の方向に向けるための磁界中熱処理あるいは着磁を施す。特に、ピニング層13が規則格子を有する反強磁性体、例えばPt-Mn系合金や一部のMn-Ir系合金の場合には、規則構造が構成され、第1の強磁性層との間に交換結合が生じるまで、磁界中で熱処理することが必要となる(図6(a))。
次に、トラック幅方向の形成を行う。磁気抵抗効果センサ膜20のトラック幅方向のセンサ部分となる領域にトラック幅形成用マスク材25を形成し(図6(b))、マスクされていないトラック幅の両脇の部分の磁気抵抗効果センサ膜20をエッチングにより除去する。このとき、エッチングされずに残る磁気抵抗効果センサ膜20の側壁に再付着物が残らないようにエッチングすることが重要である。トラック幅方向絶縁層22を介して、縦バイアス印加層23として所望の縦バイアス磁界が発生するだけの十分な厚さの硬磁性層を、磁気抵抗効果センサ膜の外部磁界に応じて磁化方向が回転する強磁性層である第2の強磁性層16とほぼ同じ高さになるように形成し、その上に、縦バイアス印加層保護膜231を形成する。ここで、縦バイアス印加層保護膜231は、後で形成される上部ギャップ層あるいは上部電極層の形成工程でのプロセスダメージを回避あるいは低減するためのものであるので、その厚さは10nm以下とすることができる。
この後、トラック幅形成用マスク材25を除去することにより、トラック幅方向の形成が完了する(図6(c))。
なお、トラック幅方向絶縁層22としては、アルミナ、酸化シリコン、酸化タンタル、窒化アルミニウム、窒化シリコン、窒化タンタルなどの単層膜、混合膜および積層膜を用いることができ、縦バイアス印加層23である硬磁性層しては、Co-Pt系合金やCo-Cr-Pt系合金などの硬磁性膜を用いることができ、このとき、硬磁性膜の特性、特に保磁力を制御するためにCr、Cr-Mo系合金、Cr-Ti系合金などの下地膜を設けてもよい。縦バイアス印加層保護膜231としては、Cr、Cr-Mo系合金、Cr-Ti系合金、Ru、Rh、Taあるいはこれらの積層膜などからなる保護膜を用いることができる。
トラック幅方向の形成が完了した後、第2の素子高さ方向形成用マスク材261を所定の位置に形成する(図6(d))。第2の素子高さ方向形成用マスク材261の素子高さ方向の長さは、後の工程(図6(f))で第2の強磁性層16の素子高さ方向の端部(スライダー加工を行っても磁気抵抗効果型ヘッドに残る側)となる位置よりも長くしてある。エッチングにより再生ヘッド素子部に必要な領域以外にある磁気抵抗効果センサ膜20、トラック幅方向絶縁層22、縦バイアス印加層23、および、縦バイアス印加層保護膜231を除去するが、このとき、磁気抵抗効果センサ膜20の端部に再付着物を残さないようにすることが重要である。この後、アルミナ、酸化シリコン、酸化タンタル、窒化アルミニウム、窒化シリコン、窒化タンタルなどの単層膜、混合膜および積層膜からなる第1の素子高さ方向絶縁膜24を成膜し、第2の素子高さ方向形成用マスク材261を除去する(図6(e))。
さらに、第1の素子高さ方向形成用マスク材26を所定の位置に形成し(図6(f))、少なくとも磁気抵抗効果センサ膜20の第2の強磁性層16までエッチングする。その後、第2の素子高さ方向絶縁層241を形成し、第1の素子高さ方向形成用マスク材26を除去する(図6(g)、縦バイアス印加層23と第2の強磁性層の素子高さ方向の長さの違いを明確にするため、この部分のみ透視図として記載している。)。ここで、エッチングする深さは、第2の強磁性層16より基板側に配置されている層まで達してもよいが、そのときには同時に、縦バイアス印加層23である硬磁性層もエッチングされて体積が減ってしまうので、硬磁性層の熱揺らぎ耐性を考慮して調整することが好ましい。ドライエッチングによるダメージの深さは、種々の実験から推定すると、約3.5nmと考えられるので、縦バイアス印加層である硬磁性層の厚さとしては3.5nm以上必要である。また、第2の素子高さ方向絶縁層241は、素子高さ方向絶縁層24と同様に前述の材料を用いることができるが、これらは必ずしも同じ材料である必要はない。
このような構造の磁気抵抗効果型ヘッドでは、第2の強磁性層16の素子高さ方向の長さ、すなわち、磁気抵抗効果センサ膜の素子高さ方向の長さが符号111の長さとなっているのに対し、縦バイアス印加層の素子高さ方向の長さは符号112の長さと、長くなっている。したがって、縦バイアス印加層23の、第2の強磁性層16の長さ111となっている部分はエッチング加工によるダメージを受けているが、この部分の磁気スピンは、長く形成された部分の縦バイアス印加層のスピンとの交換相互作用によって支持されるとともに、縦バイアス印加層の長く形成された部分からの縦バイアス磁界も作用するから、縦バイアス印加層の特性の劣化を抑制することができる。つまり、磁気抵抗効果センサ膜の素子高さを短くしても、縦バイアス磁界を安定して印加することができる。
また、このような構造を用いると、縦バイアス磁界を発生する機能を有する硬磁性層は、腐食などのプロセスダメージを受け難くなる。具体的には、縦バイアス印加層23が配置されている領域は第2の素子高さ方向形成用マスク材261が形成された領域であるのに対して、素子高さ方向の形成が完了した時点で基板表面に出ているために腐食などのプロセスダメージを被る危険性がある領域は、第1の素子高さ方向形成用マスク材26が形成された領域である。すなわち、縦バイアス印加層23の面積に比べて、腐食などのダメージを受ける領域を小さくすることができるのである。
また、従来技術の公報で開示されている、縦バイアス印加層全体をエッチングする構造ではないので、縦バイアス印加層保護膜231を厚くする必要はないため、縦バイアス印加層保護膜231が残存している媒体対向面において、縦バイアス印加層23が配置されている部分でのシールド間隔を、磁気抵抗効果センサ膜20が配置されている部分でのシールド間隔に近づけることが可能となる。これにより、読み滲みが抑制されるため、再生分解能が高く、信号雑音比SNRも良好な磁気抵抗効果ヘッドとなる。
素子高さ方向の形成が完了した後に、下部シールド層11および上部シールド層21(図10参照)にセンス電流を供給するリード線を形成する。リード線の材料としては、Cu、 Au、 Ta、 Rh、 Moなどの低抵抗金属を用い、必要に応じて、その下側、上側あるいは両側に他の金属層を設けてもよい。
必要に応じて絶縁保護膜を形成した後、磁気抵抗効果センサ膜やリード線などの最表面をクリーニングした後、上部シールド層21を形成するが、必要に応じて上部シールド層21の下地膜を兼ねて上部ギャップ層を設けてもよい。これにより、再生ヘッドの工程が完了する。図において、符号40は、全体として再生用の磁気抵抗効果型ヘッドを示す。
この上に再生素子部と記録素子部を分離するための分離層45を介して記録用の誘導型磁気ヘッド50を形成し、ウェハ工程が完了する。誘導型磁気ヘッド50について、51は下部磁性層、52はコイルを構成する導体、53は絶縁層、54は上部磁性層である。なお、誘導型磁気ヘッドの形成中あるいは終了後に、再生素子のトラック幅方向に磁界を印加しながら熱処理を行い、第1の強磁性層14の磁化の方向を概ね素子高さ方向に保ったまま、第2の強磁性層16の磁化の方向をトラック幅方向に向ける熱処理を行ってもよい。
さらに、所望の素子高さになるまで磁気ヘッド素子を機械研磨により削る研磨工程、磁気記録再生装置内で再生素子および記録素子を保護するための保護膜形成工程、磁気ヘッドと磁気記録媒体との間隔(浮上量)を制御するために媒体対向面に所定の溝形状を形成する工程、個々の磁気ヘッドをサスペンションに接着する組立て工程などを経て、ヘッド・ジンバル・アッセンブリが完成する。
比較のため、図2に示した工程で製造される従来の磁気ヘッドも作成した。このとき、本発明の磁気ヘッドも従来技術の磁気ヘッドも第2の強磁性層のトラック方向の幅が70nmのものを作成し、磁気ヘッド素子の研磨加工の際に異なる素子高さ(第2の強磁性層の素子高さ方向の長さ)に加工し、同一の記録媒体上で、同一の浮上量で、同一のセンス電流で再生特性を評価した。再生特性の中で、縦バイアス磁界の強さやばらつきに敏感なパラメーターである再生波形の非対称性の標準偏差を図11に示す。ここで、再生波形の非対称性Asymmetryは、プラス側の出力をV+、マイナス側の出力をVとすると、

Asymmetry (%)= (V+ − V)/(V+ + V)×100 (1)

で定義される。図11を見ると、従来技術で製造した磁気ヘッドは、第2の強磁性層の素子高さが短くなると共に、再生波形の非対称性の標準偏差は、素子高さが100nmで7%であったものが、55nmになると16%まで急増している。一方、本発明の磁気ヘッドでは、100nmにおいて7%が、55nmにおいても9%と僅かしか大きくなっていない。これは、縦バイアス印加層23の素子高さ方向の長さを長くして、プロセスダメージの影響を低減し、熱揺らぎ耐性も向上させた効果によるものと考えられる。
実施例1では、縦バイアス印加層23である硬磁性層の上に縦バイアス印加層保護膜231を設けて磁気ヘッドを作製したが、この縦バイアス印加保護層231を設けずに磁気ヘッドを作成した。トラック幅形成用マスク材25、第2の素子高さ方向形成用マスク材261、および、素子高さ方向形成用マスク材26をリフトオフするときの剥離やリンスの際に腐食する危険性があるため、剥離液の管理やリンス後の乾燥に細心の注意を払うことで、腐食を発生させることなく、本発明の磁気ヘッドを作成することができた。
本実施例のヘッドでは、縦バイアス印加保護層231を設けないため、縦バイアス印加層23が配置されている部分でのシールド間隔を、さらに狭くすることができる。従って、読み滲みを抑制しながら、磁気抵抗効果センサ膜20が配置されている部分でのシールド間隔も狭くすることもでき、さらなる高記録密度を実現することが可能となる。
再生特性の安定性に、逆弾性効果が影響することが知られている。これを低減させる手段としては、磁気抵抗効果センサ膜20を構成する第2の強磁性層16の磁歪を小さくすることであるが、高い磁気抵抗変化率を得るためには、ある程度の大きさの磁歪を許容せざるを得ない場合がある。この場合には、応力を低減することによって、この影響を低減することが可能である。しかしながら、応力を設計することは難しいため、実際には、磁気抵抗効果センサ膜20の近傍の構造を変えてみることになる。
このような観点から、図8の斜視図に示す磁気ヘッドを、図9に示す工程の概略に従って作製した。本構造の特徴は、第1の強磁性層14の素子高さ方向の長さが、第2の強磁性層16の素子高さ方向の長さと略等しく、縦バイアス印加層23の素子高さ方向の長さよりも短いことである。実施例1のヘッド作製工程との違いは、図6(d)と図9(d)における第2の素子高さ方向形成用マスク材261の形状である。縦バイアス印加層23の素子高さ方向の長さを磁気抵抗効果センサ膜20の第2の強磁性層16の素子高さ方向の長さよりも長くしておき、第2の素子高さ方向形成用マスク材261の形状、特に、磁気抵抗効果センサ膜20の素子高さとなる部分近傍の凹部の開き角を変えることにより、応力の調整が可能性となる。また、第1の強磁性層14の素子高さ方向の長さを、第2の強磁性層16の素子高さ方向の長さよりも長く、縦バイアス印加層23の素子高さ方向の長さよりも短い範囲で、変えることによっても調整可能である。
縦バイアス印加層23として硬磁性層以外にも、強磁性層と反強磁性層との積層体を用いることもできる。このとき、強磁性層としてはNi-Fe系合金、Co-Fe系合金、Co-Ni -Fe系合金などを、反強磁性層としてはMn-Ru系合金、Mn-Rh系合金、Mn-Pd系合金、Mn-Ir系合金などを用いることができる。この構造においては、図6(f)あるいは図9(f)でエッチングするときに、反強磁性層をエッチングで取り去ってしまい、第2の素子高さ方向絶縁層241として、抵抗の高い反強磁性層、例えばNiO酸化物反強磁性層などを形成することが好ましい。これにより、必要に応じて磁界中熱処理を追加して、第2の強磁性層16の素子高さよりも奥に配置されている縦バイアス印加層(強磁性層)の磁化をトラック幅方向に向けることが可能とある。
なお、これまで説明した実施例において、磁気抵抗効果センサ膜20として、中間層が導電層あるいは電流狭窄層を有する導電層であるCPP−GMR膜や、障壁層であるTMR膜を取り上げたが、磁性半導体を用いたものや、偏極スピンの拡散や蓄積現象を利用したものなども用いることができる。シード層12、キャップ層17は、必須のものではなく、構造上あるいは製造工程上必要でなければ設けなくともよい。
本発明の磁気抵抗効果型ヘッドは、特異な製造方法を用いることなく、磁気抵抗効果センサ膜の幾何学寸法を高い精度で形成でき、しかも、読み滲みが抑制された優れた再生性能を有し、かつ、その安定性に優れたCPP構造の磁気抵抗効果型ヘッドを高い歩留まりで提供することができるので、産業上での利用可能性は極めて高い。
本発明の実施例1の磁気抵抗効果型ヘッドの縦バイアス印加層の形成が完了した時点での斜視図。 トラック幅方向を先に形成する方法の工程概略図。 素子高さ方向を先に形成する方法の工程概略図。 素子高さ方向を先に形成する方法において、トラック幅を作製したときの磁気抵抗効果膜の素子高さ端部付近のSEM像。 縦バイアス印加層が受けるダメージを説明する図。 本発明の実施例1の磁気抵抗効果型ヘッドの工程概略図。 本発明の実施例2の磁気抵抗効果型ヘッドの縦バイアス印加層の形成が完了した時点での斜視図。 本発明の実施例3の磁気抵抗効果型ヘッドの縦バイアス印加層の形成が完了した時点での斜視図。 本発明の実施例3の磁気抵抗効果型ヘッドの工程概略図。 本発明の磁気ヘッドの構造概略図。 本発明の磁気抵抗効果型ヘッドの効果を従来技術のヘッドと比較した図。
符号の説明
11:下部シールド層、12:シード層、13:ピニング層、14:第1の強磁性層、15:中間層、16:第2の強磁性層、17:キャップ層、20:磁気抵抗効果センサ膜、21:上部シールド層、22:トラック幅方向絶縁層、23:縦バイアス印加層、231:縦バイアス印加層保護膜、24:第1の素子高さ方向絶縁層、241:第2の素子高さ方向絶縁層、25:トラック幅形成用マスク材、26:第1の素子高さ方向形成用マスク材、261:第2の素子高さ方向形成用マスク材、30:浮上面加工によるダメージ層、31:エッチング加工によるダメージ層、101:トラック幅、111:第2の強磁性層の素子高さ方向の長さ、112:縦バイアス印加層の素子高さ方向の長さ。

Claims (9)

  1. 下部シールド層と上部シールド層との間に、少なくともピニング層と第1の強磁性層と中間層と第2の強磁性層が積層されている磁気抵抗効果センサ膜を有し、前記磁気抵抗効果センサ膜の両脇にトラック幅方向絶縁膜を介して縦バイアス印加層が配置され、前記第1の強磁性層と前記中間層と前記第2の強磁性層の界面を貫くようにセンス電流を流し、前記磁気抵抗効果センサ膜が外部磁界の変化によって発生する抵抗変化を検出する磁気抵抗効果型ヘッドにおいて、
    前記縦バイアス印加層の素子高さ方向の長さが、前記第2の強磁性層の素子高さ方向の長さよりも長く、前記縦バイアス印加層の膜表面が、素子高さ方向において段差を有し、前記縦バイアス印加層の膜厚が前記段差に対応して変わっており、媒体対向面における膜厚が最も厚いように構成したことを特徴とする磁気抵抗効果型ヘッド。
  2. 前記縦バイアス印加層が強磁性層であることを特徴とする請求項1記載の磁気抵抗効果型ヘッド。
  3. 前記縦バイアス印加層を構成する強磁性層が硬磁性層であることを特徴とする請求項2記載の磁気抵抗効果型ヘッド。
  4. 媒体対向面において、前記硬磁性層の上に保護膜が設けられていることを特徴とする請求項3記載の磁気抵抗効果型ヘッド。
  5. 前記保護膜の膜厚が10nm以下であることを特徴とする請求項4記載の磁気抵抗効果型ヘッド。
  6. 前記縦バイアス印加層が強磁性層と反強磁性層との積層構造からなり、前記縦バイアス印加層の媒体対向面の厚さよりも薄くなっている領域では、高抵抗の反強磁性材料が積層されていることを特徴とする請求項1記載の磁気抵抗効果型ヘッド。
  7. 前記第1の強磁性層の素子高さ方向の長さが、前記第2の強磁性層の素子高さ方向の長さよりも長く、前記縦バイアス印加層の素子高さ方向の長さよりも短いことを特徴とする請求項2又は6記載の磁気抵抗効果型ヘッド。
  8. 前記第1の強磁性層の素子高さ方向の長さが、前記第2の強磁性層の素子高さ方向の長さよりも長く、前記縦バイアス印加層の素子高さ方向の長さと略等しいことを特徴とする請求項2記載の磁気抵抗効果型ヘッド。
  9. 請求項1乃至8のいずれか一つに記載の磁気抵抗効果型ヘッドの製造方法であって、
    下部シールド層上に磁気抵抗効果センサ膜を形成する工程、
    前記磁気抵抗センサ膜のトラック幅方向のセンサ部分となる領域にトラック幅形成用マスク材を形成し、マスクされていないトラック幅の両脇の部分の前記磁気抵抗センサ膜を除去し、除去した部分に縦バイアス印加層を形成した後、該トラック幅形成用マスク材を除去する工程、
    前記磁気抵抗センサ膜及び前記縦バイアス印加層のヘッド素子部に必要な領域上に第2の素子高さ方向形成用マスク材を形成し、該マスク外の前記磁気抵抗センサ膜及び前記縦バイアス印加層を除去し、第1の素子高さ方向絶縁膜を形成した後、該第2の素子高さ方向形成用マスク材を除去する工程、
    前記磁気抵抗センサ膜及び前記縦バイアス印加層の媒体対向面側の領域上に第1の素子高さ方向形成用マスク材を形成し、該マスク材の形成されていない媒体対向面側とは反対側において、前記磁気抵抗センサ膜及び前記縦バイアス印加層を、積層方向とは反対方向に一部を除去し、第2の素子高さ方向絶縁層を形成した後、該第1の素子高さ方向形成用マスク材を除去する工程を含むことを特徴とする磁気抵抗効果型ヘッドの製造方法。
JP2008309726A 2008-12-04 2008-12-04 Cpp構造の磁気抵抗効果型ヘッド Pending JP2010134997A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008309726A JP2010134997A (ja) 2008-12-04 2008-12-04 Cpp構造の磁気抵抗効果型ヘッド
US12/631,295 US9230574B2 (en) 2008-12-04 2009-12-04 Magnetoresistive head with a CPP structure having suppressed side reading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309726A JP2010134997A (ja) 2008-12-04 2008-12-04 Cpp構造の磁気抵抗効果型ヘッド

Publications (1)

Publication Number Publication Date
JP2010134997A true JP2010134997A (ja) 2010-06-17

Family

ID=42230784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309726A Pending JP2010134997A (ja) 2008-12-04 2008-12-04 Cpp構造の磁気抵抗効果型ヘッド

Country Status (2)

Country Link
US (1) US9230574B2 (ja)
JP (1) JP2010134997A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289644B2 (en) * 2010-07-16 2012-10-16 Hewlett-Packard Development Company, L.P. Varying data reader response
US8907666B2 (en) 2011-09-30 2014-12-09 HGST Netherlands B.V. Magnetic bias structure for magnetoresistive sensor having a scissor structure
US8797694B2 (en) 2011-12-22 2014-08-05 HGST Netherlands B.V. Magnetic sensor having hard bias structure for optimized hard bias field and hard bias coercivity
US8867178B2 (en) 2012-10-16 2014-10-21 HGST Netherlands B.V. Read sensor with a hard bias layer having a high static field resistance
US9679591B1 (en) 2015-12-01 2017-06-13 HGST Netherlands B.V. Magnetic scissor sensor with closed-loop side shield
US10319398B2 (en) * 2017-08-25 2019-06-11 Headway Technologies, Inc. Tapered junction shield for self-compensation of asymmetry with increasing aspect ratio for tunneling magneto-resistance (TMR) type read head
CN112363097B (zh) * 2020-11-02 2021-09-21 珠海多创科技有限公司 磁电阻传感器芯片

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690553B2 (en) * 1996-08-26 2004-02-10 Kabushiki Kaisha Toshiba Magnetoresistance effect device, magnetic head therewith, magnetic recording/reproducing head, and magnetic storing apparatus
US6198608B1 (en) * 1999-03-18 2001-03-06 Read-Rite Corporation MR sensor with blunt contiguous junction and slow-milling-rate read gap
JP2002170211A (ja) * 2000-11-28 2002-06-14 Hitachi Ltd スピンバルブ型巨大磁気抵抗効果ヘッド及びその製造方法
US6721143B2 (en) * 2001-08-22 2004-04-13 Headway Technologies, Inc. Ferromagnetic/antiferromagnetic bilayer, including decoupler, for longitudinal bias
US6636400B2 (en) * 2001-09-18 2003-10-21 International Business Machines Corporation Magnetoresistive head having improved hard biasing characteristics through the use of a multi-layered seed layer including an oxidized tantalum layer and a chromium layer
JP3984839B2 (ja) * 2002-02-26 2007-10-03 株式会社日立グローバルストレージテクノロジーズ 磁気抵抗効果ヘッド
JP2004193439A (ja) * 2002-12-13 2004-07-08 Hitachi Ltd 磁気抵抗効果ヘッド及びその製造方法
AU2003227250A1 (en) * 2003-03-27 2004-10-25 Fujitsu Limited Cpp structure magnetoresistance effect device and head slider
JP4002909B2 (ja) * 2004-06-04 2007-11-07 アルプス電気株式会社 Cpp型巨大磁気抵抗効果ヘッド
JP2006344728A (ja) * 2005-06-08 2006-12-21 Alps Electric Co Ltd 磁気検出素子及びその製造方法
JP2008084373A (ja) 2006-09-26 2008-04-10 Tdk Corp 薄膜磁気ヘッドの製造方法及び薄膜磁気ヘッド

Also Published As

Publication number Publication date
US9230574B2 (en) 2016-01-05
US20100142100A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5247002B2 (ja) 磁気抵抗効果型ヘッドの製造方法
JP3959881B2 (ja) 磁気抵抗効果センサの製造方法
JP5570757B2 (ja) 磁気抵抗効果ヘッド及び磁気記録再生装置
JP2006018985A (ja) 垂直磁気記録用磁気ヘッドおよびその製造方法
JP2012059345A (ja) 絶縁構造を改良した平面垂直通電型(cpp)磁気抵抗(mr)センサ
JP2008165940A (ja) Cpp型磁気抵抗効果ヘッドおよびその製造方法
JP4634489B2 (ja) 磁気ヘッド
JP2010134997A (ja) Cpp構造の磁気抵抗効果型ヘッド
JP2008159653A (ja) 磁気検出素子
JP2006179051A (ja) 磁気抵抗センサ及びその製造方法
US20060007603A1 (en) Magnetoresistive sensor with refill film, fabrication process, and magnetic disk storage apparatus mounting magnetoresistive sensor
US7446981B2 (en) Magnetic head, fabrication process of magnetic head, and magnetic disk storage apparatus mounting magnetic head
JP2006302421A (ja) 磁気ヘッドの製造方法及び磁気ヘッド
JP2006202393A (ja) 磁気ヘッド及び磁気ヘッドの製造方法
JP2008010133A (ja) 磁気ヘッド及び磁気記録再生装置
JP2014225318A (ja) 幅を低減した上部電極及び下部電極を有する平面垂直通電(cpp)磁気抵抗センサ並びにその製造方法
JP4596753B2 (ja) 磁気ヘッドおよび磁気記録再生装置
JP2010055657A (ja) Cpp構造磁気抵抗効果型ヘッド
JP5097527B2 (ja) 磁気再生ヘッド、磁気ヘッドおよび磁気記憶装置
US9236069B2 (en) Method for making a current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reduced-width self-aligned top electrode
JP5355859B2 (ja) 磁気抵抗効果型ヘッド
JP2007141381A (ja) Cpp型薄膜磁気ヘッド及びその製造方法
JP2008192269A (ja) 磁気リード・ヘッド及びその製造方法
JP2004140362A (ja) 反応性イオンエッチングによる磁気抵抗センサキャップの除去方法
JP2003060266A (ja) 磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法およびヘッド装置の製造方法