JP2010016339A - Module using multilayer flexible printed circuit board and method of manufacturing the same - Google Patents

Module using multilayer flexible printed circuit board and method of manufacturing the same Download PDF

Info

Publication number
JP2010016339A
JP2010016339A JP2008322085A JP2008322085A JP2010016339A JP 2010016339 A JP2010016339 A JP 2010016339A JP 2008322085 A JP2008322085 A JP 2008322085A JP 2008322085 A JP2008322085 A JP 2008322085A JP 2010016339 A JP2010016339 A JP 2010016339A
Authority
JP
Japan
Prior art keywords
circuit board
printed circuit
flexible printed
bending
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008322085A
Other languages
Japanese (ja)
Inventor
Fumihiko Matsuda
田 文 彦 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2008322085A priority Critical patent/JP2010016339A/en
Publication of JP2010016339A publication Critical patent/JP2010016339A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foldable multi-chip module in which an IC chip is mounted on a flexible printed circuit board compatible with thinning and high-speed transmission, and to provide a method of manufacturing the same. <P>SOLUTION: The module 8 is formed so that the multilayer flexible printed circuit board 3 consisting of a plurality of component mounting sections 1 connected by a bendable flexible portion is superimposed by bending and folding the bendable flexible portion. Active elements are mounted on each one surface in the component mounting section of the multilayer flexible printed circuit board before folding and passive elements are mounted on each of the other surface, and the active elements or passive elements are disposed in a space of each other after folding. The method of manufacturing the module is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、多層フレキシブルプリント回路基板を用いたモジュールおよびその製造方法に係わり、とくにチップ部品を搭載したフレキシブルプリント回路基板を折り畳んで構成したモジュールおよびその製造方法に関する。   The present invention relates to a module using a multilayer flexible printed circuit board and a manufacturing method thereof, and more particularly to a module configured by folding a flexible printed circuit board on which chip components are mounted and a manufacturing method thereof.

近年、電子機器の小型化および高機能化が益々促進されており、そのために回路基板に対する高密度化の要求が高まっている。そこで、回路基板を片面構造から両面や三層以上の多層構造の回路基板とすることにより、回路基板の高密度化が図られている。   In recent years, downsizing and higher functionality of electronic devices have been increasingly promoted, and for this reason, there is an increasing demand for higher density of circuit boards. Therefore, the circuit board is changed from a single-sided structure to a double-sided or multi-layered circuit board having three or more layers to increase the density of the circuit board.

この一環として、各種電子部品を実装する多層回路基板や硬質回路基板の間を、コネクタ等を介して接続する、別体のフレキシブルプリント回路基板やフレキシブルフラットケーブルを一体化した、屈曲可撓部を有する多層フレキシブル回路基板が、携帯電話などの小型電子機器を中心に広く普及している(特許文献1、第5図等参照)。   As part of this, a flexible bending circuit that integrates a separate flexible printed circuit board and flexible flat cable that connects between multilayer circuit boards and hard circuit boards on which various electronic components are mounted via connectors etc. The multilayer flexible circuit board is widely spread mainly in small electronic devices such as mobile phones (see Patent Document 1, FIG. 5, etc.).

また、携帯電話、ゲーム機等の小型電子機器に用いる膨大な情報を記録したり、外部に取り出したりするためにメモリーICのモジュールを用いる。メモリーモジュールの容量は、取り扱う情報量の増加に伴い増加している。   In addition, a memory IC module is used to record a large amount of information used in a small electronic device such as a mobile phone or a game machine, or to take it out. The capacity of the memory module is increasing as the amount of information handled increases.

場合によっては、1つのICでは容量が不足し、大容量のICで安価なメモリーモジュールを構成することが難しく、複数のICを搭載したマルチチップモジュール化が図られている。   In some cases, the capacity of one IC is insufficient, and it is difficult to configure an inexpensive memory module with a large-capacity IC, and a multi-chip module including a plurality of ICs is being realized.

そして、安価で高密度なメモリーチップを構成する手法として、ICチップをフレキシブルプリント回路基板に搭載し、折り畳むことが知られている(特許文献2、第2図参照)。   As a method of constructing an inexpensive and high-density memory chip, it is known that an IC chip is mounted on a flexible printed circuit board and folded (see Patent Document 2 and FIG. 2).

図2は、特許文献2に記載の、屈曲可撓部を有する多層フレキシブルプリント回路基板にICチップを実装した、マルチチップモジュールの構造を示す図である。   FIG. 2 is a diagram showing the structure of a multi-chip module in which an IC chip is mounted on a multilayer flexible printed circuit board having a bending flexible part described in Patent Document 2. As shown in FIG.

このモジュールを作るには、まず図2(1)に示すように、多層フレキシブルプリント回路基板31の多層部32に、IC33、冷却フィン34および部品取り付け高さを保持するスペーサ35を実装する。   In order to make this module, first, as shown in FIG. 2 (1), an IC 33, a cooling fin 34, and a spacer 35 that holds the component mounting height are mounted on the multilayer portion 32 of the multilayer flexible printed circuit board 31.

次に図2(2)に示すように、多層フレキシブルプリント回路基板31の屈曲可撓部36を用い、折り畳みパッケージングすることでマルチチップモジュール37を得る。
特許第2631287号公報 特許第3216940号公報
Next, as shown in FIG. 2B, the multi-chip module 37 is obtained by folding and packaging using the bending flexible portion 36 of the multilayer flexible printed circuit board 31.
Japanese Patent No. 2631287 Japanese Patent No. 3216940

しかしながら、IC等は取り付け高さが1mmを超えるものもあり、部品の取り付け高さに対する配慮がない上に、スペーサを用いているため、モジュールとしての厚みを低減することが難しい。   However, some ICs and the like have a mounting height exceeding 1 mm, and there is no consideration for the mounting height of components, and since a spacer is used, it is difficult to reduce the thickness as a module.

また、上述のように、ICの特性に影響するプルアップ抵抗、プルダウン抵抗やバイパスコンデンサ、高速伝送特性に影響する終端抵抗の配置が考慮されておらず、ICの特性や高速化に対する配慮も十分ではない。   In addition, as described above, the arrangement of pull-up resistors, pull-down resistors and bypass capacitors that affect IC characteristics, and termination resistors that affect high-speed transmission characteristics is not considered, and sufficient consideration is given to IC characteristics and speedup. is not.

これらのことから、薄型化および高速伝送への対応が可能なICチップをフレキシブルプリント回路基板に搭載した、折り畳み型のマルチチップモジュールが望まれている。   For these reasons, there is a demand for a foldable multi-chip module in which an IC chip that can be made thin and compatible with high-speed transmission is mounted on a flexible printed circuit board.

本発明は、上述の点を考慮してなされたもので、薄型化および高速伝送への対応が可能なフレキシブルプリント回路基板にICチップを搭載した折り畳み型のマルチチップモジュールおよびその製造方法を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and provides a foldable multi-chip module in which an IC chip is mounted on a flexible printed circuit board capable of being thinned and adapted to high-speed transmission, and a method for manufacturing the same. For the purpose.

上記目的達成のため、本発明では、下記の物および製造方法の発明を提供する。   In order to achieve the above object, the present invention provides the following products and manufacturing methods.

物の発明として、
屈曲可撓部により接続された複数の部品実装部からなる多層フレキシブルプリント回路基板を、前記屈曲可撓部を屈曲させて折り畳むことにより重ね合わせてなるモジュールにおいて、
折り畳み前の前記多層フレキシブルプリント回路基板の前記部品実装部における各一方の面に能動素子を、各他方の面に受動素子を搭載し、折り畳み後に前記能動素子同士または受動素子同士が相互間の空間に配されるように構成されたことを特徴とするモジュール、および製造方法の発明として、
屈曲可撓部により接続された複数の部品実装部からなる多層フレキシブルプリント回路基板を、前記屈曲可撓部を屈曲させて折り畳むことにより重ね合わせてなるモジュールを構成する多層フレキシブルプリント回路基板の製造方法において、
a)長尺状の可撓性絶縁ベース材の両面に銅箔を有する両面銅張積層板を用意し、前記両面銅張積層板の一方の面の銅箔に導通用孔を形成するためのマスク孔を形成し、他方の面の銅箔に回路パターンを形成する工程、
b)長尺状の可撓性絶縁ベース材の片面に銅箔を有する片面銅張積層板を用意し、前記片面銅張積層の可撓性絶縁ベース材の面に接着剤層を設けて接着剤付き片面銅張積層板を形成する工程、
c)前記長尺状の両面銅張積層板の前記回路パターンを形成した面と前記接着剤付き片面銅張積層板の接着剤面とを対向させて積層し積層板を形成する工程、
d)前記マスク孔を用いて、前記積層板に穴明け加工を施し、導通用孔を形成する工程、
e)少なくとも前記導通用孔の内壁にめっきを行って前記積層板にビアホールを形成する工程、
f)前記積層板の外層の回路パターンを形成する工程
をそなえることを特徴とする多層フレキシブルプリント回路基板の製造方法、
を提供する。
As an invention of things,
In a module in which a multilayer flexible printed circuit board composed of a plurality of component mounting parts connected by a bending flexible part is overlapped by bending and bending the bending flexible part,
An active element is mounted on each surface of the component mounting portion of the multilayer flexible printed circuit board before folding, and a passive element is mounted on the other surface, and the space between the active elements or the passive elements after folding As an invention of a module and a manufacturing method characterized by being arranged in
Manufacturing method of multilayer flexible printed circuit board comprising a module in which multilayer flexible printed circuit board composed of a plurality of component mounting parts connected by bending flexible part is overlapped by bending and bending said bending flexible part In
a) preparing a double-sided copper-clad laminate having copper foil on both sides of a long flexible insulating base material, and forming a conduction hole in the copper foil on one side of the double-sided copper-clad laminate Forming a mask hole and forming a circuit pattern on the copper foil on the other surface;
b) A single-sided copper-clad laminate having a copper foil on one side of a long flexible insulating base material is prepared, and an adhesive layer is provided on the surface of the flexible insulating base material of the single-sided copper-clad laminate for adhesion. Forming a single-sided copper-clad laminate with an agent,
c) a step of laminating the surface of the long double-sided copper-clad laminate with the circuit pattern formed thereon and the adhesive surface of the single-sided copper-clad laminate with adhesive to form a laminate;
d) performing a drilling process on the laminate using the mask hole to form a hole for conduction;
e) forming a via hole in the laminate by plating at least the inner wall of the hole for conduction;
f) A method for producing a multilayer flexible printed circuit board, comprising the step of forming a circuit pattern of an outer layer of the laminate,
I will provide a.

本発明は上述のように、屈曲可撓部により接続された複数のフレキシブルプリント回路基板の一面に能動素子であるICチップを搭載し、反対面に受動素子であるチップ部品を集約して搭載したため、ICチップの直下にチップ部品を配置してICの特性に影響するプルアップ抵抗、プルダウン抵抗やバイパスコンデンサをできるだけICの近くに配置してモジュールの機能を向上させることができる。   In the present invention, as described above, an IC chip which is an active element is mounted on one surface of a plurality of flexible printed circuit boards connected by a bending flexible portion, and chip components which are passive elements are collectively mounted on the opposite surface. The module function can be improved by disposing a chip component immediately below the IC chip and disposing a pull-up resistor, pull-down resistor and bypass capacitor as close as possible to the IC, which affect the characteristics of the IC.

以下、図1および図3を参照して本発明の実施例を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

物の実施例1Example 1 of a thing

図1(1a),(1b)は、本発明の一実施例の構造を示す平面図、および図1(1a)のA−A線に沿う縦断面図である。この図1(1a),(1b)に示すように、3層の部品実装部1および折り曲げ可能な屈曲可撓部2が一体となった3層構造の多層フレキシブルプリント回路基板3を用意する。   1A and 1B are a plan view showing the structure of an embodiment of the present invention, and a longitudinal sectional view taken along the line AA in FIG. 1A. As shown in FIGS. 1A and 1B, a multilayer flexible printed circuit board 3 having a three-layer structure in which a three-layer component mounting portion 1 and a bendable flexible portion 2 are integrated is prepared.

そして、この多層フレキシブルプリント回路基板3の一面に能動素子であるIC4を搭載し、他の面に受動素子であるチップ部品7を搭載して各面にモールド樹脂5を塗工する。   Then, an IC 4 which is an active element is mounted on one surface of the multilayer flexible printed circuit board 3, and a chip component 7 which is a passive element is mounted on the other surface, and a mold resin 5 is applied to each surface.

屈曲可撓部2は、後の折り畳みによるパッケージング工程で折り曲げ部が容易に確認できるように、部品実装部1とは外形サイズを異ならせている。多層フレキシブルプリント回路基板3は、後にメモリーモジュールとして用いる際の外部接続端子6を有する。   The bending flexible portion 2 has a different external size from the component mounting portion 1 so that the bent portion can be easily confirmed in a packaging process by subsequent folding. The multilayer flexible printed circuit board 3 has external connection terminals 6 to be used later as a memory module.

図1(2)は、IC4を搭載した面の反対面にチップ抵抗、チップコンデンサ等のチップ部品7を搭載し、IC4と同様にモールド樹脂5を塗工した状態となっている。モールド樹脂5は、この時点では完全硬化しておらず、後の折り畳みによるパッケージング工程時に熱硬化する。   FIG. 1B shows a state in which a chip component 7 such as a chip resistor and a chip capacitor is mounted on the surface opposite to the surface on which the IC 4 is mounted, and the mold resin 5 is applied in the same manner as the IC 4. The mold resin 5 is not completely cured at this point, and is thermally cured during the packaging process by subsequent folding.

ICやチップ部品に電力を印加した際の発熱については、モールド樹脂5に無機フィラー等の高熱伝導材料を含むものを選択することで、効率的に放熱することができる。   About the heat_generation | fever at the time of applying electric power to IC or a chip component, it can thermally radiate efficiently by selecting what contains high heat conductive materials, such as an inorganic filler, in the mold resin 5. FIG.

これらの部品は、リフロー実装することを想定しているが、同系統の部品が同一面にのみ配置されるため、IC4およびチップ部品7のリフロー条件が大きく異なる場合でも、好適な条件を採用可能である。   These parts are assumed to be reflow-mounted, but the same conditions can be used even if the reflow conditions for IC4 and chip parts 7 differ greatly because the same parts are placed on the same surface. It is.

また、図1に示すように、IC4のほぼ直下にチップ部品7を配置し、IC4の特性に影響するプルアップ抵抗、プルダウン抵抗やバイパスコンデンサ等のチップ部品7をできるだけIC4の近くに配置し、モジュールの機能を向上させるとよい。   In addition, as shown in FIG. 1, the chip component 7 is arranged almost directly under the IC 4, and the chip components 7 such as a pull-up resistor, a pull-down resistor, and a bypass capacitor that affect the characteristics of the IC 4 are arranged as close to the IC 4 as possible. It is good to improve the function of the module.

次に、図1(2)に示すように、IC4および部品7を実装した多層フレキシブルプリント回路基板3を屈曲可撓部2で折り畳み、モールド樹脂5を熱硬化させるパッケージング工程を行ってメモリーモジュール8とする。   Next, as shown in FIG. 1 (2), the multilayer flexible printed circuit board 3 on which the IC 4 and the component 7 are mounted is folded at the bending flexible portion 2, and a molding process is performed in which the mold resin 5 is thermally cured to perform the memory module. Eight.

図1(2)に示すように、折り畳み後に部品7同士が入れ子状になるように配置することによって、さらにモジュール8の総厚みを薄くすることができる。この場合にも、上述のように、部品取り付け高さがほぼ同じである同系統の部品が同一面に配置される結果、モジュールの総厚みを薄くすることができる。   As shown in FIG. 1 (2), the total thickness of the module 8 can be further reduced by arranging the parts 7 so as to be nested after being folded. Also in this case, as described above, components of the same system having substantially the same component mounting height are arranged on the same surface, so that the total thickness of the module can be reduced.

なお、図示しないが、折り畳み方向は1方向に限らず、縦横等の2以上の方向から折り畳むようにしてもよい。   Although not shown, the folding direction is not limited to one direction, and folding may be performed from two or more directions such as vertical and horizontal.

方法の実施例1Method Example 1

図3は、本発明に係る3層構造の多層フレキシブルプリント配線板の製造方法を示す断面工程図である。この工程は、先ず、両面銅張積層板44に対し、両面の回路パターン等をフォトファブリケーション手法により形成するためのレジスト層の形成、露光、現像、エッチング、レジスト層剥離等の一連の工程を施す。そして、フォトファブリケーション手法により回路パターン43bを形成する。   FIG. 3 is a cross-sectional process diagram illustrating a method for manufacturing a multilayer flexible printed wiring board having a three-layer structure according to the present invention. In this step, first, a series of steps such as resist layer formation, exposure, development, etching, resist layer peeling and the like for forming a circuit pattern on both sides by a photofabrication method is performed on the double-sided copper clad laminate 44. Apply. Then, a circuit pattern 43b is formed by a photofabrication technique.

すなわち、長尺のポリイミド等の可撓性絶縁ベース材41(ここでは、厚さ12.5μmのポリイミド)の両面に、厚さ12μmの銅箔42および43を有する、所謂、両面銅張積層板44に対し、上述した一連の工程によって、長尺状態のまま、両面銅張積層板44の銅箔42および43にレーザ加工の際のコンフォーマルマスクとなるマスク孔42a,43aを、また内層となる銅箔43に回路パターン43bを形成する。   That is, a so-called double-sided copper-clad laminate having copper foils 42 and 43 having a thickness of 12 μm on both sides of a long flexible insulating base material 41 such as polyimide (here, a polyimide having a thickness of 12.5 μm). 44, mask holes 42a and 43a that become conformal masks during laser processing are formed in the copper foils 42 and 43 of the double-sided copper clad laminate 44 in the long state by the above-described series of steps, A circuit pattern 43 b is formed on the resulting copper foil 43.

このときの両面の位置合わせは、ベタ銅箔の材料に対して行うため、材料の伸縮等に影響されず、容易に位置精度を確保できる。必要に応じて高精度な位置合わせが可能な露光機を用いることも可能であるし、ビルドアップ接着材との密着を向上させるための粗化処理を行ってもよい。   Since the alignment of both surfaces at this time is performed with respect to the material of the solid copper foil, the positional accuracy can be easily secured without being affected by the expansion and contraction of the material. If necessary, an exposure machine capable of highly accurate alignment can be used, or a roughening process for improving adhesion with the build-up adhesive may be performed.

ここまでの工程で、3層フレキシブルプリント回路基板の第1層および第2層の回路基材45を得る。積層した3層フレキシブルプリント回路基板を折り畳んで使用することから、ハンドリング等に支障を来たさない範囲で基材は薄いものを選択する。   Through the steps so far, the first layer and the second layer circuit substrate 45 of the three-layer flexible printed circuit board are obtained. Since the laminated three-layer flexible printed circuit board is used by being folded, a thin base material is selected as long as handling is not hindered.

次いで、長尺のポリイミド等の可撓性絶縁ベース材46(ここでは、厚さ12.5μmのポリイミド)の片面に厚さ12μmの銅箔47を有する、所謂、片面銅張積層板48の一面に、接着材49をダイコーティング等の手法で塗工した長尺の接着剤付き片面銅張積層板50を用意する。   Next, one surface of a so-called single-sided copper-clad laminate 48 having a copper foil 47 having a thickness of 12 μm on one side of a long flexible insulating base material 46 such as polyimide (here, polyimide having a thickness of 12.5 μm). In addition, a long single-sided copper-clad laminate 50 with an adhesive obtained by coating the adhesive 49 with a technique such as die coating is prepared.

そして、この接着剤付き片面銅張積層板50に、位置合わせ用のガイド等を型抜きした接着剤付き片面銅張積層板50aと回路基材45との位置合わせを行う。接着剤49としては、ローフロータイプのボンディングシート等の流れ出しの少ないものが好ましく、後にケーブル部の接着剤としても機能する必要があることから、可撓性が必須である。   Then, the single-sided copper-clad laminate 50a with an adhesive obtained by die-cutting an alignment guide or the like on the single-sided copper-clad laminate 50 with an adhesive and the circuit substrate 45 are aligned. The adhesive 49 is preferably a low-flow type bonding sheet or the like with less flow-out, and it is necessary to function as an adhesive for the cable portion later, so flexibility is essential.

接着剤49の厚さは塗工により、回路充填に必要な10〜15μm程度に形成する。この実施例1のように、薄膜の片面銅張積層板は、これ自体のハンドリングは簡単ではないが、接着剤を直接塗工することにより、基板材料にいわゆるコシと呼ばれる剛性が出て、ハンドリングが容易になる。上述の両面回路基材と同様、積層した3層フレキシブルプリント回路基板を折り畳んで使用するため、この観点からは基板材料は薄いものを選択するとよい。   The thickness of the adhesive 49 is formed to about 10 to 15 μm necessary for circuit filling by coating. As in Example 1, the thin-film single-sided copper-clad laminate is not easy to handle by itself, but by directly applying an adhesive, the substrate material has a so-called stiffness, so that handling is possible. Becomes easier. Since the laminated three-layer flexible printed circuit board is folded and used in the same manner as the double-sided circuit base material described above, it is preferable to select a thin board material from this viewpoint.

次に図3(2)に示すように、接着材を介して両面の回路基材45と接着剤付き片面銅張積層板50aとを真空プレス等で積層する。ここまでの工程で、3層の長尺の多層回路基材51を得る。   Next, as shown in FIG. 3 (2), the double-sided circuit substrate 45 and the single-sided copper-clad laminate 50a with adhesive are laminated by a vacuum press or the like via an adhesive. Up to this step, a three-layer long multilayer circuit substrate 51 is obtained.

次いで図3(3)に示すように、マスク孔42aおよび43aをコンフォーマルマスクとして用いてレーザ加工を行い、3層を接続する導通用孔52を形成する。レーザ加工法はUV−YAGレーザ、炭酸ガスレーザ、エキシマレーザ等を選択可能である。   Next, as shown in FIG. 3 (3), laser processing is performed using the mask holes 42a and 43a as a conformal mask to form a conduction hole 52 for connecting the three layers. As the laser processing method, a UV-YAG laser, a carbon dioxide laser, an excimer laser, or the like can be selected.

さらに別の穴開け方法として、プラズマ、RIE、樹脂エッチング等が選択可能である。これらの各方法は面での一括加工が可能という利点があるが、材料の化学的な組成により加工速度等が異なることから、基板の穴数や樹脂の化学的な組成によって使い分ける。   Further, as another drilling method, plasma, RIE, resin etching, or the like can be selected. Each of these methods has the advantage of being capable of batch processing in terms of surface, but since the processing speed and the like differ depending on the chemical composition of the material, they are used properly depending on the number of holes in the substrate and the chemical composition of the resin.

この後、図示しないが、導通用孔52を有する多層回路基材53に導電化処理を行ったうえで10〜20μm程度の電解めっきを行って層間導通をとり、めっきされた多層回路基材54を得る。めっき工程についても、長尺の状態で行う。   Thereafter, although not shown in the drawing, the multilayer circuit substrate 53 having the conduction holes 52 is subjected to a conductive treatment and then subjected to electrolytic plating of about 10 to 20 μm to obtain interlayer conduction, and the plated multilayer circuit substrate 54. Get. The plating process is also performed in a long state.

これにより、めっき時の電流密度分布がシート状のめっきに比べて良化することが見込まれ、また、導通用孔の開口面のみに電流を印加することで、めっきマスク等を用いることなく片面めっきを行うことができる。ここでは、微細回路形成のため、片面めっきとした。   As a result, the current density distribution during plating is expected to be improved compared to sheet-like plating, and by applying a current only to the opening surface of the hole for conduction, one side can be used without using a plating mask or the like. Plating can be performed. Here, single-sided plating was used to form a fine circuit.

次に図3(4)に示すように、めっきを付けた第1層面および第3層面に、同時にフォトファブリケーション手法によるエッチングを施して回路パターン55,56を形成する。   Next, as shown in FIG. 3 (4), the first and third layer surfaces with plating are simultaneously etched by a photofabrication method to form circuit patterns 55 and 56.

ステップビアホール57の開口面である第1層面には、テンティング性を確保するために、20μm以上の厚さを有するドライフィルム、10μm以下の厚さの微細パターン形成用のドライフィルムレジストを適用することが可能である。   A dry film resist having a thickness of 20 μm or more and a dry film resist for forming a fine pattern having a thickness of 10 μm or less are applied to the first layer surface, which is the opening surface of the step via hole 57, in order to ensure tenting properties. It is possible.

その他、液状レジストを用いる場合等は、ステップビアホール57のテンティング性を考慮する必要がないため、第1層面および第3層面に形成するレジスト層は同じ厚みでよい。   In addition, when using a liquid resist, etc., it is not necessary to consider the tenting property of the step via hole 57. Therefore, the resist layers formed on the first layer surface and the third layer surface may have the same thickness.

ここまでの一連の工程をロール・トゥ・ロールで行うことにより、種々の製造方法上の利点が得られる。すなわち、薄膜のフレキシブル回路基板を製造する場合に特有のハンドリングの問題がなく、しかも生産性が良くてめっき厚のばらつきの少ない多層回路基材に高精度に回路パターンを形成できる。   By performing the series of steps up to here in a roll-to-roll manner, various manufacturing method advantages can be obtained. That is, there is no handling problem peculiar to the production of a thin film flexible circuit board, and it is possible to form a circuit pattern with high accuracy on a multilayer circuit substrate with good productivity and little variation in plating thickness.

また必要に応じて、基板表面に半田めっき、ニッケルめっき、金めっき等の表面処理を施し、外形加工を行うことで、チップ部品を搭載し、折り畳んで構成したモジュールに適用する3層構造の多層フレキシブルプリント回路基板58を得る。ロール・トゥ・ロールで製造工程を流動するには、多層フレキシブルプリント回路基板の総厚は200μm以内とすることが望ましい。   In addition, if necessary, the surface of the substrate is subjected to surface treatment such as solder plating, nickel plating, gold plating, etc., and external processing is performed to mount a chip component and apply it to a module configured by folding. A flexible printed circuit board 58 is obtained. In order to flow the manufacturing process by roll-to-roll, the total thickness of the multilayer flexible printed circuit board is preferably within 200 μm.

本発明によれば、多層フレキシブルプリント回路基板が薄型(実施例1では、外層パターンまでの総厚が約80μm厚、25μmのカバーフィルムを両側に貼ると約130μm)であることから、折り曲げは容易であり、リペア等のための繰り返しの曲げ直し等も可能である。   According to the present invention, since the multilayer flexible printed circuit board is thin (in Example 1, the total thickness up to the outer layer pattern is about 80 μm, and a cover film of 25 μm is pasted on both sides is about 130 μm), folding is easy. In addition, repeated re-bending for repair or the like is possible.

さらに、高速伝送に有利なストリップライン59(第1層、第3層がグランド層60、61、第2層が信号線62)を形成した場合でも十分折り曲げが可能なことから、折り畳みモジュール用の多層フレキシブルプリント回路基板として好適である。   Further, even when the strip line 59 (first layer, third layer is the ground layers 60 and 61, and second layer is the signal line 62), which is advantageous for high-speed transmission, can be sufficiently folded, It is suitable as a multilayer flexible printed circuit board.

本発明の一実施例の構成を示す説明図。Explanatory drawing which shows the structure of one Example of this invention. 従来の多層フレキシブルプリント回路板の構造を示す説明図。Explanatory drawing which shows the structure of the conventional multilayer flexible printed circuit board. 本発明の多層フレキシブルプリント回路基板の製造方法を示す工程図。Process drawing which shows the manufacturing method of the multilayer flexible printed circuit board of this invention.

符号の説明Explanation of symbols

1 部品実装部、2 屈曲可撓部、3 多層フレキシブルプリント回路基板、
4 IC、5 モールド樹脂、6 外部接続端子、7 チップ部品、
8 メモリーモジュール、31 多層フレキシブルプリント回路基板、32 多層部、
33 IC、34 冷却フィン、35 スペーサ、36 屈曲可撓部、
37 マルチチップモジュール、41 可撓性絶縁ベース材、42 銅箔、
42a マスク孔(コンフォーマルマスク)、43 銅箔、
43a マスク孔(コンフォーマルマスク)、43b 回路パターン、
44 両面銅張積層板、45 両面の回路基材、46 可撓性絶縁ベース材、
47 銅箔、48 片面銅張積層板、49 接着剤層、
50 接着剤付き片面銅張積層板、51 多層回路基材、52 導通用孔、
53 導通用孔を有する多層回路基材、54 めっきされた多層回路基材、
55 第1層の外層回路パターン、56 第3層の外層回路パターン、
57 ステップビアホール、58 多層フレキシブルプリント回路基板、
59 ストリップライン、60 第1層のグランド層、61 第3層のグランド層、
62 第2層の信号線。
1 component mounting part, 2 bending flexible part, 3 multilayer flexible printed circuit board,
4 IC, 5 mold resin, 6 external connection terminal, 7 chip parts,
8 memory modules, 31 multilayer flexible printed circuit boards, 32 multilayer sections,
33 IC, 34 Cooling fin, 35 Spacer, 36 Bending flexible part,
37 multichip module, 41 flexible insulating base material, 42 copper foil,
42a mask hole (conformal mask), 43 copper foil,
43a mask hole (conformal mask), 43b circuit pattern,
44 double-sided copper-clad laminate, 45 double-sided circuit board, 46 flexible insulating base material,
47 copper foil, 48 single-sided copper-clad laminate, 49 adhesive layer,
50 single-sided copper-clad laminate with adhesive, 51 multilayer circuit board, 52 hole for conduction,
53 multilayer circuit substrate having holes for conduction, 54 plated multilayer circuit substrate,
55 outer layer circuit pattern of the first layer, 56 outer layer circuit pattern of the third layer,
57 step via hole, 58 multilayer flexible printed circuit board,
59 stripline, 60 first layer ground layer, 61 third layer ground layer,
62 Second-layer signal line.

Claims (5)

屈曲可撓部により接続された複数の部品実装部からなる多層フレキシブルプリント回路基板を、前記屈曲可撓部を屈曲させて折り畳むことにより重ね合わせてなるモジュールにおいて、
折り畳み前の前記多層フレキシブルプリント回路基板の前記部品実装部における各一方の面に能動素子を、各他方の面に受動素子を搭載し、
折り畳み後に、前記能動素子同士または前記受動素子同士が相互間の空間に配されるように構成された
ことを特徴とするモジュール。
In a module in which a multilayer flexible printed circuit board composed of a plurality of component mounting parts connected by a bending flexible part is overlapped by bending and bending the bending flexible part,
An active element is mounted on each side of the component mounting portion of the multilayer flexible printed circuit board before folding, and a passive element is mounted on the other side,
The module, wherein the active elements or the passive elements are arranged in a space between each other after being folded.
請求項1記載のモジュールにおいて、
前記多層フレキシブルプリント回路基板は、前記屈曲可撓部を介して前記部品実装部が直線状に連結されていることを特徴とするモジュール。
The module of claim 1, wherein
In the multilayer flexible printed circuit board, the component mounting portion is linearly connected through the bending flexible portion.
請求項1記載のモジュールにおいて、
前記多層フレキシブルプリント回路基板は、前記屈曲可撓部を介して前記部品実装部が平面内の縦、横両方向に連結されていることを特徴とするモジュール。
The module of claim 1, wherein
In the multilayer flexible printed circuit board, the component mounting portion is connected in both vertical and horizontal directions in a plane through the bending flexible portion.
屈曲可撓部により接続された複数の部品実装部からなる多層フレキシブルプリント回路基板を、前記屈曲可撓部を屈曲させて折り畳むことにより重ね合わせてなるモジュールを構成する多層フレキシブルプリント回路基板の製造方法において、
a)長尺状の可撓性絶縁ベース材の両面に銅箔を有する両面銅張積層板を用意し、前記両面銅張積層板の一方の面の銅箔に導通用孔を形成するためのマスク孔を形成し、他方の面の銅箔に回路パターンを形成する工程、
b)長尺状の可撓性絶縁ベース材の片面に銅箔を有する片面銅張積層板を用意し、前記片面銅張積層の可撓性絶縁ベース材の面に接着剤層を設けて接着剤付き片面銅張積層板を形成する工程、
c)前記両面銅張積層板の前記回路パターンを形成した面と前記接着剤付き片面銅張積層板の接着剤面とを対向させて積層し積層板を形成する工程、
d)前記マスク孔を用いて、前記積層板に穴明け加工を施し、導通用孔を形成する工程、
e)少なくとも前記導通用孔の内壁にめっきを行って前記積層板にビアホールを形成する工程、
f)前記積層板の外層の回路パターンを形成する工程、
をそなえることを特徴とする多層フレキシブルプリント回路基板の製造方法。
Manufacturing method of multilayer flexible printed circuit board comprising a module in which multilayer flexible printed circuit board composed of a plurality of component mounting parts connected by bending flexible part is overlapped by bending and bending said bending flexible part In
a) preparing a double-sided copper-clad laminate having copper foil on both sides of a long flexible insulating base material, and forming a conduction hole in the copper foil on one side of the double-sided copper-clad laminate Forming a mask hole and forming a circuit pattern on the copper foil on the other surface;
b) A single-sided copper-clad laminate having a copper foil on one side of a long flexible insulating base material is prepared, and an adhesive layer is provided on the surface of the flexible insulating base material of the single-sided copper-clad laminate for adhesion. Forming a single-sided copper-clad laminate with an agent,
c) a step of laminating the surface of the double-sided copper-clad laminate on which the circuit pattern is formed and the adhesive surface of the single-sided copper-clad laminate with adhesive to form a laminate,
d) performing a drilling process on the laminate using the mask hole to form a hole for conduction;
e) forming a via hole in the laminate by plating at least the inner wall of the hole for conduction;
f) forming a circuit pattern on the outer layer of the laminate;
A method for manufacturing a multilayer flexible printed circuit board, comprising:
請求項4記載の多層フレキシブルプリント回路基板の製造方法において、
前記一連の工程が、ロール・トゥ・ロールで行われることを特徴とする多層フレキシブルプリント回路基板の製造方法。
In the manufacturing method of the multilayer flexible printed circuit board of Claim 4,
A method for manufacturing a multilayer flexible printed circuit board, wherein the series of steps are performed in a roll-to-roll manner.
JP2008322085A 2008-06-03 2008-12-18 Module using multilayer flexible printed circuit board and method of manufacturing the same Pending JP2010016339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008322085A JP2010016339A (en) 2008-06-03 2008-12-18 Module using multilayer flexible printed circuit board and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008145347 2008-06-03
JP2008322085A JP2010016339A (en) 2008-06-03 2008-12-18 Module using multilayer flexible printed circuit board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010016339A true JP2010016339A (en) 2010-01-21

Family

ID=41702114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322085A Pending JP2010016339A (en) 2008-06-03 2008-12-18 Module using multilayer flexible printed circuit board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010016339A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143662A (en) * 2010-02-03 2011-08-03 日本梅克特隆株式会社 Manufacturing method of multilayer printed circuit board and substrate holding piece and shield plate
US20120170231A1 (en) * 2011-01-05 2012-07-05 Samsung Electronics Co., Ltd. Folded stacked package and method of manufacturing the same
JP2013131526A (en) * 2011-12-20 2013-07-04 Fujitsu Ltd Multilayer circuit board and manufacturing method of the same
WO2014122779A1 (en) * 2013-02-08 2014-08-14 株式会社フジクラ Component built-in substrate and method for manufacturing same
ITUB20159420A1 (en) * 2015-12-28 2017-06-28 Cev Lab S R L Con Unico Socio IMPROVED IGNITION LOCK
US9883584B2 (en) 2015-08-06 2018-01-30 Nippon Mektron, Ltd. Method of manufacturing a multilayer flexible printed circuit board
JP2019145765A (en) * 2018-02-19 2019-08-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board
WO2023248804A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Stretchable device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009231A (en) * 2000-06-20 2002-01-11 Seiko Epson Corp Semiconductor device
JP2002237568A (en) * 2000-12-28 2002-08-23 Texas Instr Inc <Ti> Chip-scale package stacked on interconnect body folded for vertical assembly on substrate
JP2003158356A (en) * 2001-11-20 2003-05-30 Murata Mfg Co Ltd Electronic circuit device
JP2003347503A (en) * 2002-05-30 2003-12-05 Hitachi Ltd Semiconductor device and method of manufacturing the same, and semiconductor mounting structure
JP2007128970A (en) * 2005-11-01 2007-05-24 Nippon Mektron Ltd Manufacturing method of multilayer wiring board having cable section

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009231A (en) * 2000-06-20 2002-01-11 Seiko Epson Corp Semiconductor device
JP2002237568A (en) * 2000-12-28 2002-08-23 Texas Instr Inc <Ti> Chip-scale package stacked on interconnect body folded for vertical assembly on substrate
JP2003158356A (en) * 2001-11-20 2003-05-30 Murata Mfg Co Ltd Electronic circuit device
JP2003347503A (en) * 2002-05-30 2003-12-05 Hitachi Ltd Semiconductor device and method of manufacturing the same, and semiconductor mounting structure
JP2007128970A (en) * 2005-11-01 2007-05-24 Nippon Mektron Ltd Manufacturing method of multilayer wiring board having cable section

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159921A (en) * 2010-02-03 2011-08-18 Nippon Mektron Ltd Method of manufacturing multilayer printed wiring board, substrate holder, and shielding plate
CN102143662A (en) * 2010-02-03 2011-08-03 日本梅克特隆株式会社 Manufacturing method of multilayer printed circuit board and substrate holding piece and shield plate
CN102143662B (en) * 2010-02-03 2015-03-18 日本梅克特隆株式会社 Manufacturing method of multilayer printed circuit board and substrate holding piece and shield plate
US8861205B2 (en) 2011-01-05 2014-10-14 Samsung Electronics Co., Ltd. Folded stacked package and method of manufacturing the same
US20120170231A1 (en) * 2011-01-05 2012-07-05 Samsung Electronics Co., Ltd. Folded stacked package and method of manufacturing the same
JP2013131526A (en) * 2011-12-20 2013-07-04 Fujitsu Ltd Multilayer circuit board and manufacturing method of the same
WO2014122779A1 (en) * 2013-02-08 2014-08-14 株式会社フジクラ Component built-in substrate and method for manufacturing same
US10383231B2 (en) 2013-02-08 2019-08-13 Fujikura Ltd. Component-embedded board and method of manufacturing same
US9883584B2 (en) 2015-08-06 2018-01-30 Nippon Mektron, Ltd. Method of manufacturing a multilayer flexible printed circuit board
KR20180037914A (en) 2015-08-06 2018-04-13 니폰 메크트론 가부시키가이샤 Multilayer Flexible Printed Wiring Board and Method for Producing Same
ITUB20159420A1 (en) * 2015-12-28 2017-06-28 Cev Lab S R L Con Unico Socio IMPROVED IGNITION LOCK
JP2019145765A (en) * 2018-02-19 2019-08-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board
WO2023248804A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Stretchable device

Similar Documents

Publication Publication Date Title
EP2954760B1 (en) Fusion bonded liquid crystal polymer circuit structure
JP4291279B2 (en) Flexible multilayer circuit board
KR100965339B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP5101542B2 (en) Chip built-in printed circuit board and manufacturing method thereof
US9320137B2 (en) Printed circuit board and method for manufacturing the same
US9338891B2 (en) Printed wiring board
JP2010016339A (en) Module using multilayer flexible printed circuit board and method of manufacturing the same
JP2007165888A (en) Printed-circuit substrate in which electron devices are built, and its manufacturing method
US20090277673A1 (en) PCB having electronic components embedded therein and method of manufacturing the same
JP2007081408A (en) Printed circuit board for rigid-flexible package-on package (pop) and method for manufacturing the same
JP2007142403A (en) Printed board and manufacturing method of same
JP2006165496A (en) Parallel multi-layer printed board having inter-layer conductivity through via post
TWI479972B (en) Multi-layer flexible printed wiring board and manufacturing method thereof
CN103889168A (en) Bearing circuit board, manufacturing method of bearing circuit board and packaging structure
TW201410097A (en) Multilayer flexible printed circuit board and method for manufacturing same
JP2016134624A (en) Electronic element built-in printed circuit board and manufacturing method therefor
KR101131289B1 (en) Rigid-Flexible substrate comprising embedded electronic component within and Fabricating Method the same
KR101905879B1 (en) The printed circuit board and the method for manufacturing the same
TW201316853A (en) Embedded multilayer printed circuit board and method for manufacturing same
KR101701380B1 (en) Device embedded flexible printed circuit board and manufacturing method thereof
KR100536315B1 (en) Semiconductor packaging substrate and manufacturing method thereof
US20160353572A1 (en) Printed circuit board, semiconductor package and method of manufacturing the same
KR100972431B1 (en) Embedded printed circuit board and manufacturing method thereof
KR20160097801A (en) Printed circuit board and method of manufacturing the same
JP2010016338A (en) Multilayer flexible printed wiring board and display element module using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130219

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130412