JP2010008177A - Defect detecting apparatus and method therefor - Google Patents

Defect detecting apparatus and method therefor Download PDF

Info

Publication number
JP2010008177A
JP2010008177A JP2008166685A JP2008166685A JP2010008177A JP 2010008177 A JP2010008177 A JP 2010008177A JP 2008166685 A JP2008166685 A JP 2008166685A JP 2008166685 A JP2008166685 A JP 2008166685A JP 2010008177 A JP2010008177 A JP 2010008177A
Authority
JP
Japan
Prior art keywords
defect
light
detection
inspection
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008166685A
Other languages
Japanese (ja)
Inventor
Moritoshi Ando
藤 護 俊 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adtec Engineering Co Ltd
Original Assignee
Adtec Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtec Engineering Co Ltd filed Critical Adtec Engineering Co Ltd
Priority to JP2008166685A priority Critical patent/JP2010008177A/en
Priority to TW098103381A priority patent/TW201000884A/en
Priority to KR1020090010117A priority patent/KR20100002072A/en
Priority to CN200910008194A priority patent/CN101614680A/en
Publication of JP2010008177A publication Critical patent/JP2010008177A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8812Diffuse illumination, e.g. "sky"

Landscapes

  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect detecting apparatus capable of detecting a position of a defect in the height direction. <P>SOLUTION: A glass plate 99 is moved at a fixed speed v, and a position d of a stage 2 is detected by a stage position detecting device 4. The light from an illuminating device 1 is brought to enter the glass plate 99 obliquely at a prescribed angle through a mask 10, and the reflection light reflected by the under surface of the glass plate 99 is detected by an image detecting device 3. The defect is detected by using both of the incident light and the reflection light, and their time interval is measured, and then the position of the defect in the height direction is calculated based on the prescribed angle, the prescribed speed v and the time interval by using a controller 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、欠陥検出装置に関する。   The present invention relates to a defect detection apparatus.

プリント配線基板の製造などに用いる露光装置において、露光パターンを描いたフォトマスクは、露光光を透過するガラスに支持されている。
露光装置の中、フォトマスクを基板に密着させるコンタクト露光装置に用いるガラスは厚く大きいため、内部に気泡や異物を含むことがある。
これらの気泡や異物は、ガラスの厚さ方向の高さ位置に応じて露光に及ぼす影響が異なる。例えば、露光の際に、ガラスの下面側には露光対象である基板のレジスト面が位置するが、気泡や異物がガラス下面に近い位置にある場合、即ちレジスト面に近い場合、露光への悪影響が大きくなる。逆にガラス上面に近い欠陥の場合、悪影響は少なくなる。
このようなガラス内部の欠陥や異物を検出するために、下記の特許文献1乃至5に示すように種々の提案がなされている。
In an exposure apparatus used for manufacturing a printed wiring board, a photomask on which an exposure pattern is drawn is supported by glass that transmits exposure light.
Among the exposure apparatuses, the glass used in the contact exposure apparatus that attaches the photomask to the substrate is thick and large, and thus may contain bubbles and foreign matters inside.
These bubbles and foreign substances have different effects on exposure depending on the height position of the glass in the thickness direction. For example, when the exposure is performed, the resist surface of the substrate to be exposed is positioned on the lower surface side of the glass, but if bubbles or foreign substances are located near the lower surface of the glass, that is, close to the resist surface, adverse effects on the exposure. Becomes larger. Conversely, in the case of a defect close to the upper surface of the glass, adverse effects are reduced.
In order to detect such defects and foreign matters inside the glass, various proposals have been made as shown in Patent Documents 1 to 5 below.

特開平11−264803号公報JP-A-11-264803 特開2005−156416号公報JP 2005-156416 A 特開2005−201887号公報JP 2005-201887 A 特開2006−49078号公報JP 2006-49078 A 特開2006−112955号公報JP 2006-112955 A

しかし従来のいずれの構成も、欠陥や異物の高さ方向の位置を検出することができず、欠陥や異物が露光に及ぼす影響を正確に認識することができない問題があった。
本発明は上記従来技術の問題を解決することを目的とする。
However, any conventional configuration cannot detect the position of the defect or foreign matter in the height direction, and cannot accurately recognize the influence of the defect or foreign matter on the exposure.
The object of the present invention is to solve the problems of the prior art.

上記目的を達成するために、本発明の欠陥検出装置は、検査光を透過する検査対象に対して所定角度で該検査光を傾斜させて照射し、該検査光が検査対象下面に入射する入射光と、検査対象下面で反射する反射光とを有する照明装置と、該検査対象と前記照明装置とを、前記検査光の傾斜方向に相対的に所定速度で移動させる移動装置と、前記検査対象の欠陥を前記入射光と反射光とにより検出する検出装置と、前記入射光による欠陥の検出と前記反射光による欠陥の検出の時間間隔を検出する時間間隔検出装置と、前記所定角度と所定速度と前記時間間隔とに基づいて前記欠陥の高さ方向位置を演算する演算装置と、を備えたことを特徴とする。
上記構成により、検査対象の欠陥を検出し且つ該欠陥の高さ方向の位置を検出することが可能になる。また、検査対象下面で反射する反射光を用いるため、検査対象下面に付着したゴミなどを欠陥として検出することがない。
更に、前記検出装置が、前記検査対象下面を結像する結像レンズと、該結像レンズの結像面に設けられたCCDと、を有するように構成することが可能である。この構成により検査対象上面側での検査感度を相対的に低くし、検査対象上面に付着したゴミなどの影響を減少させることができる。
更に前記結像レンズの絞りを調整する装置を更に備え、該絞りの調整により検査対象内部での欠陥検出感度を調整する、ように構成することも可能である。
In order to achieve the above object, the defect detection apparatus of the present invention irradiates an inspection object that transmits inspection light with an inclination at a predetermined angle, and the inspection light is incident on the lower surface of the inspection object. An illumination device having light and reflected light reflected from the lower surface of the inspection object; a moving device that moves the inspection object and the illumination device relatively at a predetermined speed in a tilt direction of the inspection light; and the inspection object. A detection device that detects the defect of the defect by the incident light and the reflected light, a time interval detection device that detects a time interval between the detection of the defect by the incident light and the detection of the defect by the reflected light, and the predetermined angle and the predetermined speed And an arithmetic unit that calculates the height position of the defect based on the time interval.
With the above configuration, it is possible to detect a defect to be inspected and to detect a position in the height direction of the defect. Further, since the reflected light reflected from the lower surface of the inspection object is used, dust attached to the lower surface of the inspection object is not detected as a defect.
Furthermore, the detection device can be configured to include an imaging lens that forms an image on the lower surface of the inspection object, and a CCD provided on the imaging surface of the imaging lens. With this configuration, the inspection sensitivity on the upper surface side of the inspection object can be relatively lowered, and the influence of dust attached to the upper surface of the inspection object can be reduced.
It is also possible to further comprise a device for adjusting the diaphragm of the imaging lens, and to adjust the defect detection sensitivity inside the inspection object by adjusting the diaphragm.

本発明の欠陥検出装置及び方法によれば、検査対象の欠陥を検出し且つ該欠陥の高さ方向の位置を検出することが可能になる。また、検査対象の表面に付着したゴミなどの影響を抑制することが可能である。   According to the defect detection apparatus and method of the present invention, it is possible to detect a defect to be inspected and to detect the height direction position of the defect. Further, it is possible to suppress the influence of dust or the like attached to the surface to be inspected.

以下本発明の実施の形態を図面に基づいて説明する。
図1において、検査対象であるガラス板99はステージ2上に載置され、移動装置20により矢印で示すY方向に、一定の速度vで移動されるように構成されている。
ステージ2の位置dはステージ位置検出装置4により検出されるように構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, a glass plate 99 to be inspected is placed on the stage 2 and is moved by the moving device 20 in the Y direction indicated by the arrow at a constant speed v.
The position d of the stage 2 is configured to be detected by the stage position detection device 4.

ガラス板99の上方には照明装置1が設けられており、マスク10を介してガラス板99に対して光を斜めに入射させるように構成されている。
照明装置1に対向する位置には、画像検出装置3が設けられおり、ガラス板99下面で反射した反射光を検出するように構成されている。
The lighting device 1 is provided above the glass plate 99, and is configured to make light incident on the glass plate 99 obliquely through the mask 10.
An image detection device 3 is provided at a position facing the illumination device 1, and is configured to detect reflected light reflected by the lower surface of the glass plate 99.

照明装置1はガラス板99の幅方向(移動方向に直交する方向)、即ちX方向に線状の光を照射するライン状の拡散照明になっており、図2に示すようにマスク10が設けられており、ガラス板99の移動方向に対して入射角θでライン拡散照明光を照射するように構成されている。この構成により照明装置1の照明はガラス板99に対して入射角θで斜めに入射し、ガラス板99から反射した光だけを検出する。   The illuminating device 1 is a line-shaped diffused illumination that irradiates linear light in the width direction (direction orthogonal to the moving direction) of the glass plate 99, that is, the X direction, and a mask 10 is provided as shown in FIG. The line diffused illumination light is irradiated at an incident angle θ with respect to the moving direction of the glass plate 99. With this configuration, the illumination of the illumination device 1 is incident on the glass plate 99 obliquely at an incident angle θ, and only the light reflected from the glass plate 99 is detected.

なおガラス板99は照明装置1に対して移動するようになっているが、ガラス板99と照明装置1は相対的に移動すればよく、照明装置1を移動させる構成或いはガラス板99と照明装置1の両方を移動させる構成も可能である。   The glass plate 99 moves with respect to the lighting device 1. However, the glass plate 99 and the lighting device 1 may be moved relative to each other, and the configuration for moving the lighting device 1 or the glass plate 99 and the lighting device. A configuration in which both of them are moved is also possible.

図2に示すように、照明装置1からの照明は入射光路15と反射光路16を経て、ラインCCD31に受光される。
即ち照明装置1及びマスク10から入射角θでガラス板99に入射した線状の照明は、ガラス上面97で屈折角φで屈折しガラス下面98で反射し、更にガラス上面97で屈折角φで屈折する。この反射光を、前焦点位置をガラス下面98に置いた結像レンズ30で集光し、ラインCCD31で受光し、検出するように構成されている。
As shown in FIG. 2, the illumination from the illumination device 1 is received by the line CCD 31 through the incident light path 15 and the reflected light path 16.
That is, linear illumination that has entered the glass plate 99 from the illumination device 1 and the mask 10 at an incident angle θ is refracted at the refraction angle φ at the glass upper surface 97 and reflected at the lower glass surface 98, and further at the refraction angle φ at the glass upper surface 97. Refract. The reflected light is collected by the imaging lens 30 whose front focal position is placed on the lower glass surface 98, received by the line CCD 31, and detected.

ラインCCD31で検出された画像は画像入力装置32を経由して画像処理装置33で所定の処理を受け、コントローラ5を介してディスプレイ50に表示されるように構成されている。   The image detected by the line CCD 31 is subjected to predetermined processing by the image processing device 33 via the image input device 32 and is displayed on the display 50 via the controller 5.

図3により、屈折率nのガラス板99内に気泡の欠陥80がある場合の検出について説明する。
ガラス板99はステージ2に載置され、図3において右方向に速度vで移動している。図3(A)に示すように、欠陥80は最初に入射光路15を通過し、この時にラインCCD31の検出値が低下して欠陥80の1回目の検出がなされる。
次に図3(B)に示すように、欠陥80は反射光路16を通過し、同様にラインCCD31により欠陥80の2回目の検出がなされる。
With reference to FIG. 3, detection when there is a bubble defect 80 in the glass plate 99 having a refractive index n will be described.
The glass plate 99 is placed on the stage 2 and moves to the right in FIG. As shown in FIG. 3A, the defect 80 first passes through the incident optical path 15, and at this time, the detection value of the line CCD 31 decreases and the defect 80 is detected for the first time.
Next, as shown in FIG. 3B, the defect 80 passes through the reflected light path 16, and the line CCD 31 similarly detects the defect 80 for the second time.

コントローラ5は、該検出結果に基づいて、欠陥80のガラス下面98からの高さhを次のように算出する。なお、欠陥80の大きさはラインCCD31の出力が低下している時間と移動速度vから計算できる。   Based on the detection result, the controller 5 calculates the height h of the defect 80 from the glass lower surface 98 as follows. The size of the defect 80 can be calculated from the time when the output of the line CCD 31 is reduced and the moving speed v.

1回目検出の欠陥80の位置と2回目検出の欠陥80の位置のY方向の距離dは、
d=tvであらわされる。ここで、tは欠陥80の1回目検出と2回目検出の時間間隔であり、コントローラ5においてカウントされる。
The distance d in the Y direction between the position of the defect 80 detected for the first time and the position of the defect 80 detected for the second time is:
It is expressed as d = tv. Here, t is a time interval between the first detection and the second detection of the defect 80 and is counted by the controller 5.

ここで、入射角(観測角)θとガラス板99の屈折率nとするときの光の屈折角φは、スネルの法則により、次式で表される。
sinθ=nsinφ
Here, the incident angle (observation angle) θ and the refractive angle φ of the light when the refractive index n of the glass plate 99 is used are expressed by the following equation according to Snell's law.
sinθ = nsinφ

このとき、欠陥80の高さhと距離dの関係は、
2htanθ=d であるので、欠陥80の高さhは下式で表される。
下式から、欠陥80の高さhと出現間隔時間tは比例することがわかる。即ち、欠陥80がガラス下面98近くにあるほど、時間tは短くなり、ガラス上面97近くにあるほど時間tは長くなる。
At this time, the relationship between the height h of the defect 80 and the distance d is
Since 2h tan θ = d, the height h of the defect 80 is expressed by the following equation.
From the following equation, it can be seen that the height h of the defect 80 and the appearance interval time t are proportional. That is, the closer the defect 80 is to the lower surface 98 of the glass, the shorter the time t, and the longer the time t is, the closer to the upper surface 97 of the glass.

Figure 2010008177
Figure 2010008177

図4に欠陥80の位置とコントローラ5により得られ、ディスプレイ50に表示される画像を示す。
前記したように、欠陥80があるとラインCCD31からの信号強度は小さくなるため、欠陥80はディスプレイ50には暗部として表れる。
h1、h2、h3のガラス下面98からの高さの欠陥80abcdeはディスプレイ50においてd1、d2、d3、d4の距離を有する双子の暗部として表示される。前記したように高さhが高いほど暗部の間隔dが大きくなる。
FIG. 4 shows the position of the defect 80 and an image obtained by the controller 5 and displayed on the display 50.
As described above, if there is a defect 80, the signal intensity from the line CCD 31 becomes small, so the defect 80 appears on the display 50 as a dark part.
The height defects 80abcde from the glass lower surface 98 of h1, h2, and h3 are displayed on the display 50 as twin dark portions having distances of d1, d2, d3, and d4. As described above, the higher the height h, the larger the distance d between dark portions.

欠陥80の高さhとサイズと該欠陥80の許容/非許容の関係を図5に示す。泡(異物)などの欠陥80は、ガラス下面98に近く、高さhが低い場所にあるほど、露光に悪影響を及ぼすため、非許容とする。また欠陥80のサイズが大きいほど非許容となる。   FIG. 5 shows the relationship between the height h and size of the defect 80 and whether the defect 80 is acceptable or not. Defects 80 such as bubbles (foreign matter) are not allowed because they are closer to the lower surface 98 of the glass and the lower the height h, the more adverse the exposure. Further, the larger the size of the defect 80, the non-permitted.

欠陥80dのように高さhがガラス板99の厚み以上の場合は、該欠陥80dはガラス上面97のゴミと判定する。
すなわちガラス板99の厚みTとすると、検出パターンの間隔d4が次式になるときに、ガラス上面97に付着したごみによるパターンとし、正常と判定する。
When the height h is equal to or greater than the thickness of the glass plate 99 as in the defect 80d, the defect 80d is determined as dust on the glass upper surface 97.
That is, when the thickness T of the glass plate 99 is assumed, when the detection pattern interval d4 is expressed by the following equation, the pattern is made of dust attached to the glass upper surface 97 and is determined to be normal.

Figure 2010008177
Figure 2010008177

また欠陥80cあるいは80eのようにガラス下面98に近い場所にある場合は、双子のパターンにならない場合がある。
例えば、図4に示すように欠陥80cが円形形状の泡で、その大きさ(直径)をSxとし、検出パターンの間隔をd3とすると、Sx>d3の時、二つの画像は分離されない。
このパターンが発生したときには、欠陥80がガラス下面に近く、その大きさも大きいことを示しているので、露光に対して悪影響を及ぼす可能性が高い。そこで、基板の移動方向(Y方向)に直交する方向の大きさをサイズSx、高さhを0とみなして図5に従って、許容/非許容を判定する。
In addition, when there is a place close to the glass lower surface 98 as in the case of the defect 80c or 80e, the twin pattern may not be obtained.
For example, as shown in FIG. 4, if the defect 80c is a circular bubble, the size (diameter) is Sx, and the detection pattern interval is d3, the two images are not separated when Sx> d3.
When this pattern occurs, it indicates that the defect 80 is close to the lower surface of the glass and has a large size. Accordingly, the size in the direction orthogonal to the moving direction (Y direction) of the substrate is regarded as the size Sx, and the height h is set to 0, and whether to permit or not is determined according to FIG.

図6のフローチャートにより動作を説明する。
ラインCCD31及び画像入力装置32で検出した濃淡パターンに対し、画像処理装置33において閾値を設け、2値化して2値パターンを得て(ステップS1)、該2値パターンに対し、ラベリングを行う(ステップS2)。
ラベル化された各パターンの中心座標、大きさ(Sx、Sy)を計測し(ステップS3)、各パターンについて、基板移動方向(Y方向)に探索を行い、ほぼ同じ大きさ或いは同様な大きさのパターンを探す(ステップS4)。探索領域は、ガラス板99の厚み相当の距離d4以内とする。
同様な大きさのパターンがあった場合には(ステップS5)、それらのy方向の間隔dを求め、その高さhを計算する(ステップS6)。
得られたパターン高さhと、大きさ(たとえばxy方向の平均値)を図5に示す判断基準に照らし合わせ、許容/非許容を判定する(ステップS7、8、9)。
ステップS5で同様なパターンがなく、単独パターンとみなされる場合には、x方向の大きさSxを大きさとし、高さhを0として(ステップS10)、同様に図5に示す判断基準に照らし合わせ、許容/非許容を判定する(ステップS7、8、9)。
The operation will be described with reference to the flowchart of FIG.
A threshold value is provided in the image processing device 33 for the gray pattern detected by the line CCD 31 and the image input device 32, and binarization is performed to obtain a binary pattern (step S1), and the binary pattern is labeled (step S1). Step S2).
The center coordinates and sizes (Sx, Sy) of each labeled pattern are measured (step S3), and each pattern is searched in the substrate movement direction (Y direction), and is approximately the same size or similar size. Is searched for (step S4). The search area is within a distance d4 corresponding to the thickness of the glass plate 99.
If there is a pattern having a similar size (step S5), the distance d in the y direction is obtained, and the height h is calculated (step S6).
The obtained pattern height h and the size (for example, the average value in the xy direction) are checked against the criteria shown in FIG. 5 to determine whether or not to be allowed (steps S7, S8, S9).
If there is no similar pattern in step S5 and it is regarded as a single pattern, the size Sx in the x direction is set to the size, the height h is set to 0 (step S10), and the same is performed in accordance with the criteria shown in FIG. Permission / non-permission is determined (steps S7, 8, 9).

なおガラス下面98にいくほど受光範囲が小さくなり、同じ大きさの欠陥80であっても、ガラス下面98にいくほど光量変化が大きくなり、検出感度が大きくなる。従って、ガラス上面97にゴミなどが付着しても、欠陥80として誤って検出される危険は少ない。
更にガラス下面98のゴミは、反射光に全く影響をあたえないため、検出されることはない。
Note that the light receiving range becomes smaller toward the glass lower surface 98, and even if the defect 80 has the same size, the light amount change increases toward the glass lower surface 98, and the detection sensitivity increases. Therefore, even if dust or the like adheres to the glass upper surface 97, there is little risk of being erroneously detected as the defect 80.
Furthermore, dust on the lower surface 98 of the glass is not detected because it does not affect the reflected light at all.

本発明の一実施形態を示す概略図。Schematic which shows one Embodiment of this invention. 本発明の一実施形態の動作を示す説明図。Explanatory drawing which shows operation | movement of one Embodiment of this invention. 本発明の一実施形態の動作を示す説明図。Explanatory drawing which shows operation | movement of one Embodiment of this invention. 本発明の一実施形態の動作を示す説明図。Explanatory drawing which shows operation | movement of one Embodiment of this invention. 本発明の一実施形態の動作を示す説明図。Explanatory drawing which shows operation | movement of one Embodiment of this invention. 本発明の一実施形態の動作を示すフローチャート図。The flowchart figure which shows operation | movement of one Embodiment of this invention.

符号の説明Explanation of symbols

1:照明装置、2:ステージ、3:画像検出装置、4:ステージ位置検出装置、5:コントローラ、10:マスク、15:入射光路、16:反射光路、20:移動装置、30:結像レンズ、31:ラインCCD、32:画像入力装置、33:画像処理装置、50:ディスプレイ、80:欠陥、97:ガラス上面、98:ガラス下面、99:ガラス板。 1: illumination device, 2: stage, 3: image detection device, 4: stage position detection device, 5: controller, 10: mask, 15: incident light path, 16: reflected light path, 20: moving device, 30: imaging lens 31: Line CCD, 32: Image input device, 33: Image processing device, 50: Display, 80: Defect, 97: Upper surface of glass, 98: Lower surface of glass, 99: Glass plate.

Claims (3)

検査光を透過する検査対象に対して所定角度で該検査光を傾斜させて照射し、該検査光が検査対象下面に入射する入射光と、検査対象下面で反射する反射光とを有する照明装置と、
該検査対象と前記照明装置とを、前記検査光の傾斜方向に相対的に所定速度で移動させる移動装置と、
前記検査対象の欠陥を前記入射光と反射光とにより検出する検出装置と、
前記入射光による欠陥の検出と前記反射光による欠陥の検出の時間間隔を検出する時間間隔検出装置と、
前記所定角度と所定速度と前記時間間隔とに基づいて前記欠陥の高さ方向位置を演算する演算装置と、
を備えたことを特徴とする欠陥検出装置。
An illuminating apparatus that irradiates the inspection light that is transmitted through the inspection light at a predetermined angle with the inspection light inclined, and has the incident light that is incident on the lower surface of the inspection object and the reflected light that is reflected on the lower surface of the inspection object. When,
A moving device that moves the inspection object and the illumination device at a predetermined speed relative to the inclination direction of the inspection light;
A detection device for detecting the defect to be inspected by the incident light and the reflected light;
A time interval detection device for detecting a time interval between detection of the defect by the incident light and detection of the defect by the reflected light;
An arithmetic device that calculates the height direction position of the defect based on the predetermined angle, a predetermined speed, and the time interval;
A defect detection apparatus comprising:
前記検出装置が、
前記検査対象下面を結像する結像レンズと、
該結像レンズの結像面に設けられたCCDと、
を有する請求項1の欠陥検出装置。
The detection device is
An imaging lens for imaging the lower surface of the inspection object;
A CCD provided on the imaging surface of the imaging lens;
The defect detection apparatus of Claim 1 which has these.
検査光を透過する検査対象に対して、照明装置からの検査光を所定角度傾斜させて照射し、検査対象下面に入射させ、また検査対象下面で反射させるステップと、
該検査対象と前記照明装置とを、前記検査光の傾斜方向に相対的に所定速度で移動させるステップと、
前記検査対象の欠陥を前記入射させた光と反射させた光とにより検出するステップと、
前記入射させた光による欠陥の検出と前記反射させた光による欠陥の検出の時間間隔を検出するステップと、
前記所定角度と所定速度と前記時間間隔とに基づいて前記欠陥の高さ方向位置を演算するステップと、
を備えたことを特徴とする欠陥検出方法。
Irradiating the inspection object that transmits the inspection light at a predetermined angle with the inspection light from the illuminating device, making it incident on the lower surface of the inspection object, and reflecting on the lower surface of the inspection object;
Moving the inspection object and the illumination device at a predetermined speed relative to the inclination direction of the inspection light;
Detecting the defect to be inspected by the incident light and reflected light;
Detecting a time interval between detection of a defect by the incident light and detection of a defect by the reflected light;
Calculating a height direction position of the defect based on the predetermined angle, a predetermined speed, and the time interval;
A defect detection method comprising:
JP2008166685A 2008-06-26 2008-06-26 Defect detecting apparatus and method therefor Pending JP2010008177A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008166685A JP2010008177A (en) 2008-06-26 2008-06-26 Defect detecting apparatus and method therefor
TW098103381A TW201000884A (en) 2008-06-26 2009-02-03 Defect inspection device and method
KR1020090010117A KR20100002072A (en) 2008-06-26 2009-02-09 Device and method for detecting deficiency
CN200910008194A CN101614680A (en) 2008-06-26 2009-03-13 Defect detecting device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166685A JP2010008177A (en) 2008-06-26 2008-06-26 Defect detecting apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2010008177A true JP2010008177A (en) 2010-01-14

Family

ID=41494442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166685A Pending JP2010008177A (en) 2008-06-26 2008-06-26 Defect detecting apparatus and method therefor

Country Status (4)

Country Link
JP (1) JP2010008177A (en)
KR (1) KR20100002072A (en)
CN (1) CN101614680A (en)
TW (1) TW201000884A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249552A (en) * 2009-04-13 2010-11-04 Central Glass Co Ltd Method and device for discriminating flaw of glass plate
WO2012077542A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Glass substrate
WO2012077683A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Method and system for measuring defect in glass ribbon
CN103726147A (en) * 2013-12-28 2014-04-16 吴江市振中纺织品有限公司 Electronic yarn clearer
US8958132B2 (en) 2012-09-10 2015-02-17 Canon Kabushiki Kaisha Image reading apparatus
CN105548208A (en) * 2016-02-05 2016-05-04 湖北工业大学 Method for detecting surface defects of ceramic valve cores based on machine vision
JP2020071135A (en) * 2018-10-31 2020-05-07 株式会社東京精密 Crack detector and crack detection method
CN116156328A (en) * 2023-04-23 2023-05-23 湖南省迈德威视科技有限公司 Industrial camera applied to product defect detection

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169284A (en) * 2010-02-26 2011-08-31 深圳清溢光电股份有限公司 Method for checking chromium plate
JP2011232279A (en) * 2010-04-30 2011-11-17 Sony Corp Tilt inspection device and tilt inspection method
JP5479253B2 (en) * 2010-07-16 2014-04-23 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, program, and computer storage medium
CN102654465B (en) * 2012-04-11 2015-04-22 法国圣戈班玻璃公司 Optical measuring device and optical measuring method
US8772731B2 (en) * 2012-04-15 2014-07-08 Kla-Tencor Corporation Apparatus and method for synchronizing sample stage motion with a time delay integration charge-couple device in a semiconductor inspection tool
CN102661952A (en) * 2012-05-02 2012-09-12 慈溪思达电子科技有限公司 Image-based steel wire rope breakage detection device
CN106248684B (en) * 2015-06-03 2019-12-17 法国圣戈班玻璃公司 Optical device and method for detecting internal defects of transparent substrate
TWI601950B (en) * 2016-08-24 2017-10-11 旭東機械工業股份有限公司 Bubble defect inspection system and method for an infrared cut-off filter
CN107796312B (en) * 2017-10-27 2019-12-03 中国航发南方工业有限公司 A kind of measurement method of metal parts size
MY202103A (en) * 2019-04-30 2024-04-03 Tt Vision Tech Sdn Bhd An apparatus for detecting defects in an object and method thereof
CN110132139A (en) * 2019-05-15 2019-08-16 武汉华星光电半导体显示技术有限公司 A kind of detection device for foreign matter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249552A (en) * 2009-04-13 2010-11-04 Central Glass Co Ltd Method and device for discriminating flaw of glass plate
JP5686139B2 (en) * 2010-12-09 2015-03-18 旭硝子株式会社 Manufacturing method of glass substrate for liquid crystal display panel
WO2012077542A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Glass substrate
WO2012077683A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Method and system for measuring defect in glass ribbon
CN103250046A (en) * 2010-12-09 2013-08-14 旭硝子株式会社 Glass substrate
CN103250047A (en) * 2010-12-09 2013-08-14 旭硝子株式会社 Method and system for measuring defect in glass ribbon
CN103250046B (en) * 2010-12-09 2016-02-24 旭硝子株式会社 glass substrate
US8958132B2 (en) 2012-09-10 2015-02-17 Canon Kabushiki Kaisha Image reading apparatus
CN103726147A (en) * 2013-12-28 2014-04-16 吴江市振中纺织品有限公司 Electronic yarn clearer
CN105548208A (en) * 2016-02-05 2016-05-04 湖北工业大学 Method for detecting surface defects of ceramic valve cores based on machine vision
JP2020071135A (en) * 2018-10-31 2020-05-07 株式会社東京精密 Crack detector and crack detection method
JP7219878B2 (en) 2018-10-31 2023-02-09 株式会社東京精密 Crack detection device and crack detection method
CN116156328A (en) * 2023-04-23 2023-05-23 湖南省迈德威视科技有限公司 Industrial camera applied to product defect detection
CN116156328B (en) * 2023-04-23 2023-07-04 湖南省迈德威视科技有限公司 Industrial camera applied to product defect detection

Also Published As

Publication number Publication date
CN101614680A (en) 2009-12-30
TW201000884A (en) 2010-01-01
KR20100002072A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP2010008177A (en) Defect detecting apparatus and method therefor
EP1816466B1 (en) Method and device for inspecting defect of transparent plate body
US7907270B2 (en) Inspection apparatus and method, and production method for pattern substrates
KR101300132B1 (en) Apparatus for detecting particle in flat glass and detecting method using same
KR20130020026A (en) Apparatus and method for detecting the surface defect of the glass substrate
KR101482580B1 (en) Glass bottle inspection device and telecentric lens unit
JP2011117928A (en) Apparatus and method for inspecting internal defect of substrate
JP2011085520A (en) Defect discrimination device, defect discrimination method, and sheet-like material
CN111579564B (en) Transparent flat plate defect and diopter change detection system and method
WO2004005902A1 (en) Optical measuring method and device therefor
TW201224443A (en) Device and method for detecting bubble in transparent tube
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
JP2010271133A (en) Optical scanning type plane inspection device
JP2007024733A (en) Substrate inspection device and substrate inspection method
JP2013033028A (en) Bonded plate-like body inspection device and method
KR102634513B1 (en) Foreign substance detection apparatus, exposure apparatus and manufacturing method of article
JP2006194799A (en) Method of measuring shape and material
JP5655190B2 (en) Liquid surface floating foreign substance inspection method and apparatus
JP2004212353A (en) Optical inspection apparatus
JP2002014058A (en) Method and apparatus for checking
JP2006003168A (en) Measurement method for surface shape and device therefor
JP6086277B2 (en) Pattern inspection apparatus and illumination optical system used therefor
KR101103347B1 (en) Detection apparatus for particle on the glass
JP4815796B2 (en) Defect inspection equipment
JP3102362U (en) Mirror inspection equipment