JP2009098401A - 光走査装置 - Google Patents

光走査装置 Download PDF

Info

Publication number
JP2009098401A
JP2009098401A JP2007269843A JP2007269843A JP2009098401A JP 2009098401 A JP2009098401 A JP 2009098401A JP 2007269843 A JP2007269843 A JP 2007269843A JP 2007269843 A JP2007269843 A JP 2007269843A JP 2009098401 A JP2009098401 A JP 2009098401A
Authority
JP
Japan
Prior art keywords
liquid
light
scanning device
lens
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007269843A
Other languages
English (en)
Inventor
Etsuko Shibata
悦子 芝田
Hajime Taniguchi
元 谷口
Kenji Takeshita
健司 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2007269843A priority Critical patent/JP2009098401A/ja
Publication of JP2009098401A publication Critical patent/JP2009098401A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】光径を検出する検出手段やフィードバック制御が不要な液体レンズを備えた光走査装置を提供する。
【解決手段】液体レンズ14は、負レンズを構成する導電性液体40及び正レンズを構成する絶縁性液体42を含み、レーザダイオード12が出射した光を略平行光に変換すると共に、焦点距離を変化させることができる。ポリゴンミラー20は、液体レンズ14を通過した光を偏向する。走査レンズ22,24は、ポリゴンミラー20が偏向した光を感光体ドラム32に結像させる。導電性液体40と絶縁性液体42との界面の形状がエレクトロウエッティング現象により変形することにより、液体レンズ14の焦点距離が変化する。導電性液体40の温度変化に対する屈折率変化の比の値は、絶縁性液体42の温度変化に対する屈折率変化の比の値よりも小さい。
【選択図】図1

Description

本発明は、光走査装置に関し、より特定的には、液体レンズを備えた光走査装置に関する。
2種類の液体の界面形状をエレクトロウエッティング現象により変形させて、その焦点距離を変形させることができる液体レンズが実用化されている。このような液体レンズを光走査装置に適用することが、特許文献1ないし特許文献3において提案されている。液体レンズが適用された光走査装置では、ビーム集光状態検出手段が、液体レンズにより集光された光の径(光径と称す)を検出し、制御部が、液体レンズの焦点距離を検出結果に基づいてフィードバック制御している。これにより、光走査装置内の温度が上昇して、液体レンズの焦点距離が変動したとしても、感光体ドラムに光を正確に集光することが可能となる。
しかしながら、前記光走査装置では、光径を検出するビーム集光状態検出手段を設けたり、フィードバック制御を行ったりする必要があり、製造コストが高騰するという問題があった。なお、特許文献2には、液体レンズの物性値と固体レンズの物性値とを選択して、温度変化による性能を保証する対物レンズ系が記載されている。ただし、特許文献2には、光走査装置において、液体レンズの物性値及び固体レンズの物性値を選択することは記載されていない。
特開2006−251513号公報 特開平9−101456号公報
そこで、本発明の目的は、光径を検出するビーム集光状態検出手段やフィードバック制御が不要な液体レンズを備えた光走査装置を提供することである。
本発明は、光源と、第1の液体及び該第1の液体よりも小さな屈折率を有する第2の液体を有する光学素子を含むと共に、前記光源が出射した光を略平行光に変換する光源光学系と、前記光源光学系を通過した光を偏向する偏向手段と、を備え、前記第1の液体と前記第2の液体との界面の形状がエレクトロウエッティング現象により変形することにより、前記光学素子の焦点距離が変化し、前記第1の液体の温度上昇に対する屈折率変化の比の値は、前記第2の液体の温度上昇に対する屈折率変化の比の値よりも小さいこと、を特徴とする。
本発明によれば、第1の液体の温度上昇に対する屈折率変化の比の値は、第2の液体の温度上昇に対する屈折率変化の比の値よりも小さい。これにより、光源や偏向手段が駆動することにより、光走査装置内の温度が上昇しても、光源から出射された光が感光体の周面に集光されるようになる。以下に説明する。
光走査装置内の温度が上昇すると、光走査装置の各部が熱膨張してしまい、光源と光学素子との距離が設計値よりも長くなってしまう。この場合、光学素子により集光された光は、平行光とならずに、少し集光されてしまう。
そこで、本発明では、第1の液体の温度上昇に対する屈折率変化の比の値を、第2の液体の温度上昇に対する屈折率変化の比の値よりも小さくしている。物質の屈折率は、温度上昇により低下するので、第1の液体及び第2の液体の温度上昇に対する屈折率変化の比の値は、負の値となる。そのため、光走査装置内の温度が上昇した場合には、第1の液体の屈折率の減少幅は、第2の液体の屈折率の減少幅よりも大きくなり、第1の液体の屈折率と第2の液体の屈折率の差は、小さくなる。これにより、光学素子の焦点距離の長さは、温度上昇前に比べて長くなる。その結果、光走査装置内の温度が上昇したとしても、光学素子の焦点の位置が光源からずれることが抑制される。すなわち、本発明によれば、温度変化による感光体への光の集光位置のずれを抑制するために、ビーム集光状態検出手段を設けたり、フィードバック制御を行ったりしなくてもよい。
本発明において、前記第1の液体の波長伸張に対する屈折率変化の比の値は、前記第2の液体の波長伸張に対する屈折率変化の比の値よりも小さくてもよい。
本発明において、前記光源と前記光学素子とを保持している保持部材を、更に備え、前記光学素子は、前記第1の液体及び前記第2の液体を収容している本体を、更に含み、前記保持部材は、前記偏向手段に対向している前記本体の面を保持してもよい。
本発明において、前記本体を構成する材料の線膨張係数は、前記保持部材を構成する材料の線膨張係数よりも大きくてもよい。
本発明において、前記第1の液体は、前記第2の液体よりも前記光源側に配置されており、前記光学素子は、前記第1の液体及び前記第2の液体を収容している本体と、前記本体に接続され、前記第1の液体の一部を収容しているタンクと、を更に含み、前記第1の液体の一部は、温度上昇に伴い前記本体から前記タンクへと移動してもよい。
本発明において、前記偏向手段が偏向した光を感光体に結像させる結像素子と、前記感光体に光が走査されている期間において、予め定められたパターンで前記光学素子の焦点距離を変化させる制御手段と、を備えていてもよい。
本発明において、前記第1の液体は、正レンズを構成し、前記第2の液体は、負レンズを構成していてもよい。
(光走査装置の構成について)
以下に、本発明の一実施形態に係る光走査装置の構成について図面を参照しながら説明する。図1は、該光走査装置10の上視図である。なお、図1において、y軸は、主走査方向を示し、z軸は副走査方向を示す。なお、z軸は、鉛直方向とも一致する。
光走査装置10は、図1に示すように、レーザダイオード12、保持部材15、光源光学系19、ポリゴンミラー20、走査レンズ22,24、ミラー26、受光素子28、筐体29、制御部30及び記憶部31を備える。
レーザダイオード12は、光を出射する光源としての役割を果たす。レーザダイオード12から出射された光は、拡散光である。そこで、光源光学系19は、レーザダイオード12から出射された光を集光して略平行光に集光し、液体レンズ14及びシリンドリカルレンズ18を含んでいる。液体レンズ14は、導電性液体40、絶縁性液体42及びこれらを収容する本体43を含み、レーザダイオード12から出射された光をz軸に対して垂直な平面内において集光して略平行光に変換するコリメータレンズとしての役割を果たし、焦点距離を変化させる機能を有する。なお、液体レンズ14の詳細については後述する。
保持部材15は、レーザダイオード12と液体レンズ14とを保持する。具体的には、液体レンズ14の焦点の位置に、レーザダイオード12の発光面が位置するように、保持部材15は、レーザダイオード12と液体レンズ14とを保持する。この際、保持部材15は、ポリゴンミラー20に対向する本体43の面を保持する。
シリンドリカルレンズ18は、液体レンズ14を通過した光を、ポリゴンミラー20のミラー面近傍においてz軸方向に集光する。ポリゴンミラー20は、図示しないモーターにより矢印の方向に回転され、シリンドリカルレンズ18を通過してきた光をy軸方向に等角速度に偏向する偏向手段としての役割を果たす。走査レンズ22,24は、樹脂性又はガラス製のレンズであり、ポリゴンミラー20により偏向された光を等速走査して、該光を感光体ドラム32上に結像させる。感光体ドラム32は、所定速度で回転駆動される。これにより、光による主走査と感光体ドラム32の回転による副走査によって2次元の静電潜像が形成される。
また、ミラー26は、ポリゴンミラー20により偏向され、走査レンズ22,24を通過した光を受光素子28側へと反射する役割を果たす。受光素子28は、ミラー26により反射された光を受光し、感光体ドラム32への光の走査を開始することを意味するSOS(Start Of Scan)信号を生成する。
筐体29は、図1に示すように、保持部材15、シリンドリカルレンズ18、ポリゴンミラー20、走査レンズ22,24、ミラー26及び受光素子28を収納する。
制御部30は、例えば、CPUにより構成され、感光体ドラム32に光が1ライン分走査されている期間において、予め定められたパターンで液体レンズ14の焦点距離を制御する制御手段としての役割を果たす。また、記憶部31は、例えば、ハードディスクにより構成され、制御部30が液体レンズ14の動作を制御するための制御情報であって、予め定められたパターンに関する制御情報を記憶する記憶手段としての役割を果たす。
次に、図2及び図3を参照しながら、液体レンズ14の構成について説明する。図2は、液体レンズ14の光軸を含む面における断面構造図である。なお、図2(a)は、電圧を印加した状態における液体レンズ14の断面構造図であり、図2(b)は、電圧を印加していない状態における液体レンズ14の断面構造図である。図3は、図2の液体レンズ14のCの部分の拡大図である。
図2に示すように、液体レンズ14は、導電性液体40、絶縁性液体42、透明板44,46、第1の電極48、絶縁膜50、第2の電極52及び側面53を含む。該液体レンズ14は、導電性液体40と絶縁性液体42との界面Sの形状を、エレクトロウエッティング現象により変形させることによって、焦点距離を変化させることができるものである。具体的には、電圧が印加されると、界面Sは、図2(b)に示す状態から、図2(a)に示す状態へと変化する。
透明板44,46は、透明な樹脂又はガラスにより構成され、互いに平行に所定の隙間を残して配置される。この隙間には、導電性液体40と絶縁性液体42とが封入される。側面53は、樹脂等により構成され、導電性液体40及び絶縁性液体42を囲むように形成される。これにより、導電性液体40及び絶縁性液体42は、透明板44,46及び側面53内に封入される。なお、透明板44,46及び側面53は、本体43を構成する。この本体43を構成する材料の線膨張係数は、保持部材15を構成する材料の線膨張係数よりも大きい。
導電性液体40は、それ自身が導電性を有するもの、或いはイオン性成分を付加することによって導電性とされた液体であり、負レンズを構成している。絶縁性液体42は、導電性液体40とは異なる屈折率を有し、導電性液体40と混合しない液体であり正レンズを構成している。そのため、導電性液体40と絶縁性液体42とは、互いに分離した状態となっており、界面Sを形成している。これにより、導電性液体40と絶縁性液体42とは負レンズと正レンズとが組み合わさって一つのレンズを構成している。なお、導電性液体40の屈折率の方が、絶縁性液体42の屈折率よりも小さい。
また、絶縁性液体42の温度上昇に対する屈折率変化の比の値は、導電性液体40の温度上昇に対する屈折率変化の比の値よりも小さい。これにより、レーザダイオード12やポリゴンミラー20のモーター等が駆動することにより、光走査装置10内の温度が上昇しても、レーザダイオード12から出射された光が感光体ドラム32の周面に集光されるようになる。
第1の電極48は、導電性液体40と接触するように、透明板44上に設けられる。第2の電極52は、透明板46と第1の電極48との間に設けられる。絶縁膜50は、第2の電極52を覆うように形成される。具体的には、絶縁膜50は、第1の電極48と第2の電極52との間に形成されて該第1の電極48と第2の電極52とを絶縁すると共に、第2の電極52の内周面に形成されて第2の電極52と導電性液体40及び絶縁性液体42とが接触しないようにしている。第1の電極48と第2の電極52との間には、液体レンズ14の駆動時において、電圧が印加される。
以上のように構成された液体レンズ14について、以下に、その動作原理について図3を参照しながら説明する。図3は、図2の液体レンズ14のCの部分の拡大図である。図3(a)は、電圧が印加されていない状態での液体レンズ14(図2(b)に対応)のCの部分の拡大図であり、図3(b)は、電圧が印加された状態での液体レンズ14(図2(a)に対応)のCの部分の拡大図である。
まず、導電性液体40と絶縁性液体42との間の界面張力を界面張力γ12とし、絶縁膜50と導電性液体40との間の界面張力を界面張力γ31とし、絶縁性液体42と絶縁膜50との間の界面張力を界面張力γ23と定義する。図3(a)に示すように、第1の電極48と第2の電極52との間に電圧が印加されていない場合には、界面張力γ12と界面張力γ23と界面張力γ31とは、互いに釣り合っており、界面Sと絶縁膜50とが角θ1の角度をなしている。このとき、角θ1と界面張力γ12と界面張力γ23と界面張力γ31との間には、ヤングの方程式により、式(1)の関係が成立する。
Figure 2009098401
ここで、第1の電極48と第2の電極52とに電圧を印加すると、例えば、図3(b)に示すように、絶縁膜50と導電性液体40との境界には、プラスの電荷が現れる。一方、絶縁膜50と第2の電極52との境界には、マイナスの電荷が現れる。これにより、電荷による圧力Πが、絶縁性液体42と絶縁膜50との間に、界面張力γ23と同じ方向に発生する。この圧力Πは、式(2)のように示される。
Figure 2009098401
なお、εは絶縁膜50の誘電率であり、ε0は真空の誘電率であり、eは絶縁膜50の厚さであり、Vは第1の電極48と第2の電極52との間の電圧である。
圧力Πが発生することにより、界面Sと絶縁膜50とは、角θ1よりも大きな角θ2の角度をなすようになる。このとき、液体レンズ14の界面Sは、図2(a)に示すように、湾曲する。この角θ2は、式(3)のように示される。
Figure 2009098401
以上のように、第1の電極48と第2の電極52との間に印加する電圧を変化させることにより、界面Sと絶縁膜50とのなす角度が変化することがわかる。そして、界面Sと絶縁膜50とのなす角度が変化することにより、電圧が印加された状態では、図2(a)に示すように、界面Sが湾曲して、焦点距離が相対的に短くなる。また、電圧が印加されていない状態では、図2(b)に示すように、界面Sが平坦状になり、焦点距離が相対的に長くなる。図1に示す制御部30は、この電圧の大きさを制御して、液体レンズ14の焦点距離を制御する。
(光走査装置の動作について)
以下に、光走査装置10の動作について図面を参照しながら説明する。図4は、主走査方向における像面湾曲により発生する集光位置のずれ及び液体レンズ14による焦点距離変化による集光位置の補正量を示したグラフである。横軸は、図1に示す感光体ドラム32におけるy軸方向の位置を示している。縦軸は、光の進行方向(x軸方向)を正とする集光位置を示しており、感光体ドラム32の周面が基準(0mm)である。
ここで、主走査方向における像面湾曲とは、図5に示すように、xy平面内における光の集光位置にずれが発生し、感光体ドラム32上での主走査方向における位置によって集光位置のずれ量が異なっている状態をいう。
走査レンズを、製造が容易な球面レンズや、トーリック面で構成した場合、感光体ドラム上の主走査方向の全ての位置において集光位置のずれをなくすことは困難であり、像面湾曲が発生するという問題がある。このような像面湾曲は、特許文献1におけるビーム集光状態検出手段により検出することができない。
そこで、光走査装置10では、以下に説明する手法により、集光位置のずれが計測されている。なお、走査レンズに起因する像面湾曲は、走査レンズの設計段階において決まるものであるので、像面湾曲による集光位置のずれが予めわかっている場合には、以下の計測は不要である。まず、感光体ドラム32と等価な位置に受光素子を配置し、光走査装置10を駆動してこれらの受光素子に対して光を照射する。この際、x軸方向に受光素子を移動させて光を測定することにより集光位置を検出する。この作業をy軸方向に必要点数繰り返すことにより、像面湾曲を検出する。これにより、図5に示すような、走査レンズに起因して発生する主走査方向における集光位置のずれの曲線が得られる。なお、該曲線は、例えば、各点を多項式で近似することにより得られる。
次に、図4に示すような液体レンズ14による焦点距離の補正量の曲線を生成する。この液体レンズ14による焦点距離の補正量の曲線は、走査レンズ22,24に起因する像面湾曲を打ち消すように定められ、具体的には、主走査方向において像面湾曲により発生する集光位置のずれの曲線を、主走査方向全域にわたって集光位置が略0mmとなるように定められている。
更に、得られた液体レンズ14による焦点距離の補正量の曲線に基づいて、液体レンズ14の焦点距離を制御するための制御情報を生成する。この制御情報は、光の走査中の各タイミングにおいて液体レンズ14に印加すべき電圧に関する情報であり、記憶部31に記憶される。この制御情報は、例えば、アナログ信号の波形として記憶されていてもよいし、テーブルの形式で記憶されていてもよい。この後、光走査装置10は、画像形成装置に実装される。
次に、光走査装置10の動作について、図面を参照しながら説明する。図6は、光走査装置10の駆動信号の波形図を示した図である。図6(a)は、制御部30が出力するレーザダイオード12の制御信号Sig2の波形図である。図6(b)は、制御部30が出力する液体レンズ14の制御信号Sig1の波形図である。図6(c)は、液体レンズ14の焦点距離の変化を示した図である。
まず、制御部30は、画像データが入力してきたことに応じて、図6(a)に示すハイレベルの制御信号Sig2を生成してレーザダイオード12に光を出射させると共に、図示しないモーターを回転させてポリゴンミラー20を回転させる。
次に、レーザダイオード12から出射された光は、ミラー26に反射されて受光素子28に入射する。光が入射すると、受光素子28は、制御部30へSOS信号を出力する。SOS信号をきっかけとして、図6(a)に示すように、制御信号Sig2は、ハイレベルからローレベルに切替り、レーザダイオード12は、消灯する。
制御信号Sig2がローレベルに切替ってから所定クロック後に、制御部30は、制御信号Sig2をローレベルからハイレベルに切り替える(図6のSOI(Start Of Image))。これにより、光走査装置10は、感光体ドラム32に対して光を走査する。更に、制御部30は、記憶部31に記憶されている制御情報に基づいて、図6(b)に示す制御信号Sig1を液体レンズ14に印加する。すなわち、制御部30は、SOS信号が出力されたことをきっかけとして、液体レンズ14の焦点距離の制御を開始する。これにより、図6(c)に示すように、液体レンズ14の焦点距離は、制御信号Sig1の変化に従って変化する。次に、感光体ドラム32への光の走査が完了すると、制御部30は、制御信号Sig2をハイレベルからローレベルに切り替える(図6のEOI(End Of Image))。更に、制御部30は、液体レンズ14の焦点距離の制御を終了する。以上の動作により、1ライン分の光の走査が感光体ドラム32に行われる。この後、この動作が繰り返されることにより、感光体ドラム32に静電潜像が形成される。
(効果について)
光走査装置10によれば、絶縁性液体42の温度上昇に対する屈折率変化の比の値は、導電性液体40の温度上昇に対する屈折率変化の比の値よりも小さい。これにより、レーザダイオード12やポリゴンミラー20のモーター等が駆動することにより、光走査装置10内の温度が上昇しても、レーザダイオード12から出射された光が感光体ドラム32の周面に集光されるようになる。以下に説明する。
光走査装置10内の温度が上昇すると、保持部材15が熱膨張してしまい、レーザダイオード12と液体レンズ14との距離が設計値よりも長くなってしまう。この場合、図7に示すレーザダイオード12、液体レンズ14及び保持部材15の断面構造図に示すように、液体レンズ14の焦点が、レーザダイオード12の発光面よりも光の進行方向の下流側に位置してしまう。その結果、液体レンズ14により集光された光は、平行光とならずに、少し集光されてしまう。
そこで、光走査装置10では、絶縁性液体42の温度上昇に対する屈折率変化の比の値を、導電性液体40の温度上昇に対する屈折率変化の比の値よりも小さくしている。物質の屈折率は、温度上昇により低下するので、絶縁性液体42及び導電性液体40の温度上昇に対する屈折率変化の比の値は、負の値となる。そのため、光走査装置10内の温度が上昇した場合には、絶縁性液体42の屈折率の減少幅は、導電性液体40の屈折率の減少幅よりも大きくなり、導電性液体40の屈折率と絶縁性液体42の屈折率の差は、小さくなる。これにより、液体レンズ14の焦点距離の長さは、温度上昇前に比べて長くなる。その結果、光走査装置10内の温度が上昇したとしても、液体レンズ14の焦点の位置とレーザダイオード12の発光面とがずれることが抑制される。すなわち、光走査装置10によれば、温度変化による感光体ドラム32への光の集光位置のずれを抑制するために、ビーム集光状態検出手段を設けたり、フィードバック制御を行ったりしなくてもよい。
更に、光走査装置10によれば、制御部30が、感光体ドラム32に光が走査されている期間(図6のSOIからEOIの期間)において、予め定められたパターンでコリメータレンズとして機能する液体レンズ14の焦点距離を変化させている。そして、この予め定められたパターンは、走査レンズ22,24に起因する主走査方向における像面湾曲を打ち消すように定められている。従って、光走査装置10は、ビーム集光状態検出手段を設けることなく、走査レンズ22,24に起因して発生する主走査方向における像面湾曲を抑制できる。
以上より、光走査装置10によれば、ビーム集光状態検出手段を設けたり、フィードバック制御を行ったりすることなく、温度上昇による感光体ドラム32への光の集光位置のずれ、及び、走査レンズに起因して発生する主走査方向における像面湾曲の両方を抑制することができる。
更に、光走査装置10によれば、本体43の線膨張係数が保持部材15の線膨張係数よりも大きいので、光走査装置10内の温度が上昇して、保持部材15が熱膨張したとしても、レーザダイオード12と液体レンズ14との距離が変化することを抑制できる。以下に、図8を参照しながら説明する。図8は、レーザダイオード12、液体レンズ14及び保持部材15の断面構造図である。より詳細には、図8の上半分は、光走査装置10内の温度が上昇していない状態におけるレーザダイオード12、液体レンズ14及び保持部材15の断面構造図であり、図8の下半分は、光走査装置10内の温度が上昇している状態におけるレーザダイオード12、液体レンズ14及び保持部材15の断面構造図である。
図8に示すように、光走査装置10内の温度が上昇すると、本体43及び保持部材15が熱膨張する。ここで、保持部材15は、液体レンズ14の透明板44に取り付けられているので、透明板44は、ポリゴンミラー20側へと変位する。
しかしながら、液体レンズ14の透明板44が固定されているので、本体43が熱膨張すると、透明板46は、レーザダイオード12側へと戻るように変位する。その結果、本体43及び保持部材15が熱膨張したとしても、レーザダイオード12と液体レンズ14との間の距離が変動することが抑制される。なお、本体43を構成する材料の線膨張係数が保持部材15を構成する材料の線膨張係数よりも大きくすることにより、透明板46がレーザダイオード12側へと戻る量を大きくすることができる。その結果、レーザダイオード12と液体レンズ14との間の距離が変動することをより効果的に抑制できる。
また、光走査装置10内の温度が上昇した場合には、走査レンズ22,24も熱膨張する。走査レンズ22,24が、ガラス製のレンズである場合には、この熱膨張による感光体ドラム32の周面への光の集光位置のずれの問題は無視できる程度であるが、走査レンズ22,24が、樹脂製のレンズである場合には、感光体ドラム32の周面において数mm程度の光の集光位置のずれが発生するおそれがある。ただし、このずれは、感光体ドラム32の主走査方向において略均一に発生しているので、保持部材15の材質を選択したり、液体レンズ14の材料を選択することにより補正できる。更に、保持部材15の熱膨張により発生する光の集光位置のずれは、走査レンズ22,24の熱膨張により発生する光の集光位置のずれを打ち消すように発生する。そのため、走査レンズ22,24で発生した集光位置のずれを、保持部材15において補正することが可能である。
(その他の実施形態)
なお、絶縁性液体42の波長伸張に対する屈折率変化の比の値は、導電性液体40の波長伸張に対する屈折率変化の比の値よりも小さいことが好ましい。以下に説明する。
レーザダイオード12から出射される光の波長は、光走査装置10内の温度が上昇すると長くなり、光の波長が長くなると、導電性液体40及び絶縁性液体42の屈折率は小さくなる。すなわち、絶縁性液体42及び導電性液体40の波長伸張に対する屈折率変化の比の値は、負の値である。そこで、絶縁性液体42の波長伸張に対する屈折率変化の比の値を、導電性液体40の波長伸張に対する屈折率変化の比の値よりも小さくしている。そのため、光走査装置10内の温度が上昇した場合には、絶縁性液体42の屈折率の減少幅は、導電性液体40の屈折率の減少幅よりも大きくなり、導電性液体40の屈折率と絶縁性液体42の屈折率との差は、小さくなる。これにより、液体レンズ14の焦点距離の長さは、温度上昇前に比べて長くなる。その結果、光走査装置10内の温度が上昇したとしても、液体レンズ14の焦点の位置とレーザダイオード12の発光面とがずれることが抑制される。すなわち、光走査装置10によれば、温度変化による感光体ドラム32への光の集光位置のずれを抑制するために、ビーム集光状態検出手段を設けたり、フィードバック制御を行ったりしなくてもよい。
また、図9の変形例に係る液体レンズ14'の断面構造図に示すように、液体レンズ14'は、本体43に接続され、導電性液体40の一部を収容するタンク54を含んでいてもよい。導電性液体40及び絶縁性液体42が温度上昇に伴い熱膨張して、導電性液体40の一部が本体43からタンク54へと移動する。これにより、光走査装置10内の温度が上昇したときには、界面Sがレーザダイオード12側へと移動する。その結果、液体レンズ14の焦点位置をレーザダイオード12側に移動させることができ、光走査装置10内の温度が上昇したとしても、液体レンズ14の焦点の位置がレーザダイオード12の発光面からずれることが抑制される。
また、ポリゴンミラー20により偏向された光は、走査レンズ22,24を通過した後、直接に感光体ドラム32を照射しているが、該光は、ミラーにより進行方向が変えられた後に、感光体ドラム32を照射してもよい。
なお、コリメータレンズは、液体レンズ14とガラス製又は樹脂製のレンズとの組み合わせで構成されていてもよい。
光走査装置の上視図である。 図2(a)は、電圧を印加した状態における液体レンズの断面構造図であり、図2(b)は、電圧を印加していない状態における液体レンズの断面構造図である。 図2の液体レンズのCの部分の拡大図である。 走査レンズに起因して発生する主走査方向における集光位置のずれ及び液体レンズによる焦点距離変化による集光位置の補正量を示したグラフである。 感光体ドラム32の拡大図である。 図6(a)は、制御部が出力するレーザダイオードの制御信号Sig2の波形図である。図6(b)は、制御部が出力する液体レンズの制御信号Sig1の波形図である。図6(c)は、液体レンズの焦点距離の変化を示した図である。 レーザダイオード、液体レンズ及び保持部材の断面構造図である。 レーザダイオード、液体レンズ及び保持部材の断面構造図である。 変形例に係る液体レンズ14'の断面構造図である。
符号の説明
10 光走査装置
12 レーザダイオード
14,14' 液体レンズ
15 保持部材
18 シリンドリカルレンズ
20 ポリゴンミラー
22,24 走査レンズ
28 受光素子
30 制御部
31 記憶部
32 感光体ドラム
40 導電性液体
42 絶縁性液体
43 本体
53 側面
54 タンク

Claims (7)

  1. 光源と、
    第1の液体及び該第1の液体よりも小さな屈折率を有する第2の液体を有する光学素子を含むと共に、前記光源が出射した光を略平行光に変換する光源光学系と、
    前記光源光学系を通過した光を偏向する偏向手段と、
    を備え、
    前記第1の液体と前記第2の液体との界面の形状がエレクトロウエッティング現象により変形することにより、前記光学素子の焦点距離が変化し、
    前記第1の液体の温度上昇に対する屈折率変化の比の値は、前記第2の液体の温度上昇に対する屈折率変化の比の値よりも小さいこと、
    を特徴とする光走査装置。
  2. 前記第1の液体の波長伸張に対する屈折率変化の比の値は、前記第2の液体の波長伸張に対する屈折率変化の比の値よりも小さいこと、
    を特徴とする請求項1に記載の光走査装置。
  3. 前記光源と前記光学素子とを保持している保持部材を、
    更に備え、
    前記光学素子は、
    前記第1の液体及び前記第2の液体を収容している本体を、
    更に含み、
    前記保持部材は、前記偏向手段に対向している前記本体の面を保持していること、
    を特徴とする請求項1又は請求項2のいずれかに記載の光走査装置。
  4. 前記本体を構成する材料の線膨張係数は、前記保持部材を構成する材料の線膨張係数よりも大きいこと、
    を特徴とする請求項3に記載の光走査装置。
  5. 前記第1の液体は、前記第2の液体よりも前記光源側に配置されており、
    前記光学素子は、
    前記第1の液体及び前記第2の液体を収容している本体と、
    前記本体に接続され、前記第1の液体の一部を収容しているタンクと、
    を更に含み、
    前記第1の液体の一部は、温度上昇に伴い前記本体から前記タンクへと移動すること、
    を特徴とする請求項1ないし請求項4のいずれかに記載の光走査装置。
  6. 前記偏向手段が偏向した光を感光体に結像させる結像素子と、
    前記感光体に光が走査されている期間において、予め定められたパターンで前記光学素子の焦点距離を変化させる制御手段と、
    を備えること、
    を特徴とする請求項1ないし請求項5のいずれかに記載の光走査装置。
  7. 前記第1の液体は、正レンズを構成し、前記第2の液体は、負レンズを構成していること、
    を特徴とする請求項1ないし請求項6のいずれかに記載の光走査装置。
JP2007269843A 2007-10-17 2007-10-17 光走査装置 Pending JP2009098401A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007269843A JP2009098401A (ja) 2007-10-17 2007-10-17 光走査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269843A JP2009098401A (ja) 2007-10-17 2007-10-17 光走査装置

Publications (1)

Publication Number Publication Date
JP2009098401A true JP2009098401A (ja) 2009-05-07

Family

ID=40701467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269843A Pending JP2009098401A (ja) 2007-10-17 2007-10-17 光走査装置

Country Status (1)

Country Link
JP (1) JP2009098401A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202804A (ja) * 2013-04-02 2014-10-27 スタンレー電気株式会社 光照射装置及びこれを用いた光源システム
CN113359310A (zh) * 2020-03-06 2021-09-07 台湾东电化股份有限公司 光学元件驱动机构及光学***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202804A (ja) * 2013-04-02 2014-10-27 スタンレー電気株式会社 光照射装置及びこれを用いた光源システム
CN113359310A (zh) * 2020-03-06 2021-09-07 台湾东电化股份有限公司 光学元件驱动机构及光学***
CN113359310B (zh) * 2020-03-06 2023-09-19 台湾东电化股份有限公司 光学元件驱动机构及光学***

Similar Documents

Publication Publication Date Title
US7728861B2 (en) Optical device
JP2009003053A (ja) コリメータレンズユニット及びこれを備えた光走査装置
JP5873836B2 (ja) 光偏向器、その製造方法及び光走査装置
JP2009098401A (ja) 光走査装置
JP3031451B2 (ja) レーザ走査装置
JP4430143B2 (ja) 光学装置
JP2008304792A (ja) 光学素子及び光走査装置
JP2010276860A (ja) 画像形成装置における走査光学系
JP5233236B2 (ja) 光走査装置
JP4590111B2 (ja) 光走査装置及びそれを有する画像形成装置
JP2007183326A (ja) 走査光学装置及び画像形成装置
RU2797768C1 (ru) Блок оптического сканирования и электрофотографический аппарат формирования изображения
JP5098566B2 (ja) 光走査装置
JP2010055051A (ja) 光走査装置および光走査装置の制御方法並びにこれを用いた画像形成装置
JP2603232B2 (ja) 走査光学装置
JP2009093047A (ja) 光走査装置
JP4573944B2 (ja) 光走査光学装置及びそれを用いた画像形成装置
JP2009092865A (ja) 光源装置及び光走査装置
US8823761B2 (en) Optical scanning device and image forming apparatus
JP4940108B2 (ja) 走査光学装置
JP2006139279A (ja) マルチビーム走査光学装置及びそれを用いた画像形成装置
JP2008058884A (ja) 走査露光装置及びこれを備えた画像形成装置
JP2008310257A (ja) 走査光学系、それを備える光走査装置及び画像形成装置
JP2008304791A (ja) 光走査装置
JP5793488B2 (ja) 画像形成装置及び光走査装置