JP2010121796A - Grain drying machine - Google Patents

Grain drying machine Download PDF

Info

Publication number
JP2010121796A
JP2010121796A JP2008293427A JP2008293427A JP2010121796A JP 2010121796 A JP2010121796 A JP 2010121796A JP 2008293427 A JP2008293427 A JP 2008293427A JP 2008293427 A JP2008293427 A JP 2008293427A JP 2010121796 A JP2010121796 A JP 2010121796A
Authority
JP
Japan
Prior art keywords
grain
circulation
moisture
drying
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008293427A
Other languages
Japanese (ja)
Inventor
Masashi Yumitate
正史 弓立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2008293427A priority Critical patent/JP2010121796A/en
Publication of JP2010121796A publication Critical patent/JP2010121796A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain drying machine drying grain with high quality of uniform moisture content by converging longitudinal uneven moisture content generated by each storage layer in charging harvested grain to a storage chamber, within a prescribed width. <P>SOLUTION: This grain circulating drying machine includes a control section (19) terminating an operation by performing a hot air drying control for drying grain to a target moisture content, and a draft circulation control for cooling the grain by draft circulation by a drying section (3), a grain circulating mechanism (5) and the like. In the draft circulation control, layer measurement for measuring a moisture content value at an interval corresponding to a prescribed layer division obtained by dividing the stored grain into the layered state, is performed, and then the draft circulation is continued until a moisture content distribution width over the whole layer obtained by the layer measurement is converged within a prescribed reference range. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、貯留室に張込まれた穀粒を循環させつつ乾燥部で順次熱風乾燥する穀粒乾燥機に関するものである。   The present invention relates to a grain dryer that sequentially dries hot air in a drying unit while circulating the grains stretched in a storage chamber.

従来、塔型構成の機体内でその上部配置の貯留室に張込まれた穀粒を循環させつつ熱風乾燥する穀粒乾燥機が知られている。この穀粒乾燥機は、貯留室から流動供給される穀粒が、乾燥部の乾燥用通路を繰出弁により一定の流動速度で流動下降する際に、バーナによる燃焼熱風を浴びせることによって穀粒を順次循環乾燥するものである。   2. Description of the Related Art Conventionally, there has been known a grain dryer for drying hot air while circulating a grain stretched in a storage chamber disposed in an upper part in a tower-shaped body. In this grain dryer, when the grain flow-supplied from the storage chamber flows down the drying passage of the drying section at a constant flow rate by the feeding valve, the grain dryer is exposed to hot combustion air from a burner. Sequential circulation drying.

この循環乾燥においては、水分差のある収穫穀粒が順次張込まれてできる貯留穀粒の層区分別の水分変化幅が解消しきれないことから、その解決のために、特許文献1に示すように、左右に2つの繰出弁を設け、両者の流動速度に差をつけて左右を異なるタイミングで循環することにより、貯留穀粒の層区分が崩れて混合が促進されることから、貯留穀粒の層別の水分変化幅を小さく抑えることができる。
特開平10−19462号公報
In this circulation drying, since the moisture change width according to the layer classification of the stored kernels formed by sequentially inserting harvested kernels having a difference in moisture cannot be solved, the solution is shown in Patent Document 1 for solving the problem. In this way, two feed valves are provided on the left and right sides, and the flow rate of the two is made different and circulated at different timings on the left and right, so that the layer division of the stored kernels collapses and mixing is promoted. The moisture change width for each grain layer can be kept small.
Japanese Patent Laid-Open No. 10-19462

しかしながら、上記乾燥部を通過する穀粒は、左右で異なる流動速度により燃焼熱風を浴びる時間の相違に応じた乾燥作用を受けることから、結果として左右の穀粒の間で乾燥の程度に差を生じることとなり、新たな水分のバラツキを招いて品質上の問題を生じる。   However, the grain passing through the drying section is subjected to a drying action according to the difference in the time of exposure to combustion hot air at different flow rates on the left and right, resulting in a difference in the degree of drying between the left and right grains. As a result, a new moisture variation is caused, resulting in a quality problem.

解決しようとする問題点は、収穫穀粒が貯留室に張り込まれた際に貯留層別に生じる縦方向の水分ムラを所定幅内に収束して均一水分による高品質の穀粒乾燥が可能となる穀粒乾燥機を提供することにある。   The problem to be solved is that when the harvested grain is stuck in the storage chamber, the vertical moisture unevenness that occurs in each reservoir is converged within a predetermined width, and high quality grain drying with uniform moisture is possible. It is to provide a grain dryer.

請求項1に係る発明は、貯留室に積層状に張込まれた貯留穀粒を熱風乾燥させる乾燥部と、この穀粒を循環させる穀粒循環機構と、循環乾燥による穀粒の水分が目標水分に達するまで処理する熱風乾燥制御によって穀粒を乾燥処理し、この熱風乾燥制御に続いて通風下で穀粒を循環しつつ順次冷却処理する通風循環制御によって運転を終了する制御部とを備えた穀粒循環乾燥機において、上記通風循環制御は、貯留穀粒を積層状に区分した所定の層区分と対応する間隔で水分値を測定する層別測定を行い、この層別測定によって得られた全層に及ぶ水分分布幅が所定の基準範囲内に収束するまで通風循環を続行することを特徴とする。   The invention according to claim 1 is directed to a drying unit for drying hot air with stored grains stretched in a storage chamber, a grain circulation mechanism for circulating the grains, and moisture of the grains by circulation drying. A control unit that dries the grain by hot air drying control for processing until reaching moisture, and terminates the operation by ventilation circulation control that sequentially cools the grain while circulating the grain under ventilation. In the above-mentioned grain circulation dryer, the above ventilation circulation control is obtained by stratified measurement in which moisture values are measured at intervals corresponding to predetermined layer divisions in which stored grains are divided into layers. Further, the circulation of air circulation is continued until the moisture distribution width over all layers converges within a predetermined reference range.

上記穀粒循環乾燥機は、熱風乾燥制御により目標水分に達するまで順次乾燥処理し、続く通風循環制御について全層の水分分布幅が所定の基準範囲内に収束するまで続行した上で、穀温が所定値まで下がったときに終了する。   The above-mentioned grain circulation dryer sequentially performs drying treatment until reaching the target moisture by hot air drying control, and continues the ventilation circulation control until the moisture distribution width of all layers converges within a predetermined reference range. When the value drops to a predetermined value, the process ends.

請求項2に係る発明は、請求項の構成において、前記通風循環制御は、層別測定を続行するとともに、その測定の都度、最新の測定値を含む新たな全層分布について収束の判定を行うことを特徴とする。
上記穀粒循環乾燥機は、通風循環制御において層別測定のタイミングの都度、最新の全層分布データによって収束が判定される。
According to a second aspect of the present invention, in the configuration of the second aspect, the ventilation circulation control continues the stratified measurement, and determines the convergence of a new all-layer distribution including the latest measured value for each measurement. It is characterized by that.
Convergence of the above-mentioned grain circulation dryer is determined by the latest all-layer distribution data every time the measurement by layer is performed in the ventilation circulation control.

請求項3に係る発明は、貯留室に積層状に張込まれた貯留穀粒を熱風乾燥させる乾燥部と、この穀粒を循環させる穀粒循環機構と、循環乾燥による穀粒の水分が目標水分に達するまで処理する熱風乾燥制御によって穀粒を乾燥処理し、この熱風乾燥制御に続いて通風下で穀粒を循環しつつ順次冷却処理する通風循環制御によって運転を終了する制御部とを備えた穀粒循環乾燥機において、上記熱風乾燥制御は、貯留穀粒を積層状に区分した所定の層区分と対応する間隔で水分値を測定する層別測定を行い、この層別測定によって得られた熱風乾燥制御の終了時点の全層に及ぶ水分分布幅が所定の基準範囲内に収束されるのに必要な収束循環時間を経過するまで通風循環制御を続行することを特徴とする。
上記穀粒循環乾燥機は、穀粒が目標水分に達するまで熱風乾燥を行い、その間の水分値の層別測定によって得られた熱風乾燥終了時の全層の水分分布と対応する収束循環時間を確保した上で冷却のための通風循環される。
The invention according to claim 3 is directed to a drying unit that dries stored grains stretched in a storage chamber in hot air, a grain circulation mechanism that circulates the grains, and moisture of the grains by circulation drying. A control unit that dries the grain by hot air drying control for processing until reaching moisture, and terminates the operation by ventilation circulation control that sequentially cools the grain while circulating the grain under ventilation. In the grain circulation dryer, the above hot air drying control is obtained by stratified measurement in which the moisture value is measured at intervals corresponding to predetermined layer sections obtained by dividing the stored grains into layers. The ventilation circulation control is continued until the convergence circulation time necessary for the moisture distribution width over all layers at the end of the hot air drying control to converge within a predetermined reference range.
The above-mentioned grain circulation dryer performs hot air drying until the grain reaches the target moisture, and the convergence circulation time corresponding to the moisture distribution of all layers at the end of hot air drying obtained by stratified measurement of the moisture value during that time. After securing, it is ventilated for cooling.

請求項1の発明による穀粒乾燥機は、熱風乾燥制御により目標水分に達するまで順次乾燥処理し、続く通風循環制御について全層の水分分布幅が所定の基準範囲内に収束するまで続行する通風循環制御を設けたことから、乾燥穀粒の水分ムラを抑えることができる。   The grain dryer according to the first aspect of the present invention sequentially performs the drying process until reaching the target moisture by the hot air drying control, and continues ventilation until the moisture distribution width of all layers converges within a predetermined reference range for the subsequent ventilation circulation control. Since the circulation control is provided, moisture unevenness of the dried grain can be suppressed.

請求項2の発明による穀粒乾燥機は、請求項1の効果に加え、通風循環制御において層別測定のタイミングの都度、最新の全層分布データによって収束の判定を行うことから、水分ムラを高精度で判定することができる。   In addition to the effect of claim 1, the grain dryer according to the invention of claim 2 determines the convergence based on the latest all-layer distribution data every time the measurement of each layer is performed in the ventilation circulation control. It can be determined with high accuracy.

請求項3の発明による穀粒乾燥機は、穀粒が目標水分に達するまで熱風乾燥を行い、その間の水分値の層別測定によって得られた熱風乾燥終了時の全層の水分分布幅が、所定の基準範囲内になるまでに必要な時間について通風循環を行うことから、乾燥穀粒の水分ムラを抑えることができる。   The grain dryer according to the invention of claim 3 performs hot air drying until the grain reaches the target moisture, and the moisture distribution width of all layers at the end of hot air drying obtained by stratified measurement of the moisture value during that time, Since ventilation circulation is performed for the time required until it falls within the predetermined reference range, moisture unevenness of the dried grain can be suppressed.

上記技術思想に基づいて具体的に構成された実施の形態について以下に図面を参照しつつ説明する。
穀粒乾燥機は、その縦断側面図を図1に示すように、機体の内部に上から貯留室2、乾燥部3、集穀室4の順に形成し、機体外壁に沿って設けた昇降機5をはじめとする穀粒循環機構の駆動によって穀物を循環させながら、バーナ6の燃焼により発生する熱風を吸引ファン7で吸引することにより乾燥部3で浴びせて乾燥する公知の形態である。
Embodiments specifically configured based on the above technical idea will be described below with reference to the drawings.
As shown in FIG. 1, the grain dryer is formed in the order of the storage chamber 2, the drying unit 3, and the grain collection chamber 4 from the top inside the machine body, and the elevator 5 provided along the outer wall of the machine body. It is a publicly known form in which hot air generated by combustion of the burner 6 is sucked by the suction fan 7 to be bathed in the drying unit 3 while being circulated by driving the grain circulation mechanism such as.

乾燥部3の穀粒出口には正逆に回転しながら所定量の穀物を流下させる繰出ドラム8を備え、その繰出し穀粒を昇降機5に通じる集穀室4の下部移送装置9に受け、昇降機5の上部側に接続する上部移送装置10で貯留室2の拡散盤11に供給することにより、張込み穀粒が貯留室2の全面に均一に堆積貯留される。貯留室2に設けた張込量測定器2aは、張込み穀粒の堆積上面高さ位置を測定することにより張込量を把握することができる。また、昇降機5には穀粒破砕型の水分計20を配置して測定指令に応じて単粒水分値を測定する。   The grain outlet of the drying unit 3 is provided with a feeding drum 8 that causes a predetermined amount of grain to flow down while rotating in the forward and reverse directions, and the fed grain is received by the lower transfer device 9 of the grain collection chamber 4 that leads to the elevator 5. By feeding to the diffusion plate 11 of the storage chamber 2 by the upper transfer device 10 connected to the upper side of 5, the embedded grains are uniformly deposited and stored on the entire surface of the storage chamber 2. The stretch amount measuring device 2a provided in the storage chamber 2 can grasp the stretch amount by measuring the height position of the accumulated upper surface of the stretched grain. In addition, a grain crushing type moisture meter 20 is arranged in the elevator 5 to measure a single grain moisture value according to a measurement command.

バーナ6、吸引ファン7、穀粒循環機構等は、運転制御に必要な制御プログラムや各種データ等を記憶するメモリを備えるコンピュータによって制御される。即ち、操作盤12には、その制御盤見取図を図2に示すように、各種設定操作のためのタッチスイッチを表示した液晶形態の表示部13を設け、この表示部13の下縁に沿って押しボタン形態のスイッチ14〜17、及び停止スイッチ18を配置して構成する。これらスイッチ14〜17はその機能が表示部13に表示されるもので、図例では、順に、張込・通風・乾燥・排出の各運転用スイッチとして機能し、表示部13の画面変更に従って異なる機能を具備せしめ得る構成である。   The burner 6, the suction fan 7, the grain circulation mechanism, and the like are controlled by a computer including a memory that stores a control program and various data necessary for operation control. That is, the control panel 12 is provided with a liquid crystal display 13 that displays touch switches for various setting operations, as shown in FIG. 2, and along the lower edge of the display 13. The switches 14 to 17 in the form of push buttons and the stop switch 18 are arranged. The functions of these switches 14 to 17 are displayed on the display unit 13. In the example shown in the figure, the switches 14 to 17 function in turn as operating switches for extension, ventilation, drying, and discharge, and differ according to the screen change of the display unit 13. It is the structure which can be provided with a function.

内蔵の制御部は操作盤12のスイッチ情報や乾燥機機体各部に配設したセンサ類からの検出情報等を受けて所定の演算処理により、バーナ燃焼量の制御,穀粒循環系の起動・停止制御,表示部13の表示内容制御等を行う。上記操作盤12のスイッチ類は、張込・乾燥・排出・通風の各設定のほか、穀物種類、乾燥目標の設定水分(仕上げ水分)、張込量、タイマ増・減等を設定できる。   The built-in control unit receives the switch information of the operation panel 12 and the detection information from the sensors arranged in each part of the dryer body, and controls the burner combustion amount and starts / stops the grain circulation system through predetermined arithmetic processing. Control and display content control of the display unit 13 are performed. The switches of the operation panel 12 can set grain type, drying target set moisture (finishing moisture), penetration amount, timer increase / decrease, etc. in addition to each setting of tension / dry / discharge / ventilation.

上記構成の穀粒乾燥機について、その運転制御の大要を説明する。
上記穀粒乾燥機は、貯留室2に張込まれた穀粒を乾燥部3に循環しつつ乾燥熱風を供給する乾燥循環により乾燥目標水分まで順次乾燥処理した後に所定の条件で通風循環する後述の運転制御部19を備えて構成される。この運転制御部19は、熱風乾燥制御で穀粒水分が目標値に近づいた時点で貯留室2の張込み穀粒を1循環させる間に張込量に応じた複数回の異なるタイミングで穀粒の水分値を測定する層別測定を行い、この層別測定によって得られた張込穀粒の縦方向水分値分布である全層分布からその水分ムラの程度を把握し、この水分ムラが穀粒の循環混合によって所定幅内に収束されるまで、穀温低下を条件に通風下で循環する通風循環を行う。
An outline of the operation control of the grain dryer having the above configuration will be described.
The above-mentioned grain dryer performs after-flowing circulation under predetermined conditions after sequentially drying to the drying target moisture by drying circulation supplying circulation hot air while circulating the grains stretched in the storage chamber 2 to the drying unit 3. The operation control unit 19 is configured. This operation control part 19 is a grain at a plurality of different timings according to the amount of tension while the grain moisture in the storage chamber 2 is circulated once when the grain moisture approaches the target value by the hot air drying control. Stratified measurement to measure the moisture content of the grain, and grasping the degree of moisture unevenness from the whole-layer distribution, which is the vertical moisture value distribution of the embedded grain obtained by this stratified measurement, Ventilation circulation that circulates under ventilation is performed under the condition that the grain temperature is lowered until the grain is converged within a predetermined range by circulation mixing of the grains.

図3は上記制御のための制御システム構成図を示し、上記操作盤12を有する制御ボックスに内蔵する運転制御部19には上記スイッチ類からの設定情報のほか、水分計20の検出情報、水分ムラ測定スイッチ21、昇降機5の投げ出し部における穀粒検出情報、熱風温度検出情報等が入力される。一方出力情報としては、バーナ6の燃焼系信号、例えば燃料供給信号,その流量制御信号、あるいは上下移送螺旋10,9、昇降機5、ロータリバルブ(繰出バルブ)8等の穀粒循環系モータ制御信号、吸引ファン7のモータ制御信号、操作盤12への表示出力13等がある。   FIG. 3 shows a configuration diagram of a control system for the above control. The operation control unit 19 built in the control box having the operation panel 12 includes setting information from the switches, detection information of the moisture meter 20, moisture content. The unevenness measurement switch 21, grain detection information in the throw-out part of the elevator 5, hot air temperature detection information, and the like are input. On the other hand, as output information, a combustion system signal of the burner 6, for example, a fuel supply signal, a flow rate control signal thereof, or a grain circulation system motor control signal such as the vertical transfer spirals 10 and 9, the elevator 5 and the rotary valve (feed valve) 8 There are a motor control signal of the suction fan 7, a display output 13 to the operation panel 12, and the like.

(制御処理)
上記制御のための詳細な運転制御は、図4のフローチャート(1)に示すように、穀粒の張込に続いて熱風循環を開始し(S1)、目標の設定水分の近傍(図例は1.5ポイント内)になった時点(S2)で層別測定によって水分ムラを測定(S3a,S3b)し、目標水分に達すると熱風循環を停止(S4a、S4b)し、続けて、熱風循環停止時の全層分布の水分ムラが収束するまでの間について、層別測定の都度、水分ムラの判定によって通風循環を続行(S5a〜S5c)した後、穀温低下をもって通風循環を終了(S6a、S6b)する。
(Control processing)
As shown in the flowchart (1) in FIG. 4, the detailed operation control for the above control starts hot air circulation (S1) following the squeezing of the grain (S1), and near the target set moisture (the example in the figure is At the time point (within 1.5 points), the moisture unevenness is measured by layered measurement (S3a, S3b), and when the target moisture is reached, the hot air circulation is stopped (S4a, S4b), and then the hot air circulation Until the moisture unevenness of the distribution of all layers at the time of convergence converges, the ventilation circulation is continued with the determination of the moisture unevenness for each layered measurement (S5a to S5c), and then the ventilation circulation is terminated with a drop in grain temperature (S6a). , S6b).

(水分ムラ判定)
上記における水分ムラは、例えば、図5の穀粒貯留層の区分例のように、貯留室2の縦方向に積み重なる層別の水分分布である全層分布に基づいて判定する。各層区分の水分の測定は、貯留室2の張込み穀粒を機体内で1循環することによって測定することができるので、張込量に応じて設定した図6の測定回数の区分図表例に従い、穀粒が一巡する間の所要時点で水分測定をする層別測定による。
(Moisture unevenness determination)
The moisture unevenness in the above is determined based on, for example, a full-layer distribution that is a moisture distribution for each layer that is stacked in the vertical direction of the storage chamber 2, as in the example of the grain reservoir in FIG. Since the measurement of moisture in each layer section can be performed by circulating the squeezed kernels in the storage chamber 2 once in the machine body, according to the example of the classification chart of the number of times of measurement shown in FIG. By stratified measurement, where moisture is measured at the required time during the course of the grain.

この層別測定によって得られる層別水分値は、張込穀粒量がLV9で測定回数が9回の例について説明すると、図7の層別測定と全層分布の推移の図表例に示すように、各層につき標本32粒の測定水分値の平均値を各層区分LV1〜LV9の代表水分値とする全層分布についてその最大水分幅によってムラ差を算出し、収束基準値(例えば、0.5ポイント)と対比して収束を判定する。この収束判定は、層別測定の都度、最新の代表水分値を追加して前回の全層分布を順送りした新たな全層分布について行う。   The layer-by-layer moisture value obtained by the layer-by-layer measurement will be described in the example of the graph of the layer-by-layer measurement and the transition of the total layer distribution in FIG. Further, the unevenness difference is calculated by the maximum moisture width for all the layer distributions in which the average value of the measured moisture values of 32 samples for each layer is the representative moisture value of each of the layer sections LV1 to LV9, and the convergence reference value (for example, 0.5 Convergence is determined in contrast to point). This convergence determination is performed for each new all-layer distribution in which the latest representative moisture value is added and the previous all-layer distribution is forwarded each time the layer-by-layer measurement is performed.

上記層別測定によるムラ判定により、穀粒循環乾燥機は、熱風乾燥制御により目標水分に達するまで順次乾燥処理し、続く通風循環制御について全層の水分分布幅が所定の基準範囲内に収束するまで続行した上で、穀温が所定の温度に下がったときに終了するように運転制御することから、乾燥穀粒の水分ムラが抑えられた冷却穀粒について籾摺り工程に円滑に移行することができる。   Based on the unevenness determination by the above stratified measurement, the grain circulation dryer sequentially performs the drying process until reaching the target moisture by the hot air drying control, and the moisture distribution width of all layers converges within a predetermined reference range for the subsequent ventilation circulation control. Since the operation is controlled so as to end when the grain temperature falls to a predetermined temperature, it is possible to smoothly shift to the hulling process for the cooled grain in which the moisture unevenness of the dried grain is suppressed. it can.

(別の制御処理)
次に、穀粒乾燥機の別の制御処理について説明すると、図8のフローチャート(2)に示すように、水分ムラが大きい場合は、前述の通風循環(S5a〜S5c)に代え、図6の循環時間の図表例に基づいて得られる水分ムラの解消に必要な時間について通風循環(S11a,S11b)を行うことによっても、前記同様に、乾燥穀粒の水分ムラが抑えられた冷却穀粒とすることができて籾摺り工程に円滑に移行することができる。
(Another control process)
Next, another control process of the grain dryer will be described. As shown in the flowchart (2) of FIG. 8, when the moisture unevenness is large, instead of the above-described ventilation circulation (S5a to S5c), FIG. By performing ventilation circulation (S11a, S11b) for the time necessary for eliminating the moisture unevenness obtained based on the example of the circulation time chart, similarly to the above, the cooled kernel in which the moisture unevenness of the dried kernel is suppressed and And can smoothly shift to the hulling process.

(水分ムラ表示)
また、水分ムラ表示の具体的な制御構成について説明すると、仕上がり後の通風制御中の画面に「水分ムラ検出」のスイッチ21を設け、または、通風制御中に自動的に水分ムラを検出し、その他に、乾燥後に設定できる冷却通風(籾摺り時の肌ズレなどを防止する目的)に水分ムラ検出を行い、その測定結果による仕上がり穀物の状態をグラフなどで分かり易く表示し、一粒ずつのバラツキの表示を含め、その収束見通しも追加表示可能に構成する。
(Moisture unevenness display)
In addition, a specific control configuration of moisture unevenness display will be described. A switch 21 of “moisture unevenness detection” is provided on the screen during ventilation control after finishing, or moisture unevenness is automatically detected during ventilation control. In addition, it detects moisture unevenness in the cooling ventilation that can be set after drying (in order to prevent skin slippage during hulling, etc.), and displays the state of the finished grain based on the measurement results in a graph, etc. In addition, the convergence prospects can be additionally displayed.

このようにスイッチでグラフ表示することにより、特に大型の乾燥機において、7反くらいの異なった圃場から収穫した穀物を一緒に張込んで乾燥する場合に、水分差が大きいと乾燥仕上がりまでに水分差が収束せずに水分ムラが残るので、その改善のためのムラ取り制御を乾燥工程に織り込むことによる問題、すなわち乾燥終了まで長時間を要するという問題を解消することができ、従来通りの標準モードで乾燥し、仕上がったものに水分ムラがどの程度あるか、また、水分ムラに対する必要な処置のために水分ムラの状態を把握することができる。   By displaying the graph with the switch in this way, especially in a large-sized dryer, when grains harvested from about 7 different fields are stretched together and dried, if the moisture difference is large, the moisture will be reduced to the dry finish. Since the unevenness of moisture remains without converging the difference, the problem of incorporating unevenness removal control for the improvement into the drying process, that is, the problem that it takes a long time to finish drying, can be solved. It is possible to grasp the degree of moisture unevenness in the finished product dried in the mode and the state of the moisture unevenness for necessary treatment for the moisture unevenness.

(通風循環制御)
通風循環制御の構成は、熱風乾燥の終了後に通風冷却を行い、冷却中に穀温、水分ムラを検出し、規定範囲内に収まっていることを確認後に停止し、収まっていない場合は通風循環を継続し、順次、水分ムラを検出していき、収まった時点で停止し、その状況を表示するように制御構成することにより、結果的に仕上げ後に冷却して停止することから、ムラ取り制御を選択した場合であっても、仕上がり時の確認に基づいて水分ムラが解消され、高品質の仕上げが可能となる。
(Ventilation circulation control)
The structure of ventilation circulation control is that ventilation cooling is performed after hot air drying is finished, and the grain temperature and moisture unevenness are detected during cooling and stopped after confirming that they are within the specified range. Continuing to detect moisture unevenness in sequence, stop when it has settled, and display the status of the situation, resulting in cooling and stopping after finishing, so unevenness removal control Even when is selected, moisture unevenness is eliminated based on confirmation at the time of finishing, and high-quality finishing is possible.

また、水分自動停止のための移動平均処理や、バーナー制御等の乾燥制御に伴う制御負荷が比較的少ないことから、多くのリソースをムラ取りの制御処理に振り向けることができるので、乾燥後の通風循環で継続的に水分ムラを取得することによって常に状態を監視することができる。   In addition, since the control load associated with moving average processing for automatically stopping moisture and drying control such as burner control is relatively small, many resources can be allocated to control processing for unevenness removal. The state can be constantly monitored by continuously obtaining moisture unevenness by ventilation circulation.

また、乾燥工程終了に続く冷却工程として上記通風循環制御を組み込むことにより、熱風乾燥中に層別測定して水分ムラを取り除く「ムラ取り乾燥」を含め、「標準」「予約」「休止」「断続」等の各種の乾燥運転モードについて、状況に応じた適用が可能となる。   In addition, by incorporating the above-mentioned ventilation circulation control as a cooling process following the end of the drying process, "standard" "reservation" "pause" " Various drying operation modes such as “intermittent” can be applied according to the situation.

(水分ムラ解消制御)
水分ムラ解消の具体的な運転制御の構成として、上記通風冷却制御の適用のための「水分ムラ」スイッチ21を設けて水分ムラを測定しつつ状態を表示し、また、別個に「ムラ取り」スイッチ22を設け、上記測定の結果を表示することにより、オペレータの判断で、必要であればスイッチを操作することで水分ムラを連続して測定し、表示し、規定内に到達したら自動停止または手動停止するように制御処理を構成する。
(Moisture unevenness elimination control)
As a specific operational control configuration for eliminating moisture unevenness, a “moisture unevenness” switch 21 for applying the above-described ventilation cooling control is provided to display the state while measuring the moisture unevenness, and separately to “unevenness removal”. By providing the switch 22 and displaying the result of the measurement, the operator can judge the moisture unevenness continuously by operating the switch if necessary, and display it. Configure the control process to stop manually.

上記制御処理は、水分ムラ検出後にムラ取りに移行することにより、ムラ取り時間を算出した上でその結果の循環時間終了後の最終1循環で最後の仕上げ水分ムラ状態(バラツキ)などを測定して表示することから、連続測定とした場合の水分計による穀粒粉砕量の増加を回避でき、従来のような部分的な水分が要求水分近くなっているかどうかの確認にとどまらず、1循環分の水分を測定し、グラフにより目視化することによって状況が把握でき、また、水分ムラが大きい場合はムラ取りスイッチ22を押すことで水分ムラを収束することができる。このように、実際に仕上がった結果を表示することとなるので、排出工程による乾燥穀粒の取出しの前の最終確認としていずれの乾燥モードの結果からでも有効となる。   The above control process shifts to unevenness removal after detecting unevenness of moisture, and then calculates the unevenness removal time and measures the final finish moisture unevenness state (variation) in the final cycle after the end of the resulting circulation time. Therefore, it is possible to avoid an increase in the amount of grain pulverized by the moisture meter in the case of continuous measurement. The situation can be grasped by measuring the moisture and visualizing with a graph, and when the moisture unevenness is large, the moisture unevenness can be converged by pressing the unevenness removing switch 22. Thus, since the result actually finished is displayed, it becomes effective from the result of any drying mode as the final confirmation before taking out the dried grain by the discharging process.

(循環量制御)
次に、循環量制御について説明する。
循環型乾燥機では、貯留部、乾燥部、搬送部があり、1循環毎に乾燥部における除水と貯留部におけるテンパリング(穀物内の水分移行、水分バラツキの収束)を行うことによって乾燥を進め、仕上がり停止間際に乾燥部を通過した穀物と、貯留部に留まっている穀物とは、乾燥部で乾燥した分の水分差が発生することから、その水分差を小さくするために、乾燥が進むと(少なくとも乾燥終了近く)では循環量(循環速度)を増やして同一穀物が乾燥部に留まる時間を短くするように循環量制御を行う。
(Circulation amount control)
Next, the circulation amount control will be described.
The circulation dryer has a storage unit, a drying unit, and a transport unit, and advances drying by dewatering in the drying unit and tempering in the storage unit (water transfer in grain, convergence of moisture variation) for each cycle. Since the grain that has passed through the drying section just before the finish is stopped and the grain that remains in the storage section, a difference in moisture is generated in the drying section, so that drying proceeds to reduce the moisture difference. And (at least near the end of drying), the circulation rate is controlled so as to increase the circulation rate (circulation rate) and shorten the time that the same grain stays in the drying section.

例えば、乾燥速度が0.8%/hで乾燥して1循環に1時間を要すると、乾燥部を通過した穀物と、通過していない穀物はその前の水分値が同じとすると0.8%の差が生じるので、これを倍速の1循環に30分で循環すると0.4%の差になり、水分差を縮めることができる。   For example, if the drying rate is 0.8% / h and it takes 1 hour to circulate, the grain that has passed the drying section and the grain that has not passed have the same moisture value of 0.8. % Difference occurs, when this is circulated in 30 minutes for one cycle of double speed, the difference becomes 0.4%, and the moisture difference can be reduced.

(データ表示)
次に、データ表示について説明する。
一般に乾燥停止後に欲しい情報として、穀温、水分ムラ、水分バラツキ、水分値そのもの等があり、その表示のための液晶などの文字表示できる表示器を備えるものにあっては多くの有用な情報を表示することができることから、熱風乾燥で停止水分に到達すると冷却通風循環(少なくとも1循環)する機能を備え、その冷却中に機内全体の水分ムラを張込量に対応し複数ブロックの水分データとして取得、及び穀温をIQ運転(張込)で提案の穀温冷却(外気温+5℃)を行い、上記の取得データを全停止後に任意項目のみを選択表示できるように、モニター13に各項目の表示選択スイッチを設ける。
(Data display)
Next, data display will be described.
In general, there are grain temperature, moisture irregularity, moisture variation, moisture value itself, etc. as information that you want after drying stops, and there is a lot of useful information for those equipped with a display that can display characters such as liquid crystal for the display. Since it can be displayed, it has the function of circulating cooling air (at least one circulation) when it reaches the stop moisture by hot air drying, and the moisture unevenness in the whole machine during the cooling corresponds to the insertion amount as moisture data of multiple blocks Each item is displayed on the monitor 13 so that the acquisition and grain temperature cooling (outside temperature + 5 ° C) of the proposed grain temperature can be performed with IQ operation (extended) and only the optional items can be selected and displayed after the above acquisition data has been completely stopped. The display selection switch is provided.

一例として、水分が設定値に達すると設定水分(目標とする水分値)を表示し、バーナを消火し、通風循環して冷却工程に入り、この工程において、穀温を監視しており、1循環後の穀温が外気温度+5℃未満になっていなければ、なるまで通風循環を継続する。また、この冷却での1循環中に水分ムラのデータを取得し、他のデータと合わせて各項目別の表示スイッチが押されると、グラフ(水分ムラや水分バラツキ)や文字で表示する。穀温などは、水分ムラ同様に、機内の位置に対応する穀温としてグラフ表示することが好ましい。   As an example, when the moisture reaches the set value, the set moisture (target moisture value) is displayed, the burner is extinguished, the ventilation is circulated and the cooling process is started. In this process, the grain temperature is monitored, If the grain temperature after the circulation is not less than the outside air temperature + 5 ° C., the ventilation circulation is continued until it reaches. Further, when moisture non-uniformity data is acquired during one cycle of this cooling, and the display switch for each item is pressed together with other data, it is displayed as a graph (moisture non-uniformity or moisture variation) or characters. The grain temperature and the like are preferably displayed in a graph as the grain temperature corresponding to the position in the machine, similarly to the moisture unevenness.

穀粒乾燥機の縦断側面図Longitudinal side view of grain dryer コントロールボックスの制御盤見取図Control box sketch of control box 制御システム構成図Control system configuration diagram フローチャート(1)Flow chart (1) 貯留穀粒の層別区分例Examples of stored grain stratification 張込量と対応する測定回数および循環時間の区分図表例Example of division chart of the number of measurement and circulation time corresponding to the amount of tension 層別測定と全層分布の推移の図表例Example of graph of layered measurements and distribution of all layers フローチャート(2)Flow chart (2)

符号の説明Explanation of symbols

2 貯留室
2a 張込量測定器
3 乾燥部
4 集穀室
5 昇降機
6 バーナ
7 吸引ファン
12 操作盤
13 表示部
19 運転制御部
20 水分計
21 水分ムラ測定スイッチ
DESCRIPTION OF SYMBOLS 2 Reservoir 2a Extension amount measuring device 3 Drying part 4 Grain collection room 5 Elevator 6 Burner 7 Suction fan 12 Operation panel 13 Display part 19 Operation control part 20 Moisture meter 21 Moisture nonuniformity measurement switch

Claims (3)

貯留室(2)に積層状に張込まれた貯留穀粒を熱風乾燥させる乾燥部(3)と、この穀粒を循環させる穀粒循環機構(5)と、循環乾燥による穀粒の水分が目標水分に達するまで処理する熱風乾燥制御によって穀粒を乾燥処理し、この熱風乾燥制御に続いて通風下で穀粒を循環しつつ順次冷却処理する通風循環制御によって運転を終了する制御部(19)とを備えた穀粒循環乾燥機において、
上記通風循環制御は、貯留穀粒を積層状に区分した所定の層区分と対応する間隔で水分値を測定する層別測定を行い、この層別測定によって得られた全層に及ぶ水分分布幅が所定の基準範囲内に収束するまで通風循環を続行することを特徴とする穀粒循環乾燥機。
The drying unit (3) for drying the stored grains stretched in a stack in the storage chamber (2), the grain circulation mechanism (5) for circulating the grains, and the moisture of the grains by circulation drying The control unit (19) which finishes the operation by the ventilation circulation control in which the grain is dried by the hot air drying control for processing until reaching the target moisture, and the cooling process is sequentially performed while circulating the grain under the ventilation. ) In a grain circulation dryer with
The ventilation circulation control performs the layer-by-layer measurement that measures the moisture value at intervals corresponding to the predetermined layer section obtained by dividing the stored grain into layers, and the moisture distribution width over the entire layer obtained by this layer-by-layer measurement. A grain circulation dryer characterized by continuing ventilation circulation until is converged within a predetermined reference range.
前記通風循環制御は、層別測定を続行するとともに、その測定の都度、最新の測定値を含む新たな全層分布について収束の判定を行うことを特徴とする請求項1記載の穀粒循環乾燥機。   The circulation circulation drying according to claim 1, wherein the ventilation circulation control continues the stratified measurement and determines the convergence of a new whole-layer distribution including the latest measurement value for each measurement. Machine. 貯留室(2)に積層状に張込まれた貯留穀粒を熱風乾燥させる乾燥部(3)と、この穀粒を循環させる穀粒循環機構(5)と、循環乾燥による穀粒の水分が目標水分に達するまで処理する熱風乾燥制御によって穀粒を乾燥処理し、この熱風乾燥制御に続いて通風下で穀粒を循環しつつ順次冷却処理する通風循環制御によって運転を終了する制御部(19)とを備えた穀粒循環乾燥機において、
上記熱風乾燥制御は、貯留穀粒を積層状に区分した所定の層区分と対応する間隔で水分値を測定する層別測定を行い、この層別測定によって得られた熱風乾燥制御の終了時点の全層に及ぶ水分分布幅が所定の基準範囲内に収束されるのに必要な収束循環時間を経過するまで通風循環制御を続行することを特徴とする穀粒循環乾燥機。
The drying unit (3) for drying the stored grains stretched in a stack in the storage chamber (2), the grain circulation mechanism (5) for circulating the grains, and the moisture of the grains by circulation drying The control unit (19) which finishes the operation by the ventilation circulation control in which the grain is dried by the hot air drying control for processing until reaching the target moisture, and the cooling process is sequentially performed while circulating the grain under the ventilation. ) In a grain circulation dryer with
The hot air drying control performs stratified measurement to measure the moisture value at intervals corresponding to predetermined layer sections obtained by dividing the stored grains into layers, and at the end of the hot air drying control obtained by the stratified measurement. A grain circulation dryer characterized by continuing ventilation circulation control until a convergence circulation time necessary for the moisture distribution width over all layers to converge within a predetermined reference range.
JP2008293427A 2008-11-17 2008-11-17 Grain drying machine Withdrawn JP2010121796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293427A JP2010121796A (en) 2008-11-17 2008-11-17 Grain drying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293427A JP2010121796A (en) 2008-11-17 2008-11-17 Grain drying machine

Publications (1)

Publication Number Publication Date
JP2010121796A true JP2010121796A (en) 2010-06-03

Family

ID=42323292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293427A Withdrawn JP2010121796A (en) 2008-11-17 2008-11-17 Grain drying machine

Country Status (1)

Country Link
JP (1) JP2010121796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210024A (en) * 2014-04-25 2015-11-24 井関農機株式会社 Grain dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210024A (en) * 2014-04-25 2015-11-24 井関農機株式会社 Grain dryer

Similar Documents

Publication Publication Date Title
JP5293004B2 (en) Circulating grain dryer
JP2010054148A5 (en)
JP5884673B2 (en) Grain dryer
JP2010121796A (en) Grain drying machine
JP2008175415A (en) Grain drier
JP5423861B2 (en) Grain dryer
JP6137469B2 (en) Grain dryer
JP2008039221A (en) Grain drier
JP2017077193A (en) Grain harvest drying system
JP5125224B2 (en) Grain dryer
JP5104287B2 (en) Grain dryer
JP5104286B2 (en) Grain dryer
JP5391560B2 (en) Grain dryer
JP2011002205A (en) Grain drier
JP2009198047A (en) Grain dryer
JP6127629B2 (en) Grain dryer drying control device
JP2008032257A (en) Grain drying machine
JP6244947B2 (en) Grain dryer
JP2010197022A (en) Display screen for grain drier
JP5211720B2 (en) Grain dryer
JP5359592B2 (en) Grain dryer
JP6299387B2 (en) Grain dryer
JP4985064B2 (en) Grain dryer
JP5011983B2 (en) Grain dryer
JP5251286B2 (en) Grain dryer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207