WO2014148091A1 - Composition for conductive film formation, and method for producing conductive film using same - Google Patents

Composition for conductive film formation, and method for producing conductive film using same Download PDF

Info

Publication number
WO2014148091A1
WO2014148091A1 PCT/JP2014/051132 JP2014051132W WO2014148091A1 WO 2014148091 A1 WO2014148091 A1 WO 2014148091A1 JP 2014051132 W JP2014051132 W JP 2014051132W WO 2014148091 A1 WO2014148091 A1 WO 2014148091A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
conductive film
group
composition
nanoparticles
Prior art date
Application number
PCT/JP2014/051132
Other languages
French (fr)
Japanese (ja)
Inventor
加納 丈嘉
博昭 津山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014148091A1 publication Critical patent/WO2014148091A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/125Inorganic compounds, e.g. silver salt

Definitions

  • the present invention relates to a composition for forming a conductive film.
  • this invention relates to the composition for electrically conductive film formation containing a copper nanoparticle, a copper filler, and the copper formate copper complex which an amine coordinates to copper formate.
  • a dispersion of metal particles or metal oxide particles is applied to the base material by a printing method, and heat treatment is performed to sinter the metal film or wiring on a circuit board.
  • a technique for forming an electrical copper passage is known. Since the above method is simple, energy-saving, and resource-saving compared to the conventional high-heat / vacuum process (sputtering) or plating process, it is highly anticipated in the development of next-generation electronics.
  • Patent Document 1 copper filler having an average aggregate particle diameter of 0.5 to 20 ⁇ m, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin A method of forming a metal film by applying and baking a conductive paste containing a binder on a substrate is disclosed.
  • Patent Document 2 discloses a copper nanoparticle-coated copper filler in which the surface of a copper filler having an average particle diameter of 0.5 to 20 ⁇ m is coated with copper nanoparticles having an average particle diameter of 50 to 100 nm, and a resin.
  • a method of forming a metal film by applying and baking a copper paste containing a binder on a substrate is disclosed.
  • an object of this invention is to provide the composition for electrically conductive film formation which can form the electrically conductive film excellent in adhesiveness with a base material in view of the said situation.
  • Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
  • the present inventors have found that copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, a copper filler having an average aggregate particle diameter of 1 to 10 ⁇ m, copper formate and amine
  • copper formate complex in this specification, sometimes simply referred to as “copper formate complex” formed by coordination. That is, it has been found that the above object can be achieved by the following configuration.
  • a conductive film comprising copper nanoparticles having an average aggregated particle size of 50 to 200 nm, a copper filler having an average aggregated particle size of 1 to 10 ⁇ m, and a copper formate complex in which an amine is coordinated to copper formate.
  • Forming composition (2) The composition for electrically conductive film formation as described in (1) with which the surface of a copper filler is coat
  • R 1 and R 2 are each independently selected from the group consisting of a methyl group, an ethyl group, a 2-hydroxyethyl group, and a 2-methoxyethyl group
  • R 3 and R 4 are each independently R 5 is selected from the group consisting of a hydrogen atom, a methyl group and a hydroxy group
  • R 5 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 6 carbon atoms.
  • (11) The composition for forming a conductive film according to (10), wherein the content of carboxylic acid is 1 to 15% by mass relative to the total mass of the copper filler and the copper nanoparticles.
  • (12) Applying the composition for forming a conductive film according to any one of (1) to (11) on a substrate to form a coating film, and heating the coating film.
  • the manufacturing method of an electrically conductive film provided with the electrically conductive film formation process of performing a process and / or a light irradiation process, and forming an electrically conductive film.
  • the composition for electrically conductive film formation which can form the electrically conductive film excellent in adhesiveness with a base material can be provided.
  • the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
  • One of the characteristics of the present invention is a copper formate complex in which an amine is coordinated to copper formate in addition to copper nanoparticles having a specific average aggregate particle diameter and copper particles having a specific average aggregate particle diameter. (In this specification, the composition is simply a “copper formate complex”).
  • the conductive film-forming composition of the present invention can be sintered at a relatively low temperature, and the central metal of the copper formate complex can be sintered at the time of sintering.
  • Cu produced by reduction of Cu 2+ works as a conductive adhesive, and has an effect of promoting fusion between copper fillers and between copper nanoparticles / copper fillers. Thereby, the film
  • composition for forming a conductive film of the present invention and a method for producing a conductive film using the composition will be described in detail.
  • composition for forming a conductive film of the present invention comprises a copper filler having an average aggregate particle diameter of 1 to 10 ⁇ m, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an amine coordinated to copper formate. And a copper formate complex.
  • the composition for forming a conductive film of the present invention may contain a solvent and / or a dispersion medium described later.
  • the composition for forming a conductive film of the present invention may be called a solvent conductive paste or a copper paste.
  • the average aggregate particle diameter refers to an average aggregate particle diameter (number average aggregate particle diameter) measured by a scanning electron microscope (hereinafter referred to as “SEM”).
  • SEM scanning electron microscope
  • the average agglomerated particle diameter of the copper filler or copper nanoparticles can be determined by measuring the agglomerated particle diameter of 100 copper nanoparticles or copper fillers randomly selected from the SEM image and taking the average. it can.
  • each component contained in the composition for electrically conductive film formation is explained in full detail.
  • Copper filler As a copper filler, the well-known metal copper particle used for the composition for electrically conductive film formation is mentioned.
  • the average aggregate particle diameter of the copper filler is 1 to 10 ⁇ m, preferably 3 to 10 ⁇ m.
  • a copper filler having an average aggregate particle diameter of 1 ⁇ m or more the flow characteristics of the conductive film forming composition are improved.
  • a copper filler having an average aggregate particle diameter of 10 ⁇ m or less it becomes easy to produce fine wiring. If the average aggregate particle diameter of the copper filler obtained by mixing two or more types of copper fillers is within the above range, the mixture of the two or more types of copper fillers can be used without particular limitation.
  • the content of the copper filler may be appropriately selected according to the ratio of the volume of the copper filler and the voids present between them, and is not particularly limited, but the total of the copper filler, the copper nanoparticles, and the copper formate complex
  • the mass percentage of the copper filler relative to the mass is preferably 45 to 80 mass%, more preferably 45 to 70 mass%.
  • Copper nanoparticles As the copper nanoparticles, metal copper nanoparticles or copper hydride nanoparticles are preferred from the viewpoint of forming an electrically conductive film having excellent conductivity and excellent adhesion to the substrate.
  • Copper hydride is a compound containing hydrogen in addition to copper as an element. The copper atom exists in a state of being bonded to a hydrogen atom and has a property of decomposing into metallic copper and hydrogen at 60 to 100 ° C.
  • the average aggregate particle diameter of the copper nanoparticles is 50 to 200 nm, preferably 70 to 150 nm.
  • copper nanoparticles having an average aggregate particle diameter of 50 nm or more cracks generated in the conductive film due to volume shrinkage accompanying the fusion and growth of copper nanoparticles are unlikely to occur.
  • copper nanoparticles having an average aggregate particle size of 200 nm or less the surface melting temperature is lowered, so that surface melting is likely to occur, and a dense conductive film can be formed, so that improvement in conductivity can be expected. If the average aggregate particle diameter of the copper nanoparticles obtained by mixing two or more types of copper nanoparticles is within the above range, the mixture of the two or more types of copper nanoparticles should be used without particular limitation. Can do.
  • metallic copper nanoparticles and copper hydride nanoparticles are used as aggregated particles.
  • These agglomerated particles are formed by agglomerating primary particles having an average primary particle diameter of about 10 to 100 nm, preferably 20 to 50 nm.
  • the average primary particle size of the nanoparticles was measured by measuring the primary particle size of 100 nanoparticles randomly selected from a transmission electron microscope (hereinafter referred to as “TEM”) image and taking the average. Can be sought.
  • TEM transmission electron microscope
  • the content of the copper nanoparticles is not particularly limited, but is preferably 5 to 50% by mass, more preferably 10 to 35% by mass with respect to the total mass of the copper filler.
  • the electroconductive path between copper fillers can be increased further and the volume resistivity of the electrically conductive film formed can be suppressed lower.
  • liquidity of an electrically conductive paste can be made higher by making content of a copper nanoparticle into 50 mass% or less.
  • the method for producing copper hydride nanoparticles is not particularly limited. For example, as described later, it can be produced through the following steps (a) to (d). Moreover, the metal copper nanoparticle formed by thermally decomposing a copper hydride nanoparticle can be manufactured through the following process (e) further.
  • a step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water (B) A step of adjusting the pH to 3 or less by adding an acid to the prepared aqueous solution. (C) A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution whose pH is adjusted to 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 50 to 200 nm. . (D) A step of purifying the produced copper hydride nanoparticles with a mixed dispersion medium of water and methanol, if desired. (E) A step of thermally decomposing the obtained copper hydride nanoparticles to produce metallic copper nanoparticles.
  • the water-soluble copper compound examples include copper sulfate, copper nitrate, copper formate, copper acetate, copper chloride, copper bromide, copper iodide and the like.
  • the concentration of the water-soluble copper compound is preferably 0.1 to 30% by mass and more preferably 1 to 20% by mass in 100% by mass of the aqueous solution. If the density
  • pH of aqueous solution exceeds 3, there exists a possibility that a metal copper nanoparticle may produce
  • the pH of the aqueous solution is preferably 0.5 to 2.0, more preferably 0.7 to 1.5, from the viewpoint that copper hydride nanoparticles can be formed in a short time.
  • Examples of the acid used in the step (b) include formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid, sulfuric acid, nitric acid, hydrochloric acid and the like, and formic acid is preferable. These acids are used to adjust the pH of an aqueous solution containing copper ions, but it is considered that the surface of the copper nanoparticles may be covered and the conductivity of the copper nanoparticles may be affected.
  • Formic acid is an acid having a reducing action, and by using formic acid in step (b), there is an effect of suppressing oxidation of the surface of the obtained copper nanoparticles.
  • formic acid is used as the acid in the step (b)
  • the produced copper hydride nanoparticles are immediately covered with the formic acid present together and stabilized.
  • metal hydride or hypophosphorous acid is preferable because of its large reducing action.
  • the metal hydride include lithium aluminum hydride, lithium borohydride, sodium borohydride, lithium hydride, potassium hydride, calcium hydride, etc., and include lithium aluminum hydride, lithium borohydride or borohydride. Sodium is preferred.
  • the amount of reducing agent added is preferably 1.5 to 10 times the equivalent number of copper ions, more preferably 22 to 5 times the equivalent number. If the addition amount of the reducing agent is 1.5 times the number of equivalents or more with respect to copper ions, the reducing action is sufficient. When the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the amount of impurities (sodium, boron, phosphorus, etc.) contained in the copper hydride nanoparticles can be suppressed.
  • the temperature of the aqueous solution when adding the reducing agent is preferably 5 to 60 ° C, more preferably 20 to 50 ° C. If the temperature of aqueous solution is 60 degrees C or less, decomposition
  • the dispersion medium used for purification is preferably a water / methanol mixed dispersion medium or a water / ethanol mixed dispersion medium.
  • water With water alone, the surface tension of water is large, so water cannot enter the pores of the aggregates of copper hydride nanoparticles, and the effect of purification is small.
  • methanol With methanol alone, the dielectric constant of methanol is small, so that the impurity sodium cannot be released into the dispersion medium as ions, and the purification effect is small.
  • the proportion of water in the mixed dispersion medium is preferably 40 to 90% by mass, and more preferably 50 to 85% by mass with respect to the entire mixed dispersion medium.
  • the amount of sodium contained in the copper hydride nanoparticles is preferably 800 ppm or less, and more preferably 100 ppm or less.
  • the oxygen concentration in the atmosphere is preferably 1000 ppm or less. When it exceeds 1000 ppm, cuprous oxide will be produced by oxidation.
  • the temperature for thermal decomposition is preferably 60 to 100 ° C, more preferably 70 to 90 ° C. If temperature is 60 degreeC or more, thermal decomposition will advance smoothly. If temperature is 100 degrees C or less, fusion
  • Copper nanoparticles can also be produced through the following steps (a ′) to (d ′).
  • a ′ A step of dissolving a water-soluble copper compound in water to prepare an aqueous solution containing copper ions.
  • B ′ A step of heating the prepared aqueous solution to 30 ° C. or more and reducing copper ions with hypophosphorous acid to produce copper hydride nanoparticles or, in some cases, metal copper nanoparticles.
  • C ′ a step of thermally decomposing the copper hydride nanoparticles to produce metal copper nanoparticles, if desired.
  • D ′ A step of purifying the obtained copper nanoparticles as desired.
  • the temperature of the aqueous solution in step (b) is preferably 30 to 80 ° C, more preferably 35 to 60 ° C. If the temperature of aqueous solution is 80 degrees C or less, the change of the reaction system by water evaporation can be suppressed.
  • Hypophosphorous acid is preferably added as an aqueous solution.
  • the concentration of hypophosphorous acid is preferably 30 to 80% by mass and more preferably 40 to 60% by mass in 100% by mass of the aqueous solution. If the concentration of hypophosphorous acid in the aqueous solution is 30% by mass or more, the amount of water can be suppressed. If the concentration of hypophosphorous acid in the aqueous solution is 80% by mass or less, a rapid reaction can be suppressed.
  • the amount of hypophosphorous acid added is preferably 1.5 to 10 times the number of equivalents to copper ions. When the amount of hypophosphorous acid added is 1.5 times the number of equivalents or more with respect to copper ions, the reducing action is sufficient. If the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the adverse effect of the remaining phosphorus can be suppressed.
  • the purification method include a method of dispersing the obtained copper nanoparticles in water.
  • the copper filler and the copper nanoparticles may be used as a copper nanoparticle-coated copper filler obtained by coating a copper filler with copper nanoparticles.
  • the copper nanoparticle-coated copper filler is a copper nanoparticle-coated copper filler in which the surface of a copper filler having an average aggregate particle diameter of 1 to 10 ⁇ m is coated with copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm. .
  • the content of the copper nanoparticles covering the copper filler is not particularly limited, but the copper nanoparticles covering the copper filler and the copper nanoparticles not covering the copper filler
  • the total is preferably 5 to 50% by mass, more preferably 10 to 35% by mass, based on the total mass of the copper filler.
  • the mass ratio of the copper nanoparticles covering the copper filler is preferably as large as possible, and preferably 50% by mass or more based on the total mass of the copper nanoparticles. 70 mass% or more is more preferable, and 90 mass% or more is further more preferable.
  • Method for producing copper filler coated with copper nanoparticles is not specifically limited, For example, the manufacturing method which has the following process (I) and (II) is mentioned.
  • a step of obtaining a copper hydride-coated copper filler by coating copper hydride nanoparticles having an average aggregated particle diameter of 20 to 100 nm on the surface of a copper filler having an average aggregated particle diameter of 1 to 10 ⁇ m.
  • the copper hydride nanoparticle-coated copper filler is fired at 50 to 100 ° C. in an inert gas atmosphere, and the surface of the copper filler is coated with copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm. Obtaining a copper filler coated with copper nanoparticles.
  • Step (1) preferably comprises the following steps (I-1) to (I-2).
  • (I-1) A step of dispersing a copper filler having an average aggregate particle diameter of 1 to 10 ⁇ m and copper hydride nanoparticles having an average aggregate particle diameter of 20 to 100 nm in a dispersion medium to obtain a dispersion.
  • (I-2) A step of volatilizing and removing the dispersion medium from the obtained dispersion to coat the surface of the copper filler with copper hydride nanoparticles to obtain a copper hydride nanoparticle-coated copper filler.
  • Step (I-1) The relative dielectric constant of the dispersion medium is preferably 4 to 40, more preferably 10 to 30. If the relative dielectric constant of the dispersion medium is 4 or more, the dispersibility of the copper hydride nanoparticles will be good. If the relative dielectric constant of the dispersion medium is 40 or less, the dispersibility of the copper filler will be good. Examples of the dispersion medium include methyl alcohol (33.0 (20 ° C.)), ethyl alcohol (25.3 (20 ° C.)), 1-propanol (20.8 (20 ° C.)), 2-propanol (20.
  • the relative dielectric constant is shown in parentheses.
  • 1-propanol (20.8 (20 ° C.)) or 2-propanol (20.2 (20 ° C.)) is preferable because both the copper filler and the copper hydride nanoparticles are excellent in dispersibility.
  • the amount of the dispersion medium in the step (I-1) is preferably 250 to 1250% by mass, and more preferably 300 to 750% by mass with respect to 100% by mass in total of the copper filler and the copper hydride nanoparticles.
  • the amount of the dispersion medium is 250% by mass or more, the copper hydride nanoparticles and the copper filler can be uniformly dispersed in the dispersion medium.
  • the amount of the dispersion medium is 1250% by mass or less, the time required for volatilizing the dispersion medium is short, and the manufacturing cost can be suppressed.
  • Copper hydride nanoparticles exist in a state in which copper atoms are bonded to hydrogen atoms, and have a property of decomposing into metallic copper and hydrogen at 50 to 100 ° C.
  • a copper hydride nanoparticle what is obtained with the manufacturing method of an above-described copper hydride nanoparticle is mentioned, for example.
  • the average agglomerated particle diameter of the copper hydride nanoparticles is 20 to 100 nm, preferably 25 to 80 nm. If the average agglomerated particle diameter of the copper hydride nanoparticles is 20 nm or more, aggregation of the copper hydride nanoparticles during firing can be suppressed. If the average aggregate particle diameter of the copper hydride nanoparticles is 100 nm or less, copper hydride nanoparticles having a sufficiently high surface activity can be obtained.
  • the pressure is 450 mmHg or more, the copper hydride nanoparticles and the copper filler can be uniformly dispersed until immediately before the dispersion medium is completely volatilized. If the pressure is 600 mmHg or less, the time required to volatilize the dispersion medium is short, and the manufacturing cost can be reduced.
  • the fact that the surface of the copper filler is coated with copper hydride nanoparticles can be confirmed by observing the SEM image and confirming that a plurality of copper hydride nanoparticles are attached to at least a part of the surface of the copper filler.
  • the inert gas examples include nitrogen gas, helium, neon, argon, krypton, xenon, and radon, and nitrogen gas or argon is preferable.
  • the firing temperature is 50 to 100 ° C, preferably 60 to 80 ° C. If a calcination temperature is 50 degreeC or more, the copper nanoparticle covering copper filler which can suppress generation
  • a copper formate complex in which an amine is coordinated to copper formate can be synthesized by mixing copper formate and an amine. Copper formate and amine may be mixed as they are, or may be mixed as an aqueous solution, an organic solvent solution or an organic solvent suspension. The mixing of copper formate and amine is preferably carried out at a temperature of about 0 to 100 ° C. using an appropriate stirrer or mixer. In addition, it is preferable to add 2 to 4 equivalents of amine with respect to 1 equivalent of copper formate. When the amount of amine added when synthesizing the copper formate complex is too small, the storage stability of the resulting copper formate complex is lowered, and the complex may precipitate. However, even in this case, it can be used by heating and dissolving the complex.
  • a copper formate complex having a formate anion and an amine as a ligand as main components is formed.
  • formate anion and amine each coordinate two molecules to Cu 2+ which is a central metal.
  • the two amines may be of the same type or different types.
  • the composition formed by mixing copper formate and amine may contain a solvent and unreacted amine in addition to the above copper formate complex.
  • a composition consisting essentially of only the copper formate complex is obtained.
  • the content of the copper formate complex is not particularly limited, but is preferably 1 to 70% by mass with respect to the total mass of the copper filler, and 1 to 50% by mass. % Is more preferable, and 10 to 30% by mass is further preferable.
  • the adhesion of the conductive film formed using the composition for forming a conductive film of the present invention is further improved, and by containing 70% by mass or less, The volume shrinkage of the conductive film formed using the composition for forming a conductive film is small, and it is easy to form a thick film.
  • Copper formate As said copper formate, anhydrous copper formate (II), copper (II) formate, dihydrate, copper formate (II), tetrahydrate, etc. can be used.
  • amine As the amine, primary to tertiary amines can be used. Of these, tertiary amines are preferred from the viewpoint of low boiling point of amines. Further, from the viewpoint of increasing the hydrophilicity of the obtained copper formate complex, an amine having one or more hydroxy groups in the molecule is preferable.
  • Examples of the primary amine include a monoalkylamine in which one or more hydrogen atoms of an alkyl group may be substituted with a substituent, and one or more hydrogen atoms in an aryl group are substituted with a substituent.
  • Examples of the diamine may be substituted.
  • the alkyl group constituting the monoalkylamine may be a linear, branched or cyclic alkyl group, a linear alkyl group having 1 to 19 carbon atoms, or a branched alkyl group having 3 to 19 carbon atoms. Or a cyclic alkyl group having 3 to 7 carbon atoms.
  • linear or branched alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a norbornyl group, an isobornyl group, a 1-adamantyl group, and a 2-adamantyl group.
  • Group and tricyclodecyl group can be exemplified.
  • preferable monoalkylamines include n-propylamine, 2-ethylhexylamine, tert-butylamine, n-octadecylamine (stearylamine), and cyclohexylamine.
  • the aryl group constituting the monoarylamine is preferably a phenyl group, a 1-naphthyl group or a 2-naphthyl group.
  • Examples of the secondary amine include dialkylamines in which one or more hydrogen atoms of an alkyl group may be substituted with a substituent, and one or more hydrogen atoms in an aryl group may be substituted with a substituent.
  • Examples include good diarylamines, and di (heteroaryl) amines in which one or more hydrogen atoms of the heteroaryl group may be substituted with a substituent.
  • the alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear alkyl group having 1 to 9 carbon atoms, a branched alkyl group having 3 to 9 carbon atoms, or A cyclic alkyl group having 3 to 7 carbon atoms is preferred. Further, the two alkyl groups of the dialkylamine may be the same or different.
  • dialkylamines include N-methylethanolamine, N-ethylethanolamine, diethylamine and morpholine.
  • tertiary amine examples include a trialkylamine in which one or more hydrogen atoms of an alkyl group may be substituted with a substituent, and one or more hydrogen atoms in an alkyl group and / or aryl group are substituted. And dialkylmonoarylamine which may be substituted with a group.
  • the alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear alkyl group having 1 to 19 carbon atoms, a branched alkyl group having 3 to 19 carbon atoms, Alternatively, a cyclic alkyl group having 3 to 7 carbon atoms is preferable.
  • the types of the three alkyl groups of the trialkylamine may be the same, two may be the same, or three may be different from each other. That is, all of the three alkyl groups may be the same, all may be different, or only a part may be different.
  • trialkylamine examples include triethylamine, N, N-dimethyl-n-octadecylamine, N, N-dimethylcyclohexylamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, and N-methyldiethanolamine.
  • N-methylmorpholine tripropylamine, tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl monoethanolamine, di Lauryl monopropanolamine, dioctyl monoethanolamine, dihexyl monopropanolamine, dibutyl monopropanolamine, oleyl diethanolamine, stearyl Dipropanolamine, lauryl diethanolamine, octyl dipropanolamine, butyl diethanolamine, benzyl diethanolamine, phenyl diethanolamine, tolyl dipropanolamine, xylyl diethanolamine, triethanolamine, and tri propanolamine.
  • Particularly preferred tertiary amines include tertiary amines represented by the following formula (1).
  • R 1 and R 2 are each independently selected from the group consisting of a methyl group, an ethyl group, a 2-hydroxyethyl group, and a 2-methoxyethyl group
  • R 3 and R 4 are each independently R 5 is selected from the group consisting of a hydrogen atom, a methyl group and a hydroxy group
  • R 5 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 6 carbon atoms.
  • R 3 and R 4 are preferably not hydroxy groups at the same time.
  • Examples of the tertiary amine represented by the above formula (1) include N, N-dimethylethanolamine, N, N-dimethyl-2-methoxyethylamine, N, N-dimethyl-2-ethoxyethylamine, N, N-dimethyl-2-n-propoxyethylamine, N, N-dimethyl-2-isopropoxyethylamine, N, N-dimethyl-2-n-butoxyethylamine, N, N-dimethyl-2- (2-hydroxyethyloxy ) Ethylamine, N, N-dimethyl-2- (2-methoxyethyloxy) ethylamine, N, N-dimethyl-2- (2-ethoxyethyloxy) ethylamine, N, N-dimethyl-1,1-dimethyl-2 -Hydroxyethylamine, N, N-dimethyl-1,1-dimethyl-2-methoxyethylamine, N,
  • N, N-dimethyl-2-hydroxyethanolamine represented by the following formula (2) is particularly preferable.
  • the composition for forming a conductive film of the present invention may further contain a polymer binder.
  • a polymer binder one type or two or more types of polymer compounds can be used.
  • the polymer binder serves as a primer that assists the adhesion between the metallic copper and the base material in the conductive film to be formed.
  • Suitable examples of the polymer binder include cellulose resin, acrylic resin, polyester resin, polyolefin resin, polyurethane resin, epoxy resin, rosin compound, and vinyl polymer.
  • Examples of the vinyl polymer include polyvinyl pyrrolidone and polyvinyl alcohol.
  • the content of the polymer binder in the composition for forming a conductive film can serve as a primer that assists the adhesion between the metallic copper and the base material, and does not deteriorate the conductivity of the formed conductive film. If there is, it will not be specifically limited.
  • the content of the polymer binder is preferably 2 to 8% by mass and more preferably 2 to 6% by mass with respect to the total mass of the copper filler, copper nanoparticles and copper formate complex. Since the polymer binder and the metallic copper are likely to form a phase separation state, when an excessive amount of the polymeric binder is contained, the metallic copper tends to form domains (regions) independent of each other, and the conductivity may be deteriorated.
  • the resin composition for forming a conductive film of the present invention may further contain a low molecular amine.
  • Copper (II) oxide does not dissolve in water, but in the presence of water and a low molecular amine, a copper-amine complex in which four molecules of amine are coordinated to one copper (II) ion is formed and water-solubilized.
  • the copper filler and the copper oxide on the surface of the copper nanoparticles are water-solubilized and removed from the particle surface. As a result, the conductivity and adhesion of the resulting conductive film are improved.
  • the low molecular amine When the low molecular amine remains in the conductive film to be formed, the conductivity and adhesion may be lowered. Therefore, it is preferable that the low molecular amine volatilizes or decomposes during firing and does not remain in the formed conductive film. For this reason, it is preferable that the boiling point or decomposition temperature of a low molecular amine is below a calcination temperature. Moreover, it is preferable that it is a gas or a liquid at normal temperature, and it is more preferable that it is a liquid from a viewpoint that manufacture of an electrically conductive paste becomes easier.
  • the boiling point or decomposition temperature of the low molecular amine is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 150 ° C. or lower. Further, it may be a gas or a liquid at normal temperature (20 ⁇ 15 ° C., JIS Z 8703: 1983).
  • the low molecular amine may be a primary amine, a secondary amine or a tertiary amine, and an amine that can be a ligand of the copper formate complex described above can also be used.
  • Specific examples of the low molecular amine include, for example, ethylamine, dimethylamine, diethylamine, dipropylamine, trimethylamine, triethylamine, tripropylamine, N, N-dimethyl-ethanolamine, N, N-diethyl-ethanolamine, And 2-dimethylamino-2-methyl-1-propanol.
  • the low molecular amine may be the same type of amine as the amine contained in the copper formate complex as a ligand, or may be a different type of amine, but is preferably a different type of amine. It is more preferable that the amine has a boiling point or a decomposition temperature lower than that of the amine coordinated with the copper complex. This is because when the composition for forming a conductive film of the present invention is baked, it is preferably volatilized or decomposed so as not to remain as much as possible in the formed conductive film.
  • the content of the low molecular amine in the composition for forming a conductive film is not particularly limited, but is preferably 1 to 15% by mass and more preferably 1 to 10% by mass with respect to the total mass of the copper filler and the copper nanoparticles. Within this range, the effect of dissolving the copper nanoparticles on the surface of the copper nanoparticles and the copper filler by the low molecular amine is sufficiently exerted to improve the conductivity, and the adhesion of the formed conductive film is deteriorated. I won't let you.
  • the composition for forming a conductive film of the present invention may further contain a carboxylic acid.
  • a carboxylic acid either monocarboxylic acid or polycarboxylic acid can be used.
  • the polycarboxylic acid dicarboxylic acid or tricarboxylic acid is preferable.
  • Examples of the monocarboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearin, Examples include oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, lactic acid, and pyruvic acid.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, malic acid, and the like.
  • tricarboxylic acid examples include propane-1,2,3-tricarboxylic acid, citric acid (2-hydroxypropane-1,2,3-tricarboxylic acid), and isocitric acid (1-hydroxypropane-1,2). -3-tricarboxylic acid) and the like.
  • Carboxylic acid can be used individually by 1 type or in combination of 2 or more types.
  • the carboxylic acid is preferably at least one selected from the group consisting of formic acid, maleic acid and citric acid, and more preferably any one selected from formic acid, maleic acid and citric acid.
  • the composition for forming a conductive film of the present invention contains a carboxylic acid
  • a composition for forming a conductive film that is excellent in oxidation resistance and easy to sinter can be obtained.
  • Carboxylic acid is considered to decompose and remove the oxide film on the surface of the copper filler and copper nanoparticles. For this reason, in the composition for electrically conductive film formation of this invention, the volume resistivity of the electrically conductive film formed can further be reduced by containing carboxylic acid.
  • the content of the carboxylic acid in the composition for forming a conductive film is not particularly limited, but is preferably 1 to 15% by mass, more preferably 3 to 15% by mass with respect to the total mass of the copper filler and the copper nanoparticles. More preferred is 10% by mass. Within this range, the effect of removing the oxide film on the surface of the copper nanoparticles and copper filler by the carboxylic acid is sufficiently exerted to improve the conductivity, and the adhesion of the formed conductive film is deteriorated. I won't let you.
  • carboxylic acid may be used also in the step of producing copper hydride nanoparticles (the step (b)).
  • the carboxylic acid used in the step (b) is a conductive material. You may serve as the carboxylic acid used when manufacturing the film forming composition.
  • the carboxylic acid is required to be water-soluble in the step (b), and contributes to the suppression of oxidation of the copper nanoparticles and the copper filler and the improvement of the dispersibility in the polymer binder in the manufacturing process of the conductive film forming composition. It is considered a thing.
  • the composition for forming a conductive film of the present invention containing the carboxylic acid used in the step (b) is mixed with a polymer binder without mixing another carboxylic acid. Then, the composition for forming a conductive film of the present invention may be prepared.
  • carboxylic acid used in the step (b) and carboxylic acid used in the manufacturing process of the conductive film forming composition it is preferable to select different carboxylic acid used in the step (b) and carboxylic acid used in the manufacturing process of the conductive film forming composition.
  • formic acid having a reducing action is preferably used in the step (b)
  • an aliphatic carboxylic acid having a hydrocarbon group having 4 to 20 carbon atoms is preferably used in the manufacturing process of the conductive film forming composition.
  • the composition for forming a conductive film of the present invention may contain a solvent or a dispersion medium (hereinafter simply referred to as “solvent”) to form a conductive paste or a copper paste.
  • solvent will not be restrict
  • the solvent for example, water, organic solvents such as alcohols, ethers, and esters can be used.
  • water monohydric alcohol having 1 to 3 hydroxy groups
  • alkyl ethers derived from these aliphatic alcohols because of their better compatibility with copper formate complexes, copper fillers and copper nanoparticles.
  • Alkyl esters derived from alcohols or mixtures thereof are preferably used.
  • aliphatic alcohols having 1 to 3 valent hydroxy groups include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol and 1-nonanol.
  • aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxy groups are preferable because they have a boiling point that is not too high and hardly remain after forming a conductive film.
  • methanol, ethylene glycol, glycerol 2-methoxyethanol, diethylene glycol, and isopropyl alcohol are more preferable.
  • ethers examples include alkyl ethers derived from the above alcohols, such as diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, methyl cyclohexyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl.
  • alkyl ethers having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxy groups are preferred.
  • diethyl ether, diethylene glycol dimethyl ether and tetrahydrofuran are more preferred.
  • esters examples include alkyl esters derived from the above alcohols, such as methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, and ⁇ -butyrolactone. Illustrated. Of these, alkyl esters having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxy groups are preferred, and specifically methyl formate, ethyl formate, and methyl acetate are more preferred. .
  • the main solvent is a solvent having the highest content in the solvent.
  • the composition for forming a conductive film of the present invention may contain other components in addition to those described above.
  • the composition for forming a conductive film may contain a surfactant.
  • the surfactant plays a role of improving the dispersibility of the copper oxide particles.
  • the type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.
  • Method for producing conductive film-forming composition The manufacturing method in particular of the composition for electrically conductive film formation of this invention is not restrict
  • the manufacturing method of the electrically conductive film of this invention provides the coating film formation process which provides the composition for electrically conductive film formation mentioned above on a base material, and forms a coating film, and heat processing and / or light with respect to the said coating film A conductive film forming step of performing irradiation treatment and forming a conductive film. Below, each process is explained in full detail.
  • This step is a step of forming a coating film by applying the above-described composition for forming a conductive film on a substrate.
  • the precursor film before the reduction treatment is obtained in this step.
  • the conductive film forming composition used is as described above.
  • a well-known thing can be used as a base material used at this process.
  • the material used for the substrate include resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitride, wood, or a composite thereof. More specifically, low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate), polyacetal resin, polysulfone resin, polyetherimide resin, polyether ketone Resin base materials such as resin and cellulose derivatives; uncoated printing paper, fine coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper ( Paper substrates such as double kraft paper for heavy bags, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated balls, chip balls, corrugated cardboard; soda glass, borosilicate glass, silica glass, Glass substrates such as quartz glass; silicon-based semiconductor
  • the method for applying the conductive film forming composition onto the substrate is not particularly limited, and a known method can be adopted.
  • coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
  • the shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
  • the coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film.
  • the film thickness of the coating film is preferably 0.01 to 5000 ⁇ m, 0.1 to 1000 ⁇ m is more preferable.
  • the conductive film-forming composition may be applied to the substrate and then dried to remove the solvent. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the conductive film forming step described later. It is preferable in terms of adhesion.
  • a hot air dryer or the like can be used as a method for the drying treatment.
  • the temperature is preferably 40 to 200 ° C., more preferably 50 to 150 ° C. More preferably, the heat treatment is performed at 70 ° C. to 120 ° C. Since metal copper is used in the present invention, conditions that suppress oxidation are preferable, for example, an inert gas atmosphere such as nitrogen or argon is more preferable, and drying is preferably performed in a reducing gas atmosphere such as hydrogen.
  • This step is a step of forming a conductive film containing metallic copper by performing heat treatment and / or light irradiation treatment on the coating film formed in the coating film forming step.
  • copper (II) in the copper formate complex is reduced to copper (0).
  • the copper metal produced from the copper formate complex and the copper filler and / or the copper nanoparticles are fused together to form grains, and the grains are bonded to each other. -Form a thin film by fusing.
  • the heating temperature is preferably 100 to 400 ° C., more preferably 250 to 400 ° C.
  • the heating time is 5 to 120 minutes in that a conductive film having superior conductivity can be formed in a short time. 5 to 60 minutes is more preferable.
  • the heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
  • the conductive film can be formed by heat treatment at a relatively low temperature, and therefore, the process cost is low.
  • the light irradiation treatment can reduce and sinter to metallic copper by irradiating light on the portion to which the coating film is applied at room temperature for a short time, and heating for a long time.
  • the base material does not deteriorate due to, and the adhesion of the conductive film to the base material becomes better.
  • the light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
  • the irradiation energy of the pulse light is preferably 1 ⁇ 100J / cm 2, more preferably 1 ⁇ 30J / cm 2, preferably from 1 ⁇ sec ⁇ 100 m sec as a pulse width, and more preferably 10 ⁇ sec ⁇ 10 m sec.
  • the irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
  • the above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
  • the atmosphere in which the heat treatment and the light irradiation treatment are performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere.
  • the inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen
  • the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. It refers to the atmosphere.
  • a conductive film (copper film) containing metallic copper is obtained.
  • the film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 ⁇ m is preferable and 0.1 to 100 ⁇ m is more preferable from the viewpoint of printed wiring board use.
  • the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
  • the adhesion of the conductive film can be evaluated by a conventionally known method. For example, using a pencil of H and a load of 750 g ⁇ 10 g, JIS K 5600-5-4: 1999 “scratch hardness (pencil method) It is preferable to carry out in accordance with the test method. In this case, the scratching test is repeated 10 times, and scratching at the time of scratching is preferably 6 times or less, more preferably 5 times or less, and more preferably 2 times or less. preferable.
  • the volume resistance value of the conductive film is preferably 1.0 ⁇ 10 ⁇ 1 ⁇ cm or less, more preferably 1.0 ⁇ 10 ⁇ 3 ⁇ cm or less, and even more preferably 5.0 ⁇ 10 ⁇ 4 ⁇ cm or less from the viewpoint of conductive characteristics. preferable.
  • the volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the conductive film by the four-probe method.
  • the conductive film may be provided on the entire surface of the base material or in a pattern.
  • the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
  • wiring conductor wiring
  • the above-mentioned composition for forming a conductive film was applied to a substrate in a pattern, and the above heat treatment and / or light irradiation treatment was performed, or the entire surface of the substrate was provided.
  • a method of etching the conductive film in a pattern may be used.
  • the etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
  • an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
  • the material of the insulating film is not particularly limited.
  • epoxy resin glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
  • an epoxy resin, a polyimide resin, or a liquid crystal resin and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
  • solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
  • the base material (base material with a conductive film) having the conductive film obtained above can be used for various applications.
  • a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
  • the separated precipitate was redispersed in 2-propanol (30 g), and then the aggregate was precipitated by a centrifugal separation method. The precipitate was separated to obtain copper hydride nanoparticles (copper hydride nanoparticles 1). .
  • copper hydride nanoparticles were decomposed (reduced) into metal copper nanoparticles, and a conductive filler (copper nanoparticle-coated copper filler 1) in which the surface of the copper filler was coated with copper nanoparticles was obtained.
  • the average aggregate particle diameter measured by SEM of the copper nanoparticles covering the surface of the copper filler (hereinafter referred to as “copper nanoparticles 1”) was 100 nm.
  • Copper filler 2 (Production Example 3: Production of Copper Nanoparticle-Coated Copper Filler 2) Copper hydride nanoparticles 1 (1 g) and a copper filler (Mitsui Metal Mining Co., Ltd., MA-CJF; average aggregated particle diameter 18 ⁇ m) (hereinafter referred to as “copper filler 2”) (3 g) were mixed with 2-propanol ( 20g) and stirred to obtain a dispersion. The obtained dispersion was heated to 80 ° C. under a reduced pressure of ⁇ 35 kPa, and 2-propanol was volatilized and gradually removed from the dispersion.
  • copper filler 2 Mitsubishi Metal Mining Co., Ltd., MA-CJF; average aggregated particle diameter 18 ⁇ m
  • the copper hydride nanoparticles were decomposed (reduced) into metallic copper nanoparticles, and a conductive filler (copper nanoparticle-coated copper filler 2) in which the surface of the copper filler was coated with copper nanoparticles was obtained.
  • the average aggregate particle diameter measured by SEM of the copper nanoparticles (hereinafter referred to as “copper nanoparticles 2”) covering the surface of the copper filler was 100 nm.
  • Example 1 Copper nanoparticle-coated copper filler 1 (1.0 g; including copper filler 1 (0.75 g) and copper nanoparticle 1 (0.25 g)), copper formate complex 1 (0.25 g), and polyvinylpyrrolidone ( K-60 (0.04 g) manufactured by Wako Pure Chemical Industries, Ltd. and water (0.64 g) were mixed and treated with an ultrasonic homogenizer for 30 minutes to prepare a copper paste (copper paste 1). Copper paste 1 is applied to a 2 cm ⁇ 2 cm surface of a roughened glass epoxy substrate to a thickness of 20 ⁇ m, dried in a glove box (oxygen concentration ⁇ 100 ppm) on a hot plate at 100 ° C. for 10 minutes, and then in an argon atmosphere. A copper film was formed by sintering at 300 ° C. for 20 minutes. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 2 Instead of the copper nanoparticle-coated copper filler 1 (1.0 g), the copper filler 1 (0.75 g) and the copper nanoparticle 3 (manufactured by Iox, Cu-001; average aggregate particle diameter 70 nm: copper nanoparticle 3) (0 .30 g) was used, and a copper paste was prepared in the same manner as in Example 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 3 A copper paste was prepared and a copper film was formed in the same manner as in Example 1 except that the copper formate complex 5 was used instead of the copper formate complex 1. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 4 A copper paste was prepared in the same manner as in Example 1 except that the blending amount of the copper formate complex 1 was changed from 0.25 g to 0.04 g to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 5 A copper paste was prepared in the same manner as in Example 1 except that the amount of the copper formate complex 1 was changed from 0.25 g to 0.07 g to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 6 A copper paste was prepared in the same manner as in Example 1 except that the blending amount of the copper formate complex 1 was changed from 0.25 g to 0.12 g to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 7 A copper paste was prepared in the same manner as in Example 1 except that the amount of the copper formate complex 1 was changed from 0.25 g to 0.50 g, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 8 A copper paste was prepared in the same manner as in Example 1 except that a copper formate complex 2 was used in place of the copper formate complex 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1. In addition, when the prepared copper paste was preserve
  • Example 9 A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 3 was used in place of the copper formate complex 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1. In addition, when the prepared copper paste was preserve
  • Example 10 A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 4 was used in place of the copper formate complex 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1. In addition, when the prepared copper paste was preserve
  • Example 11 A copper paste was prepared in the same manner as in Example 1 except that the content of polyvinylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd., K-60) was changed from 0.04 g to 0.02 g to form a copper film. .
  • the following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1. In addition, the strength of the coating film was low, and chipping was observed during the formation of the copper film.
  • Example 12 A copper paste was prepared in the same manner as in Example 1 except that the content of polyvinylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd., K-60) was changed from 0.04 g to 0.12 g to form a copper film. .
  • the following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1. In addition, since there was much content of a polymer, the nonuniformity was recognized by the obtained copper film.
  • Example 13 A copper paste was prepared and a copper film was formed in the same manner as in Example 1 except that diethylamine (see the following formula, hereinafter sometimes referred to as “amine C”) (0.13 g) was contained. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 14 A copper paste was prepared in the same manner as in Example 1 except that citric acid (0.15 g) was contained, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 1 A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 1 was not used, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 2 In place of copper nanoparticle-coated copper filler 1 (1.0 g), copper nanoparticle-coated copper filler 2 (1.0 g; including copper filler 2 (0.75 g) and copper nanoparticle 2 (0.25 g)). Except for the points used, a copper paste was prepared in the same manner as in Example 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 3 A copper paste was prepared in the same manner as in Example 1 except that the copper filler 1 (1.0 g) was used instead of the copper nanoparticle-coated copper filler 1 (1.0 g) to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Copper complex A Acetylacetone copper (0.20 g) was used instead of copper formate complex 1 (0.25 g), and N, N-dimethyl-2,3-dihydroxypropyl A copper paste was prepared in the same manner as in Example 1 except that an amine (hereinafter sometimes referred to as “amine D”) (see formula below) (0.50 g) was contained, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 1 Example 1 was repeated except that copper acetate (0.20 g; 0.01 mol) was used instead of copper formate complex 1 (0.25 g), and amine D (0.50 g) was contained. A copper paste was prepared and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Example 6 A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 1 (0.25 g) was not contained and citric acid (0.20 g) was contained, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
  • Adhesion evaluation About the formed copper film, adhesiveness was evaluated by the scratch test. The scratch test was repeated 10 times, and the adhesion of the copper film was graded and evaluated according to the following criteria. Practically, it is preferably A to C. A: The occurrence of scratches during scratching is 2 or less of 10 times. B: The occurrence of scratches during scratching was 3 to 4 times out of 10 times. C: The occurrence of scratches during scratching is 5 to 6 out of 10 times. D: The occurrence of scratches during scratching is 7 or more out of 10 times. The evaluation (grade) is shown in Table 1.
  • the scratch test was conducted using JIS K 5600-5-4: 1999 “scratch hardness (pencil method) with a load of 750 g ⁇ 10 g using an H pencil (Mitsubishi Pencil Co., Ltd.) and a pencil scratch tester (Cotec Co., Ltd.). ) "In accordance with the test method.
  • the hardness H of the pencil core is defined by JIS S 6006: 2007 “Pencils, colored pencils and shin used for them”.
  • the copper fillers and copper nanoparticles of Examples 1, 3 to 14 and Comparative Examples 1 and 4 to 6 are those in which the copper nanoparticle-coated copper filler 1 produced in Production Example 2 is blended.
  • the copper filler 2 and the copper nanoparticles 2 are blended with the copper nanoparticle-coated copper filler 2 produced in Production Example 3.
  • Table 1 shows the average aggregate particle diameter of the copper filler and the copper nanoparticles.
  • ratio [mass%] in the column of copper formate complex is a mass percentage of the copper formate complex relative to the total mass of the copper filler
  • ratio [mass%] in the column of polymer binder is The mass percentage of the polymer binder with respect to the total mass of the copper filler, the copper nanoparticles and the copper formate complex
  • the “ratio [mass%]” in the amine column is the mass percentage of the amine with respect to the total mass of the copper filler and the copper nanoparticles.
  • ratio [mass%] in the column of carboxylic acid is a mass percentage of the carboxylic acid relative to the total mass of the copper filler and the copper nanoparticles.
  • copper complex A means acetylacetone copper
  • PVP polyvinylpyrrolidone
  • amine A means N, N-dimethyl-1,2-dihydroxyethylamine
  • amine C means diethylamine and amine D "means N, N-dimethyl-1,2-dihydroxypropylamine.
  • unapplicable means that the copper filler in the copper paste was heavily settled and could not be applied.
  • Examples 1 to 14 and Comparative Examples 1 to 6 are compared, Examples 1 to 14 using the composition for forming a conductive film (copper paste) of the present invention provide a copper film having excellent adhesion. I was able to.
  • Example 1 is compared with Example 2, Example 1 using a copper nanoparticle-coated copper filler in which a copper filler is coated with copper nanoparticles does not coat the copper filler with copper nanoparticles. Compared to Example 2 in which nanoparticles were mixed separately, adhesion and conductivity were excellent.
  • Example 1 and Example 3 were contrasted, the direction of Example 1 whose amine compound used as the ligand of a copper formate complex is a tertiary amine was excellent in adhesiveness and electroconductivity.
  • Examples 1 and 4 to 7 even when the content of the copper formate complex with respect to the copper filler in the conductive film forming composition is changed, the copper having excellent adhesion A membrane could be obtained. Further, Examples 1 and 4 to 7 in which the content of the copper formate complex is 1 to 50% by mass are more excellent in adhesion than Example 7 in which the content of the copper formate complex exceeds 50% by mass. It was. Further, as can be seen from the comparison between Examples 1 and 8 to 10, a copper film having excellent adhesion can be obtained even when the number of moles of the amine serving as the ligand of the copper formate complex is different. It was.
  • Example 1 when Example 1 is compared with Examples 12 and 13, Example 1 in which the content of PVP as a polymer binder is 3.2% by mass of the total mass of the copper filler, the copper nanoparticles, and the copper formate complex is Adhesiveness was more excellent than Example 12 of less than 2% by mass and Example 13 of more than 8% by mass of the total mass. Moreover, when Example 1 was compared with Example 14, the direction of Example 14 containing a citric acid was excellent in electroconductivity compared with Example 1 which does not contain.
  • Comparative Example 2 using the composition for forming a conductive film containing a copper filler having an average particle diameter exceeding a predetermined range, the copper filler was heavily settled, and the composition could not be applied on the substrate. A copper film could not be formed.

Abstract

Provided is a composition for conductive film formation that enables the formation of a conductive film that can be in excellent contact with a base material, wherein the composition contains: copper nanoparticles having an average aggregated particle size of 50 to 200 nm; a copper filler having an average aggregated particle size of 1 to 10 μm; and a copper formate complex formed with copper formate in which amine is arranged. Also provided is a method for producing a conductive film using the composition.

Description

導電膜形成用組成物およびこれを用いる導電膜の製造方法Conductive film forming composition and method for producing conductive film using the same
 本発明は導電膜形成用組成物に関する。より詳細には、本発明は、銅ナノ粒子と、銅フィラーと、ギ酸銅にアミンが配位してなるギ酸銅錯体とを含有する導電膜形成用組成物に関する。 The present invention relates to a composition for forming a conductive film. In more detail, this invention relates to the composition for electrically conductive film formation containing a copper nanoparticle, a copper filler, and the copper formate copper complex which an amine coordinates to copper formate.
 基材上に金属膜を形成する方法として、金属粒子または金属酸化物粒子の分散体を印刷法により基材に塗布し、加熱処理して焼結させることによって金属膜や回路基板における配線等の電気的銅通部位を形成する技術が知られている。
 上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから、次世代エレクトロニクス開発において大きな期待を集めている。
As a method for forming a metal film on a base material, a dispersion of metal particles or metal oxide particles is applied to the base material by a printing method, and heat treatment is performed to sinter the metal film or wiring on a circuit board. A technique for forming an electrical copper passage is known.
Since the above method is simple, energy-saving, and resource-saving compared to the conventional high-heat / vacuum process (sputtering) or plating process, it is highly anticipated in the development of next-generation electronics.
 より具体的には、特許文献1においては、平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸と、樹脂バインダとを含む導電性ペーストを、基材上に塗布、焼成して金属膜を形成する方法が開示されている。
 また、特許文献2においては、平均粒子径が0.5~20μmである銅フィラーの表面が、平均粒子径が50~100nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーと、樹脂バインダとを含む銅ペーストを、基材上に塗布、焼成して金属膜を形成する方法が開示されている。
More specifically, in Patent Document 1, copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin A method of forming a metal film by applying and baking a conductive paste containing a binder on a substrate is disclosed.
Patent Document 2 discloses a copper nanoparticle-coated copper filler in which the surface of a copper filler having an average particle diameter of 0.5 to 20 μm is coated with copper nanoparticles having an average particle diameter of 50 to 100 nm, and a resin. A method of forming a metal film by applying and baking a copper paste containing a binder on a substrate is disclosed.
国際公開2010/032841号International Publication No. 2010/032841 国際公開2009/116349号International Publication No. 2009/116349
 一方、近年、電子機器の小型化、高機能化の要求に対応するため、プリント配線板などにおいては配線のより一層の微細化および高集積化が進んでいる。それに伴って、基材と導電膜との密着性のより一層の向上が要求されている。
 本発明者らが、特許文献1および特許文献2に記載された導電膜形成用組成物を用いて導電膜の作製を試みたところ、いずれの場合も、得られた導電膜は基材との密着性が昨今求められるレベルまで達しておらず、更なる改良が必要であった。
On the other hand, in recent years, in order to meet the demand for miniaturization and high functionality of electronic devices, wirings are further miniaturized and highly integrated. In connection with it, the further improvement of the adhesiveness of a base material and an electrically conductive film is requested | required.
When the present inventors tried to produce a conductive film using the composition for forming a conductive film described in Patent Document 1 and Patent Document 2, in any case, the obtained conductive film was not in contact with the substrate. Adhesion did not reach the level required recently, and further improvements were necessary.
 そこで、本発明は、上記実情に鑑みて、基材との密着性に優れた導電膜を形成することができる導電膜形成用組成物を提供することを目的とする。
 また、本発明は、この導電膜形成用組成物を用いた導電膜の製造方法を提供することも目的とする。
Then, an object of this invention is to provide the composition for electrically conductive film formation which can form the electrically conductive film excellent in adhesiveness with a base material in view of the said situation.
Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
 本発明者らは、従来技術の問題点について鋭意検討した結果、平均凝集粒子径が50~200nmである銅ナノ粒子と、平均凝集粒子径が1~10μmである銅フィラーと、ギ酸銅にアミンが配位してなるギ酸銅錯体(本明細書において、単に「ギ酸銅錯体」という場合がある。)とを使用することにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成できることを見出した。
As a result of intensive studies on the problems of the prior art, the present inventors have found that copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, a copper filler having an average aggregate particle diameter of 1 to 10 μm, copper formate and amine The present inventors have found that the above-described problems can be solved by using a copper formate complex (in this specification, sometimes simply referred to as “copper formate complex”) formed by coordination.
That is, it has been found that the above object can be achieved by the following configuration.
(1)平均凝集粒子径が50~200nmである銅ナノ粒子と、平均凝集粒子径が1~10μmである銅フィラーと、ギ酸銅にアミンが配位してなるギ酸銅錯体とを含む導電膜形成用組成物。
(2)銅フィラーの表面が銅ナノ粒子によって被覆されている、(1)に記載の導電膜形成用組成物。
(3)ギ酸銅錯体の含有量が、銅フィラーの全質量に対して1~50質量%である、(1)または(2)に記載の導電膜形成用組成物。
(4)銅フィラーの含有量が、銅フィラー、銅ナノ粒子およびギ酸銅錯体の合計質量に対して45~80質量%である、(1)~(3)のいずれか1つに記載の導電膜形成用組成物。
(5)さらに、ポリマーバインダを含む、(1)~(4)のいずれか1つに記載の導電膜形成用組成物。
(6)ポリマーバインダの含有量が、銅フィラー、銅ナノ粒子およびギ酸銅錯体の合計質量に対して2~8質量%である、(5)に記載の導電膜形成用組成物。
(7)アミンが式(1)で表される第三級アミンを含む、(1)~(6)のいずれか1つに記載の導電膜形成用組成物。
Figure JPOXMLDOC01-appb-C000002

[式中、RおよびRは、それぞれ独立に、メチル基、エチル基、2-ヒドロキシエチル基および2-メトキシエチル基からなる群から選択され、RおよびRは、それぞれ独立に、水素原子、メチル基およびヒドロキシ基からなる群から選択され、Rは水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分枝状アルキル基、炭素数3~6の環状アルキル基、2-ヒドロキシエチル基、2-メトキシエチル基および2-エトキシエチル基からなる群から選択され、Xはメチレン基、エチレン基およびプロピレン基からなる群から選択される。]
(8)さらに、低分子アミンを含む、(1)~(7)のいずれか1つに記載の導電膜形成用組成物。
(9)低分子アミンの含有量が、銅フィラーおよび銅ナノ粒子の合計質量に対して1~15質量%である、(8)に記載の導電膜形成用組成物。
(10)さらに、カルボン酸を含む、(1)~(9)のいずれか1つに記載の導電膜形成用組成物。
(11)カルボン酸の含有量が、銅フィラーおよび銅ナノ粒子の合計質量に対して1~15質量%である、(10)に記載の導電膜形成用組成物。
(12)(1)~(11)のいずれか1つに記載の導電膜形成用組成物を基材上に付与して、塗膜を形成する塗膜形成工程と、塗膜に対して加熱処理および/または光照射処理を行い、導電膜を形成する導電膜形成工程とを備える導電膜の製造方法。
(1) A conductive film comprising copper nanoparticles having an average aggregated particle size of 50 to 200 nm, a copper filler having an average aggregated particle size of 1 to 10 μm, and a copper formate complex in which an amine is coordinated to copper formate. Forming composition.
(2) The composition for electrically conductive film formation as described in (1) with which the surface of a copper filler is coat | covered with the copper nanoparticle.
(3) The composition for forming a conductive film according to (1) or (2), wherein the content of the copper formate complex is 1 to 50% by mass relative to the total mass of the copper filler.
(4) The conductive material according to any one of (1) to (3), wherein the content of the copper filler is 45 to 80% by mass with respect to the total mass of the copper filler, the copper nanoparticles, and the copper formate complex. Film forming composition.
(5) The composition for forming a conductive film according to any one of (1) to (4), further comprising a polymer binder.
(6) The composition for forming a conductive film according to (5), wherein the content of the polymer binder is 2 to 8% by mass with respect to the total mass of the copper filler, the copper nanoparticles, and the copper formate complex.
(7) The composition for forming a conductive film according to any one of (1) to (6), wherein the amine contains a tertiary amine represented by the formula (1).
Figure JPOXMLDOC01-appb-C000002

[Wherein R 1 and R 2 are each independently selected from the group consisting of a methyl group, an ethyl group, a 2-hydroxyethyl group, and a 2-methoxyethyl group, and R 3 and R 4 are each independently R 5 is selected from the group consisting of a hydrogen atom, a methyl group and a hydroxy group, and R 5 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 6 carbon atoms. Selected from the group consisting of a cyclic alkyl group, 2-hydroxyethyl group, 2-methoxyethyl group and 2-ethoxyethyl group, and X is selected from the group consisting of a methylene group, an ethylene group and a propylene group. ]
(8) The composition for forming a conductive film according to any one of (1) to (7), further comprising a low-molecular amine.
(9) The composition for forming a conductive film according to (8), wherein the content of the low molecular amine is 1 to 15% by mass with respect to the total mass of the copper filler and the copper nanoparticles.
(10) The composition for forming a conductive film according to any one of (1) to (9), further comprising a carboxylic acid.
(11) The composition for forming a conductive film according to (10), wherein the content of carboxylic acid is 1 to 15% by mass relative to the total mass of the copper filler and the copper nanoparticles.
(12) Applying the composition for forming a conductive film according to any one of (1) to (11) on a substrate to form a coating film, and heating the coating film The manufacturing method of an electrically conductive film provided with the electrically conductive film formation process of performing a process and / or a light irradiation process, and forming an electrically conductive film.
 本発明によれば、基材との密着性に優れた導電膜を形成することができる導電膜形成用組成物を提供することができる。
 また、本発明によれば、この導電膜形成用組成物を用いた導電膜の製造方法を提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, the composition for electrically conductive film formation which can form the electrically conductive film excellent in adhesiveness with a base material can be provided.
Moreover, according to this invention, the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
 まず、本発明の従来技術と比較した特徴について記載する。
 本発明の特徴の一つは、特定の平均凝集粒子径を有する銅ナノ粒子と、特定の平均凝集粒子径を有する銅粒子とに加えて、ギ酸銅にアミンが配位してなるギ酸銅錯体(本明細書において、単に「ギ酸銅錯体」という場合がある。)を含む導電膜形成用組成物である点にある。
First, the features of the present invention compared with the prior art will be described.
One of the characteristics of the present invention is a copper formate complex in which an amine is coordinated to copper formate in addition to copper nanoparticles having a specific average aggregate particle diameter and copper particles having a specific average aggregate particle diameter. (In this specification, the composition is simply a “copper formate complex”).
 ギ酸銅にアミンが配位してなるギ酸銅錯体を用いることにより、本発明の導電膜形成用組成物は、比較的低温で焼結することができ、焼結時にギ酸銅錯体の中心金属のCu2+が還元されて生成するCuが導電性接着剤として働き、銅フィラー間、および銅ナノ粒子/銅フィラー間の融着を促進する効果がある。これにより、形成される銅膜の膜質が向上し、基板との密着性が向上する。 By using a copper formate complex in which an amine is coordinated to copper formate, the conductive film-forming composition of the present invention can be sintered at a relatively low temperature, and the central metal of the copper formate complex can be sintered at the time of sintering. Cu produced by reduction of Cu 2+ works as a conductive adhesive, and has an effect of promoting fusion between copper fillers and between copper nanoparticles / copper fillers. Thereby, the film | membrane quality of the copper film formed improves and adhesiveness with a board | substrate improves.
 以下では、本発明の導電膜形成用組成物およびこれを用いた導電膜の製造方法について詳細に説明する。 Hereinafter, the composition for forming a conductive film of the present invention and a method for producing a conductive film using the composition will be described in detail.
[導電膜形成用組成物]
 本発明の導電膜形成用組成物は、平均凝集粒子径が1~10μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、ギ酸銅にアミンが配位してなるギ酸銅錯体とを含む。
[Composition for forming conductive film]
The composition for forming a conductive film of the present invention comprises a copper filler having an average aggregate particle diameter of 1 to 10 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an amine coordinated to copper formate. And a copper formate complex.
 本発明の導電膜形成用組成物は、後述する溶媒および/または分散媒を含有してもよい。溶媒および/または分散媒を含有する場合には、本発明の導電膜形成用組成物を、溶媒導電性ペーストまたは銅ペーストと呼んでもよい。 The composition for forming a conductive film of the present invention may contain a solvent and / or a dispersion medium described later. When a solvent and / or a dispersion medium are contained, the composition for forming a conductive film of the present invention may be called a solvent conductive paste or a copper paste.
 本発明において、平均凝集粒子径は、走査型電子顕微鏡(以下「SEM」と記す。)によって測定される平均凝集粒子径(数平均凝集粒子径)をいう。
 銅フィラーまたは銅ナノ粒子の平均凝集粒子径は、SEM像の中から無作為に選ばれた100個の銅ナノ粒子または銅フィラーの凝集粒子径を測定し、その平均をとることによって求めることができる。
 以下、導電膜形成用組成物に含まれる各成分について詳述する。
In the present invention, the average aggregate particle diameter refers to an average aggregate particle diameter (number average aggregate particle diameter) measured by a scanning electron microscope (hereinafter referred to as “SEM”).
The average agglomerated particle diameter of the copper filler or copper nanoparticles can be determined by measuring the agglomerated particle diameter of 100 copper nanoparticles or copper fillers randomly selected from the SEM image and taking the average. it can.
Hereafter, each component contained in the composition for electrically conductive film formation is explained in full detail.
〈銅フィラー〉
 銅フィラーとしては導電膜形成用組成物に用いられる公知の金属銅粒子が挙げられる。
<Copper filler>
As a copper filler, the well-known metal copper particle used for the composition for electrically conductive film formation is mentioned.
 銅フィラーの平均凝集粒子径は1~10μmであり、3~10μmが好ましい。平均凝集粒子径が1μm以上の銅フィラーを含むことにより、導電膜形成用組成物の流動特性が良好となる。平均凝集粒子径が10μm以下の銅フィラーを含むことにより、微細配線が作製しやすくなる。2種類以上の銅フィラーを混合して得られる銅フィラーの平均凝集粒子径が上記範囲内であれば、その2種類以上の銅フィラーの混合物を、特に制限されることなく使用することができる。 The average aggregate particle diameter of the copper filler is 1 to 10 μm, preferably 3 to 10 μm. By including a copper filler having an average aggregate particle diameter of 1 μm or more, the flow characteristics of the conductive film forming composition are improved. By including a copper filler having an average aggregate particle diameter of 10 μm or less, it becomes easy to produce fine wiring. If the average aggregate particle diameter of the copper filler obtained by mixing two or more types of copper fillers is within the above range, the mixture of the two or more types of copper fillers can be used without particular limitation.
 銅フィラーの含有量は、銅フィラーの体積と、これらの間に存在する空隙との比率に応じて適宜選択すればよく、特に限定されないが、銅フィラー、銅ナノ粒子、およびギ酸銅錯体の合計質量に対する銅フィラーの質量パーセンテージは、45~80質量%が好ましく、45~70質量%がより好ましい。銅フィラーの含有量を45質量%以上とすることにより、形成される銅膜の導電性をより良好なものとすることができる。銅フィラーの含有量を80質量%以下とすることにより、基材に対する導電性ペーストの塗布性をより良好なものとすることができる。 The content of the copper filler may be appropriately selected according to the ratio of the volume of the copper filler and the voids present between them, and is not particularly limited, but the total of the copper filler, the copper nanoparticles, and the copper formate complex The mass percentage of the copper filler relative to the mass is preferably 45 to 80 mass%, more preferably 45 to 70 mass%. By making content of a copper filler into 45 mass% or more, the electroconductivity of the copper film formed can be made more favorable. By making content of a copper filler into 80 mass% or less, the applicability | paintability of the electrically conductive paste with respect to a base material can be made more favorable.
〈銅ナノ粒子〉
 銅ナノ粒子としては、優れた導電性を示すと共に、基材との密着性にも優れた導電膜を形成できる点から、金属銅ナノ粒子または水素化銅ナノ粒子が好ましい。水素化銅は、元素として銅の他に水素を含む化合物であって、銅原子は水素原子と結合した状態で存在し、60~100℃で金属銅と水素とに分解する性質を有する。
<Copper nanoparticles>
As the copper nanoparticles, metal copper nanoparticles or copper hydride nanoparticles are preferred from the viewpoint of forming an electrically conductive film having excellent conductivity and excellent adhesion to the substrate. Copper hydride is a compound containing hydrogen in addition to copper as an element. The copper atom exists in a state of being bonded to a hydrogen atom and has a property of decomposing into metallic copper and hydrogen at 60 to 100 ° C.
 銅ナノ粒子の平均凝集粒子径は50~200nmであり、70~150nmが好ましい。平均凝集粒子径が50nm以上の銅ナノ粒子を含むことにより、銅ナノ粒子の融着・成長に伴う体積収縮により導電膜に生じるクラックが発生しにくい。平均凝集粒子径が200nm以下の銅ナノ粒子を含むことにより、表面融解温度が低下するため、表面融解が起こりやすくなり、また、緻密な導電膜を形成できることから導電性の向上が期待できる。2種類以上の銅ナノ粒子を混合して得られる銅ナノ粒子の平均凝集粒子径が上記範囲内であれば、その2種類以上の銅ナノ粒子の混合物を、特に制限されることなく使用することができる。 The average aggregate particle diameter of the copper nanoparticles is 50 to 200 nm, preferably 70 to 150 nm. By including copper nanoparticles having an average aggregate particle diameter of 50 nm or more, cracks generated in the conductive film due to volume shrinkage accompanying the fusion and growth of copper nanoparticles are unlikely to occur. By including copper nanoparticles having an average aggregate particle size of 200 nm or less, the surface melting temperature is lowered, so that surface melting is likely to occur, and a dense conductive film can be formed, so that improvement in conductivity can be expected. If the average aggregate particle diameter of the copper nanoparticles obtained by mixing two or more types of copper nanoparticles is within the above range, the mixture of the two or more types of copper nanoparticles should be used without particular limitation. Can do.
 なお、本発明において、金属銅ナノ粒子および水素化銅ナノ粒子は凝集粒子として用いられる。これらの凝集粒子は、おおよそ平均一次粒子径が10~100nm、好ましくは20~50nmの一次粒子が凝集してなるものである。ナノ粒子の平均一次粒子径は透過型電子顕微鏡(以下「TEM」と記す。)像の中から無作為に選ばれた100個のナノ粒子の一次粒子径を測定し、その平均をとることにより求めることができる。 In the present invention, metallic copper nanoparticles and copper hydride nanoparticles are used as aggregated particles. These agglomerated particles are formed by agglomerating primary particles having an average primary particle diameter of about 10 to 100 nm, preferably 20 to 50 nm. The average primary particle size of the nanoparticles was measured by measuring the primary particle size of 100 nanoparticles randomly selected from a transmission electron microscope (hereinafter referred to as “TEM”) image and taking the average. Can be sought.
 本発明の導電膜形成用組成物中、銅ナノ粒子の含有量は、特に限定されないが、銅フィラーの全質量に対して、5~50質量%が好ましく、10~35質量%がより好ましい。銅ナノ粒子の含有量を5質量%以上とすることにより、銅フィラー間の導電パスをさらに増やすことができ、形成される導電膜の体積抵抗率をより低く抑えられる。また、銅ナノ粒子の含有量を50質量%以下とすることにより、導電性ペーストの流動性をより高くすることができる。 In the composition for forming a conductive film of the present invention, the content of the copper nanoparticles is not particularly limited, but is preferably 5 to 50% by mass, more preferably 10 to 35% by mass with respect to the total mass of the copper filler. By making content of a copper nanoparticle 5 mass% or more, the electroconductive path between copper fillers can be increased further and the volume resistivity of the electrically conductive film formed can be suppressed lower. Moreover, the fluidity | liquidity of an electrically conductive paste can be made higher by making content of a copper nanoparticle into 50 mass% or less.
(銅ナノ粒子の製造方法1)
 水素化銅ナノ粒子の製造方法は特に制限されないが、例えば、後述するように、下記工程(a)~(d)を経て製造することができる。また、水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子は、さらに下記工程(e)を経て製造することができる。
(Method 1 for producing copper nanoparticles)
The method for producing copper hydride nanoparticles is not particularly limited. For example, as described later, it can be produced through the following steps (a) to (d). Moreover, the metal copper nanoparticle formed by thermally decomposing a copper hydride nanoparticle can be manufactured through the following process (e) further.
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b)調製した水溶液に酸を加えてpHを3以下に調整する工程。
(c)pHを3以下に調整した水溶液を撹拌しながら、その水溶液に還元剤を加えて、銅イオンを還元し、平均凝集粒子径が50~200nmである水素化銅ナノ粒子を生成させる工程。
(d)所望により、生成させた水素化銅ナノ粒子を、水とメタノールとの混合分散媒で精製する工程。
(e)得られた水素化銅ナノ粒子を熱分解させて金属銅ナノ粒子を生成させる工程。
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B) A step of adjusting the pH to 3 or less by adding an acid to the prepared aqueous solution.
(C) A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution whose pH is adjusted to 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 50 to 200 nm. .
(D) A step of purifying the produced copper hydride nanoparticles with a mixed dispersion medium of water and methanol, if desired.
(E) A step of thermally decomposing the obtained copper hydride nanoparticles to produce metallic copper nanoparticles.
 工程(a):
 水溶性銅化合物としては、硫酸銅、硝酸銅、ギ酸銅、酢酸銅、塩化銅、臭化銅、ヨウ化銅等が挙げられる。水溶性銅化合物の濃度は、水溶液100質量%中、0.1~30質量%が好ましく、1~20質量%がより好ましい。水溶液中の水溶性銅化合物の濃度が0.1質量%以上であれば、水の量が抑えられ、また、水素化銅ナノ粒子の生産効率が良好となる。水溶液中の水溶性銅化合物の濃度が30質量%以下であれば、水素化銅ナノ粒子の収率の低下が抑えられる。
Step (a):
Examples of the water-soluble copper compound include copper sulfate, copper nitrate, copper formate, copper acetate, copper chloride, copper bromide, copper iodide and the like. The concentration of the water-soluble copper compound is preferably 0.1 to 30% by mass and more preferably 1 to 20% by mass in 100% by mass of the aqueous solution. If the density | concentration of the water-soluble copper compound in aqueous solution is 0.1 mass% or more, the quantity of water will be restrained and the production efficiency of a copper hydride nanoparticle will become favorable. If the density | concentration of the water-soluble copper compound in aqueous solution is 30 mass% or less, the fall of the yield of a copper hydride nanoparticle will be suppressed.
 工程(b):
 水溶液のpHを3以下に調整することにより、水溶液中の銅イオンが還元剤により還元されやすくなり、水素化銅ナノ粒子が生成しやすくなる。水溶液のpHが3を超えると、水素化銅ナノ粒子が生成せずに、金属銅ナノ粒子が生成するおそれがある。水溶液のpHは、水素化銅ナノ粒子を短時間で生成できる点では、0.5~2.0が好ましく、0.7~1.5がより好ましい。
 なお、工程(a)および工程(b)は、同時に行ってもよい。
Step (b):
By adjusting the pH of the aqueous solution to 3 or less, copper ions in the aqueous solution are easily reduced by the reducing agent, and copper hydride nanoparticles are easily generated. When pH of aqueous solution exceeds 3, there exists a possibility that a metal copper nanoparticle may produce | generate, without producing | generating a copper hydride nanoparticle. The pH of the aqueous solution is preferably 0.5 to 2.0, more preferably 0.7 to 1.5, from the viewpoint that copper hydride nanoparticles can be formed in a short time.
In addition, you may perform a process (a) and a process (b) simultaneously.
 工程(b)において用いられる酸としては、ギ酸、クエン酸、マレイン酸、マロン酸、酢酸、プロピオン酸、硫酸、硝酸、塩酸等が挙げられ、中でもギ酸が好ましい。これらの酸は、銅イオンを含む水容液のpHを調整するために用いられるが、銅ナノ粒子の表面を被覆し、銅ナノ粒子の導電性にも影響を与える場合があると考えられる。ギ酸は還元作用を有する酸であり、工程(b)においてギ酸を用いることにより、得られる銅ナノ粒子の表面が酸化されることを抑制する効果がある。 Examples of the acid used in the step (b) include formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid, sulfuric acid, nitric acid, hydrochloric acid and the like, and formic acid is preferable. These acids are used to adjust the pH of an aqueous solution containing copper ions, but it is considered that the surface of the copper nanoparticles may be covered and the conductivity of the copper nanoparticles may be affected. Formic acid is an acid having a reducing action, and by using formic acid in step (b), there is an effect of suppressing oxidation of the surface of the obtained copper nanoparticles.
 工程(c):
 銅イオンは酸性下で還元剤により還元され、徐々に水素化銅ナノ粒子が成長して、平均凝集粒子径が50~200nmである水素化銅ナノ粒子が生成する。
 工程(b)において酸としてギ酸を用いた場合には、生成した水素化銅ナノ粒子は、ただちに共存しているギ酸により表面を覆われ、安定化する。
Step (c):
Copper ions are reduced by a reducing agent under acidic conditions, and copper hydride nanoparticles gradually grow to produce copper hydride nanoparticles having an average aggregate particle diameter of 50 to 200 nm.
When formic acid is used as the acid in the step (b), the produced copper hydride nanoparticles are immediately covered with the formic acid present together and stabilized.
 還元剤としては、大きな還元作用があることから金属水素化物または次亜リン酸が好ましい。金属水素化物としては、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化リチウム、水素化カリウム、水素化カルシウム等が挙げられ、水素化リチウムアルミニウム、水素化ホウ素リチウムまたは水素化ホウ素ナトリウムが好ましい。 As the reducing agent, metal hydride or hypophosphorous acid is preferable because of its large reducing action. Examples of the metal hydride include lithium aluminum hydride, lithium borohydride, sodium borohydride, lithium hydride, potassium hydride, calcium hydride, etc., and include lithium aluminum hydride, lithium borohydride or borohydride. Sodium is preferred.
 還元剤の添加量は、銅イオンに対して1.5~10倍当量数が好まく、22~5倍当量数がより好ましい。還元剤の添加量が銅イオンに対して1.5倍当量数以上であれば、還元作用が十分となる。還元剤の添加量が銅イオンに対して10倍当量数以下であれば、水素化銅ナノ粒子に含まれる不純物(ナトリウム、ホウ素、リン等)の量が抑えられる。還元剤を加える際の水溶液の温度は、5~60℃が好ましく、20~50℃がより好ましい。水溶液の温度が60℃以下であれば、水素化銅ナノ粒子の分解が抑えられる。 The amount of reducing agent added is preferably 1.5 to 10 times the equivalent number of copper ions, more preferably 22 to 5 times the equivalent number. If the addition amount of the reducing agent is 1.5 times the number of equivalents or more with respect to copper ions, the reducing action is sufficient. When the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the amount of impurities (sodium, boron, phosphorus, etc.) contained in the copper hydride nanoparticles can be suppressed. The temperature of the aqueous solution when adding the reducing agent is preferably 5 to 60 ° C, more preferably 20 to 50 ° C. If the temperature of aqueous solution is 60 degrees C or less, decomposition | disassembly of a copper hydride nanoparticle will be suppressed.
 工程(d):
 水素化銅ナノ粒子を含む懸濁液を静置すると、水素化銅ナノ粒子が凝集して沈殿する。この沈殿物を分離し、ついで分散媒に再分散させた後、水素化銅ナノ粒子を再び凝集させて沈殿させる方法で精製することにより、高純度化した水素化銅ナノ粒子が得られる。
Step (d):
When the suspension containing copper hydride nanoparticles is allowed to stand, the copper hydride nanoparticles aggregate and precipitate. The precipitate is separated and then re-dispersed in a dispersion medium, and then purified by a method in which the copper hydride nanoparticles are agglomerated again and precipitated to obtain highly purified copper hydride nanoparticles.
 精製に用いる分散媒としては、水/メタノール混合分散媒または水/エタノール混合分散媒が好ましい。水のみでは、水の表面張力が大きいため、水素化銅ナノ粒子の凝集物の細孔に水が入っていくことができず、精製の効果が小さい。一方、メタノールのみでは、メタノールの誘電率が小さいため、不純物のナトリウムをイオンとして分散媒中に遊離できず、精製の効果が小さい。混合分散媒中の水の割合は、混合分散媒全体に対して、40~90質量%が好ましく、50~85質量%がより好ましい。水素化銅ナノ粒子に含まれるナトリウムの量は800ppm以下が好ましく、100ppm以下がより好ましい。 The dispersion medium used for purification is preferably a water / methanol mixed dispersion medium or a water / ethanol mixed dispersion medium. With water alone, the surface tension of water is large, so water cannot enter the pores of the aggregates of copper hydride nanoparticles, and the effect of purification is small. On the other hand, with methanol alone, the dielectric constant of methanol is small, so that the impurity sodium cannot be released into the dispersion medium as ions, and the purification effect is small. The proportion of water in the mixed dispersion medium is preferably 40 to 90% by mass, and more preferably 50 to 85% by mass with respect to the entire mixed dispersion medium. The amount of sodium contained in the copper hydride nanoparticles is preferably 800 ppm or less, and more preferably 100 ppm or less.
 工程(e):
 熱分解は不活性雰囲気下で行う。雰囲気中の酸素濃度は1000ppm以下が好ましい。1000ppmを超えると、酸化によって亜酸化銅を生じてしまう。熱分解の温度は、60~100℃が好ましく、70~90℃がより好ましい。温度が60℃以上であれば、熱分解が円滑に進行する。温度が100℃以下であれば、銅ナノ粒子同士の融着が抑えられる。
Step (e):
Thermal decomposition is performed under an inert atmosphere. The oxygen concentration in the atmosphere is preferably 1000 ppm or less. When it exceeds 1000 ppm, cuprous oxide will be produced by oxidation. The temperature for thermal decomposition is preferably 60 to 100 ° C, more preferably 70 to 90 ° C. If temperature is 60 degreeC or more, thermal decomposition will advance smoothly. If temperature is 100 degrees C or less, fusion | melting of copper nanoparticles will be suppressed.
(銅ナノ粒子の製造方法2)
 銅ナノ粒子は、また、下記工程(a’)~(d’)を経て製造することができる。
(a’)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b’)調製した水溶液を30℃以上に加熱し、次亜リン酸によって銅イオンを還元し、水素化銅ナノ粒子、または、場合によっては金属銅ナノ粒子を生成させる工程。
(c’)所望により、前記水素化銅ナノ粒子を、熱分解させて金属銅ナノ粒子を生成させる工程。
(d’)所望により、得られた銅ナノ粒子を精製する工程。
(Method 2 for producing copper nanoparticles)
Copper nanoparticles can also be produced through the following steps (a ′) to (d ′).
(A ′) A step of dissolving a water-soluble copper compound in water to prepare an aqueous solution containing copper ions.
(B ′) A step of heating the prepared aqueous solution to 30 ° C. or more and reducing copper ions with hypophosphorous acid to produce copper hydride nanoparticles or, in some cases, metal copper nanoparticles.
(C ′) a step of thermally decomposing the copper hydride nanoparticles to produce metal copper nanoparticles, if desired.
(D ′) A step of purifying the obtained copper nanoparticles as desired.
 工程(a’):
 上記工程(a)と同様である。
Step (a ′):
It is the same as the said process (a).
 工程(b’):
 銅イオンは30℃以上の温度で次亜リン酸により酸性条件で還元され、徐々に水素化銅ナノ粒子が成長して、平均凝集粒子径が50~200nmである水素化銅ナノ粒子が生成する。また、反応を一定時間以上進行させると水素化銅の分解によって金属銅が生成する。工程(b)における水溶液の温度は、30~80℃が好ましく、35~60℃がより好ましい。水溶液の温度が80℃以下であれば、水の蒸発による反応系の変化を抑制できる。
 次亜リン酸は、水溶液にして添加することが好ましい。次亜リン酸の濃度は、水溶液100質量%中、30~80質量%が好ましく、40~60質量%がより好ましい。水溶液中の次亜リン酸の濃度が30質量%以上であれば、水の量が抑えられる。水溶液中の次亜リン酸の濃度が80質量%以下であれば、急激な反応が抑えられる。
Step (b ′):
Copper ions are reduced under acidic conditions by hypophosphorous acid at a temperature of 30 ° C. or higher, and copper hydride nanoparticles grow gradually, producing copper hydride nanoparticles having an average aggregate particle size of 50 to 200 nm. . Further, when the reaction is allowed to proceed for a certain time or more, metallic copper is generated by the decomposition of copper hydride. The temperature of the aqueous solution in step (b) is preferably 30 to 80 ° C, more preferably 35 to 60 ° C. If the temperature of aqueous solution is 80 degrees C or less, the change of the reaction system by water evaporation can be suppressed.
Hypophosphorous acid is preferably added as an aqueous solution. The concentration of hypophosphorous acid is preferably 30 to 80% by mass and more preferably 40 to 60% by mass in 100% by mass of the aqueous solution. If the concentration of hypophosphorous acid in the aqueous solution is 30% by mass or more, the amount of water can be suppressed. If the concentration of hypophosphorous acid in the aqueous solution is 80% by mass or less, a rapid reaction can be suppressed.
 次亜リン酸の添加量は、銅イオンに対して1.5~10倍当量数が好ましい。次亜リン酸の添加量が銅イオンに対して1.5倍当量数以上であれば、還元作用が充分となる。還元剤の添加量が銅イオンに対して10倍当量数以下であれば、残存するリンによる悪影響を抑制できる。 The amount of hypophosphorous acid added is preferably 1.5 to 10 times the number of equivalents to copper ions. When the amount of hypophosphorous acid added is 1.5 times the number of equivalents or more with respect to copper ions, the reducing action is sufficient. If the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the adverse effect of the remaining phosphorus can be suppressed.
 工程(c’):
 上記工程(e)と同様である。
Step (c ′):
It is the same as the said process (e).
 工程(d’):
 所望により、得られた銅ナノ粒子を精製してもよい。精製方法としては、得られた銅ナノ粒子を水に分散させる方法等が挙げられる。
Step (d ′):
If desired, the obtained copper nanoparticles may be purified. Examples of the purification method include a method of dispersing the obtained copper nanoparticles in water.
〈銅ナノ粒子被覆銅フィラー〉
 本発明の導電膜形成用組成物において、上記銅フィラーおよび上記銅ナノ粒子は、銅フィラーを銅ナノ粒子によって被覆した銅ナノ粒子被覆銅フィラーとして使用してもよい。
 上記銅ナノ粒子被覆銅フィラーは、平均凝集粒子径が1~10μmである銅フィラーの表面が、平均凝集粒子径が50~200nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーである。
<Copper filler coated with copper nanoparticles>
In the composition for forming a conductive film of the present invention, the copper filler and the copper nanoparticles may be used as a copper nanoparticle-coated copper filler obtained by coating a copper filler with copper nanoparticles.
The copper nanoparticle-coated copper filler is a copper nanoparticle-coated copper filler in which the surface of a copper filler having an average aggregate particle diameter of 1 to 10 μm is coated with copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm. .
 本発明の導電膜形成用組成物中、銅フィラーを被覆する銅ナノ粒子の含有量は、特に限定されないが、銅フィラーを被覆する銅ナノ粒子と銅フィラーを被覆していない銅ナノ粒子との合計が、銅フィラーの全質量に対して、5~50質量%が好ましく、10~35質量%がより好ましい。銅ナノ粒子の含有量を5質量%以上とすることにより、銅フィラー間の導電パスをさらに増やすことができ、形成される導電膜の体積抵抗率をより低く抑えられる。また、銅ナノ粒子の含有量を50質量%以下とすることにより、導電性ペーストの流動性をより高くすることができる。
 また、導電膜形成用組成物が含有する銅ナノ粒子のうち、銅フィラーを被覆する銅ナノ粒子の質量割合は、大きいほど好ましく、銅ナノ粒子の全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。
In the composition for forming a conductive film of the present invention, the content of the copper nanoparticles covering the copper filler is not particularly limited, but the copper nanoparticles covering the copper filler and the copper nanoparticles not covering the copper filler The total is preferably 5 to 50% by mass, more preferably 10 to 35% by mass, based on the total mass of the copper filler. By making content of a copper nanoparticle 5 mass% or more, the electroconductive path between copper fillers can be increased further and the volume resistivity of the electrically conductive film formed can be suppressed lower. Moreover, the fluidity | liquidity of an electrically conductive paste can be made higher by making content of a copper nanoparticle into 50 mass% or less.
Moreover, among the copper nanoparticles contained in the composition for forming a conductive film, the mass ratio of the copper nanoparticles covering the copper filler is preferably as large as possible, and preferably 50% by mass or more based on the total mass of the copper nanoparticles. 70 mass% or more is more preferable, and 90 mass% or more is further more preferable.
(銅ナノ粒子被覆銅フィラーの製造方法)
 銅ナノ粒子被覆銅フィラーの製造方法は、特に限定されないが、例えば、下記の工程(I)および(II)を有する製造方法が挙げられる。
(I)平均凝集粒子径が1~10μmである銅フィラーの表面に、平均凝集粒子径が20~100nmである水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
(II)上記水素化銅ナノ粒子被覆銅フィラーを、不活性ガス雰囲気下、50~100℃で焼成し、銅フィラーの表面が、平均凝集粒子径が50~200nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーを得る工程。
(Method for producing copper filler coated with copper nanoparticles)
Although the manufacturing method of a copper nanoparticle covering copper filler is not specifically limited, For example, the manufacturing method which has the following process (I) and (II) is mentioned.
(I) A step of obtaining a copper hydride-coated copper filler by coating copper hydride nanoparticles having an average aggregated particle diameter of 20 to 100 nm on the surface of a copper filler having an average aggregated particle diameter of 1 to 10 μm.
(II) The copper hydride nanoparticle-coated copper filler is fired at 50 to 100 ° C. in an inert gas atmosphere, and the surface of the copper filler is coated with copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm. Obtaining a copper filler coated with copper nanoparticles.
 工程(I):
 工程(1)は、下記工程(I-1)~(I-2)からなることが好ましい。
(I-1)平均凝集粒子径が1~10μmである銅フィラーおよび平均凝集粒子径が20~100nmである水素化銅ナノ粒子を分散媒に分散させ、分散液を得る工程。
(I-2)得られた分散液から分散媒を揮発させて取り除くことにより、銅フィラーの表面に水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
Step (I):
Step (1) preferably comprises the following steps (I-1) to (I-2).
(I-1) A step of dispersing a copper filler having an average aggregate particle diameter of 1 to 10 μm and copper hydride nanoparticles having an average aggregate particle diameter of 20 to 100 nm in a dispersion medium to obtain a dispersion.
(I-2) A step of volatilizing and removing the dispersion medium from the obtained dispersion to coat the surface of the copper filler with copper hydride nanoparticles to obtain a copper hydride nanoparticle-coated copper filler.
 工程(I-1):
 分散媒の比誘電率は、4~40が好ましく、10~30がより好ましい。分散媒の比誘電率が4以上であれば、水素化銅ナノ粒子の分散性が良好となる。分散媒の比誘電率が40以下であれば、銅フィラーの分散性が良好となる。
 分散媒としては、例えば、メチルアルコール(33.0(20℃))、エチルアルコール(25.3(20℃))、1-プロパノール(20.8(20℃))、2-プロパノール(20.2(20℃))、1-ブタノール(17.8(2O℃))、2-ブタノール(17.3(20℃))、イソブチルアルコール(17.9(20℃))、1-ペンタノール(15.1(25℃))、イソペンチルアルコール(14.7(20℃))、1-ヘキサノール(13.3(20℃))、1-オクタノール(10.3(20℃))、シクロヘキサノール(16.4(20℃))、シクロヘキサノン(16.1(20℃))、アセトン(21.0(20℃))、オクチルアルコール(10.3(20℃))および酢酸エチル(6.1(20℃))が挙げられる。括弧内は比誘電率である。
 分散媒としては、銅フィラーと水素化銅ナノ粒子ともに分散性に優れる点から、1-プロパノール(20.8(20℃))または2-プロパノール(20.2(20℃))が好ましい。
Step (I-1):
The relative dielectric constant of the dispersion medium is preferably 4 to 40, more preferably 10 to 30. If the relative dielectric constant of the dispersion medium is 4 or more, the dispersibility of the copper hydride nanoparticles will be good. If the relative dielectric constant of the dispersion medium is 40 or less, the dispersibility of the copper filler will be good.
Examples of the dispersion medium include methyl alcohol (33.0 (20 ° C.)), ethyl alcohol (25.3 (20 ° C.)), 1-propanol (20.8 (20 ° C.)), 2-propanol (20. 2 (20 ° C.), 1-butanol (17.8 (2 ° C.)), 2-butanol (17.3 (20 ° C.)), isobutyl alcohol (17.9 (20 ° C.)), 1-pentanol ( 15.1 (25 ° C.)), isopentyl alcohol (14.7 (20 ° C.)), 1-hexanol (13.3 (20 ° C.)), 1-octanol (10.3 (20 ° C.)), cyclohexanol (16.4 (20 ° C)), cyclohexanone (16.1 (20 ° C)), acetone (21.0 (20 ° C)), octyl alcohol (10.3 (20 ° C)) and ethyl acetate (6.1) (20 ° C)) It is. The relative dielectric constant is shown in parentheses.
As the dispersion medium, 1-propanol (20.8 (20 ° C.)) or 2-propanol (20.2 (20 ° C.)) is preferable because both the copper filler and the copper hydride nanoparticles are excellent in dispersibility.
 工程(I-1)における分散媒の量は、銅フィラーおよび水素化銅ナノ粒子の合計100質量%に対して、250~1250質量%が好ましく、300~750質量%がより好ましい。分散媒の量が250質量%以上であれば、分散媒中に水素化銅ナノ粒子と銅フィラーを均一に分散させることができる。分散媒の量が1250質量%以下であれば、分散媒を揮発させるのに要する時聞が短く、製造コストを抑えることができる。 The amount of the dispersion medium in the step (I-1) is preferably 250 to 1250% by mass, and more preferably 300 to 750% by mass with respect to 100% by mass in total of the copper filler and the copper hydride nanoparticles. When the amount of the dispersion medium is 250% by mass or more, the copper hydride nanoparticles and the copper filler can be uniformly dispersed in the dispersion medium. When the amount of the dispersion medium is 1250% by mass or less, the time required for volatilizing the dispersion medium is short, and the manufacturing cost can be suppressed.
 水素化銅ナノ粒子は、銅原子が水素原子と結合した状態で存在し、50~100℃で金属銅と水素とに分解する性質を有する。水素化銅ナノ粒子としては、例えば、上記した水素化銅ナノ粒子の製造方法で得られるものが挙げられる。 Copper hydride nanoparticles exist in a state in which copper atoms are bonded to hydrogen atoms, and have a property of decomposing into metallic copper and hydrogen at 50 to 100 ° C. As a copper hydride nanoparticle, what is obtained with the manufacturing method of an above-described copper hydride nanoparticle is mentioned, for example.
 水素化銅ナノ粒子の平均凝集粒子径は、20~100nmであり、25~80nmが好ましい。水素化銅ナノ粒子の平均凝集粒子径が20nm以上であれば、焼成時の水素化銅ナノ粒子同士の凝集を抑えることができる。水素化銅ナノ粒子の平均凝集粒子径が100nm以下であれば、表面活性が充分に高い水素化銅ナノ粒子を得ることができる。 The average agglomerated particle diameter of the copper hydride nanoparticles is 20 to 100 nm, preferably 25 to 80 nm. If the average agglomerated particle diameter of the copper hydride nanoparticles is 20 nm or more, aggregation of the copper hydride nanoparticles during firing can be suppressed. If the average aggregate particle diameter of the copper hydride nanoparticles is 100 nm or less, copper hydride nanoparticles having a sufficiently high surface activity can be obtained.
 工程(I-2):
 分散媒の揮発は、450~600mmHgの減圧下で徐々に行うことが好ましい。圧力が450mmHg以上であれば、分散媒が完全に揮発する直前まで水素化銅ナノ粒子と銅フィラーを均一に分散させておくことができる。圧力が600mmHg以下であれば、分散媒を揮発させるのに要する時聞が短く、製造コストを抑えることができる。
 銅フィラーの表面が水素化銅ナノ粒子で被覆されていることは、SEM像を観察し、銅フィラーの表面の少なくとも一部に複数の水素化銅ナノ粒子が付着していることから確認できる。
Step (I-2):
The dispersion medium is preferably volatilized gradually under a reduced pressure of 450 to 600 mmHg. When the pressure is 450 mmHg or more, the copper hydride nanoparticles and the copper filler can be uniformly dispersed until immediately before the dispersion medium is completely volatilized. If the pressure is 600 mmHg or less, the time required to volatilize the dispersion medium is short, and the manufacturing cost can be reduced.
The fact that the surface of the copper filler is coated with copper hydride nanoparticles can be confirmed by observing the SEM image and confirming that a plurality of copper hydride nanoparticles are attached to at least a part of the surface of the copper filler.
 工程(II):
 水素化銅ナノ粒子被覆銅フィラーを不活性ガス雰囲気下、50~100℃で焼成することにより、銅フィラーの表面の水素化銅ナノ粒子が金属銅と水素とに分解すると同時に、ナノ粒子同士が焼結し、平均凝集粒子径が50~200nmの銅ナノ粒子が得られる。
Step (II):
By firing the copper hydride-coated copper filler at 50 to 100 ° C. in an inert gas atmosphere, the copper hydride nanoparticles on the surface of the copper filler are decomposed into metallic copper and hydrogen, and at the same time the nanoparticles are Sintering yields copper nanoparticles having an average aggregate particle size of 50 to 200 nm.
 不活性ガスとしては、窒素ガス、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が挙げられ、窒素ガスまたはアルゴンが好ましい。焼成温度は、50~100℃であり、60~80℃が好ましい。焼成温度が50℃以上であれば、金属膜に生じるクラックの発生を抑制できる銅ナノ粒子被覆銅フィラーが得られる。焼成温度が100℃以下であれば、銅ナノ粒子表面の活性が失われていない銅ナノ粒子被覆銅フィラーが得られる。 Examples of the inert gas include nitrogen gas, helium, neon, argon, krypton, xenon, and radon, and nitrogen gas or argon is preferable. The firing temperature is 50 to 100 ° C, preferably 60 to 80 ° C. If a calcination temperature is 50 degreeC or more, the copper nanoparticle covering copper filler which can suppress generation | occurrence | production of the crack which arises in a metal film will be obtained. If a calcination temperature is 100 degrees C or less, the copper nanoparticle covering copper filler in which the activity of the copper nanoparticle surface is not lost is obtained.
〈ギ酸銅にアミンが配位してなるギ酸銅錯体〉
 ギ酸銅にアミンが配位してなるギ酸銅錯体(本明細書において、単に「ギ酸銅錯体」ともいう。)は、ギ酸銅とアミンとを混合することによって合成することができる。
 ギ酸銅とアミンとはそのまま混合してもよく、水溶液、有機溶媒溶液または有機溶媒懸濁液として混合してもよい。ギ酸銅とアミンとの混合は、0~100℃程度の温度の下で、適切な撹拌機や混合機を用いて行うことが好ましい。
 また、ギ酸銅とアミンは、ギ酸銅1当量に対してアミンを2~4当量加えることが好ましい。
 ギ酸銅錯体を合成する際に加えるアミンが過少量であると、得られるギ酸銅錯体の保存安定性が低下し、錯体が析出することがある。ただし、この場合であっても、加温して錯体を溶解することにより、使用することができる。
<Copper formate complex in which amine is coordinated to copper formate>
A copper formate complex in which an amine is coordinated to copper formate (also referred to simply as “copper formate complex” in this specification) can be synthesized by mixing copper formate and an amine.
Copper formate and amine may be mixed as they are, or may be mixed as an aqueous solution, an organic solvent solution or an organic solvent suspension. The mixing of copper formate and amine is preferably carried out at a temperature of about 0 to 100 ° C. using an appropriate stirrer or mixer.
In addition, it is preferable to add 2 to 4 equivalents of amine with respect to 1 equivalent of copper formate.
When the amount of amine added when synthesizing the copper formate complex is too small, the storage stability of the resulting copper formate complex is lowered, and the complex may precipitate. However, even in this case, it can be used by heating and dissolving the complex.
 ギ酸銅とアミンとを混合して得られる組成物中には、主成分としてギ酸アニオンおよびアミンを配位子として有するギ酸銅錯体が生成する。好ましいギ酸銅錯体は、中心金属であるCu2+に、ギ酸アニオンおよびアミンが、それぞれ2分子ずつ配位することが好ましい。2つのアミンは同一種類であってもよいし、異なる種類であってもよい。 In the composition obtained by mixing copper formate and amine, a copper formate complex having a formate anion and an amine as a ligand as main components is formed. In a preferred copper formate complex, it is preferable that formate anion and amine each coordinate two molecules to Cu 2+ which is a central metal. The two amines may be of the same type or different types.
 ギ酸銅とアミンとを混合してなる組成物中には、混合条件に応じて、上記ギ酸銅錯体の他に、溶媒や未反応のアミンが含まれ得るが、ギ酸銅とアミンとを無溶媒で1:2の当量比で混合した場合には、ほぼ上記ギ酸銅錯体のみからなる組成物が得られる。 Depending on the mixing conditions, the composition formed by mixing copper formate and amine may contain a solvent and unreacted amine in addition to the above copper formate complex. When mixing at an equivalent ratio of 1: 2, a composition consisting essentially of only the copper formate complex is obtained.
 本発明の導電膜形成用組成物中、上記ギ酸銅錯体の含有量は、特に限定されるものではないが、銅フィラーの全質量に対して、1~70質量%が好ましく、1~50質量%がより好ましく、10~30質量%がさらに好ましい。ギ酸銅錯体を1質量%以上含有することによって、本発明の導電膜形成用組成物を用いて形成される導電膜の密着性がさらに向上し、70質量%以下含有することにより、本発明の導電膜形成用組成物を用いて形成される導電膜の体積収縮が小さく、厚膜を形成しやすい。 In the composition for forming a conductive film of the present invention, the content of the copper formate complex is not particularly limited, but is preferably 1 to 70% by mass with respect to the total mass of the copper filler, and 1 to 50% by mass. % Is more preferable, and 10 to 30% by mass is further preferable. By containing 1% by mass or more of the copper formate complex, the adhesion of the conductive film formed using the composition for forming a conductive film of the present invention is further improved, and by containing 70% by mass or less, The volume shrinkage of the conductive film formed using the composition for forming a conductive film is small, and it is easy to form a thick film.
(ギ酸銅)
 上記ギ酸銅としては、無水ギ酸銅(II)、ギ酸銅(II)・二水和物、ギ酸銅(II)・四水和物などを用いることができる。
(Copper formate)
As said copper formate, anhydrous copper formate (II), copper (II) formate, dihydrate, copper formate (II), tetrahydrate, etc. can be used.
(アミン)
 上記アミンとしては、第一級~第三級のアミンを使用することができる。
 なかでも、アミンの沸点が低いという観点から、第三級アミンが好ましい。
 また、得られるギ酸銅錯体の親水性が増すという観点から、分子内に1つ以上のヒドロキシ基を有するアミンが好ましい。
(Amine)
As the amine, primary to tertiary amines can be used.
Of these, tertiary amines are preferred from the viewpoint of low boiling point of amines.
Further, from the viewpoint of increasing the hydrophilicity of the obtained copper formate complex, an amine having one or more hydroxy groups in the molecule is preferable.
 上記第一級アミンとしては、例えば、アルキル基の1つ以上の水素原子が置換基で置換されていてもよいモノアルキルアミン、アリール基の1つ以上の水素原子が置換基で置換されていてもよいモノアリールアミン、ヘテロアリール基の1つ以上の水素原子が置換基で置換されていてもよいモノ(ヘテロアリール)アミン、およびアルキレン基またはアリーレン基の1つ以上の水素原子が置換基で置換されていてもよいジアミンが挙げられる。 Examples of the primary amine include a monoalkylamine in which one or more hydrogen atoms of an alkyl group may be substituted with a substituent, and one or more hydrogen atoms in an aryl group are substituted with a substituent. A monoarylamine, a mono (heteroaryl) amine in which one or more hydrogen atoms of the heteroaryl group may be substituted with a substituent, and one or more hydrogen atoms of an alkylene group or an arylene group are substituted. Examples of the diamine may be substituted.
 上記モノアルキルアミンを構成するアルキル基は、直鎖状、分枝状または環状のアルキル基のいずれでもよく、炭素数1~19の直鎖状アルキル基、炭素数3~19の分枝状アルキル基、または炭素数3~7の環状アルキル基が好ましい。 The alkyl group constituting the monoalkylamine may be a linear, branched or cyclic alkyl group, a linear alkyl group having 1 to 19 carbon atoms, or a branched alkyl group having 3 to 19 carbon atoms. Or a cyclic alkyl group having 3 to 7 carbon atoms.
 直鎖状または分枝状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、3-エチルブチル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基およびイコシル基が挙げられる。 Examples of the linear or branched alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. Group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group, -Ethyl-1-methylpropyl group, n-heptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4- Tylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 4 , 4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 2,2,3-trimethylbutyl group, 1-propylbutyl group, n-octyl Group, isooctyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, 5-ethylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl group, 3,3- Methylhexyl group, 4,4-dimethylhexyl group, 5,5-dimethylhexyl group, 1-propylpentyl group, 2-propylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, and an icosyl group.
 環状のアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基およびトリシクロデシル基が例示できる。 Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a norbornyl group, an isobornyl group, a 1-adamantyl group, and a 2-adamantyl group. Group and tricyclodecyl group can be exemplified.
 好ましいモノアルキルアミンとしては、具体的には、n-プロピルアミン、2-エチルヘキシルアミン、tert-ブチルアミン、n-オクタデシルアミン(ステアリルアミン)およびシクロヘキシルアミンが挙げられる。 Specific examples of preferable monoalkylamines include n-propylamine, 2-ethylhexylamine, tert-butylamine, n-octadecylamine (stearylamine), and cyclohexylamine.
 上記モノアリールアミンを構成するアリール基は、フェニル基、1-ナフチル基または2-ナフチル基が好ましい。 The aryl group constituting the monoarylamine is preferably a phenyl group, a 1-naphthyl group or a 2-naphthyl group.
 上記第二級アミンとしては、例えば、アルキル基の1つ以上の水素原子が置換基で置換されていてもよいジアルキルアミン、アリール基の1つ以上の水素原子が置換基で置換されていてもよいジアリールアミン、およびヘテロアリール基の1つ以上の水素原子が置換基で置換されていてもよいジ(ヘテロアリール)アミンが挙げられる。 Examples of the secondary amine include dialkylamines in which one or more hydrogen atoms of an alkyl group may be substituted with a substituent, and one or more hydrogen atoms in an aryl group may be substituted with a substituent. Examples include good diarylamines, and di (heteroaryl) amines in which one or more hydrogen atoms of the heteroaryl group may be substituted with a substituent.
 上記ジアルキルアミンを構成するアルキル基は、上記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~9の直鎖状アルキル基、炭素数3~9の分枝状アルキル基、または炭素数3~7の環状アルキル基が好ましい。また、ジアルキルアミンの2つのアルキル基の種類は、同一であってもよいし、互いに相違してもよい。 The alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear alkyl group having 1 to 9 carbon atoms, a branched alkyl group having 3 to 9 carbon atoms, or A cyclic alkyl group having 3 to 7 carbon atoms is preferred. Further, the two alkyl groups of the dialkylamine may be the same or different.
 好ましいジアルキルアミンとしては、具体的には、N-メチルエタノールアミン、N-エチルエタノールアミン、ジエチルアミンおよびモルホリンが挙げられる。 Specific examples of preferred dialkylamines include N-methylethanolamine, N-ethylethanolamine, diethylamine and morpholine.
 上記第三級アミンとしては、例えば、アルキル基の1つ以上の水素原子が置換基で置換されていてもよいトリアルキルアミン、およびアルキル基および/またはアリール基の1つ以上の水素原子が置換基で置換されていてもよいジアルキルモノアリールアミンが挙げられる。 Examples of the tertiary amine include a trialkylamine in which one or more hydrogen atoms of an alkyl group may be substituted with a substituent, and one or more hydrogen atoms in an alkyl group and / or aryl group are substituted. And dialkylmonoarylamine which may be substituted with a group.
 上記トリアルキルアミンを構成するアルキル基は、上記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19の直鎖状アルキル基、炭素数3~19の分枝状アルキル基、または炭素数3~7の環状アルキル基が好ましい。また、トリアルキルアミンの3つのアルキル基の種類は、同一であってもよいし、2つが同一であってもよいし、3つが互いに相違してもよい。すなわち、3つのアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよいし、一部だけが異なっていてもよい。 The alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear alkyl group having 1 to 19 carbon atoms, a branched alkyl group having 3 to 19 carbon atoms, Alternatively, a cyclic alkyl group having 3 to 7 carbon atoms is preferable. Moreover, the types of the three alkyl groups of the trialkylamine may be the same, two may be the same, or three may be different from each other. That is, all of the three alkyl groups may be the same, all may be different, or only a part may be different.
 上記トリアルキルアミンとしては、例えば、トリエチルアミン、N,N-ジメチル-n-オクタデシルアミン、N,N-ジメチルシクロヘキシルアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N-メチルジエタノールアミン、N-メチルモルホリン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリオクチルアミン、トリラウリルアミン、トリステアリルアミン、トリオレイルアミン、トリベンジルアミン、ジオレイルモノエタノールアミン、ジラウリルモノプロパノールアミン、ジオクチルモノエタノールアミン、ジヘキシルモノプロパノールアミン、ジブチルモノプロパノールアミン、オレイルジエタノールアミン、ステアリルジプロパノールアミン、ラウリルジエタノールアミン、オクチルジプロパノールアミン、ブチルジエタノールアミン、ベンジルジエタノールアミン、フェニルジエタノールアミン、トリルジプロパノールアミン、キシリルジエタノールアミン、トリエタノールアミン、およびトリプロパノールアミンが挙げられる。 Examples of the trialkylamine include triethylamine, N, N-dimethyl-n-octadecylamine, N, N-dimethylcyclohexylamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, and N-methyldiethanolamine. , N-methylmorpholine, tripropylamine, tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl monoethanolamine, di Lauryl monopropanolamine, dioctyl monoethanolamine, dihexyl monopropanolamine, dibutyl monopropanolamine, oleyl diethanolamine, stearyl Dipropanolamine, lauryl diethanolamine, octyl dipropanolamine, butyl diethanolamine, benzyl diethanolamine, phenyl diethanolamine, tolyl dipropanolamine, xylyl diethanolamine, triethanolamine, and tri propanolamine.
 特に好ましい第三級アミンとして、下記式(1)で表される第三級アミンが挙げられる。
Figure JPOXMLDOC01-appb-C000003

[式中、RおよびRは、それぞれ独立に、メチル基、エチル基、2-ヒドロキシエチル基および2-メトキシエチル基からなる群から選択され、RおよびRは、それぞれ独立に、水素原子、メチル基およびヒドロキシ基からなる群から選択され、Rは水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分枝状アルキル基、炭素数3~6の環状アルキル基、2-ヒドロキシエチル基、2-メトキシエチル基および2-エトキシエチル基からなる群から選択され、Xはメチレン基、エチレン基およびプロピレン基からなる群から選択される。RおよびRは、同時にヒドロキシ基ではないことが好ましい。]
Particularly preferred tertiary amines include tertiary amines represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003

[Wherein R 1 and R 2 are each independently selected from the group consisting of a methyl group, an ethyl group, a 2-hydroxyethyl group, and a 2-methoxyethyl group, and R 3 and R 4 are each independently R 5 is selected from the group consisting of a hydrogen atom, a methyl group and a hydroxy group, and R 5 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 6 carbon atoms. Selected from the group consisting of a cyclic alkyl group, 2-hydroxyethyl group, 2-methoxyethyl group and 2-ethoxyethyl group, and X is selected from the group consisting of a methylene group, an ethylene group and a propylene group. R 3 and R 4 are preferably not hydroxy groups at the same time. ]
 上記式(1)で表される第三級アミンとしては、例えば、N,N-ジメチルエタノールアミン、N,N-ジメチル-2-メトキシエチルアミン、N,N-ジメチル-2-エトキシエチルアミン、N,N-ジメチル-2-n-プロポキシエチルアミン、N,N-ジメチル-2-イソプロポキシエチルアミン、N,N-ジメチル-2-n-ブトキシエチルアミン、N,N-ジメチル-2-(2-ヒドロキシエチルオキシ)エチルアミン、N,N-ジメチル-2-(2-メトキシエチルオキシ)エチルアミン、N,N-ジメチル-2-(2-エトキシエチルオキシ)エチルアミン、N,N-ジメチル-1,1-ジメチル-2-ヒドロキシエチルアミン、N,N-ジメチル-1,1-ジメチル-2-メトキシエチルアミン、N,N-ジメチル-1,1-ジメチル-2-エトキシエチルアミン、N,N-ジメチル-3-ヒドロキシプロピルアミン、N,N-ジメチル-3-メトキシプロピルアミン、N,N-ジメチル-3-エトキシプロピルアミン、N,N-ジメチル-3-イソプロポキシプロピルアミン、N,N-ジメチル-3-n-ブトキシプロピルアミンおよびN,N-ジメチル-2-ヒドロキシエタノールアミン(N,N-ジメチル-1,2-ジヒドロキシエチルアミン)が挙げられる。 Examples of the tertiary amine represented by the above formula (1) include N, N-dimethylethanolamine, N, N-dimethyl-2-methoxyethylamine, N, N-dimethyl-2-ethoxyethylamine, N, N-dimethyl-2-n-propoxyethylamine, N, N-dimethyl-2-isopropoxyethylamine, N, N-dimethyl-2-n-butoxyethylamine, N, N-dimethyl-2- (2-hydroxyethyloxy ) Ethylamine, N, N-dimethyl-2- (2-methoxyethyloxy) ethylamine, N, N-dimethyl-2- (2-ethoxyethyloxy) ethylamine, N, N-dimethyl-1,1-dimethyl-2 -Hydroxyethylamine, N, N-dimethyl-1,1-dimethyl-2-methoxyethylamine, N, N-dimethyl-1, -Dimethyl-2-ethoxyethylamine, N, N-dimethyl-3-hydroxypropylamine, N, N-dimethyl-3-methoxypropylamine, N, N-dimethyl-3-ethoxypropylamine, N, N-dimethyl- Examples include 3-isopropoxypropylamine, N, N-dimethyl-3-n-butoxypropylamine and N, N-dimethyl-2-hydroxyethanolamine (N, N-dimethyl-1,2-dihydroxyethylamine).
 これらのうちでも、特に、下記式(2)で表されるN,N-ジメチル-2-ヒドロキシエタノールアミン(N,N-ジメチル-1,2-ジヒドロキシエチルアミン)が好ましい。
Figure JPOXMLDOC01-appb-C000004
Among these, N, N-dimethyl-2-hydroxyethanolamine (N, N-dimethyl-1,2-dihydroxyethylamine) represented by the following formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000004
〈ポリマーバインダ〉
 本発明の導電膜形成用組成物は、さらに、ポリマーバインダを含んでもよい。ポリマーバインダとしては、1種類または2種類以上の高分子化合物を使用することができる。ポリマーバインダは、形成される導電膜において、金属銅と基材との密着を助けるプライマーとしての役割を果たす。
<Polymer binder>
The composition for forming a conductive film of the present invention may further contain a polymer binder. As the polymer binder, one type or two or more types of polymer compounds can be used. The polymer binder serves as a primer that assists the adhesion between the metallic copper and the base material in the conductive film to be formed.
 ポリマーバインダとしては、例えば、セルロース樹脂、アクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、エポキシ樹脂、ロジン配合物、およびビニル系ポリマー等が好適に挙げられる。ビニル系ポリマーとしては、例えば、ポリビニルピロリドンおよびポリビニルアルコールが挙げられる。 Suitable examples of the polymer binder include cellulose resin, acrylic resin, polyester resin, polyolefin resin, polyurethane resin, epoxy resin, rosin compound, and vinyl polymer. Examples of the vinyl polymer include polyvinyl pyrrolidone and polyvinyl alcohol.
 ポリマーバインダの導電膜形成用組成物中の含有量は、金属銅と基材との密着を助けるプライマーとしての役割を果たすことができ、かつ、形成される導電膜の導電性を悪化させない程度であれば、特に限定されない。具体的には、ポリマーバインダの含有量は、銅フィラー、銅ナノ粒子およびギ酸銅錯体の合計質量に対して、2~8質量%が好ましく、2~6質量%がより好ましい。ポリマーバインダと金属銅とは相分離状態を形成しやすいため、過剰量のポリマーバインダを含有すると、金属銅が相互に独立したドメイン(領域)を形成しやすく、導電性を悪化させるおそれがある。 The content of the polymer binder in the composition for forming a conductive film can serve as a primer that assists the adhesion between the metallic copper and the base material, and does not deteriorate the conductivity of the formed conductive film. If there is, it will not be specifically limited. Specifically, the content of the polymer binder is preferably 2 to 8% by mass and more preferably 2 to 6% by mass with respect to the total mass of the copper filler, copper nanoparticles and copper formate complex. Since the polymer binder and the metallic copper are likely to form a phase separation state, when an excessive amount of the polymeric binder is contained, the metallic copper tends to form domains (regions) independent of each other, and the conductivity may be deteriorated.
〈低分子アミン〉
 本発明の導電膜形成用樹脂組成物は、さらに、低分子アミンを含んでもよい。酸化銅(II)は水に溶けないが、水および低分子アミンの存在下で、銅(II)イオン1個にアミンが4分子配位した銅-アミン錯体を形成し水溶化する。この反応により、銅フィラーおよび銅ナノ粒子表面の酸化銅が水溶化され、粒子表面から除去される。その結果、得られる導電膜の導電性および密着性が向上する。
<Low molecular amine>
The resin composition for forming a conductive film of the present invention may further contain a low molecular amine. Copper (II) oxide does not dissolve in water, but in the presence of water and a low molecular amine, a copper-amine complex in which four molecules of amine are coordinated to one copper (II) ion is formed and water-solubilized. By this reaction, the copper filler and the copper oxide on the surface of the copper nanoparticles are water-solubilized and removed from the particle surface. As a result, the conductivity and adhesion of the resulting conductive film are improved.
 低分子アミンは、形成される導電膜中に残存すると導電性および密着性を低下させるおそれがあるため、焼成時に揮発または分解して、形成される導電膜中に残存しないことが好ましい。このため、低分子アミンの沸点または分解温度は、焼成温度以下であることが好ましい。また、常温で気体または液体であることが好ましく、導電性ペーストの製造がより容易になるという観点から、液体であることがより好ましい。 When the low molecular amine remains in the conductive film to be formed, the conductivity and adhesion may be lowered. Therefore, it is preferable that the low molecular amine volatilizes or decomposes during firing and does not remain in the formed conductive film. For this reason, it is preferable that the boiling point or decomposition temperature of a low molecular amine is below a calcination temperature. Moreover, it is preferable that it is a gas or a liquid at normal temperature, and it is more preferable that it is a liquid from a viewpoint that manufacture of an electrically conductive paste becomes easier.
 低分子アミンの沸点または分解温度は、250℃以下が好ましく、200℃以下がより好ましく、150℃以下がさらに好ましい。また、常温(20±15℃、JIS Z 8703:1983)で気体または液体であってもよい。 The boiling point or decomposition temperature of the low molecular amine is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 150 ° C. or lower. Further, it may be a gas or a liquid at normal temperature (20 ± 15 ° C., JIS Z 8703: 1983).
 低分子アミンは、第一級アミン、第二級アミンまたは第三級アミンのいずれであってもよく、上述したギ酸銅錯体の配位子となり得るアミンも使用することができる。低分子アミンとしては、具体的には、例えば、エチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、N,N-ジメチル-エタノールアミン、N,N-ジエチル-エタノールアミン、2-ジメチルアミノ-2-メチル-1-プロパノール等が挙げられる。 The low molecular amine may be a primary amine, a secondary amine or a tertiary amine, and an amine that can be a ligand of the copper formate complex described above can also be used. Specific examples of the low molecular amine include, for example, ethylamine, dimethylamine, diethylamine, dipropylamine, trimethylamine, triethylamine, tripropylamine, N, N-dimethyl-ethanolamine, N, N-diethyl-ethanolamine, And 2-dimethylamino-2-methyl-1-propanol.
 低分子アミンは、配位子としてギ酸銅錯体に含まれるアミンと同じ種類のアミンであってもよいし、異なる種類のアミンであってもよいが、異なる種類のアミンであることが好ましく、ギ酸銅錯体に配位しているアミンよりも沸点または分解温度が低いアミンであることがより好ましい。本発明の導電膜形成用組成物を焼成する際に揮発または分解して、形成される導電膜中に出来る限り残存しないことが好ましいからである。 The low molecular amine may be the same type of amine as the amine contained in the copper formate complex as a ligand, or may be a different type of amine, but is preferably a different type of amine. It is more preferable that the amine has a boiling point or a decomposition temperature lower than that of the amine coordinated with the copper complex. This is because when the composition for forming a conductive film of the present invention is baked, it is preferably volatilized or decomposed so as not to remain as much as possible in the formed conductive film.
 低分子アミンの導電膜形成用組成物中の含有量は、特に限定されないが、銅フィラーおよび銅ナノ粒子の合計質量に対して1~15質量%が好ましく、1~10質量%がより好ましい。この範囲内であると、低分子アミンによる銅ナノ粒子および銅フィラーの表面の酸化銅を溶解する効果が十分に発揮されて導電性が向上し、かつ、形成される導電膜の密着性を悪化させない。 The content of the low molecular amine in the composition for forming a conductive film is not particularly limited, but is preferably 1 to 15% by mass and more preferably 1 to 10% by mass with respect to the total mass of the copper filler and the copper nanoparticles. Within this range, the effect of dissolving the copper nanoparticles on the surface of the copper nanoparticles and the copper filler by the low molecular amine is sufficiently exerted to improve the conductivity, and the adhesion of the formed conductive film is deteriorated. I won't let you.
〈カルボン酸〉
 本発明の導電膜形成用組成物は、さらに、カルボン酸を含んでもよい。カルボン酸としては、モノカルボン酸、ポリカルボン酸のいずれも使用できる。ポリカルボン酸としては、ジカルボン酸またはトリカルボン酸が好ましい。
<carboxylic acid>
The composition for forming a conductive film of the present invention may further contain a carboxylic acid. As the carboxylic acid, either monocarboxylic acid or polycarboxylic acid can be used. As the polycarboxylic acid, dicarboxylic acid or tricarboxylic acid is preferable.
 上記モノカルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタエン酸、乳酸、ピルビン酸等が挙げられる。また、上記ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、リンゴ酸等が挙げられる。また、上記トリカルボン酸としては、例えば、プロパン-1,2,3-トリカルボン酸、クエン酸(2-ヒドロキシプロパン-1,2,3-トリカルボン酸)、イソクエン酸(1-ヒドロキシプロパン-1,2-3-トリカルボン酸)等が挙げられる。カルボン酸は1種類を単独で、または2種類以上を組み合わせて使用することができる。 Examples of the monocarboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearin, Examples include oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, lactic acid, and pyruvic acid. Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, malic acid, and the like. Examples of the tricarboxylic acid include propane-1,2,3-tricarboxylic acid, citric acid (2-hydroxypropane-1,2,3-tricarboxylic acid), and isocitric acid (1-hydroxypropane-1,2). -3-tricarboxylic acid) and the like. Carboxylic acid can be used individually by 1 type or in combination of 2 or more types.
 カルボン酸としては、ギ酸、マレイン酸およびクエン酸からなる群から選択される少なくとも1つが好ましく、ギ酸、マレイン酸およびクエン酸から選択されるいずれか1つがより好ましい。 The carboxylic acid is preferably at least one selected from the group consisting of formic acid, maleic acid and citric acid, and more preferably any one selected from formic acid, maleic acid and citric acid.
 本発明の導電膜形成用組成物がカルボン酸を含有する場合には、耐酸化性に優れ、かつ焼結しやすい導電膜形成用組成物を得ることができる。カルボン酸は、銅フィラーおよび銅ナノ粒子の表面の酸化物皮膜を分解・除去するものと考えられる。このため、本発明の導電膜形成用組成物にあっては、カルボン酸を含むことによって、形成される導電膜の体積抵抗率をさらに低下させることができる。 When the composition for forming a conductive film of the present invention contains a carboxylic acid, a composition for forming a conductive film that is excellent in oxidation resistance and easy to sinter can be obtained. Carboxylic acid is considered to decompose and remove the oxide film on the surface of the copper filler and copper nanoparticles. For this reason, in the composition for electrically conductive film formation of this invention, the volume resistivity of the electrically conductive film formed can further be reduced by containing carboxylic acid.
 カルボン酸の導電膜形成用組成物中の含有量は、特に限定されないが、銅フィラーおよび銅ナノ粒子の合計質量に対して1~15質量%が好ましく、3~15質量%がより好ましく、3~10質量%がさらに好ましい。この範囲内であると、カルボン酸による銅ナノ粒子および銅フィラーの表面の酸化物皮膜を除去する効果が十分に発揮されて導電性が向上し、かつ、形成される導電膜の密着性を悪化させない。 The content of the carboxylic acid in the composition for forming a conductive film is not particularly limited, but is preferably 1 to 15% by mass, more preferably 3 to 15% by mass with respect to the total mass of the copper filler and the copper nanoparticles. More preferred is 10% by mass. Within this range, the effect of removing the oxide film on the surface of the copper nanoparticles and copper filler by the carboxylic acid is sufficiently exerted to improve the conductivity, and the adhesion of the formed conductive film is deteriorated. I won't let you.
 なお、本発明においては、水素化銅ナノ粒子を製造する工程(前記工程(b))においてもカルボン酸を使用する場合があり、この場合、前記工程(b)で使用するカルボン酸は、導電膜形成用組成物を製造する際に使用されるカルボン酸を兼ねてもよい。
 カルボン酸は、工程(b)では水溶性であることが求められ、導電膜形成用組成物の製造工程では、銅ナノ粒子や銅フィラーの酸化抑制およびポリマーバインダ中での分散性改善に寄与するものと考えられる。この両方の特性を満たすカルボン酸であれば、工程(b)で使用したカルボン酸を含む本発明の導電膜形成用組成物に、改めて他のカルボン酸を混合することなく、ポリマーバインダと混合して、本発明の導電膜形成用組成物を調製してもよい。
 ただし、一般的には、工程(b)で用いるカルボン酸と導電膜形成用組成物の製造工程で用いるカルボン酸とは、異なるものを選択することが好ましい。具体的には、工程(b)では還元作用を有するギ酸を用い、導電膜形成用組成物の製造工程では炭素数4~20の炭化水素基を有する脂肪族カルボン酸を用いることが好ましい。
In the present invention, carboxylic acid may be used also in the step of producing copper hydride nanoparticles (the step (b)). In this case, the carboxylic acid used in the step (b) is a conductive material. You may serve as the carboxylic acid used when manufacturing the film forming composition.
The carboxylic acid is required to be water-soluble in the step (b), and contributes to the suppression of oxidation of the copper nanoparticles and the copper filler and the improvement of the dispersibility in the polymer binder in the manufacturing process of the conductive film forming composition. It is considered a thing. If the carboxylic acid satisfies both of these characteristics, the composition for forming a conductive film of the present invention containing the carboxylic acid used in the step (b) is mixed with a polymer binder without mixing another carboxylic acid. Then, the composition for forming a conductive film of the present invention may be prepared.
However, in general, it is preferable to select different carboxylic acid used in the step (b) and carboxylic acid used in the manufacturing process of the conductive film forming composition. Specifically, formic acid having a reducing action is preferably used in the step (b), and an aliphatic carboxylic acid having a hydrocarbon group having 4 to 20 carbon atoms is preferably used in the manufacturing process of the conductive film forming composition.
〈溶媒・分散媒〉
 本発明の導電膜形成用組成物は溶媒または分散媒(以下、単に「溶媒」という。)を含有して、導電性ペーストまたは銅ペーストとしてもよい。
 溶媒は、銅フィラーおよび銅ナノ粒子、または銅ナノ粒子被覆銅フィラーの分散媒として機能し、ギ酸銅錯体を溶解するものであれば特に制限されない。
 溶媒としては、例えば、水や、アルコール類、エーテル類、エステル類などの有機溶媒などを使用することができる。なかでも、ギ酸銅錯体、銅フィラーおよび銅ナノ粒子との相溶性がより優れる点から、水、1~3価のヒドロキシ基を有する脂肪族アルコール、この脂肪族アルコール由来のアルキルエーテル、この脂肪族アルコール由来のアルキルエステル、またはこれらの混合物が好ましく用いられる。
<Solvent / Dispersion medium>
The composition for forming a conductive film of the present invention may contain a solvent or a dispersion medium (hereinafter simply referred to as “solvent”) to form a conductive paste or a copper paste.
A solvent will not be restrict | limited especially if it functions as a dispersion medium of a copper filler and copper nanoparticle, or a copper nanoparticle covering copper filler, and melt | dissolves a copper formate complex.
As the solvent, for example, water, organic solvents such as alcohols, ethers, and esters can be used. Among them, water, monohydric alcohol having 1 to 3 hydroxy groups, alkyl ethers derived from these aliphatic alcohols, aliphatic groups, because of their better compatibility with copper formate complexes, copper fillers and copper nanoparticles. Alkyl esters derived from alcohols or mixtures thereof are preferably used.
 溶媒として、水を用いる場合には、イオン交換水のレベルの純度を有するものが好ましい。
 1~3価のヒドロキシ基を有する脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、シクロヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、グリシドール、メチルシクロヘキサノール、2-メチル-1-ブタノール、3-メチル-2-ブタノール、4-メチル-2-ペンタノール、イソプロピルアルコール、2-エチルブタノール、2-エチルヘキサノール、2-オクタノール、テルピネオール、ジヒドロテルピネオール、2-メトキシエタノール、2-エトキシエタノール、2-n-ブトキシエタノール、カルビトール、エチルカルビトール、n-ブチルカルビトール、ジアセトンアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、トリメチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ペンタメチレングリコール、へキシレングリコール、グリセリン等が挙げられる。
 なかでも、1~3価のヒドロキシ基を有する炭素数1~6の脂肪族アルコールは、沸点が高すぎず導電膜形成後に残存しにくいことから好ましく、具体的には、メタノール、エチレングリコール、グリセリン、2-メトキシエタノール、ジエチレングリコール、イソプロピルアルコールがより好ましい。
When water is used as the solvent, one having a level of purity of ion-exchanged water is preferable.
Examples of aliphatic alcohols having 1 to 3 valent hydroxy groups include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol and 1-nonanol. 1-decanol, glycidol, methylcyclohexanol, 2-methyl-1-butanol, 3-methyl-2-butanol, 4-methyl-2-pentanol, isopropyl alcohol, 2-ethylbutanol, 2-ethylhexanol, 2 -Octanol, terpineol, dihydroterpineol, 2-methoxyethanol, 2-ethoxyethanol, 2-n-butoxyethanol, carbitol, ethyl carbitol, n-butyl carbitol, diacetone alcohol, ethylene glycol Diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, trimethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, pentamethylene glycol, Examples include hexylene glycol and glycerin.
Among these, aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxy groups are preferable because they have a boiling point that is not too high and hardly remain after forming a conductive film. Specifically, methanol, ethylene glycol, glycerol 2-methoxyethanol, diethylene glycol, and isopropyl alcohol are more preferable.
 エーテル類としては、上記アルコール由来のアルキルエーテルが挙げられ、ジエチルエーテル、ジイソブチルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、メチルシクロヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等が例示される。なかでも、1~3価のヒドロキシ基を有する炭素数1~4の脂肪族アルコール由来の炭素数2~8のアルキルエーテルが好ましく、具体的には、ジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフランがより好ましい。 Examples of ethers include alkyl ethers derived from the above alcohols, such as diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, methyl cyclohexyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl. Examples include ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like. Of these, alkyl ethers having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxy groups are preferred. Specifically, diethyl ether, diethylene glycol dimethyl ether and tetrahydrofuran are more preferred.
 エステル類としては、上記アルコール由来のアルキルエステルが挙げられ、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、γ-ブチロラクトン等が例示される。なかでも、1~3価のヒドロキシ基を有する炭素数1~4の脂肪族アルコール由来の炭素数2~8のアルキルエステルが好ましく、具体的には、ギ酸メチル、ギ酸エチル、酢酸メチルがより好ましい。 Examples of the esters include alkyl esters derived from the above alcohols, such as methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, and γ-butyrolactone. Illustrated. Of these, alkyl esters having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxy groups are preferred, and specifically methyl formate, ethyl formate, and methyl acetate are more preferred. .
 上記溶媒の中でも、沸点が高すぎないことから、特に水を主溶媒として用いることが好ましい。主溶媒とは、溶媒の中で含有率が最も多い溶媒である。 Among the above solvents, it is particularly preferable to use water as the main solvent because the boiling point is not too high. The main solvent is a solvent having the highest content in the solvent.
〈その他成分〉
 本発明の導電膜形成用組成物には、上記したもの以外にも他の成分が含まれていてもよい。
 例えば、導電膜形成用組成物には、界面活性剤が含まれていてもよい。界面活性剤は、酸化銅粒子の分散性を向上させる役割を果たす。界面活性剤の種類は特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられる。これら界面活性剤は、1種を単独、または2種以上を混合して用いることができる。
<Other ingredients>
The composition for forming a conductive film of the present invention may contain other components in addition to those described above.
For example, the composition for forming a conductive film may contain a surfactant. The surfactant plays a role of improving the dispersibility of the copper oxide particles. The type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.
[導電膜形成用組成物の製造方法]
 本発明の導電膜形成用組成物の製造方法は特に制限されず、公知の方法を採用できる。例えば、溶媒中に銅フィラーおよび銅ナノ粒子、または銅ナノ粒子被覆銅フィラーと、ギ酸銅錯体と、所望により、低分子アミン、ポリマーバインダ、脂肪族カルボン酸等を添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって、組成物を得ることができる。
[Method for producing conductive film-forming composition]
The manufacturing method in particular of the composition for electrically conductive film formation of this invention is not restrict | limited, A well-known method is employable. For example, after adding a copper filler and a copper nanoparticle, or a copper nanoparticle-coated copper filler, a copper formate complex, and a low molecular amine, a polymer binder, an aliphatic carboxylic acid, etc. in a solvent, an ultrasonic method ( For example, the composition can be obtained by dispersing the components by known means such as an ultrasonic homogenizer, a mixer method, a three-roll method, or a ball mill method.
[導電膜の製造方法]
 本発明の導電膜の製造方法は、上述した導電膜形成用組成物を基材上に付与して、塗膜を形成する塗膜形成工程と、前記塗膜に対して加熱処理および/または光照射処理を行い、導電膜を形成する導電膜形成工程とを備える。以下に、それぞれの工程について詳述する。
[Method for producing conductive film]
The manufacturing method of the electrically conductive film of this invention provides the coating film formation process which provides the composition for electrically conductive film formation mentioned above on a base material, and forms a coating film, and heat processing and / or light with respect to the said coating film A conductive film forming step of performing irradiation treatment and forming a conductive film. Below, each process is explained in full detail.
(塗膜形成工程)
 本工程は、上述した導電膜形成用組成物を基材上に付与して、塗膜を形成する工程である。本工程により還元処理が施される前の前駆体膜が得られる。
 使用される導電膜形成用組成物については、上述の通りである。
(Coating film formation process)
This step is a step of forming a coating film by applying the above-described composition for forming a conductive film on a substrate. The precursor film before the reduction treatment is obtained in this step.
The conductive film forming composition used is as described above.
 本工程で使用される基材としては、公知のものを用いることができる。基材に使用される材料としては、例えば、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属酸化物、金属窒化物、木材、またはこれらの複合物が挙げられる。
 より具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート)、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体基材;CdS、CdTe、GaAs等の化合物半導体基材;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂、ガラス布-ポリイミド系樹脂、ガラス布-フッ素樹脂等のガラス-樹脂複合物等の複合基材等が挙げられる。これらの中でも、ポリエステル樹脂基材、ポリエーテルイミド樹脂基材、紙基材、ガラス基材が好ましく使用される。
A well-known thing can be used as a base material used at this process. Examples of the material used for the substrate include resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitride, wood, or a composite thereof.
More specifically, low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate), polyacetal resin, polysulfone resin, polyetherimide resin, polyether ketone Resin base materials such as resin and cellulose derivatives; uncoated printing paper, fine coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper ( Paper substrates such as double kraft paper for heavy bags, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated balls, chip balls, corrugated cardboard; soda glass, borosilicate glass, silica glass, Glass substrates such as quartz glass; silicon-based semiconductor substrates such as amorphous silicon and polysilicon; Compound semiconductor substrates such as dS, CdTe, GaAs; metal substrates such as copper plate, iron plate, aluminum plate; alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc) Oxides), Nesa (tin oxide), ATO (antimony-doped tin oxide), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), gallium-doped zinc oxide, aluminum nitride substrate, silicon carbide, and other inorganic materials Substrate: Paper-phenolic resin, paper-epoxy resin, paper-polyester resin and other paper-resin composite, glass cloth-epoxy resin, glass cloth-polyimide resin, glass cloth-fluorine resin-glass-resin composite And the like, and the like. Among these, a polyester resin base material, a polyetherimide resin base material, a paper base material, and a glass base material are preferably used.
 導電膜形成用組成物を基材上に付与する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布法が挙げられる。
 塗布の形状は特に制限されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
 基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚は0.01~5000μmが好ましく、0.1~1000μmがより好ましい。
The method for applying the conductive film forming composition onto the substrate is not particularly limited, and a known method can be adopted. For example, coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
The shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
The coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film. Usually, the film thickness of the coating film is preferably 0.01 to 5000 μm, 0.1 to 1000 μm is more preferable.
 本工程においては、必要に応じて、導電膜形成用組成物を基材へ塗布した後に乾燥処理を行い、溶媒を除去してもよい。残存する溶媒を除去することにより、後述する導電膜形成工程において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、導電膜の導電性および導電膜と基材との密着性の点で好ましい。
 乾燥処理の方法としては温風乾燥機などを用いることができ、温度としては、40℃~200℃で加熱処理を行うことが好ましく、50℃以上150℃未満で加熱処理を行なうことがより好ましく、70℃~120℃で加熱処理を行うことがさらに好ましい。本発明では金属銅を用いるため、酸化を抑制するような条件が好ましく、例えば窒素、アルゴンなどの不活性ガス雰囲気下がより好ましく、水素等の還元性ガス雰囲気下で乾燥することがさらに好ましい。
In this step, if necessary, the conductive film-forming composition may be applied to the substrate and then dried to remove the solvent. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the conductive film forming step described later. It is preferable in terms of adhesion.
As a method for the drying treatment, a hot air dryer or the like can be used. The temperature is preferably 40 to 200 ° C., more preferably 50 to 150 ° C. More preferably, the heat treatment is performed at 70 ° C. to 120 ° C. Since metal copper is used in the present invention, conditions that suppress oxidation are preferable, for example, an inert gas atmosphere such as nitrogen or argon is more preferable, and drying is preferably performed in a reducing gas atmosphere such as hydrogen.
(導電膜形成工程)
 本工程は、上記塗膜形成工程で形成された塗膜に対して加熱処理および/または光照射処理を行い、金属銅を含有する導電膜を形成する工程である。
 加熱処理および/または光照射処理を行うことにより、上記ギ酸銅錯体中の銅(II)が銅(0)に還元される。
 より具体的には、例えば、上記処理を実施することにより、ギ酸銅錯体から生成した金属銅と銅フィラーおよび/または銅ナノ粒子とが互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して薄膜を形成する。
(Conductive film formation process)
This step is a step of forming a conductive film containing metallic copper by performing heat treatment and / or light irradiation treatment on the coating film formed in the coating film forming step.
By performing the heat treatment and / or the light irradiation treatment, copper (II) in the copper formate complex is reduced to copper (0).
More specifically, for example, by performing the above-described treatment, the copper metal produced from the copper formate complex and the copper filler and / or the copper nanoparticles are fused together to form grains, and the grains are bonded to each other. -Form a thin film by fusing.
 加熱処理の条件は、使用されるギ酸銅錯体や溶媒の種類によって適宜最適な条件が選択される。なかでも、短時間で、導電性により優れる導電膜を形成することができる点で、加熱温度は100~400℃が好ましく、250~400℃がより好ましく、また、加熱時間は5~120分が好ましく、5~60分がより好ましい。
 なお、加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。
 本発明では、比較的低温の加熱処理により導電膜の形成が可能であり、従って、プロセスコストが安いという利点を有する。
As the conditions for the heat treatment, optimum conditions are appropriately selected according to the type of the copper formate complex and the solvent used. Among them, the heating temperature is preferably 100 to 400 ° C., more preferably 250 to 400 ° C., and the heating time is 5 to 120 minutes in that a conductive film having superior conductivity can be formed in a short time. 5 to 60 minutes is more preferable.
The heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
In the present invention, the conductive film can be formed by heat treatment at a relatively low temperature, and therefore, the process cost is low.
 光照射処理は、上述した加熱処理とは異なり、室温にて塗膜が付与された部分に対して光を短時間照射することで金属銅への還元および焼結が可能となり、長時間の加熱による基材の劣化が起こらず、導電膜の基材との密着性がより良好となる。 Unlike the heat treatment described above, the light irradiation treatment can reduce and sinter to metallic copper by irradiating light on the portion to which the coating film is applied at room temperature for a short time, and heating for a long time. The base material does not deteriorate due to, and the adhesion of the conductive film to the base material becomes better.
 光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
The light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
 光照射は、フラッシュランプによる光照射が好ましく、フラッシュランプによるパルス光照射であることがより好ましい。高エネルギーのパルス光の照射は、塗膜を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、基材への熱の影響を極めて小さくすることができる。
 パルス光の照射エネルギーとしては、1~100J/cmが好ましく、1~30J/cmがより好ましく、パルス幅としては1μ秒~100m秒が好ましく、10μ秒~10m秒がより好ましい。パルス光の照射時間は、1~100m秒が好ましく、1~50m秒がより好ましく、1~20m秒が更に好ましい。
The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
The irradiation energy of the pulse light is preferably 1 ~ 100J / cm 2, more preferably 1 ~ 30J / cm 2, preferably from 1μ sec ~ 100 m sec as a pulse width, and more preferably 10μ sec ~ 10 m sec. The irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
 上記加熱処理および光照射処理は、単独で実施してもよく、両者を同時に実施してもよい。また、一方の処理を施した後、さらに他方の処理を施してもよい。 The above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
 上記加熱処理および光照射処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。 The atmosphere in which the heat treatment and the light irradiation treatment are performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere. The inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen, and the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. It refers to the atmosphere.
(導電膜)
 上記工程を実施することにより、金属銅を含有する導電膜(銅膜)が得られる。
 導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましい。
 なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
(Conductive film)
By carrying out the above steps, a conductive film (copper film) containing metallic copper is obtained.
The film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 μm is preferable and 0.1 to 100 μm is more preferable from the viewpoint of printed wiring board use.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
 導電膜の密着性は、従来公知の方法により評価することができるが、例えば、Hの鉛筆を用いて、荷重750g±10gで、JIS K 5600-5-4:1999「引っかき硬度(鉛筆法)」の試験方法に準拠して行うことが好ましい。この場合には、引掻き試験を10回繰り返して行い、引掻き時の傷発生が10回中6回以下であるものが好ましく、5回以下であるものがより好ましく、2回以下であるものがさらに好ましい。 The adhesion of the conductive film can be evaluated by a conventionally known method. For example, using a pencil of H and a load of 750 g ± 10 g, JIS K 5600-5-4: 1999 “scratch hardness (pencil method) It is preferable to carry out in accordance with the test method. In this case, the scratching test is repeated 10 times, and scratching at the time of scratching is preferably 6 times or less, more preferably 5 times or less, and more preferably 2 times or less. preferable.
 導電膜の体積抵抗値は、導電特性の点から、1.0×10-1Ωcm以下が好ましく、1.0×10-3Ωcm以下がより好ましく、5.0×10-4Ωcm以下がさらに好ましい。
 体積抵抗値は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。
The volume resistance value of the conductive film is preferably 1.0 × 10 −1 Ωcm or less, more preferably 1.0 × 10 −3 Ωcm or less, and even more preferably 5.0 × 10 −4 Ωcm or less from the viewpoint of conductive characteristics. preferable.
The volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the conductive film by the four-probe method.
 導電膜は基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
 パターン状の導電膜を得る方法としては、上記導電膜形成用組成物をパターン状に基材に付与して、上記加熱処理および/または光照射処理を行う方法や、基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
 エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
The conductive film may be provided on the entire surface of the base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method of obtaining a patterned conductive film, the above-mentioned composition for forming a conductive film was applied to a substrate in a pattern, and the above heat treatment and / or light irradiation treatment was performed, or the entire surface of the substrate was provided. For example, a method of etching the conductive film in a pattern may be used.
The etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
 パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。 When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
 絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、ガラスエポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
 これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
The material of the insulating film is not particularly limited. For example, epoxy resin, glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
 また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。 The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired. As the solder resist, commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
 上記で得られた導電膜を有する基材(導電膜付き基材)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。 The base material (base material with a conductive film) having the conductive film obtained above can be used for various applications. For example, a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
 以下、実施例により、本発明についてさらに具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
(合成例1:ギ酸銅錯体1の合成)
 1L容ナスフラスコに、メタノール(100mL)と、ギ酸銅(II)四水和物(11.3g;0.05mol)とを加え、懸濁液を作製した。その懸濁液に、N,N-ジメチル-1,2-ジヒドロキシエチルアミン(下記式参照、以下「アミンA」という場合がある。)(11.9g;0.11mol)を加え、室温で1時間撹拌した。得られた溶液を減圧留去して、ギ酸銅錯体(22g)を得た。このギ酸銅錯体を「ギ酸銅錯体1」という。
Figure JPOXMLDOC01-appb-C000005
(Synthesis Example 1: Synthesis of copper formate complex 1)
To a 1 L eggplant flask, methanol (100 mL) and copper (II) formate tetrahydrate (11.3 g; 0.05 mol) were added to prepare a suspension. To the suspension was added N, N-dimethyl-1,2-dihydroxyethylamine (refer to the following formula, hereinafter sometimes referred to as “amine A”) (11.9 g; 0.11 mol), and 1 hour at room temperature. Stir. The obtained solution was distilled off under reduced pressure to obtain a copper formate complex (22 g). This copper formate complex is referred to as “copper formate complex 1”.
Figure JPOXMLDOC01-appb-C000005
(合成例2:ギ酸銅錯体2の合成)
 アミンAの添加量を11.9g(0.11mol)から6.0g(0.057mol)に変更した点を除き、合成例1と同様にして、ギ酸銅錯体(17.5g)を得た。このギ酸銅錯体を「ギ酸銅錯体2」という。
(Synthesis Example 2: Synthesis of copper formate complex 2)
A copper formate complex (17.5 g) was obtained in the same manner as in Synthesis Example 1 except that the amount of amine A added was changed from 11.9 g (0.11 mol) to 6.0 g (0.057 mol). This copper formate complex is referred to as “copper formate complex 2”.
(合成例3:ギ酸銅錯体3の合成)
 アミンAの添加量を11.9g(0.11mol)から9.0g(0.086mol)に変更した点を除き、合成例1と同様にして、ギ酸銅錯体(20.4g)を得た。このギ酸銅錯体を「ギ酸銅錯体3」という。
(Synthesis Example 3: Synthesis of Copper Formate Complex 3)
A copper formate complex (20.4 g) was obtained in the same manner as in Synthesis Example 1 except that the amount of amine A added was changed from 11.9 g (0.11 mol) to 9.0 g (0.086 mol). This copper formate complex is referred to as “copper formate complex 3”.
(合成例4:ギ酸銅錯体4の合成)
 アミンAの添加量を11.9g(0.11mol)から15.0g(0.14mol)に変更した点を除き、合成例1と同様にして、ギ酸銅錯体(25.8g)を得た。このギ酸銅錯体を「ギ酸銅錯体4」という。
(Synthesis Example 4: Synthesis of Copper Formate Complex 4)
A copper formate complex (25.8 g) was obtained in the same manner as in Synthesis Example 1 except that the amount of amine A added was changed from 11.9 g (0.11 mol) to 15.0 g (0.14 mol). This copper formate complex is referred to as “copper formate complex 4”.
(合成例5:ギ酸銅錯体5の合成)
 アミンA(11.9g;0.11mol)に代えてヘキシルアミン(下記式参照、以下「アミンB」という場合がある。)(10.1g;0.1mol)を使用した点を除き、実施例1と同様にして、ギ酸銅錯体(21g)を得た。このギ酸銅錯体を「ギ酸銅錯体5」という。
Figure JPOXMLDOC01-appb-C000006
(Synthesis Example 5: Synthesis of copper formate complex 5)
Example except that hexylamine (refer to the following formula, hereinafter sometimes referred to as “amine B”) (10.1 g; 0.1 mol) was used instead of amine A (11.9 g; 0.11 mol) In the same manner as in Example 1, a copper formate complex (21 g) was obtained. This copper formate complex is referred to as “copper formate complex 5”.
Figure JPOXMLDOC01-appb-C000006
(製造例1:水素化銅ナノ粒子1の製造)
 100mL容三つ口フラスコに、硫酸銅(II)五水和物(5.2g)と、蒸留水(30g)と、ギ酸(3g)とを溶解して、銅イオンを含む水溶液を調製した。調製した水溶液を激しく撹拌しながら、この水溶液に、20℃で、4質量%の水素化ホウ素ナトリウム水溶液(23g)をゆっくり滴下した。滴下終了後、10分間そのまま撹拌を続け、懸濁液を得た。懸濁液中の凝集物を遠心分離法によって沈殿させ、沈殿物を分離した。分離した沈殿物を2-プロパノール(30g)に再分散させた後、遠心分離法によって凝集物を沈殿させ、沈殿物を分離し、水素化銅ナノ粒子(水素化銅ナノ粒子1)を得た。
(Production Example 1: Production of copper hydride nanoparticles 1)
Copper (II) sulfate pentahydrate (5.2 g), distilled water (30 g), and formic acid (3 g) were dissolved in a 100 mL three-necked flask to prepare an aqueous solution containing copper ions. While the prepared aqueous solution was vigorously stirred, a 4 mass% aqueous sodium borohydride solution (23 g) was slowly added dropwise to the aqueous solution at 20 ° C. After completion of the dropwise addition, stirring was continued for 10 minutes to obtain a suspension. Aggregates in the suspension were precipitated by centrifugation, and the precipitates were separated. The separated precipitate was redispersed in 2-propanol (30 g), and then the aggregate was precipitated by a centrifugal separation method. The precipitate was separated to obtain copper hydride nanoparticles (copper hydride nanoparticles 1). .
(製造例2:銅ナノ粒子被覆銅フィラー1の製造)
 水素化銅ナノ粒子1(1g)と、銅フィラー(三井金属鉱業社製、1400YP;平均凝集粒子径7μm、凝集粒子径の範囲=3~10μm)(以下「銅フィラー1」という。)(3g)とを、2-プロパノール(20g)に加え、撹拌して、分散液を得た。得られた分散液を-35kPaの減圧下で80℃に加熱し、分散液から2-プロパノールを揮発させて徐々に除去した。このとき、水素化銅ナノ粒子は、金属銅ナノ粒子へと分解(還元)され、銅フィラーの表面が銅ナノ粒子で被覆された導電性フィラー(銅ナノ粒子被覆銅フィラー1)を得た。銅フィラーの表面を被覆する銅ナノ粒子(以下「銅ナノ粒子1」という。)のSEMによって測定された平均凝集粒子径は100nmであった。
(Production Example 2: Production of copper nanoparticle-coated copper filler 1)
Copper hydride nanoparticles 1 (1 g) and copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP; average aggregated particle diameter 7 μm, aggregated particle diameter range = 3 to 10 μm) (hereinafter referred to as “copper filler 1”) (3 g Was added to 2-propanol (20 g) and stirred to obtain a dispersion. The obtained dispersion was heated to 80 ° C. under a reduced pressure of −35 kPa, and 2-propanol was volatilized and gradually removed from the dispersion. At this time, the copper hydride nanoparticles were decomposed (reduced) into metal copper nanoparticles, and a conductive filler (copper nanoparticle-coated copper filler 1) in which the surface of the copper filler was coated with copper nanoparticles was obtained. The average aggregate particle diameter measured by SEM of the copper nanoparticles covering the surface of the copper filler (hereinafter referred to as “copper nanoparticles 1”) was 100 nm.
(製造例3:銅ナノ粒子被覆銅フィラー2の製造)
 水素化銅ナノ粒子1(1g)と、銅フィラー(三井金属鉱業社製、MA-CJF;平均凝集粒子径18μm)(以下「銅フィラー2」という。)(3g)とを、2-プロパノール(20g)に加え、撹拌して、分散液を得た。得られた分散液を-35kPaの減圧下で80℃に加熱し、分散液から2-プロパノールを揮発させて徐々に除去した。このとき、水素化銅ナノ粒子は、金属銅ナノ粒子へと分解(還元)され、銅フィラーの表面が銅ナノ粒子で被覆された導電性フィラー(銅ナノ粒子被覆銅フィラー2)を得た。銅フィラーの表面を被覆する銅ナノ粒子(以下「銅ナノ粒子2」という。)のSEMによって測定された平均凝集粒子径は100nmであった。
(Production Example 3: Production of Copper Nanoparticle-Coated Copper Filler 2)
Copper hydride nanoparticles 1 (1 g) and a copper filler (Mitsui Metal Mining Co., Ltd., MA-CJF; average aggregated particle diameter 18 μm) (hereinafter referred to as “copper filler 2”) (3 g) were mixed with 2-propanol ( 20g) and stirred to obtain a dispersion. The obtained dispersion was heated to 80 ° C. under a reduced pressure of −35 kPa, and 2-propanol was volatilized and gradually removed from the dispersion. At this time, the copper hydride nanoparticles were decomposed (reduced) into metallic copper nanoparticles, and a conductive filler (copper nanoparticle-coated copper filler 2) in which the surface of the copper filler was coated with copper nanoparticles was obtained. The average aggregate particle diameter measured by SEM of the copper nanoparticles (hereinafter referred to as “copper nanoparticles 2”) covering the surface of the copper filler was 100 nm.
(実施例1)
 銅ナノ粒子被覆銅フィラー1(1.0g;銅フィラー1(0.75g)および銅ナノ粒子1(0.25g)を含む。)と、ギ酸銅錯体1(0.25g)と、ポリビニルピロリドン(和光純薬社製、K-60)(0.04g)と、水(0.64g)とを混合し、超音波ホモジナイザーで30分間処理して、銅ペースト(銅ペースト1)を調製した。
 粗面化したガラスエポキシ基板の2cm×2cmの面上に銅ペースト1を20μm厚で塗布し、グローブボックス中(酸素濃度<100ppm)、ホットプレートにて100℃、10分間乾燥した後、アルゴン雰囲気下、300℃で20分間焼結することで銅膜を形成した。形成された銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Example 1)
Copper nanoparticle-coated copper filler 1 (1.0 g; including copper filler 1 (0.75 g) and copper nanoparticle 1 (0.25 g)), copper formate complex 1 (0.25 g), and polyvinylpyrrolidone ( K-60 (0.04 g) manufactured by Wako Pure Chemical Industries, Ltd. and water (0.64 g) were mixed and treated with an ultrasonic homogenizer for 30 minutes to prepare a copper paste (copper paste 1).
Copper paste 1 is applied to a 2 cm × 2 cm surface of a roughened glass epoxy substrate to a thickness of 20 μm, dried in a glove box (oxygen concentration <100 ppm) on a hot plate at 100 ° C. for 10 minutes, and then in an argon atmosphere. A copper film was formed by sintering at 300 ° C. for 20 minutes. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(実施例2)
 銅ナノ粒子被覆銅フィラー1(1.0g)に代えて銅フィラー1(0.75g)および銅ナノ粒子3(イオックス社製、Cu-001;平均凝集粒子径70nm:銅ナノ粒子3)(0.30g)を使用した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Example 2)
Instead of the copper nanoparticle-coated copper filler 1 (1.0 g), the copper filler 1 (0.75 g) and the copper nanoparticle 3 (manufactured by Iox, Cu-001; average aggregate particle diameter 70 nm: copper nanoparticle 3) (0 .30 g) was used, and a copper paste was prepared in the same manner as in Example 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(実施例3)
 ギ酸銅錯体1に代えてギ酸銅錯体5を使用した点を除き、実施例1と同様にして、銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Example 3)
A copper paste was prepared and a copper film was formed in the same manner as in Example 1 except that the copper formate complex 5 was used instead of the copper formate complex 1. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(実施例4)
 ギ酸銅錯体1の配合量を0.25gから0.04gに変更した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
Example 4
A copper paste was prepared in the same manner as in Example 1 except that the blending amount of the copper formate complex 1 was changed from 0.25 g to 0.04 g to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(実施例5)
 ギ酸銅錯体1の配合量を0.25gから0.07gに変更した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Example 5)
A copper paste was prepared in the same manner as in Example 1 except that the amount of the copper formate complex 1 was changed from 0.25 g to 0.07 g to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(実施例6)
 ギ酸銅錯体1の配合量を0.25gから0.12gに変更した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Example 6)
A copper paste was prepared in the same manner as in Example 1 except that the blending amount of the copper formate complex 1 was changed from 0.25 g to 0.12 g to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(実施例7)
 ギ酸銅錯体1の配合量を0.25gから0.50gに変更した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Example 7)
A copper paste was prepared in the same manner as in Example 1 except that the amount of the copper formate complex 1 was changed from 0.25 g to 0.50 g, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(実施例8)
 ギ酸銅錯体1に代えてギ酸銅錯体2を使用した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
 なお、調製した銅ペーストを冷蔵(4℃)で1日保存し、錯体の析出状況を観察したところ、析出が観察された。析出は、この銅ペーストを60℃に加温することで再溶解し、銅膜を形成することができた。
(Example 8)
A copper paste was prepared in the same manner as in Example 1 except that a copper formate complex 2 was used in place of the copper formate complex 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
In addition, when the prepared copper paste was preserve | saved for one day by refrigeration (4 degreeC) and precipitation of the complex was observed, precipitation was observed. Precipitation was re-dissolved by heating the copper paste to 60 ° C., and a copper film could be formed.
(実施例9)
 ギ酸銅錯体1に代えてギ酸銅錯体3を使用した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
 なお、調製した銅ペーストを冷蔵(4℃)で1日保存し、錯体の析出状況を観察したところ、析出が観察された。析出は、この銅ペーストを60℃に加温することで再溶解し、銅膜を形成することができた。
Example 9
A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 3 was used in place of the copper formate complex 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
In addition, when the prepared copper paste was preserve | saved for one day by refrigeration (4 degreeC) and precipitation of the complex was observed, precipitation was observed. Precipitation was re-dissolved by heating the copper paste to 60 ° C., and a copper film could be formed.
(実施例10)
 ギ酸銅錯体1に代えてギ酸銅錯体4を使用した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
 なお、調製した銅ペーストを冷蔵(4℃)で1日保存し、錯体の析出状況を観察したところ、析出が観察されなかった。
(Example 10)
A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 4 was used in place of the copper formate complex 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
In addition, when the prepared copper paste was preserve | saved for one day by refrigeration (4 degreeC) and the precipitation condition of the complex was observed, precipitation was not observed.
(実施例11)
 ポリビニルピロリドン(和光純薬製社製、K-60)の含有量を0.04gから0.02gに変更した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
 なお、塗膜の強度が低く、銅膜形成時に膜に欠けが見られた。
(Example 11)
A copper paste was prepared in the same manner as in Example 1 except that the content of polyvinylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd., K-60) was changed from 0.04 g to 0.02 g to form a copper film. . The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
In addition, the strength of the coating film was low, and chipping was observed during the formation of the copper film.
(実施例12)
 ポリビニルピロリドン(和光純薬製社製、K-60)の含有量を0.04gから0.12gに変更した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
 なお、ポリマーの含有量が多かったため、得られた銅膜にムラが認められた。
Example 12
A copper paste was prepared in the same manner as in Example 1 except that the content of polyvinylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd., K-60) was changed from 0.04 g to 0.12 g to form a copper film. . The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
In addition, since there was much content of a polymer, the nonuniformity was recognized by the obtained copper film.
(実施例13)
 ジエチルアミン(下記式参照、以下「アミンC」という場合がある。)(0.13g)を含有した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000007
(Example 13)
A copper paste was prepared and a copper film was formed in the same manner as in Example 1 except that diethylamine (see the following formula, hereinafter sometimes referred to as “amine C”) (0.13 g) was contained. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000007
(実施例14)
 クエン酸(0.15g)を含有した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Example 14)
A copper paste was prepared in the same manner as in Example 1 except that citric acid (0.15 g) was contained, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(比較例1)
 ギ酸銅錯体1を使用しなかった点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Comparative Example 1)
A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 1 was not used, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(比較例2)
 銅ナノ粒子被覆銅フィラー1(1.0g)に代えて銅ナノ粒子被覆銅フィラー2(1.0g;銅フィラー2(0.75g)および銅ナノ粒子2(0.25g)を含む。)を使用した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Comparative Example 2)
In place of copper nanoparticle-coated copper filler 1 (1.0 g), copper nanoparticle-coated copper filler 2 (1.0 g; including copper filler 2 (0.75 g) and copper nanoparticle 2 (0.25 g)). Except for the points used, a copper paste was prepared in the same manner as in Example 1 to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(比較例3)
 銅ナノ粒子被覆銅フィラー1(1.0g)に代えて銅フィラー1(1.0g)を使用した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Comparative Example 3)
A copper paste was prepared in the same manner as in Example 1 except that the copper filler 1 (1.0 g) was used instead of the copper nanoparticle-coated copper filler 1 (1.0 g) to form a copper film. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(比較例4)
 ギ酸銅錯体1(0.25g)に代えてアセチルアセトン銅(以下「銅錯体A」という場合がある。)(0.20g)を使用した点、およびN,N-ジメチル-2,3-ジヒドロキシプロピルアミン(以下「アミンD」という場合がある。)(下記式参照)(0.50g)を含有した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000008
(Comparative Example 4)
Acetylacetone copper (hereinafter sometimes referred to as “copper complex A”) (0.20 g) was used instead of copper formate complex 1 (0.25 g), and N, N-dimethyl-2,3-dihydroxypropyl A copper paste was prepared in the same manner as in Example 1 except that an amine (hereinafter sometimes referred to as “amine D”) (see formula below) (0.50 g) was contained, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000008
(比較例5)
 ギ酸銅錯体1(0.25g)に代えて酢酸銅(0.20g;0.01mol)を使用した点、およびアミンD(0.50g)を含有した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Comparative Example 5)
Example 1 was repeated except that copper acetate (0.20 g; 0.01 mol) was used instead of copper formate complex 1 (0.25 g), and amine D (0.50 g) was contained. A copper paste was prepared and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(比較例6)
 ギ酸銅錯体1(0.25g)を含有しない点、およびクエン酸(0.20g)を含有した点を除き、実施例1と同様にして銅ペーストを調製し、銅膜を形成した。形成した銅膜に対して、以下の密着性評価を実施した。結果を表1に示す。
(Comparative Example 6)
A copper paste was prepared in the same manner as in Example 1 except that the copper formate complex 1 (0.25 g) was not contained and citric acid (0.20 g) was contained, and a copper film was formed. The following adhesion evaluation was implemented with respect to the formed copper film. The results are shown in Table 1.
(密着性評価)
 形成した銅膜について、引掻き試験により、密着性を評価した。引掻き試験は10回繰り返して行い、以下の基準によって銅膜の密着性をグレード付けし、評価した。実用上、A~Cであることが好ましい。
 A:引掻き時の傷発生が10回中2回以下であるもの。
 B:引掻き時の傷発生が10回中3~4回であるもの。
 C:引掻き時の傷発生が10回中5~6回であるもの。
 D:引掻き時の傷発生が10回中7回以上であるもの。
 評価(グレード)を表1に示す。
 なお、引掻き試験は、Hの鉛筆(三菱鉛筆社製)および鉛筆引っかき試験器(コーテック社製)を用いて、荷重750g±10gで、JIS K 5600-5-4:1999「引っかき硬度(鉛筆法)」の試験方法に準拠して行った。ここで、鉛筆の芯の硬さHはJIS S 6006:2007「鉛筆、色鉛筆及びそれらに用いるしん」で規定されるものである。
(Adhesion evaluation)
About the formed copper film, adhesiveness was evaluated by the scratch test. The scratch test was repeated 10 times, and the adhesion of the copper film was graded and evaluated according to the following criteria. Practically, it is preferably A to C.
A: The occurrence of scratches during scratching is 2 or less of 10 times.
B: The occurrence of scratches during scratching was 3 to 4 times out of 10 times.
C: The occurrence of scratches during scratching is 5 to 6 out of 10 times.
D: The occurrence of scratches during scratching is 7 or more out of 10 times.
The evaluation (grade) is shown in Table 1.
The scratch test was conducted using JIS K 5600-5-4: 1999 “scratch hardness (pencil method) with a load of 750 g ± 10 g using an H pencil (Mitsubishi Pencil Co., Ltd.) and a pencil scratch tester (Cotec Co., Ltd.). ) "In accordance with the test method. Here, the hardness H of the pencil core is defined by JIS S 6006: 2007 “Pencils, colored pencils and shin used for them”.
(導電性評価)
 形成した銅膜のうち、密着性評価(グレード)がAまたはBであったものについて、体積抵抗率(単位:10-5Ω・cm)を測定した。体積抵抗率測定は、四探針法抵抗率計(三菱化学社製、ロレスタ-GP)を用いて行い、銅膜の任意の4箇所の体積抵抗率を測定して得られた値の算術平均値を銅膜の体積抵抗率とした。得られた体積抵抗率を表1に示す。
(Conductivity evaluation)
Of the formed copper films, those having an adhesion evaluation (grade) of A or B were measured for volume resistivity (unit: 10 −5 Ω · cm). The volume resistivity is measured using a four-point probe resistivity meter (Made by Mitsubishi Chemical Corporation, Loresta-GP), and the arithmetic average of the values obtained by measuring the volume resistivity at any four locations of the copper film. The value was defined as the volume resistivity of the copper film. The obtained volume resistivity is shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1中、実施例1、3~14および比較例1、4~6の銅フィラーおよび銅ナノ粒子は、製造例2で製造した銅ナノ粒子被覆銅フィラー1を配合したものであり、比較例2の銅フィラーおよび銅ナノ粒子は、製造例3で製造した銅ナノ粒子被覆銅フィラー2を配合したものである。なお、銅フィラーおよび銅ナノ粒子の平均凝集粒子径を表1に記載している。
 また、表1中、ギ酸銅錯体の欄の「割合[質量%]」は、銅フィラーの全質量に対するギ酸銅錯体の質量パーセンテージであり、ポリマーバインダの欄の「割合[質量%]」は、銅フィラー、銅ナノ粒子およびギ酸銅錯体の合計質量に対するポリマーバインダの質量パーセンテージであり、アミンの欄の「割合[質量%]」は、銅フィラーおよび銅ナノ粒子の合計質量に対するアミンの質量パーセンテージであり、カルボン酸の欄の「割合[質量%]」は、銅フィラーおよび銅ナノ粒子の合計質量に対するカルボン酸の質量パーセンテージである。
 また、表1中、「銅錯体A」はアセチルアセトン銅を意味し、「PVP」はポリビニルピロリドンを意味し、「アミンA」はN,N-ジメチル-1,2-ジヒドロキシエチルアミンを、「アミンC」はジエチルアミンを、「アミンD」はN,N-ジメチル-1,2-ジヒドロキシプロピルアミンを、それぞれ意味する。
 また、表1中、「塗布不能」は、銅ペースト中の銅フィラーの沈降が激しく、塗布できなかったことを意味する。
In Table 1, the copper fillers and copper nanoparticles of Examples 1, 3 to 14 and Comparative Examples 1 and 4 to 6 are those in which the copper nanoparticle-coated copper filler 1 produced in Production Example 2 is blended. The copper filler 2 and the copper nanoparticles 2 are blended with the copper nanoparticle-coated copper filler 2 produced in Production Example 3. In addition, Table 1 shows the average aggregate particle diameter of the copper filler and the copper nanoparticles.
In Table 1, “ratio [mass%]” in the column of copper formate complex is a mass percentage of the copper formate complex relative to the total mass of the copper filler, and “ratio [mass%]” in the column of polymer binder is The mass percentage of the polymer binder with respect to the total mass of the copper filler, the copper nanoparticles and the copper formate complex, and the “ratio [mass%]” in the amine column is the mass percentage of the amine with respect to the total mass of the copper filler and the copper nanoparticles. Yes, “ratio [mass%]” in the column of carboxylic acid is a mass percentage of the carboxylic acid relative to the total mass of the copper filler and the copper nanoparticles.
In Table 1, “copper complex A” means acetylacetone copper, “PVP” means polyvinylpyrrolidone, “amine A” means N, N-dimethyl-1,2-dihydroxyethylamine, “amine C”. "Means diethylamine and" amine D "means N, N-dimethyl-1,2-dihydroxypropylamine.
Moreover, in Table 1, “unapplicable” means that the copper filler in the copper paste was heavily settled and could not be applied.
 実施例1~14と比較例1~6とを対比すると、本発明の導電膜形成用組成物(銅ペースト)を使用した実施例1~14では、優れた密着性を有する銅膜を得ることができた。
 実施例1と実施例2とを対比すると、銅フィラーを銅ナノ粒子で被覆した銅ナノ粒子被覆銅フィラーを使用した実施例1は、銅フィラーを銅ナノ粒子で被覆せず、銅フィラーおよび銅ナノ粒子を別々に混合した実施例2に比べて、密着性および導電性が優れていた。
 また、実施例1と実施例3とを対比すると、ギ酸銅錯体の配位子となるアミン化合物が第三級アミンである実施例1の方が密着性および導電性に優れていた。
 また、実施例1、4~7の比較からわかるように、導電膜形成用組成物中の銅フィラーに対するギ酸銅錯体の含有量を変化させた場合であっても、優れた密着性を有する銅膜を得ることができた。さらに、ギ酸銅錯体の含有量が1~50質量%である実施例1、4~7は、ギ酸銅錯体の含有量が50質量%を超える実施例7に比べて、密着性がより優れていた。
 また、実施例1、8~10の比較からわかるように、ギ酸銅錯体の配位子となるアミンのモル数が異なる場合であっても、優れた密着性を有する銅膜を得ることができた。
 また、実施例1と実施例12、13とを対比すると、ポリマーバインダであるPVPの含有量が銅フィラー、銅ナノ粒子およびギ酸銅錯体の合計質量の3.2質量%である実施例1は、2質量%未満の実施例12および合計質量の8質量%超の実施例13に比べて密着性がより優れていた。
 また、実施例1と実施例14とを対比すると、クエン酸を含有する実施例14の方が、含有しない実施例1に比べて、導電性が優れていた。
When Examples 1 to 14 and Comparative Examples 1 to 6 are compared, Examples 1 to 14 using the composition for forming a conductive film (copper paste) of the present invention provide a copper film having excellent adhesion. I was able to.
When Example 1 is compared with Example 2, Example 1 using a copper nanoparticle-coated copper filler in which a copper filler is coated with copper nanoparticles does not coat the copper filler with copper nanoparticles. Compared to Example 2 in which nanoparticles were mixed separately, adhesion and conductivity were excellent.
Moreover, when Example 1 and Example 3 were contrasted, the direction of Example 1 whose amine compound used as the ligand of a copper formate complex is a tertiary amine was excellent in adhesiveness and electroconductivity.
Further, as can be seen from the comparison of Examples 1 and 4 to 7, even when the content of the copper formate complex with respect to the copper filler in the conductive film forming composition is changed, the copper having excellent adhesion A membrane could be obtained. Further, Examples 1 and 4 to 7 in which the content of the copper formate complex is 1 to 50% by mass are more excellent in adhesion than Example 7 in which the content of the copper formate complex exceeds 50% by mass. It was.
Further, as can be seen from the comparison between Examples 1 and 8 to 10, a copper film having excellent adhesion can be obtained even when the number of moles of the amine serving as the ligand of the copper formate complex is different. It was.
Further, when Example 1 is compared with Examples 12 and 13, Example 1 in which the content of PVP as a polymer binder is 3.2% by mass of the total mass of the copper filler, the copper nanoparticles, and the copper formate complex is Adhesiveness was more excellent than Example 12 of less than 2% by mass and Example 13 of more than 8% by mass of the total mass.
Moreover, when Example 1 was compared with Example 14, the direction of Example 14 containing a citric acid was excellent in electroconductivity compared with Example 1 which does not contain.
 なお、平均粒子径が所定の範囲を超える銅フィラーを含有する導電膜形成用組成物を用いる比較例2では、銅フィラーの沈降が激しく、基板上に組成物を塗布することができなかったため、銅膜を形成することができなかった。
 
In Comparative Example 2 using the composition for forming a conductive film containing a copper filler having an average particle diameter exceeding a predetermined range, the copper filler was heavily settled, and the composition could not be applied on the substrate. A copper film could not be formed.

Claims (12)

  1.  平均凝集粒子径が50~200nmである銅ナノ粒子と、平均凝集粒子径が1~10μmである銅フィラーと、ギ酸銅にアミンが配位してなるギ酸銅錯体とを含む導電膜形成用組成物。 Composition for forming a conductive film comprising copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, a copper filler having an average aggregate particle diameter of 1 to 10 μm, and a copper formate complex in which an amine is coordinated to copper formate. object.
  2.  前記銅フィラーの表面が前記銅ナノ粒子によって被覆されている、請求項1に記載の導電膜形成用組成物。 The composition for electrically conductive film formation of Claim 1 with which the surface of the said copper filler is coat | covered with the said copper nanoparticle.
  3.  前記ギ酸銅錯体の含有量が、前記銅フィラーの全質量に対して1~50質量%である、請求項1または2に記載の導電膜形成用組成物。 The composition for forming a conductive film according to claim 1 or 2, wherein the content of the copper formate complex is 1 to 50 mass% with respect to the total mass of the copper filler.
  4.  前記銅フィラーの含有量が、前記銅フィラー、前記銅ナノ粒子および前記ギ酸銅錯体の合計質量に対して45~80質量%である、請求項1~3のいずれか1項に記載の導電膜形成用組成物。 The conductive film according to any one of claims 1 to 3, wherein a content of the copper filler is 45 to 80 mass% with respect to a total mass of the copper filler, the copper nanoparticles, and the copper formate complex. Forming composition.
  5.  さらに、ポリマーバインダを含む、請求項1~4のいずれか1項に記載の導電膜形成用組成物。 The conductive film-forming composition according to any one of claims 1 to 4, further comprising a polymer binder.
  6.  前記ポリマーバインダの含有量が、前記銅フィラー、前記銅ナノ粒子および前記ギ酸銅錯体の合計質量に対して2~8質量%である、請求項5に記載の導電膜形成用組成物。 The composition for forming a conductive film according to claim 5, wherein the content of the polymer binder is 2 to 8% by mass with respect to the total mass of the copper filler, the copper nanoparticles, and the copper formate complex.
  7.  前記アミンが下記式(1)で表される第三級アミンを含む、請求項1~6のいずれか1項に記載の導電膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式中、RおよびRは、それぞれ独立に、メチル基、エチル基、2-ヒドロキシエチル基および2-メトキシエチル基からなる群から選択され、RおよびRは、それぞれ独立に、水素原子、メチル基およびヒドロキシ基からなる群から選択され、Rは水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分枝状アルキル基、炭素数3~6の環状アルキル基、2-ヒドロキシエチル基、2-メトキシエチル基および2-エトキシエチル基からなる群から選択され、Xはメチレン基、エチレン基およびプロピレン基からなる群から選択される。]
    The conductive film forming composition according to any one of claims 1 to 6, wherein the amine contains a tertiary amine represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [Wherein R 1 and R 2 are each independently selected from the group consisting of a methyl group, an ethyl group, a 2-hydroxyethyl group, and a 2-methoxyethyl group, and R 3 and R 4 are each independently R 5 is selected from the group consisting of a hydrogen atom, a methyl group and a hydroxy group, and R 5 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 6 carbon atoms. Selected from the group consisting of a cyclic alkyl group, 2-hydroxyethyl group, 2-methoxyethyl group and 2-ethoxyethyl group, and X is selected from the group consisting of a methylene group, an ethylene group and a propylene group. ]
  8.  さらに、低分子アミンを含む、請求項1~7のいずれか1項に記載の導電膜形成用組成物。 The conductive film-forming composition according to any one of claims 1 to 7, further comprising a low-molecular amine.
  9.  前記低分子アミンの含有量が、前記銅フィラーおよび前記銅ナノ粒子の合計質量に対して1~15質量%である、請求項8に記載の導電膜形成用組成物。 The composition for forming a conductive film according to claim 8, wherein the content of the low molecular amine is 1 to 15% by mass based on the total mass of the copper filler and the copper nanoparticles.
  10.  さらに、カルボン酸を含む、請求項1~9のいずれか1項に記載の導電膜形成用組成物。 10. The composition for forming a conductive film according to claim 1, further comprising a carboxylic acid.
  11.  前記カルボン酸の含有量が、前記銅フィラーおよび前記銅ナノ粒子の合計質量に対して1~15質量%である、請求項10に記載の導電膜形成用組成物。 The composition for forming a conductive film according to claim 10, wherein the content of the carboxylic acid is 1 to 15 mass% with respect to the total mass of the copper filler and the copper nanoparticles.
  12.  請求項1~11のいずれか1項に記載の導電膜形成用組成物を基材上に付与して、塗膜を形成する塗膜形成工程と、
     前記塗膜に対して加熱処理および/または光照射処理を行い、導電膜を形成する導電膜形成工程と
    を備える導電膜の製造方法。
     
    A coating film forming step of applying a composition for forming a conductive film according to any one of claims 1 to 11 on a substrate to form a coating film,
    The manufacturing method of an electrically conductive film provided with the electrically conductive film formation process which heat-processes and / or light-irradiates with respect to the said coating film, and forms an electrically conductive film.
PCT/JP2014/051132 2013-03-19 2014-01-21 Composition for conductive film formation, and method for producing conductive film using same WO2014148091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-056122 2013-03-19
JP2013056122A JP2014182913A (en) 2013-03-19 2013-03-19 Composition for conductive film formation, and method for producing conductive film using the same

Publications (1)

Publication Number Publication Date
WO2014148091A1 true WO2014148091A1 (en) 2014-09-25

Family

ID=51579787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051132 WO2014148091A1 (en) 2013-03-19 2014-01-21 Composition for conductive film formation, and method for producing conductive film using same

Country Status (3)

Country Link
JP (1) JP2014182913A (en)
TW (1) TW201437299A (en)
WO (1) WO2014148091A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190177565A1 (en) * 2016-07-28 2019-06-13 National Research Council Of Canada Copper ink and conductive solderable copper traces produced therefrom
JP2020519735A (en) * 2017-05-12 2020-07-02 アンガス ケミカル カンパニー Ether amine compositions and coatings

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468889B2 (en) * 2014-03-11 2019-02-13 三井金属鉱業株式会社 Conductive composition and method for producing conductor using the same
KR102096826B1 (en) 2015-03-24 2020-04-03 쇼와 덴코 가부시키가이샤 Composition for forming conductive pattern and method for forming conductive pattern
CN107614481B (en) 2015-06-11 2021-05-07 加拿大国家研究委员会 Preparation of high-conductivity copper film
JP6504602B2 (en) * 2015-06-25 2019-04-24 国立大学法人広島大学 Composition for forming thermoelectric conversion thin film and method for producing thermoelectric conversion thin film
TW201842087A (en) 2017-02-08 2018-12-01 加拿大國家研究委員會 Molecular ink with improved thermal stability
TW201842085A (en) 2017-02-08 2018-12-01 加拿大國家研究委員會 Silver molecular ink with low viscosity and low processing temperature
TW201842088A (en) 2017-02-08 2018-12-01 加拿大國家研究委員會 Printable molecular ink
TW201920515A (en) * 2017-08-01 2019-06-01 加拿大國家研究委員會 Copper ink
JP7269565B2 (en) * 2019-03-29 2023-05-09 学校法人 関西大学 Conductive ink composition and conductive laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158441A (en) * 2007-12-28 2009-07-16 Namics Corp Conductive paste, and formation method of copper film using the same
WO2009116349A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film
JP2009256218A (en) * 2008-04-14 2009-11-05 Toray Ind Inc Copper precursor composition, and method of preparing copper film using the same
WO2010032841A1 (en) * 2008-09-19 2010-03-25 旭硝子株式会社 Conductive filler, conductive paste and article having conductive film
JP2010242118A (en) * 2009-04-01 2010-10-28 Adeka Corp Composition for forming copper thin film, and method for manufacturing copper thin film using the composition
JP2012112022A (en) * 2010-11-26 2012-06-14 Adeka Corp Composition for copper film forming, and method of manufacturing copper film using the composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081214B2 (en) * 2000-10-25 2006-07-25 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158441A (en) * 2007-12-28 2009-07-16 Namics Corp Conductive paste, and formation method of copper film using the same
WO2009116349A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film
JP2009256218A (en) * 2008-04-14 2009-11-05 Toray Ind Inc Copper precursor composition, and method of preparing copper film using the same
WO2010032841A1 (en) * 2008-09-19 2010-03-25 旭硝子株式会社 Conductive filler, conductive paste and article having conductive film
JP2010242118A (en) * 2009-04-01 2010-10-28 Adeka Corp Composition for forming copper thin film, and method for manufacturing copper thin film using the composition
JP2012112022A (en) * 2010-11-26 2012-06-14 Adeka Corp Composition for copper film forming, and method of manufacturing copper film using the composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190177565A1 (en) * 2016-07-28 2019-06-13 National Research Council Of Canada Copper ink and conductive solderable copper traces produced therefrom
JP2020519735A (en) * 2017-05-12 2020-07-02 アンガス ケミカル カンパニー Ether amine compositions and coatings
JP7118095B2 (en) 2017-05-12 2022-08-15 アンガス ケミカル カンパニー Etheramine compositions and coatings

Also Published As

Publication number Publication date
JP2014182913A (en) 2014-09-29
TW201437299A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2014148091A1 (en) Composition for conductive film formation, and method for producing conductive film using same
JP5450725B2 (en) Collagen peptide-coated copper nanoparticles, collagen peptide-coated copper nanoparticle dispersion, method for producing collagen peptide-coated copper nanoparticles, conductive ink, method for producing conductive film, and conductor wiring
JP5720693B2 (en) Method for producing conductive copper particles
WO2014119498A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film
JP5993812B2 (en) Manufacturing method of conductive film
WO2013145953A1 (en) Liquid composition, metal film, conductive wiring line, and method for producing metal film
WO2013145954A1 (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
WO2009116349A1 (en) Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film
JP7076591B2 (en) A method for manufacturing a copper oxide ink and a conductive substrate using the ink, a method for manufacturing a product containing a coating film and a product using the same, a method for manufacturing a product with a conductive pattern, and a product with a conductive pattern.
JP2014186902A (en) Production method of conductive film
JP6277751B2 (en) Copper particle dispersion paste and method for producing conductive substrate
JP2016058227A (en) Method for producing conductive film
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
WO2014157303A1 (en) Composition for forming conductive films and method for producing conductive film using same
JP2014196427A (en) Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same
JP5871762B2 (en) Conductive film forming composition and conductive film manufacturing method
JP5776180B2 (en) Conductive ink composition and electrically conducting portion produced using the same
JP2012126814A (en) Conductive ink composition, and method for producing electrically conductive site
WO2014156345A1 (en) Composition for forming conductive films and method for producing conductive film using same
JP2014167872A (en) Method for producing conductive film, and wiring board
JP2016113699A (en) Composite copper powder and conductive composition including the same
WO2015005178A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
JP2014186952A (en) Method of producing coated copper particle, method of producing composition for formation of conductive film and method of producing conductive film
JP6111170B2 (en) Conductive film forming composition and method for producing conductive film using the same
JP2014044907A (en) Composition for forming conductive film and method for producing conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770858

Country of ref document: EP

Kind code of ref document: A1