JP2009079160A - 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに、潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法 - Google Patents

包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに、潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法 Download PDF

Info

Publication number
JP2009079160A
JP2009079160A JP2007250308A JP2007250308A JP2009079160A JP 2009079160 A JP2009079160 A JP 2009079160A JP 2007250308 A JP2007250308 A JP 2007250308A JP 2007250308 A JP2007250308 A JP 2007250308A JP 2009079160 A JP2009079160 A JP 2009079160A
Authority
JP
Japan
Prior art keywords
aqueous solution
tetra
tbab
bromide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007250308A
Other languages
English (en)
Inventor
Keiji Tomura
啓二 戸村
Masami Ono
正巳 小野
Shohei Fukada
尚平 深田
Koichiro Doi
宏一郎 土肥
Shingo Takao
信吾 高雄
Hisao Kitagawa
尚男 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2007250308A priority Critical patent/JP2009079160A/ja
Publication of JP2009079160A publication Critical patent/JP2009079160A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】空調向けの用途において要望される3〜16℃の温度範囲で多くの冷熱を蓄熱でき、過冷却防止効果が高く、また水和物の凝固と融解を頻繁に繰返しても過冷却防止効果を維持できる蓄熱剤及びその調製方法を提供する。
【解決手段】臭化テトラnブチルアンモニウムと、臭化トリnブチルnペンチルアンモニウムと、弗化テトラnブチルアンモニウムと水を含有してなることを特徴とする蓄熱剤。
臭化テトラnブチルアンモニウム水溶液と、臭化トリnブチルnペンチルアンモニウム水溶液とを主成分とし、過冷却防止剤として弗化テトラnブチルアンモニウム水溶液を含有してなることを特徴とする蓄熱剤。
【選択図】 図3

Description

本発明は、冷暖房などの空調設備や、食品等の冷却装置に用いられる蓄熱剤、その蓄熱剤の主成分として含まれる包接水和物の製造方法、その包接水和物を生成するための水溶液などに関する。
なお、次に掲げる用語の定義又は解釈は、以下のとおりとする。この用語の意味又は解釈は、本発明の技術的範囲が均等の範囲にまで及ぶことを妨げるものではない。
(1)複数の分子が適当な条件下で組み合わさって結晶ができるとき、一方の分子(ホスト分子)が籠状、トンネル形、層状または網状構造をつくり、その隙間に他の分子(ゲスト分子)が入りこんだ構造の化合物(包接化合物)のうち、ホスト分子が水分子であるものを「包接水和物」という。
ホスト分子である水分子が構成する籠状、トンネル形、層状または網状構造が不完全であっても、その隙間に他の分子(ゲスト分子)が入りこんだ構造の化合物であれば「包接水和物」に含まれる。簡便のため、「包接水和物」を「水和物」と略称する場合がある。
(2)「水和物生成温度」とは、包接水和物のゲスト分子を溶質とする水溶液を冷却したとき、包接水和物が生成する平衡温度をいう。当該水溶液のゲスト分子の濃度などにより包接水和物が生成する温度が変動する場合であっても、これを「水和物生成温度」という。ゲスト分子が異なる複数種の包接水和物が含まれている場合には、「水和物生成温度」には温度幅がある場合が多いので、横軸を温度、縦軸を比熱としたグラフにおいて比熱のピーク値をもって「水和物生成温度」と定義する。簡便のため、「水和物生成温度」を水和物の「融点」又は「凝固点」という場合がある。
(3)包接水和物のゲスト分子を溶質とする水溶液を水和物生成温度以下に冷却すると当該包接水和物が生成するという意味で、当該水溶液を「原料溶液」という場合がある。
(4)「調和融点」とは原料溶液を冷却することにより水和物を生成させる際、水溶液(液相)から水和物(固相)に変相する前後の組成が変わらない場合(例えばもとの水溶液中の水和物を生成する化合物濃度と同じ濃度の水和物を生じるとき)の温度をいう。縦軸を融点温度、横軸を濃度とした状態図では極大点が調和融点となる。
(5)「調和濃度」とは、調和融点を与える原料溶液の濃度をいう。
(6)「調和水溶液」とは、調和融点を与える濃度の原料溶液をいう。
(7)「スラリー」とは、液体中に固体粒子が分散又は懸濁した状態又はその状態にある物質をいう。沈降しがちな固体粒子を浮遊状態とするために界面活性剤を添加したり、機械的に攪拌することもあるが、液体中に固体粒子が分散又は懸濁している限り、「スラリー」という。液体中に固体粒子が分散又は懸濁している限り、その分散又は懸濁が不均一なものであっても、「スラリー」という。
(8)「蓄熱剤」とは、熱エネルギーを蓄積する効果又は性質を有し、蓄熱用途に使用される物質をいう。熱エネルギーを蓄積する効果又は性質を有し、蓄熱用途に使用される物質である限り、複数種類の物質からなるか否か、添加物を含んでいるか否か、液体状態、固体状態或いはスラリー状態で使用されるか否か、容器やカプセルに収容されているか否か等は問わず、「蓄熱剤」とされる。「蓄熱剤」のうち、主に潜熱に相当する熱エネルギーを蓄積するものであるものを「潜熱蓄熱剤」、主に顕熱の熱エネルギーを蓄積するものであるものを「顕熱蓄熱剤」という場合がある。
包接水和物は、潜熱に相当する熱エネルギーを蓄積する効果又は性質を有し、蓄熱用途に使用されるので、「蓄熱剤」、特に「潜熱蓄熱剤」となり得る。
(9)蓄熱剤の「主成分」とは、蓄熱剤が有する熱エネルギーを蓄積する効果又は性質の発現に寄与する又はその発現の原因となる当該蓄熱剤の構成成分であって、その構成成分として存在するが故にその蓄熱剤が蓄熱用途に使用されるものをいう。そのような構成成分である限り、複数種類の物質からなるか否か、添加物を含んでいるか否か、液体状態、固体状態或いはスラリー状態で使用されるか否か、量が多いか少ないか、容器やカプセルに収容されているか否か等は問わず、当該蓄熱剤の「主成分」とされる。
包接水和物又はそのスラリーが蓄熱剤又はその「主成分」として使用される場合、その包接水和物のゲスト分子は当該蓄熱剤の「主成分」となり得る。
包接水和物のゲスト分子の調和水溶液は、それを原料溶液として冷却すると、液相から固相に変相する前後で組成が変わらず、調和水溶液それ自体が包接水和物に変相してゆく様相を呈する。この点に着目すると、包接水和物が蓄熱剤又はその「主成分」として使用される場合、そのゲスト分子の調和水溶液はそれ自体で蓄熱剤の「主成分」であるといえ、他面において、特に冷却されて固化した後においては蓄熱剤そのものといえる。
蓄熱剤の「主成分」を「蓄熱剤主成分」という場合がある。
潜熱蓄熱剤は、顕熱蓄熱剤に比べて蓄熱密度が高く、相変化温度が一定であり、熱の取り出し温度が安定である等の利点があるため、種々の用途に実用化されている。例えば、空調システムにおいては設備費や運転費の削減のため、熱媒体を輸送するポンプ動力の低減が求められており、熱輸送密度を増大させるために蓄熱密度の高い潜熱蓄熱剤を用いることが検討されている。
このような潜熱蓄熱剤として、テトラアルキルアンモニウム化合物の包接水和物が知られている(特許文献1、特許文献2)。
テトラアルキルアンモニウム化合物の包接水和物は、その生成の際の潜熱が大きいため、比較的蓄熱量が大きく、パラフィンのように可燃性ではないため取り扱いも容易であり、非常に有用な蓄熱剤である。また、テトラアルキルアンモニウム化合物の包接水和物は、調和融点が氷の融点の0℃よりも高いため、蓄熱剤を冷却して水和物を生成する際の冷媒の温度が高くてよく、冷凍機の成績係数(COP)が高くなり省エネルギーが図れるという利点もある(特許文献3)。
原料溶液を冷却して、水和物生成温度(融点又は凝固点)に達してさらに低温になっても水和物が生成されず水溶液の状態を保っている状態又は現象を過冷却状態若しくは過冷却現象(以下、単に「過冷却」という場合がある)というが、水和物を蓄熱剤に用いる場合にはこの過冷却の程度、即ち過冷却度が大きいと、原料溶液の冷却温度(冷媒により冷却している場合には冷媒温度)を低くしなければならず、また水和物の生成が遅延するなど問題となる。したがって、過冷却度をできるだけ小さくし、過冷却を防止又は抑制すること(以下、単に「過冷却防止」という場合がある)が重要である(特許文献4参照)。
従来、例えば微粒子を原料溶液に混入して、これを水和物の核生成材として機能させることにより(特許文献5)、或いは、過冷却防止の効果又は性質を有する薬剤、即ち過冷却防止剤を原料溶液に添加することにより過冷却を防止又は抑制する試みがなされてきた。
特公昭57−35224号公報 特許第3641362号公報 特開2007−40641号公報 特開2001−343139号公報 特許第3407659号公報
しかし、原料溶液に微粒子を混入させるという前者の手法には、その原料溶液に微粒子が均一に分散されていないと過冷却防止の効果が原料溶液に広く行き渡らず、顕在化するのに時間がかかるという問題や、水和物の生成又は凝固と融解とを繰り返すと微粒子が原料溶液から分離されて過冷却防止の効果がなくなるという問題がある。
他方、原料溶液に過冷却防止剤を添加するという後者の手法にも問題がある。例えば、過冷却が生じた場合又は過冷却が生じることを見込んで、原料溶液中に過冷却防止剤を供給する場合には、微粒子を添加する場合と類似の問題が生じる。即ち、適時に過冷却防止剤を原料溶液に供給したとしても過冷却防止剤は直ちに水溶液全体に行き渡るわけではないので、過冷却防止効果が水溶液全体に及ぶまでには時間がかかり、全体として過冷却を十分又は短時間に防止又は抑制することができない。この問題は、蓄熱のたびに包接水和物の生成時間が変動しないように(換言すれば包接水和物の生成が安定的であるように)する必要がある場合や蓄熱を短時間で行う必要から包接水和物の生成を急速に行う必要がある場合には、解決すべき大きな課題となる。それ故、はじめに原料溶液に添加しておけば過冷却防止の効果が生じる過冷却防止剤があれば、それに越したことはない。
尤も、はじめに原料溶液に過冷却防止剤を添加しておけば過冷却防止の効果が生じる場合であっても、原料溶液への過冷却防止剤の添加量が不適切であると、当初準備した原料溶液の水和物生成温度が過度に変化したり、予定していた蓄熱量を確保できなくなる場合がある。また、過冷却防止の効果が時間の経過に伴い劣化しないとも限らない。例えば蓄熱剤の実際の使用環境では、蓄熱と放熱(以下、まとめて「蓄放熱」という場合がある)、即ち包接水和物の生成又は凝固と融解とが頻繁に繰り返される。このような蓄熱と放熱の繰返しにより、過冷却防止効果の経時的な劣化が起こることがある。
本発明は、上記のような問題点を解決するためになされたものであり、原料溶液を冷却して包接水和物を生成する際、原料溶液の過冷却度を低減又は過冷却を防止又は抑制することができる技術、原料溶液中における水和物の生成又は凝固と融解とを頻繁に繰返しても過冷却防止効果の低下を起こりにくくすることができる技術並びにこれらに関連する技術を提供することを目的とする。
(1) 本発明の第1の形態に係る包接水和物生成用の水溶液は、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと弗化テトラnブチルアンモニウムと水を含有してなることを特徴とするものである。
(2) 本発明の第2の形態に係る包接水和物生成用の水溶液は、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの水溶液に、過冷却防止剤として弗化テトラnブチルアンモニウムの水溶液を添加してなることを特徴とするものである。
(3) 本発明の第3の形態に係る包接水和物生成用の水溶液は、第1又は第2の形態に係る包接水和物生成用の水溶液であって、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの重量の合計に対する弗化テトラnブチルアンモニウムの重量比率が0.8%以上15.5%以下であることを特徴とするものである。
(4) 本発明の第4の形態に係る包接水和物生成用の水溶液は、臭化テトラnブチルアンモニウム(TBAB)と臭化トリnブチルnペンチルアンモニウム(TBPAB)と弗化テトラnブチルアンモニウム(TBAF)と水を含有してなる水溶液であって、TBABとTBPABの合計重量に対するTBAFの重量の比率であるTBAF添加率とTBABとTBPABとTBAF の合計重量に対する水の重量比率である水比率を、TBABとTBPABの合計重量に対するTBABの重量の比率(TBAB/(TBAB+TBPAB))に対応して、
TBAB/(TBAB+TBPAB)が1.2%以上11.6%未満ではTBAF添加率は6.7%以上15.5%以下であり水比率は1.90倍から1.95倍の範囲である、
TBAB/(TBAB+TBPAB)が11.6%以上22.7%未満ではTBAF添加率は5.6%以上12.4%以下であり水比率は1.86倍から1.91倍の範囲である、
TBAB/(TBAB+TBPAB)が22.7%以上33.5%未満ではTBAF添加率は4.6%以上10.3%以下であり水比率は1.81倍から1.86倍の範囲である、
TBAB/(TBAB+TBPAB)が33.5%以上44.0%未満ではTBAF添加率は3.6%以上9.2%以下であり水比率は1.76倍から1.81倍の範囲である、
TBAB/(TBAB+TBPAB)が44.0%以上54.1%未満ではTBAF添加率は2.7%以上8.2%以下であり水比率は1.72倍から1.77倍の範囲である、
TBAB/(TBAB+TBPAB)が54.1%以上63.8%未満ではTBAF添加率は2.6%以上8.0%以下であり水比率は1.67倍から1.73倍の範囲である、
TBAB/(TBAB+TBPAB)が63.8%以上73.3%未満ではTBAF添加率は2.6%以上7.0%以下であり水比率は1.63倍から1.68倍の範囲である、
TBAB/(TBAB+TBPAB)が73.3%以上82.5%未満ではTBAF添加率は2.6%以上6.9%以下であり水比率は1.59倍から1.64倍の範囲である、
TBAB/(TBAB+TBPAB)が82.5%以上91.4%未満ではTBAF添加率は1.7%以上6.0%以下であり水比率は1.55倍から1.60倍の範囲である、
TBAB/(TBAB+TBPAB)が91.4%以上99.1%未満ではTBAF添加率は0.8%以上5.9%以下であり水比率は1.51倍から1.57倍の範囲である、
ことを特徴とするものである。
(5) 本発明の第5の形態に係る包接水和物生成用の水溶液は、第1乃至第4のいずれかの形態に係る水溶液であって、腐食抑制剤が添加されていることを特徴とするものである。
(6) 本発明の第6の形態に係る蓄熱剤は、第1乃至第5のいずれかの形態に係る水溶液が水和物生成温度以下に冷却されることにより生成される包接水和物を主成分として含むことを特徴とするものである。
(7) 本発明の第7の形態に係る蓄熱剤は、第1乃至第5のいずれかの形態に係る水溶液が水和物生成温度以下に冷却されることにより生成される包接水和物がその水溶液に分散又は懸濁してなるスラリーを含むことを特徴とするものである。
(8) 本発明の第8の形態に係る包接水和物又はそのスラリーの製造方法は、第1乃至第5のいずれかの形態に係る水溶液を準備する工程と、前記水溶液を冷却して包接水和物を生成させる工程とを有することを特徴とするものである。
(9) 本発明の第9の形態に係る蓄放熱方法は、第1乃至第5のいずれかの形態に係る水溶液を冷却し、包接水和物を生成させることにより熱エネルギーを蓄積し、生成した包接水和物を融解させることにより熱エネルギーを放出することを特徴とするものである。
(10) 本発明の第10の形態に係る蓄熱剤は、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと水からなり融点が6〜12℃に調整された蓄熱剤主成分と、弗化テトラnブチルアンモニウム水溶液を含有してなる蓄熱剤であって、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの重量の合計に対する弗化テトラnブチルアンモニウムの重量比率が0.8%以上15.5%以下であることを特徴とするものである。
(11) 本発明の第11の形態に係る蓄熱剤は、第10の形態に係る蓄熱剤であって、腐食抑制剤を添加したことを特徴とするものである。
(12) 本発明の第12の形態に係る蓄熱剤の調製方法は、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの水溶液である蓄熱剤主成分に、弗化テトラnブチルアンモニウム水溶液を添加することを特徴とするものである。
(13) 本発明の第13の形態に係る潜熱蓄熱剤生成用水溶液は、臭化テトラnブチルアンモニウムと、臭化トリnブチルnペンチルアンモニウムと、弗化テトラnブチルアンモニウムとを含有し、冷却されることにより、潜熱蓄熱剤である水和物を生成することを特徴とするものである。
(14) 本発明の第14の形態に係る潜熱蓄熱剤又はその主成分を生成するための水溶液は、冷却されて包接水和物を生成させる水溶液であって、臭化テトラnブチルアンモニウムを溶質として含み、弗化テトラnブチルアンモニウムが添加されていることを特徴とするものである。
(15) 本発明の第15の形態に係る潜熱蓄熱剤又はその主成分を生成するための水溶液は、第14の形態に係る水溶液であって、臭化テトラnブチルアンモニウムに対する弗化テトラnブチルアンモニウムの重量比率が0.8%以上15.5%以下の範囲であることを特徴とするものである。
(16) 本発明の第16の形態に係る潜熱蓄熱剤又はその主成分となる包接水和物又はそのスラリーの製造方法は、第14又は第15の形態に係る水溶液を準備する工程と、その水溶液を冷却して包接水和物を生成させる工程とを有することを特徴とするものである。
(17) 本発明の第17の形態に係る水溶液の調製方法は、潜熱蓄熱剤又はその主成分を生成するための水溶液の調整方法であって、臭化テトラnブチルアンモニウムとと臭化トリnブチルnペンチルアンモニウムとを含む水溶液に、弗化テトラnブチルアンモニウムの調和融点を与える濃度の水溶液を添加する工程とを有することを特徴とするものである。
(1) 本発明によれば、臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムを含む水溶液に弗化テトラnブチルアンモニウムが添付されているので、蓄熱剤又はその主成分となる水和物を、当該水溶液の冷却により生成させる際、過冷却を防止又は抑制することができる。弗化テトラnブチルアンモニウムは、臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムに対する弗化テトラnブチルアンモニウムの重量比率が所定の範囲内になるように添加されるので、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下を実用上の変動許容範囲内にすることができる。また、原料溶液中における水和物の生成又は凝固と融解とを頻繁に繰返しても過冷却防止効果の低下を起こりにくくすることができる。
それ故、本発明によれば、過冷却度が低減された又は過冷却が起こりにくい包接水和物生成用の又は蓄熱剤若しくはその主成分を生成するための水溶液或いは、水和物の生成又は凝固と融解とを頻繁に繰返しても過冷却防止効果の低下が起こりにくい包接水和物生成用の又は蓄熱剤若しくはその主成分を生成するための水溶液(第1乃至第5並びに第13乃至第15の各形態)、過冷却が防止又は抑制されつつ原料溶液から生成され得る包接水和物を主成分とする又はその包接水和物のスラリーを含む蓄熱剤(第6及び第7の各形態)、過冷却が防止又は抑制されつつ生成し得る蓄熱剤(第10及び第11の各形態)、過冷却が防止又は抑制されつつ原料溶液から生成され得る潜熱蓄熱剤又はその主成分となる包接水和物又はそのスラリーの製造方法(第16の形態)、過冷却度を低減又は過冷却を防止若しくは抑制しつつ包接水和物を製造する方法(第8の形態)、原料溶液中における水和物の生成又は凝固と融解とを頻繁に繰返しても過冷却防止効果の低下が起こりにくい蓄放熱方法(第9の形態)などを実現することができる。また、蓄熱剤の単位重量当たりの潜熱量がより大きくなるように調整することが容易になる潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法(第12及び第17の各形態)を実現することができる。
本発明の作用効果の詳細及び実施形態又は実施例に固有の作用効果については、別途後述する。
(2) 弗化テトラnブチルアンモニウムは、弗素イオンを有するために、臭素イオンを有する臭化テトラnブチルアンモニウムに比して高い腐食性を有する。それ故、本発明によれば、比較的高い腐食性を有する弗化テトラnブチルアンモニウムが添加されている原料溶液に腐食抑制剤も添加されているので、腐食性の増加が抑制された包接水和物生成用の水溶液及び蓄熱剤をそれぞれ実現することができる。
本発明において採用可能な腐食抑制剤としては、蓄熱剤が密閉された環境すなわち溶存酸素が侵入しない環境で用いられる場合には、溶存する酸素を消費して腐食を抑制する脱酸型腐食抑制剤が好ましく、具体的には亜硫酸塩またはチオ硫酸塩のナトリウム塩、リチウム塩が挙げられ、この中から選ばれた少なくとも1種の腐食抑制剤を蓄熱剤に添加して腐食を抑制することができる。
また、密閉された環境に適用可能な他の腐食抑制剤としては、金属表面に腐食を防止する被膜を形成して腐食を抑制する被膜形成型腐食抑制剤があり、具体的にはポリリン酸塩、トリポリリン酸塩、テトラポリリン酸塩、燐酸水素二塩、ピロ燐酸塩またはメタ珪酸塩のナトリウム塩、カリウム塩、カルシウム塩、リチウム塩が挙げられ、この中から選ばれた少なくとも1種の腐食防止剤を蓄熱剤に添加して腐食を抑制することができる。
これらの被膜形成型腐食抑制剤と前述した脱酸型腐食抑制剤の亜硫酸塩またはチオ硫酸塩を併用することにより、さらに腐食を抑制することができる。
さらに、密閉された環境に適用可能な他の腐食抑制剤として亜硝酸塩、ベンゾトリアゾール、ヒドラジン、エリソルビン酸塩、アスコルビン酸塩、糖類が挙げられる。
蓄熱剤が大気開放環境で用いられる場合には、亜鉛、マグネシウム又はカルシウムの臭化物や硫酸塩を大気開放環境下の腐食抑制剤として用いることができる。これらの中から選ばれた少なくとも1種の腐食抑制剤を添加することにより、蓄熱剤の溶液中に含まれる水酸化物イオンや炭酸イオンと、腐食抑制剤の亜鉛イオン、マグネシウムイオン又はカルシウムイオンが結びついて炭酸塩や水酸化物が生成され、これらが金属材表面に沈着して被膜を形成して腐食を抑制することができ、これらの腐食抑制剤は被膜形成型腐食抑制剤として作用している。
蓄熱剤に前述した亜鉛、マグネシウム又はカルシウムの臭化物や硫酸塩を添加し、さらに、ナトリウムやカリウム、リチウムなどのリン酸塩の中から選ばれた少なくとも1種のリン酸塩を添加して、リン酸イオンと亜鉛イオン、マグネシウムイオン又はカルシウムイオンとを結合させてリン酸塩を生成し、このリン酸塩を金属材表面に沈着させて被膜を形成して腐食を抑制することができる。ナトリウムやカリウム、リチウムなどのリン酸塩は溶解度が大きいため、リン酸イオンを供給して効率よくリン酸塩被膜を形成して腐食を抑制することができる。沈殿被膜を形成させるリン酸イオンには、更に有効な効果がある。リン酸塩はpH調整剤としての作用もあるため、大気からの炭酸ガスの溶解や腐食生成物の加水分解によりpHが低くなることを防止することができる。
上記の腐食抑制剤を蓄熱剤に添加することにより、融点や蓄熱量を大きく変えずに腐食性の少ない蓄熱剤を提供することができる。
(3) 本発明に係る蓄熱剤、特に潜熱蓄熱剤は、過冷却防止効果が高く、また水和物の生成又は凝固と融解とを頻繁に繰返しても過冷却防止効果を維持できることのみならず、3〜16℃の温度範囲で多くの冷熱を蓄積できる。このため、本発明に係る蓄熱剤は、空調向けの蓄熱剤として特に有望である。
3〜16℃の温度範囲で蓄熱できる潜熱蓄熱剤が空調用途に向いているとされる理由は次のとおりである。
即ち、潜熱蓄熱剤を用いた空調においては、冷熱源からの冷熱を潜熱として貯めている蓄熱剤と空調負荷の空気とを直接又は媒体を介して熱交換を行い、熱交換後の空気を空調対象の空間に送り出すことにより、その空間の温度や湿度を調整している。多くの場合、冷房空調において室内機から吹き出す冷空気の温度は一般に15℃程度であり、高くとも18℃程度である。それ以上に高い温度であると、空調対象の空間に向けて送り出すべき空気量を増やさない限り、同レベルの空調効果を得ることが困難になり、それどころか却って空調効率が低下する。そのため、冷空気に冷熱を供給する潜熱蓄熱剤は、空気との熱交換に必要な温度差(約2℃)を考慮して、16℃以下の潜熱を蓄熱できるものであることが要求される。また、空調向けの潜熱蓄熱剤の典型例である氷の場合、0℃より低い温度で冷却する必要があるため、冷凍機のCOPが低くなり、蓄冷に必要なエネルギーが大きくなり省エネルギー化ができないという問題がある。COPを高いまま維持し、省エネルギー化を実現するためには、空調向けの潜熱蓄熱剤は、5℃以上、低くとも3℃以上で蓄熱できるものであることが要求される。それ故、3〜16℃の温度範囲で蓄熱できる潜熱蓄熱剤が空調用途に向いているとされる。
しかし、空調用途に使用されると否とに拘らず、3〜16℃の温度範囲の熱エネルギーを蓄積できる蓄熱剤は、現実の使用に耐え得るものでなければならない。
例えば、トリメチロールエタン、水及び尿素を含有する水和物系の蓄熱剤主成分に、ポリグリセリンを添加した蓄熱剤(融点は10〜25℃)がある。この蓄熱剤については特開2000−256659号公報に詳しいが、その記載による限り、凝固・融解の繰返しを確認した回数は高々100回程度に留まっている。この程度の繰返し使用回数では、使用目的は限られるし、水溶液中における成分物質の分離や濃度の偏り又は冷却により生成した水和物と母相との相分離が生じると過冷却防止の効果も低下してしまうので、広く実際の使用(特に民需の使用)に耐え得るものとは言い難い。
これに対し、本発明に係る蓄熱剤は、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム、弗化テトラnブチルアンモニウム及び水を、本発明に係る水和物生成用の水溶液は、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムを、それぞれ含有している。
臭化テトラnブチルアンモニウムは、水溶液の状態であれば3〜16℃の温度範囲で潜熱に相当する熱エネルギーを蓄積することが可能である。特に臭化テトラnブチルアンモニウムの調和水溶液(約40重量%)の水和物生成温度は約12℃であるが、これに臭化トリnブチルnペンチルアンモニウムを添加すると、その融点を、後述のとおり、臭化テトラnブチルアンモニウムと調和融点と、臭化トリnブチルnペンチルアンモニウムの調和融点の間、即ち6〜12℃の温度範囲に調製することができる。
このような臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとを含有してなる水溶液の水和物生成温度は、弗化テトラnブチルアンモニウムが少量添加されていても大きくは変らない。そして、弗化テトラnブチルアンモニウムを添加剤として含む当該原料溶液から包接水和物を生成させる際には、原料溶液の過冷却度が低減又は過冷却が防止若しくは抑制される。しかも、当該原料溶液中において水和物の生成又は凝固と融解とを1000回以上繰り返しても過冷却防止の効果は低下しない。
従って、本発明によれば、3〜16℃の温度範囲の熱エネルギーを蓄積でき、現実的使用に耐え得る蓄熱剤を実現することができる、という特に有益な効果を奏する。
なお、本発明によれば3〜16℃の温度範囲で蓄熱できる(潜熱)蓄熱剤、3〜16℃の範囲に水和物生成温度を有する水溶液等を実現することができるからといって、本発明が空調用途に限定されるということではない。本発明は、空調用途に使用されると否とに拘らず、3〜16℃の温度範囲の熱エネルギーを蓄積できる蓄熱剤、3〜16℃の範囲に水和物生成温度を有する水溶液等を実現することができる技術的思想である。この点、念のため申し添えておく。
以下、実施形態により本発明を詳細に説明する。その際、必要に応じて図表を参照しつつ説明するが、各図表において同じ部分又は相当する若しくは共通する部分にはこれと同じ符号を付し、一部の説明を省略する。
なお、便宜的に、臭化テトラnブチルアンモニウムを「TBAB」と、弗化テトラnブチルアンモニウムを「TBAF」とそれぞれ略記する場合がある。
1. 本発明に関連する新たな知見について説明する。本発明の幾つかの形態は当該新たな知見を基礎としている。
臭化テトラnブチルアンモニウムは包接水和物を形成し、その調和融点はおよそ12℃であり、この調和融点における潜熱量は178J/gである。臭化トリnブチルnペンチルアンモニウムは包接水和物を形成し、その調和融点はおよそ6℃であり、この調和融点における潜熱量は193J/gである。臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムをゲスト分子とする包接水和物を含む蓄熱剤(特に当該包接水和物を主成分として含む蓄熱剤)に関して、その原料溶液、即ち臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとを含む水溶液を冷却する際に生じる過冷却を防止又は抑制する効果を発揮する又は維持することができる物質及びその配合組成を検討し、当該物質として弗化テトラnブチルアンモニウム又はその水溶液を添加することが有効であることを見出した。
(1)臭化トリnブチルnペンチルアンモニウムの製造方法
臭化トリnブチルnペンチルアンモニウムは、トリブチルアミンと1ブロモペンタンとから合成することができる。トリnブチルアミンと1-ブロモペンタンを、適切な溶媒を用いて反応させると、臭化トリnブチルnペンチルアンモニウムが下式の反応により合成できる。
トリnブチルアミン + 1-ブロモペンタン →臭化トリnブチルnペンチルアンモニウム
(n-CHN + nCH11Br → (n-CH(nCH11)N-Br
(2)臭化トリnブチルnペンチルアンモニウムの添加による融点調整
臭化テトラnブチルアンモニウム調和水溶液に臭化トリnブチルnペンチルアンモニウム調和水溶液を、その配合比率を変えて混合することによりできる原料溶液(以下、「混合水溶液」という場合がある)を準備し、各混合水溶液を冷却した際に水和物が生成する温度を調べた。混合水溶液に対する臭化テトラnブチルアンモニウム調和水溶液の重量比と混合物融点との関係を図1に示す。
なお、各混合水溶液における、混合水溶液に対する臭化テトラnブチルアンモニウム調和水溶液の重量比並びに、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び水の各濃度(重量%)と混合物融点(℃)の関係をまとめて、表1に示す。
Figure 2009079160
図1により、混合水溶液に対する臭化テトラnブチルアンモニウム調和水溶液の重量比が変れば、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとを含む混合水溶液の冷却により生成される水和物の融点が、臭化テトラnブチルアンモニウム水和物の融点と臭化トリnブチルnペンチルアンモニウム水和物の融点との間、すなわち6〜12℃の間で変動することが分かる。
従って、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと水とを含む蓄熱剤において、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと水との配合組成を調整することにより、その主成分である水和物の融点を6〜12℃の間の所望値に調整することができる。或いは、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとを含む混合水溶液において、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと水との配合組成を調整することにより、当該混合水溶液の水和物生成温度又は当該混合水溶液を冷却することにより生成される水和物の融点を6〜12℃の間の所望値に調整することができる。このため、蓄熱剤により冷却されるべき対象、蓄熱の目的や用途等に適合する融点を有する水和物又はこれを主成分とする蓄熱剤或いは、かかる水和物を生成させ得る原料溶液を実現することができる。
なお、上記の混合水溶液から生成される水和物の総潜熱量は、臭化テトラnブチルアンモニウム水和物と臭化トリnブチルnペンチルアンモニウム水和物それぞれ単独の潜熱量に配合組成比率を乗じた総和とほぼ等しい、ことを確認した。
(3)弗化テトラnブチルアンモニウム又はその水溶液の添加による過冷却防止
(ア) 臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと水とを含んでなる包接水和物又は当該包接水和物を含む蓄熱剤(特に当該包接水和物を主成分として含む蓄熱剤)に関して、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとを含む混合水溶液を冷却する際に生じる過冷却を防止又は抑制する効果を発揮する又は維持することができる物質及びその配合組成を検討し、水との混合物を蓄熱剤主成分として、過冷却防止効果を発揮する又は維持することができる蓄熱剤配合組成を検討し、弗化テトラnブチルアンモニウム又は弗化テトラnブチルアンモニウム水溶液を添加することが有効であることを見出した。
弗化テトラnブチルアンモニウム又は弗化テトラnブチルアンモニウムの水溶液を、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとを含む水溶液に添加することにより過冷却防止効果を奏する理由を推定すると、それは次のとおりである。
即ち、弗化テトラnブチルアンモニウムは水和物の調和融点が25℃であり、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムを含む水溶液から生成される水和物の融点或いは、臭化テトラnブチルアンモニウム水和物及び臭化トリnブチルnペンチルアンモニウム水和物の各融点又は、臭化テトラnブチルアンモニウム水和物及び臭化トリnブチルnペンチルアンモニウム水和物を主成分とする蓄熱剤の融点より十分に高い。このため上記の水溶液を冷却すると、弗化テトラnブチルアンモニウム水和物が、臭化テトラnブチルアンモニウム水和物及び臭化トリnブチルnペンチルアンモニウム水和物又は上記の蓄熱剤の主成分より先に形成される。すると、弗化テトラnブチルアンモニウム水和物が他の水和物の形成の契機又は誘発原因となる核(生成核)になり、蓄熱剤主成分となる水和物を短時間で生成させる結果、過冷却が防止又は抑制される。また、弗化テトラnブチルアンモニウム水和物は臭化テトラnブチルアンモニウム水和物や臭化トリnブチルnペンチルアンモニウム水和物の類縁物質であるので、相溶性もあり、結晶構造なども類似しているため、効果的に過冷却が防止又は抑制される。
(イ) 過冷却防止剤としての弗化テトラnブチルアンモニウムの添加量に関しては、例えば、弗化テトラnブチルアンモニウムを、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの合計重量に対する重量比率が所定の範囲内になるように添加することが好ましい。当該所定の範囲の下限未満であると、弗化テトラnブチルアンモニウム水和物の量が減り、他の水和物の生成核となりにくくなり、過冷却を防止する効果が不足する。他方、当該所定の範囲の上限値超であると、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムを含む水溶液から生成される水和物又は臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムを含む水和物、延いてはこの水和物を主成分とする蓄熱剤の潜熱量が影響を受け、3〜16℃の温度範囲で蓄熱できる潜熱量が著しく減少してしまう。当該所定の範囲は、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの濃度又は重量比率によって変動する。
それ故、弗化テトラnブチルアンモニウムを、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの濃度又は重量比率に応じて、弗化テトラnブチルアンモニウムの添加を適量(又は適量の範囲)にすることにより、過冷却防止剤の添加による蓄熱剤主成分の熱的性質への悪影響を極力低減しつつ、過冷却防止の効果をより確実に又は効果的になものにすることができる。
(ウ) 水の量に対する臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの量は、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの水溶液を混合すると仮定するとき、いずれも調和濃度になるような量に設定することが好ましい。
このような臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの量の設定は、例えば、次の要領又は原理で行うことができる。即ち、今、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの水溶液の調和濃度は既知であるので、それぞれP重量%、Q重量%及びR重量%とする。また、説明の便のため、各水溶液の比重はいずれも1(1cm当たり1グラム)と近似でき、各溶質の溶解に伴う各水溶液の体積変動は生じないものとしておく(このような前提を設けても実際との乖離は小さい。その乖離が無視できない場合には補正すれば足りる)。まず、Xリットルの原料溶液を準備するために、M(Xより小さい任意の値)リットルの臭化テトラnブチルアンモニウム調和水溶液、N(Xより小さい任意の値)リットルの臭化トリnブチルnペンチルアンモニウム調和水溶液及び(X−M−N)リットルの弗化テトラnブチルアンモニウム調和水溶液を混合する。これは、(X−10PM−10QN−10R(X−M−N))リットルの水溶媒に、10PMグラムの臭化テトラnブチルアンモニウムと、10QNグラムの臭化トリnブチルnペンチルアンモニウムと、10R(X−M−N)グラムの弗化テトラnブチルアンモニウムとがそれぞれ投入されたことと同じである。従って、任意のXリットルの原料溶液を準備する際に、Mリットルの臭化テトラnブチルアンモニウム調和水溶液と、Nリットルの臭化トリnブチルnペンチルアンモニウム調和水溶液と、(X−M)リットルの弗化テトラnブチルアンモニウム調和水溶液とを混合する、或いは、10PMグラムの臭化テトラnブチルアンモニウム又はこれと等量の物質と、10QNグラムの臭化トリnブチルnペンチルアンモニウム又はこれと等量の物質と、10R(X−M−N)グラムの弗化テトラnブチルアンモニウム又はこれと等量の物質とを水溶媒に投入し混合することにより、水の量に対する臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの量を、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの水溶液を混合すると仮定するとき、いずれも調和濃度になるような量にすることができる。
上記のように臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムの各量を設定することが好ましいとする理由は、調和濃度でない濃度で生成される水和物に比べると、調和濃度で生成される水和物の方により多くの熱エネルギーが蓄積されることに鑑みるに、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの水和物が、調和濃度で生成し得るような条件を設定してやれば、それらの水和物を主成分とする蓄熱剤の単位重量当たりの潜熱量がより大きくなるように調整することが容易になるためである。上記の例でいえば、Xリットルの原料溶液を準備するために、Mリットルの臭化テトラnブチルアンモニウム調和水溶液と、Nリットルの臭化トリnブチルnペンチルアンモニウムと、(X−M−N)リットルの弗化テトラnブチルアンモニウム調和水溶液とを混合してやれば、或いは、(X−10PM−10Q−10R(X−M−N))リットルの水溶媒に、10PMグラムの臭化テトラnブチルアンモニウム又はこれと等量の物質と、10QNグラムの臭化トリnブチルnペンチルアンモニウム又はこれと等量の物質と、10R(X−M−N)グラムの弗化テトラnブチルアンモニウム又はこれと等量の物質とをそれぞれ投入し、後はMとNの各値を変動させて潜熱量が最大になるように又は潜熱量が過度に低下しないように調整してやればよい(換言すれば、潜熱量が最大になる又は過度に低下しないようなMとNの各値を求めればよい)、ということである。
(エ) 以上においては、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムを含む水溶液から生成される水和物を主成分とする蓄熱剤の単位重量当たりの潜熱量がより大きくなるように調整する際、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの水溶液を混合すると仮定するとき、いずれも調和濃度になるような条件(又は臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムのそれぞれの水和物が、調和濃度で生成し得るような条件)に設定するという手法について説明した。そこで、その他のバリエーションについて定性的説明を追記しておく。
(エ−1) まず、臭化テトラnブチルアンモニウム水溶液に臭化トリnブチルnペンチルアンモニウムを加える場合について説明する。
1> 調和濃度の臭化テトラnブチルアンモニウムの水溶液に、調和濃度より低い臭化トリnブチルnペンチルアンモニウムの水溶液を添加すると、臭化テトラnブチルアンモニウムの濃度を実質的に低下させるように作用するので、また、調和融点より高い濃度の臭化トリnブチルnペンチルアンモニウムの水溶液又は臭化トリnブチルnペンチルアンモニウムの粉末を添加すると、臭化テトラnブチルアンモニウムの濃度を実質的に増加させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
2> 調和濃度より低い濃度の臭化テトラnブチルアンモニウムの水溶液に、調和濃度より低い濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を添加すると、臭化テトラnブチルアンモニウムの濃度を低下させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
調和濃度でない臭化テトラnブチルアンモニウムの水溶液に、調和濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を添加すると、臭化テトラnブチルアンモニウムの濃度を実質的に低下させるように作用しないので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下しない(又は増加する)。
調和濃度より低い濃度の臭化テトラnブチルアンモニウムの水溶液に、調和融点より高い濃度の臭化トリnブチルnペンチルアンモニウムの水溶液又は臭化トリnブチルnペンチルアンモニウムの粉末を添加すると、臭化テトラnブチルアンモニウムの濃度を実質的に増加させるように作用するので、その結果は添加量によって分かれる。即ち、添加量が値S(添加するものによって異なる特定の値)以下であるならば、臭化テトラnブチルアンモニウムの濃度を実質的に調和濃度に至るまで増加させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より増加する。添加量が値Sを超えており、値T(添加するものによって異なる別の特定の値)以下であれば、臭化テトラnブチルアンモニウムの濃度を実質的に増加させるものの、冷却により生成される水和物の単位重量当たりの潜熱量が添加前より低下する程度まで、これを実質的に増加させるようには作用しないので、当該潜熱量は添加前より低下しない又は増加する。添加量が値Tを超えていれば、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
3> 調和濃度より高い濃度の臭化テトラnブチルアンモニウムの水溶液に、調和濃度を超える濃度の臭化トリnブチルnペンチルアンモニウムの水溶液又は臭化トリnブチルnペンチルアンモニウムの粉末を添加すると、臭化テトラnブチルアンモニウムの濃度は実質的に増加するように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
調和濃度より高い濃度の臭化テトラnブチルアンモニウムの水溶液に、調和濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を添加すると、臭化テトラnブチルアンモニウムの濃度を実質的に調和濃度に近づけるようには作用しないので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下しない(又は増加する)。
調和濃度より高い濃度の臭化テトラnブチルアンモニウムの水溶液に、調和濃度より低い濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を添加すると、臭化テトラnブチルアンモニウムの濃度を実質的に低下させるように作用するので、その結果は添加量によって分かれる。即ち、添加量がある値M(添加するものによって異なる特定の値)以下であるならば、臭化テトラnブチルアンモニウムの濃度を実質的に調和濃度に至るまで低下させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より増加する。添加量が値Mを超えており、ある別の値N(添加するものによって異なる特定の値)以下であれば、臭化テトラnブチルアンモニウムの濃度を実質的に低下させるものの、冷却により生成される水和物の単位重量当たりの潜熱量が添加前より低下する程度まで、これを実質的に低下させるようには作用しないので、当該潜熱量は添加前より低下しない又は増加する。添加量が値Nを超えていれば、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
従って、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとを含む水溶液を冷却することにより水和物を生成させる場合、臭化トリnブチルnペンチルアンモニウムを加える前に比べて、水和物の単位重量当たりの潜熱量は添加前より低下させないようにするためには、次のように調製すればよい。
(i) 調和濃度の臭化テトラnブチルアンモニウムの水溶液に臭化トリnブチルnペンチルアンモニウムを加える場合には、調和濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を加える。
(ii) 調和濃度より低い濃度の臭化テトラnブチルアンモニウムの水溶液に臭化トリnブチルnペンチルアンモニウムを加える場合には、調和濃度の弗化テトラnブチルアンモニウムの水溶液を加える或いは、調和濃度より高い濃度の臭化トリnブチルnペンチルアンモニウムの水溶液又は臭化トリnブチルnペンチルアンモニウムの粉末を適量加える。
(iii) 調和濃度より高い濃度の臭化テトラnブチルアンモニウムの水溶液に臭化トリnブチルnペンチルアンモニウムを添加する場合には、調和濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を加える或いは、調和濃度より低い濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を適量加える。
上記(i)乃至(iii)の調製の仕方を横断的に纏めると、少なくとも、調和濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を加えれば、臭化テトラnブチルアンモニウムの濃度を問わず、水和物の単位重量当たりの潜熱量は添加前より低下させないようにすることができる、といえる。臭化テトラnブチルアンモニウムの水溶液が調和濃度である場合において、当該潜熱量の低下を極力回避すべき局面であれば、調和濃度の臭化トリnブチルnペンチルアンモニウムの水溶液を加えるのが好ましい。
(エ−2) 次に、臭化テトラnブチルアンモニウムと臭化テトラnブチルアンモニウムを含む水溶液(以下「対象水溶液」という)に弗化テトラnブチルアンモニウムを添加する場合について説明する。
まず、「調和濃度の対象水溶液」、「調和濃度より高い対象水溶液」及び「調和濃度より低い対象水溶液」を次のように定義しておく。
「調和濃度の対象水溶液」とは、臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムのそれぞれの水溶液を混合すると仮定するとき、いずれも調和濃度になるような条件(又は臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムのそれぞれの水和物が、調和濃度で生成し得るような条件)に設定された対象水溶液をいう。例えば、臭化テトラnブチルアンモニウムの調和水溶液と臭化テトラnブチルアンモニウムの調和水溶液とを混合してできる対象水溶液は、「調和濃度の対象水溶液」である。調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液又は調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液であって、その混合の結果として、臭化テトラnブチルアンモニウムの調和水溶液と臭化テトラnブチルアンモニウムの調和水溶液とを混合してできる対象水溶液と同等のものになるものも、「調和濃度の対象水溶液」である。
「調和濃度より高い対象水溶液」とは、臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムのそれぞれの水溶液を混合すると仮定するとき、いずれか一方が調和濃度になり、他方が調和濃度より高くなるような条件(又は臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムのそれぞれの水和物のうち、一方の水和物が調和濃度で生成し、他方の水和物が調和濃度よりも高い濃度で生成し得るような条件)に設定された対象水溶液をいう。例えば、調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液、調和濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液並びに、調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液は、いずれも「調和濃度より高い濃度の対象水溶液」である。調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液又は調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液であって、その混合の結果として、調和濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液、調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液又は調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液と同等のものになるものも、「調和濃度より高い対象水溶液」である。
「調和濃度より低い対象水溶液」とは、臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムのそれぞれの水溶液を混合すると仮定するとき、いずれか一方が調和濃度になり、他方が調和濃度より高くなるような条件(又は臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムのそれぞれの水和物のうち、一方の水和物が調和濃度で生成し、他方の水和物が調和濃度よりも高い濃度で生成し得るような条件)に設定された対象水溶液をいう。例えば、調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液、調和濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液並びに、調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液は、いずれも「調和濃度より高い濃度の対象水溶液」である。調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液又は調和濃度より高い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液であって、その混合の結果として、調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液、調和濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液又は調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液と調和濃度より低い濃度の臭化テトラnブチルアンモニウム水溶液とを混合してできる対象水溶液と同等のものになるものも、「調和濃度より低い対象水溶液」である。
すると、対象水溶液に弗化テトラnブチルアンモニウムを添加する場合は、次のとおりである。
1> 調和濃度の対象水溶液に、調和濃度より低い弗化テトラnブチルアンモニウムの水溶液を添加すると、対象水溶液の溶質の濃度を実質的に低下させるように作用するので、また、調和融点より高い濃度の弗化テトラnブチルアンモニウムの水溶液又は弗化テトラnブチルアンモニウム三水和物の粉末を添加すると、対象水溶液の濃度を実質的に増加させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
2> 調和濃度より低い濃度の対象水溶液に、調和濃度より低い濃度の弗化テトラnブチルアンモニウムの水溶液を添加すると、対象水溶液の溶質の濃度を低下させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
調和濃度でない対象水溶液に、調和濃度の弗化テトラnブチルアンモニウムの水溶液を添加すると、対象水溶液の溶質の濃度を実質的に低下させるように作用しないので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下しない(又は増加する)。
調和濃度より低い濃度の対象水溶液に、調和融点より高い濃度の弗化テトラnブチルアンモニウムの水溶液又は弗化テトラnブチルアンモニウム三水和物の粉末を添加すると、対象水溶液の溶質の濃度を実質的に増加させるように作用するので、その結果は添加量によって分かれる。即ち、添加量が値E(添加するものによって異なる特定の値)以下であるならば、対象水溶液の溶質の濃度を実質的に調和濃度に至るまで増加させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より増加する。添加量が値Eを超えており、値F(添加するものによって異なる別の特定の値)以下であれば、対象水溶液の溶質の濃度を実質的に増加させるものの、冷却により生成される水和物の単位重量当たりの潜熱量が添加前より低下する程度まで、これを実質的に増加させるようには作用しないので、当該潜熱量は添加前より低下しない又は増加する。添加量が値Fを超えていれば、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
3> 調和濃度より高い濃度の対象水溶液に、調和濃度を超える濃度の弗化テトラnブチルアンモニウムの水溶液又は弗化テトラnブチルアンモニウム三水和物の粉末を添加すると、対象水溶液の溶質の濃度は実質的に増加するように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
調和濃度より高い濃度の対象水溶液に、調和濃度の弗化テトラnブチルアンモニウムの水溶液を添加すると、対象水溶液の溶質の濃度を実質的に調和濃度に近づけるようには作用しないので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下しない(又は増加する)。
調和濃度より高い濃度の対象水溶液に、調和濃度より低い濃度の弗化テトラnブチルアンモニウムの水溶液を添加すると、対象水溶液の溶質の濃度を実質的に低下させるように作用するので、その結果は添加量によって分かれる。即ち、添加量がある値G(添加するものによって異なる特定の値)以下であるならば、対象水溶液の溶質の濃度を実質的に調和濃度に至るまで低下させるように作用するので、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より増加する。添加量が値Gを超えており、ある別の値H(添加するものによって異なる特定の値)以下であれば、対象水溶液の溶質の濃度を実質的に低下させるものの、冷却により生成される水和物の単位重量当たりの潜熱量が添加前より低下する程度まで、これを実質的に低下させるようには作用しないので、当該潜熱量は添加前より低下しない又は増加する。添加量が値Hを超えていれば、冷却により生成される水和物の単位重量当たりの潜熱量は添加前より低下する。
従って、弗化テトラnブチルアンモニウムが添加された対象水溶液を冷却することにより水和物を生成させる場合、弗化テトラnブチルアンモニウムを添加する前に比べて、水和物の単位重量当たりの潜熱量は添加前より低下させないようにするためには、次のように調製すればよい。
(i) 調和濃度の対象水溶液に弗化テトラnブチルアンモニウムを添加する場合には、調和濃度の弗化テトラnブチルアンモニウムの水溶液を添加する。
(ii) 調和濃度より低い濃度の対象水溶液に弗化テトラnブチルアンモニウムを添加する場合には、調和濃度の弗化テトラnブチルアンモニウムの水溶液を添加する或いは、調和濃度より高い濃度の弗化テトラnブチルアンモニウムの水溶液又は弗化テトラnブチルアンモニウム三水和物の粉末を適量添加する。
(iii) 調和濃度より高い濃度の対象水溶液に弗化テトラnブチルアンモニウムを添加する場合には、調和濃度の弗化テトラnブチルアンモニウムの水溶液を添加する或いは、調和濃度より低い濃度の弗化テトラnブチルアンモニウムの水溶液を適量添加する。
上記(i)乃至(iii)の調製の仕方を横断的に纏めると、少なくとも、調和濃度の弗化テトラnブチルアンモニウムの水溶液を添加すれば、対象水溶液の溶質の濃度を問わず、水和物の単位重量当たりの潜熱量は添加前より低下させないようにすることができる、といえる。対象水溶液が調和濃度である場合において、当該潜熱量の低下を極力回避すべき局面であれば、調和濃度の弗化テトラnブチルアンモニウムの水溶液を添加するのが好ましい。
2. 次に、過冷却防止剤としての弗化テトラnブチルアンモニウムの添加及びその効果についてより具体的に説明する。
<測定・評価方法>
(ア) ある濃度に調製された臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの混合水溶液(弗化テトラnブチルアンモニウムの添加前のこの混合水溶液を「当初混合水溶液」という場合がある)に、既知濃度の弗化テトラnブチルアンモニウムの水溶液を添加することにより、水和物生成用の水溶液(以下、「被検混合水溶液」という場合がある)を準備する(因みに、この水溶液を冷却することにより生成する水和物は、それ自体で又は水溶液に分散又は懸濁してなるスラリーとして蓄熱剤(特に潜熱蓄熱剤)又はその主成分として使用され得るものである)。
上記のように準備された各被検混合水溶液を冷却することにより生成する水和物について、以下に示す過冷却防止性、潜熱量、潜熱量比及び融点の計測及び評価を行う。この計測と評価を通じて、過冷却防止の効果が高く、かつ、3〜16℃の温度範囲の潜熱量の低下が少ない弗化テトラnブチルアンモニウムの添加率(臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの合計重量に対する添加した弗化テトラnブチルアンモニウムの重量の比又は比率(百分率))を求める。
(2−1)過冷却防止性
上記の要領により調製した被検混合水溶液を冷媒を流した金属管に接触させて3℃に冷却し、水和物の結晶が生成し過冷却が解除されるまでの時間を計測し、5分以内に水和物結晶が生成すれば過冷却防止性又は過冷却防止の効果が認められると評価する。さらに、この被検混合水溶液を3℃に冷却して水和物を生成させ、その後40℃に加熱して生成した水和物を融解させるという水和物の生成又は凝固と融解とを1000回繰返して、過冷却防止性の低下がないと認められたときに過冷却防止効果の耐久性があると評価する。
(2−2)潜熱量、潜熱量比及び融点
上記の要領により調製した被検混合水溶液の差動走査型熱量計(DSC)測定を実施し潜熱量と融点を測定する。
上記の要領により調製した被検混合水溶液を冷却することにより生成される固相物の融解時の熱量を3〜16℃の温度範囲で計測することにより潜熱量を求める。ここでいう潜熱量とは、3〜16℃の温度範囲における、潜熱に相当する熱エネルギーをいう。
弗化テトラnブチルアンモニウムを添加していない臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの水溶液(当初混合水溶液)から生成した水和物と、弗化テトラnブチルアンモニウムを添加した当初混合水溶液から生成した水和物の融解潜熱量をDSCを用いて計測し、弗化テトラnブチルアンモニウムを添加していない当初混合水溶液から生成した水和物の潜熱量(これを1とする)に対する弗化テトラnブチルアンモニウムを添加した当初混合水溶液から生成した水和物の潜熱量の比をもって潜熱量比とし、潜熱量比により弗化テトラnブチルアンモニウムの添加率の変化による潜熱量の変化を評価する。
弗化テトラnブチルアンモニウムを添加していない当初混合水溶液から生成した水和物と、弗化テトラnブチルアンモニウムを添加した当初混合水溶液から生成した水和物の融解させたときの融点を計測する。横軸に温度、縦軸に比熱をとったグラフのピークを示す温度を融点とする。
<計測と評価の結果>
(イ) 臭化テトラnブチルアンモニウムの調和融点を与える濃度(約40重量%)の水溶液(調和水溶液)に、臭化トリnブチルnペンチルアンモニウムの調和融点を与える濃度(約34重量%)の水溶液(調和水溶液)を加えて、更に弗化テトラnブチルアンモニウムの調和融点を与える濃度(約33重量%)の水溶液(調和水溶液)を添加することにより、被検混合水溶液を準備した。より具体的には、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との重量比(以下、「TBAB調和水溶液:TBPAB調和水溶液」と表記する場合がある)又は臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムとの重量比(以下、「TBAB重量:TBPAB重量」と表記する場合がある)が異なる当初混合水溶液を準備し、各当初混合水溶液に弗化テトラnブチルアンモニウム調和水溶液を添加することにより、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液の合計重量に対するの弗化テトラnブチルアンモニウム調和水溶液の重量の比率(重量%)(以下「TBAF調和水溶液添加率」という場合がある)が異なる複数の被検混合水溶液に対して、上記(2−1)及び(2−2)に記載の計測と評価を行った。
その結果を表2乃至表5にまとめて示す。表中、各被検混合水溶液における、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの合計重量に対する弗化テトラnブチルアンモニウムの重量の比率(%)(以下「TBAF添加率」という場合がある)並びに、臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムの合計重量に対する水の重量比(以下「水/(TBAB+TBPAB+TBAF)」と表記する場合がある)も併せて記してある。過冷却防止の効果又は過冷却防止性があり、1000回の凝固融解繰返し後もその低下が認められなかった場合(即ち、過冷却防止性に優れていると認められる場合)には○を、過冷却防止の効果又は過冷却防止性がない或いはその低下が認められた場合には×を記した。
(イ−1)TBAB調和水溶液:TBPAB調和水溶液=9:1(即ち、TBAB重量:TBPAB重量=91.4:8.6)の被検混合水溶液の場合
この被検混合水溶液における結果を表2に示す。
Figure 2009079160
この表から、次のことが分かる。
〔a〕 TBAF調和水溶液添加率が1重量%又はTBAF添加率が0.8重量%を下回ると、過冷却防止の効果が不十分になる。
〔b〕 TBAF調和水溶液の添加率が7重量%又はTBAF添加率が5.9重量%を超えると、潜熱量比は大きく減少し、水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容幅(10%)を超える。
上記〔b〕の結果、即ち3〜16℃の温度範囲の潜熱量がTBAF調和水溶液添加率又はTBAF添加率に依存するという結果は、従来の知見からは予測不能なものである。そこで、潜熱量が減少する理由について検討した。
DSC測定結果を、横軸に温度、縦軸に潜熱量をとってグラフ化したものを図2に示す。図2において点線で示すAが臭化テトラnブチルアンモニウム調和水溶液に臭化トリnブチルnペンチルアンモニウム調和水溶液を加えてなる当初混合水溶液(TBAB調和水溶液:TBPAB調和水溶液=9:1)の場合、実線で示すBが当該当初混合水溶液に、弗化テトラnブチルアンモニウム調和水溶液を、臭化テトラnブチルアンモニウム調和水溶液に対して9重量%に相当する量を添加した被検混合水溶液の場合である。弗化テトラnブチルアンモニウム調和水溶液を添加した場合には、潜熱を持つ範囲が弗化テトラnブチルアンモニウム調和水溶液を添加しない場合よりも高温側に移動していることが分かる。この現象が、3〜16℃の温度範囲の潜熱量が減少する理由であると推定される。なお、潜熱をもつ範囲が高温側に移動するのに伴い融点も高温側に移動する傾向がある。
以上の結果から、TBAB調和水溶液:TBPAB調和水溶液=9:1(即ち、TBAB重量:TBPAB重量=91.4:8.6)の水和物生成用の水溶液に弗化テトラnブチルアンモニウムを添加する場合、弗化テトラnブチルアンモニウム調和水溶液添加率が1重量%以上で7重量%以下の範囲にあれば、又は、TBAF添加率が0.8重量%以上で5.9重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が、水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容範囲内(潜熱量比の変化が10%以下)となる、といえる。
なお、念のため、次の結果についても付記しておく。
1> TBAF添加率が5.9重量%以下の範囲にあれば、融点の変動幅が1.5度以下になっている。この結果も従来の知見からは予測不能なものである。水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容幅は、用途にもよるが1〜1.5度程度であることを考え併せると、TBAF添加率が所定値以内であれば融点の変動幅が1.5度以下になるということは重要である。図1に示すDSC測定結果によれば、潜熱をもつ範囲が高温側に移動するのに伴い融点も高温側に移動していることが分かる。これが融点が変動する理由であると推定される。
2> TBAF添加率が5.9重量%以下の範囲にあれば、水/(TBAB+TBPAB+TBAF)の値が1.54以上で1.56以下の範囲である。
臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との当初混合水溶液に弗化テトラnブチルアンモニウムの調和水溶液を添加する代わりに、弗化テトラnブチルアンモニウム三水和物の粉末を適量添加して又は弗化テトラnブチルアンモニウム三水和物を適量添加するとともに水も適量添加して、TBAB調和水溶液:TBPAB調和水溶液=9:1(即ち、TBAB重量:TBPAB重量=91.4:8.6)の被検混合水溶液と略同じ水溶液を調製し、上記(2−1)及び(2−2)に記載の計測と評価を行った結果、上記と略同一の結果が得られた。即ち、TBAF添加率が0.8重量%以上で5.9重量%以下の範囲であれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が実用上の変動許容範囲内(潜熱量比の変化が10%以下)となる、という同様の結論が得られた。このとき、融点の変動幅は1.5度以下であり、水/(TBAB+TBPAB+TBAF)の値は1.54以上で1.56以下の範囲内であった。
引き続き、TBAB調和水溶液:TBPAB調和水溶液(即ち、TBAB重量:TBPAB重量)を変えた被検混合水溶液について、上記(イ−1)と同様の計測と評価を行った。以下、その結果を纏めて記載する。
(イ−2)TBAB調和水溶液:TBPAB調和水溶液=8:2(即ち、TBAB重量:TBPAB重量=82.5:17.5)の被検混合水溶液の場合
この被検混合水溶液における結果を表3に示す。
Figure 2009079160
この表より、弗化テトラnブチルアンモニウム調和水溶液添加率が2重量%以上で8重量%以下の範囲にあれば、又は、TBAF添加率が1.7重量%以上で6.8重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が、水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容範囲内(潜熱量比の変化が10%以下)となる、といえる。
また、TBAF添加率が6.8重量%以下の範囲にあれば、融点の変動幅が1.5度以下になり、水/(TBAB+TBPAB+TBAF)の値が1.59以上で1.61以下の範囲である。
臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との当初混合水溶液に弗化テトラnブチルアンモニウムの調和水溶液を添加する代わりに、弗化テトラnブチルアンモニウム三水和物の粉末を適量添加して又は弗化テトラnブチルアンモニウム三水和物を適量添加するとともに水も適量添加して、TBAB調和水溶液:TBPAB調和水溶液=8:2(即ち、TBAB重量:TBPAB重量=82.5:17.5)の被検混合水溶液と略同じ水溶液を調製し、上記(2−1)及び(2−2)に記載の計測と評価を行った結果、上記と略同一の結果が得られた。即ち、TBAF添加率が1.7重量%以上で6.8重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が実用上の変動許容範囲内(潜熱量比の変化が10%以下)となった。このとき、融点の変動幅は1.5度以下であり、水/(TBAB+TBPAB+TBAF)の値は1.59以上で1.61以下の範囲内であった。
(イ−3)TBAB調和水溶液:TBPAB調和水溶液=5:5(即ち、TBAB重量:TBPAB重量=54.1:45.9)の被検混合水溶液の場合
この被検混合水溶液における結果を表4に示す。
Figure 2009079160
この表より、弗化テトラnブチルアンモニウム調和水溶液添加率が3重量%以上で9重量%以下の範囲にあれば、又は、TBAF添加率が2.7重量%以上で8.0重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が、水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容範囲内(潜熱量比の変化が10%以下)となる、といえる。
また、TBAF添加率が8.0重量%以下の範囲にあれば、融点の変動幅が1.5度以下になり、水/(TBAB+TBPAB+TBAF)の値が1.71以上で1.73以下の範囲である。
臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との当初混合水溶液に弗化テトラnブチルアンモニウムの調和水溶液を添加する代わりに、弗化テトラnブチルアンモニウム三水和物の粉末を適量添加して又は弗化テトラnブチルアンモニウム三水和物を適量添加するとともに水も適量添加して、TBAB調和水溶液:TBPAB調和水溶液=5:5(即ち、TBAB重量:TBPAB重量=54.1:45.9)の被検混合水溶液と略同じ水溶液を調製し、上記(2−1)及び(2−2)に記載の計測と評価を行った結果、上記と略同一の結果が得られた。即ち、TBAF添加率が2.7重量%以上で8.0重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が実用上の変動許容範囲内(潜熱量比の変化が10%以下)となった。このとき、融点の変動幅は1.5度以下であり、水/(TBAB+TBPAB+TBAF)の値は1.71以上で1.73以下の範囲内であった。
(イ−4)TBAB調和水溶液:TBPAB調和水溶液=3:7(即ち、TBAB重量:TBPAB重量=33.5:66.5)の被検混合水溶液の場合
この被検混合水溶液における結果を表5に示す。
Figure 2009079160
この表より、弗化テトラnブチルアンモニウム調和水溶液添加率が4重量%以上で10重量%以下の範囲にあれば、又は、TBAF添加率が3.7重量%以上で9.2重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が、水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容範囲内(潜熱量比の変化が10%以下)となる、といえる。
また、TBAF添加率が9.2重量%以下の範囲にあれば、融点の変動幅が1.5度以下になり、水/(TBAB+TBPAB+TBAF)の値が1.80以上で1.81以下の範囲である。
臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との当初混合水溶液に弗化テトラnブチルアンモニウムの調和水溶液を添加する代わりに、弗化テトラnブチルアンモニウム三水和物の粉末を適量添加して又は弗化テトラnブチルアンモニウム三水和物を適量添加するとともに水も適量添加して、TBAB調和水溶液:TBPAB調和水溶液=3:7(即ち、TBAB重量:TBPAB重量=33.5:66.5)の被検混合水溶液と略同じ水溶液を調製し、上記(2−1)及び(2−2)に記載の計測と評価を行った結果、上記と略同一の結果が得られた。即ち、TBAF添加率が3.7重量%以上で9.2重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が実用上の変動許容範囲内(潜熱量比の変化が10%以下)となった。このとき、融点の変動幅は1.5度以下であり、水/(TBAB+TBPAB+TBAF)の値は1.80以上で1.81以下の範囲内であった。
(イ−5)TBAB調和水溶液:TBPAB調和水溶液=1:9(即ち、TBAB重量:TBPAB重量=11.6:88.4)の被検混合水溶液の場合
この被検混合水溶液における結果を表6に示す。
Figure 2009079160
この表より、弗化テトラnブチルアンモニウム調和水溶液添加率が7重量%以上で16重量%以下の範囲にあれば、又は、TBAF添加率が6.7重量%以上で15.3重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が、水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容範囲内(潜熱量比の変化が10%以下)となる、といえる。
また、TBAF添加率が15.3重量%以下の範囲にあれば、融点の変動幅が1.5度以下になり、水/(TBAB+TBPAB+TBAF)の値が1.90以上で1.91以下の範囲である。
臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との当初混合水溶液に弗化テトラnブチルアンモニウムの調和水溶液を添加する代わりに、弗化テトラnブチルアンモニウム三水和物の粉末を適量添加して又は弗化テトラnブチルアンモニウム三水和物を適量添加するとともに水も適量添加して、TBAB調和水溶液:TBPAB調和水溶液=1:9(即ち、TBAB重量:TBPAB重量=11.6:88.4)の被検混合水溶液と略同じ水溶液を調製し、上記(2−1)及び(2−2)に記載の計測と評価を行った結果、上記と略同一の結果が得られた。即ち、TBAF添加率が6.7重量%以上で15.3重量%以下の範囲にあれば、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が実用上の変動許容範囲内(潜熱量比の変化が10%以下)となった。このとき、融点の変動幅は1.5度以下であり、水/(TBAB+TBPAB+TBAF)の値は1.90以上で1.91以下の範囲内であった。
以上の(イ−1)乃至(イ−5)の結果を纏めた結果を、表7に示す。
Figure 2009079160
表7に示すとおり、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液を配合した混合水溶液(蓄熱剤主成分に相当する水溶液)に対して、所定の範囲内のTBAF調和水溶液添加率又はTBAF添加率になるように弗化テトラnブチルアンモニウム調和水溶液を添加することにより、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が、水和物が蓄熱剤又はその主成分として使用されるとき実用上の変動許容範囲内(潜熱量比の変化が10%以下)となる。
(ウ) 臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液の配合比率をより細かく変えて被検混合水溶液を調製し、各被検混合水溶液について上記(イ)と同様の計測と評価を行い、過冷却防止性が優れ、かつ、3〜16℃の温度範囲の潜熱量の低下が10%より少ないTBAF調和水溶液添加率(即ち、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液の合計に対する弗化テトラnブチルアンモニウム調和水溶液の重量比率(%))の範囲を求めた。その結果を図3に示す。
図3において、横軸は臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液の合計に対する臭化テトラnブチルアンモニウム調和水溶液の重量比率(%)(TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)%)であり、縦軸はTBAF調和水溶液添加率(%)であり、曲線Cは、凝固融解を1000回繰返しても過冷却防止性能の低下がないTBAF調和水溶液添加率(%)の最小値の軌跡であり、曲線Dは3〜16℃の温度範囲の潜熱量の低下が10%より少なくなるような最大値の軌跡である。
この図によれば、被検混合水溶液のTBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)(%)に対応した、曲線C以上、曲線D以下の範囲内となるTBAF調和水溶液添加率(%)を選択すれば、過冷却防止の効果又は過冷却防止性があり、凝固と融解を1000回繰返した後もその低下が認められない水和物生成用の水溶液又は蓄熱剤若しくはその主成分を得ることができる。
また、図3において、横軸を10%ごとに区切り、その区間における曲線C以上、曲線D以下の範囲を求める。即ち、図3において、横軸を10%ごとに区切り、その区間における曲線C以上、曲線D以下の範囲内に納まる長方形(点線)を描き、その長方形の上辺の縦軸上の位置(最大値)と下辺の縦軸上の位置(最小値)を求める。その結果を表8にまとめて示す。 この結果に基づけば、TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)(%)の値がある特定の10%の区間であるとき、その区間に対応して定まる最大値と最小値に範囲内にTBAF調和水溶液添加率(%)を設定してやれば、凝固融解を1000回繰返しても過冷却防止性の低下がなく、3〜16℃の温度範囲の潜熱量の低下が10%より少ない水和物生成用の水溶液又は蓄熱剤若しくはその主成分を実現することができる。
なお、表8には、TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)(%)の各10%の区間に対応して、TBAF調和水溶液添加率(%)のみならず、そのときの臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと弗化テトラnブチルアンモニウムと水との混合物又は被検混合水溶液中の臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの合計重量に対する弗化テトラnブチルアンモニウムの重量比率(%)(TBAF添加率(%))及び水/(TBAB+TBPAB+TBAF)を併記した。
Figure 2009079160
表8に示すように、過冷却防止性の低下がなく、3〜16℃の温度範囲の潜熱量の低下が10%より少ない水和物生成用の水溶液又は蓄熱剤若しくはその主成分を実現するためには、各パラメータを次のように設定するのが好適である。
1> 臭化テトラnブチルアンモニウム(TBAB)調和水溶液と臭化トリnブチルnペンチルアンモニウム(TBPAB)調和水溶液の合計重量に対する弗化テトラnブチルアンモニウム(TBAF)調和水溶液の重量の比率(即ちTBAF調和水溶液添加率)の範囲を、TBAB調和水溶液とTBPAB調和水溶液の合計重量に対するTBAB調和水溶液の重量の比率(即ちTBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液))に対応して、下記のように設定する。
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が1%以上10%未満ではTBAF調和水溶液添加率は7%以上16%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が10%以上20%未満ではTBAF調和水溶液添加率は6%以上13%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が20%以上30%未満ではTBAF調和水溶液添加率は5%以上11%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が30%以上40%未満ではTBAF調和水溶液添加率は4%以上10%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が40%以上50%未満ではTBAF調和水溶液添加率は3%以上9%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が50%以上60%未満ではTBAF調和水溶液添加率は3%以上9%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が60%以上70%未満ではTBAF調和水溶液添加率は3%以上8%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が70%以上80%未満ではTBAF調和水溶液添加率は3%以上8%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が80%以上90%未満ではTBAF調和水溶液添加率は2%以上8%以下、
TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)が90%以上99%未満ではTBAF調和水溶液添加率は1%以上7%以下。
2> TBABとTBPABの合計重量に対するTBAFの重量の比率、即ちTBAF添加率の範囲を、TBABとTBPABの合計重量に対するTBABの重量の比率(即ち、TBAB重量/(TBAB重量+TBPAB重量))に対応して、下記のように設定する。
TBAB/(TBAB+TBPAB)が1.2%以上11.6%未満ではTBAF添加率は6.7%以上15.5%以下の範囲、
TBAB/(TBAB+TBPAB)が11.6%以上22.7%未満ではTBAF添加率は5.6%以上12.4%以下の範囲、
TBAB/(TBAB+TBPAB)が22.7%以上33.5%未満ではTBAF添加率は4.6%以上10.3%以下の範囲、
TBAB/(TBAB+TBPAB)が33.5%以上44.0%未満ではTBAF添加率は3.6%以上9.2%以下の範囲、
TBAB/(TBAB+TBPAB)が44.0%以上54.1%未満ではTBAF添加率は2.7%以上8.2%以下の範囲、
TBAB/(TBAB+TBPAB)が54.1%以上63.8%未満ではTBAF添加率は2.6%以上8.0%以下の範囲、
TBAB/(TBAB+TBPAB)が63.8%以上73.3%未満ではTBAF添加率は2.6%以上7.0%以下の範囲、
TBAB/(TBAB+TBPAB)が73.3%以上82.5%未満ではTBAF添加率は2.6%以上6.9%以下の範囲、
TBAB/(TBAB+TBPAB)が82.5%以上91.4%未満ではTBAF添加率は1.7%以上6.0%以下の範囲、
TBAB/(TBAB+TBPAB)が91.4%以上99.1%未満ではTBAF添加率は0.8%以上5.9%以下の範囲。
3> TBABとTBPABの合計重量に対するTBAFの重量の比率、即ちTBAF添加率の範囲と、水含有重量比率(この場合、水/(TBAB+TBPAB+TBAF))の範囲を、TBABとTBPABの合計重量に対するTBABの重量の比率(即ち、TBAB重量/(TBAB重量+TBPAB重量))に対応して、下記のように設定する。
TBAB/(TBAB+TBPAB)が1.2%以上11.6%未満ではTBAF添加率は6.7%以上15.5%以下であり水含有重量比率は1.90倍から1.95倍の範囲、
TBAB/(TBAB+TBPAB)が11.6%以上22.7%未満ではTBAF添加率は5.6%以上12.4%以下であり水含有重量比率は1.86倍から1.91倍の範囲、
TBAB/(TBAB+TBPAB)が22.7%以上33.5%未満ではTBAF添加率は4.6%以上10.3%以下であり水含有重量比率は1.81倍から1.86倍の範囲、
TBAB/(TBAB+TBPAB)が33.5%以上44.0%未満ではTBAF添加率は3.6%以上9.2%以下であり水含有重量比率は1.76倍から1.81倍の範囲、
TBAB/(TBAB+TBPAB)が44.0%以上54.1%未満ではTBAF添加率は2.7%以上8.2%以下であり水含有重量比率は1.72倍から1.77倍の範囲、
TBAB/(TBAB+TBPAB)が54.1%以上63.8%未満ではTBAF添加率は2.6%以上8.0%以下であり水含有重量比率は1.67倍から1.73倍の範囲、
TBAB/(TBAB+TBPAB)が63.8%以上73.3%未満ではTBAF添加率は2.6%以上7.0%以下であり水含有重量比率は1.63倍から1.68倍の範囲、
TBAB/(TBAB+TBPAB)が73.3%以上82.5%未満ではTBAF添加率は2.6%以上6.9%以下であり水含有重量比率は1.59倍から1.64倍の範囲、
TBAB/(TBAB+TBPAB)が82.5%以上91.4%未満ではTBAF添加率は1.7%以上6.0%以下であり水含有重量比率は1.55倍から1.60倍の範囲、
TBAB/(TBAB+TBPAB)が91.4%以上99.1%未満ではTBAF添加率は0.8%以上5.9%以下であり水含有重量比率は1.51倍から1.57倍の範囲。
(エ) 図4は、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液を配合した混合水溶液に弗化テトラnブチルアンモニウム調和水溶液を添加してなる被検混合水溶液の融点(より正確にはその当該被検混合水溶液を冷却して固化させた後、これを融解させたときの融点(これは、当該被検混合水溶液を主成分とする蓄熱剤の融点に相当する))を横軸にとり、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液を配合した混合水溶液の重量に対する弗化テトラnブチルアンモニウム調和水溶液の重量の比率(即ちTBAF調和水溶液添加率)を縦軸にとった座標に、表1〜表5に示した融点とTBAF調和水溶液添加率の関係をプロットしたものである。この図において、表7に示した弗化テトラnブチルアンモニウム調和水溶液添加率の好適な範囲を融点との関係で示すと、上下の点線で画される範囲内に概ね収まる。
図4によれば、被検混合水溶液の融点が6〜12℃の範囲内において、TBAF調和水溶液添加率が、図中に示された上下の点線で画される範囲内になるように選択すれば、凝固と融解を1000回繰返しても過冷却防止の効果を奏し又は過冷却防止性の低下がなく、3〜16℃の温度範囲の潜熱量の低下が10%より少ない蓄熱剤を実現することができる、ことが分かる。
(オ) なお、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液を配合した混合水溶液における弗化テトラnブチルアンモニウムの過冷却防止効果を検討する際には、当該混合水溶液に弗化テトラnブチルアンモニウムの調和水溶液を添加するだけでなく、弗化テトラnブチルアンモニウム三水和物の粉末も添加して計測した。その結果、弗化テトラnブチルアンモニウム三水和物の粉末も添加しても、凝固と融解を1000回繰返しても過冷却防止の効果を奏する又は過冷却防止性の低下が起こりにくい蓄熱剤を実現することができる、ことを確認した。
(カ) また、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムを含む原料溶液における弗化テトラnブチルアンモニウムの好適な添加率を検討する際には、より蓄熱量の高い蓄熱剤が求められるという現実問題に鑑みて、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムのそれぞれの調和水溶液を用いて検討した。しかし、臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムのそれぞれの水溶液の濃度が調和濃度よりも低い又は高い場合であっても、弗化テトラnブチルアンモニウムの添加による過冷却防止効果を奏する又はその効果が低下が起こりにくくなるという結果が得られた。
蓄熱剤は、その用途によっては、より低い融点が求められる。包接水和物を蓄熱剤の主成分とする場合には、その原料溶液におけるゲスト分子の濃度を下げれば融点を下げることができる。臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムのそれぞれの水溶液の濃度を調和濃度よりも低く又は高くすると、その水溶液から生成される包接水和物を主成分とする蓄熱剤の融点を低下させることができる。そのような場合であって、弗化テトラnブチルアンモニウムの添加により上記の効果が認められるということの意味は大きい。
臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムのそれぞれの水溶液の濃度が調和濃度よりも低い又は高い場合において、過冷却防止効果又はその効果の低下が起こりにくくなる弗化テトラnブチルアンモニウムの添加量は、TBAF添加率にして、0.8%以上15%以下の範囲に収まり、この範囲であれば好適である。
例えば、臭化テトラnブチルアンモニウムの35重量%水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液(34重量%水溶液)とを90:10の割合で配合してなる混合溶液並びに、臭化テトラnブチルアンモニウムの30重量%水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液とを90:10の割合で配合してなる混合溶液のそれぞれに対して、弗化テトラnブチルアンモニウム調和水溶液を添加して、上記(2−1)及び(2−2)に記載の計測と評価を行った結果を、表9及び表10に示す。
Figure 2009079160
Figure 2009079160
表9及び表10から、少なくとも臭化テトラnブチルアンモニウムの水溶液が調和濃度未満であり、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムの各水溶液が調和濃度である場合には、弗化テトラnブチルアンモニウムの添加量が、TBAF添加率にして、1.1%以上5.7%以下の範囲(従って0.8%以上15%以下の範囲に収まる範囲)であれば、凝固と融解を1000回繰返しても過冷却防止の効果を奏し又は過冷却防止性の低下がなく、3〜16℃の温度範囲の潜熱量の低下が10%より少ない蓄熱剤を実現できることが分かる。
また、表2、表9及び表10から、臭化テトラnブチルアンモニウムの水溶液が30〜40重量%の範囲であり、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムの各水溶液が調和濃度である場合には、弗化テトラnブチルアンモニウムの添加量が、TBAF添加率にして、1.1%以上5.7%以下の範囲になるように設定すれば、凝固と融解を1000回繰返しても過冷却防止の効果又は過冷却防止性の低下がなく、3〜16℃の温度範囲の潜熱量の低下が10%より少ない蓄熱剤を実現できることが分かる。
(キ) 以上においては、弗化テトラnブチルアンモニウム調和水溶液又は弗化テトラnブチルアンモニウム三水和物の粉末を原料溶液に添加することにより、弗化テトラnブチルアンモニウムの過冷却防止剤としての効果を検討してきた。しかし、過冷却防止剤として原料溶液に添加される弗化テトラnブチルアンモニウムは、調和濃度より低い濃度又は高い濃度の水溶液の状態で添加されてよく、凝固と融解を1000回繰返しても過冷却防止の効果を奏する又は過冷却防止性の低下が起こり難くなる。
ただし、蓄熱剤全体としての蓄熱量をより高めるためには、原料溶液中のゲスト分子の濃度が調和濃度から遠ざかる方向に作用するような添加の仕方は好ましくない。例えば、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和濃度とが配合された原料溶液に対し、調和濃度よりも低い濃度の弗化テトラnブチルアンモニウムの水溶液を添加すると、水溶液全体における溶質の濃度は低下する(従って各ゲスト分子の濃度はその調和濃度から遠ざかる)ことになり、その水溶液から生成される水和物により蓄積される潜熱量は低下する。弗化テトラnブチルアンモニウムが添加された蓄熱剤全体としての蓄熱量を低下させないためには、弗化テトラnブチルアンモニウムを調和水溶液として添加することが望ましい。
3.本発明の実施例
以下においては、本発明の実施例を示し、その過冷却防止性能を評価し、潜熱量の変化を調査した。
臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液とを配合してなる混合水溶液(以下「当初原料溶液」という)において、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との重量比を9:1に設定し、弗化テトラnブチルアンモニウムの調和水溶液を添加して水和物生成用の水溶液を準備した(このような水溶液は蓄熱剤主成分であり、他面において、特に冷却後においては蓄熱剤そのものといえる)。このとき、当初原料溶液に対する弗化テトラnブチルアンモニウムの調和水溶液の添加量は3重量%とした。即ち、重量100相当の前者に、重量3相当の後者を添加して、合計重量103相当になるように調製した。
この当初原料溶液に弗化テトラnブチルアンモニウムが添加されてなる水溶液(以下「被検原料溶液」という)に対し、次のとおり計測と評価を行い、結果を得た。その結果は、上記2に記載の結果と一部重複するが、矛盾なく整合するものである。
<過冷却防止性について>
(ア) 実施例
被検原料溶液を3℃に冷却し、水和物の結晶が生成し過冷却が解除されるまでの時間を計測したところ、5分程度以内に水和物結晶が生成し過冷却が防止された(冷却は、冷媒を流した金属管に溶液を接触させて実施し、以下も特に断らなければ同じ方法で実施した)。この水和物結晶は1箇所だけでなく数箇所から生成し、それぞれの水和物結晶が10mm程度にまで成長するのに要した時間は、約5分間であり、短時間に水和物結晶が生成し成長することが確認できた。
被検原料溶液を3℃に冷却し水和物を生成させ、40℃に加熱し生成した水和物を融解させる凝固と融解とを1000回繰返して、過冷却防止性の変化を調べたところ、過冷却防止性の低下は認められなかった。
被検原料溶液から冷却により生成される固相物の3〜16℃の温度範囲の潜熱量を計測したところ、176J/gであった。一方、当初原料溶液から冷却により生成される固相物の3〜16℃の温度範囲の潜熱量は180J/gであった。それ故、弗化テトラnブチルアンモニウムによる潜熱量の低下は2%という小さい範囲に止まるものであった。
上記のとおり、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液とからなる蓄熱剤主成分に対して、弗化テトラnブチルアンモニウム調和水溶液を、臭化テトラnブチルアンモニウム調和水溶液に対して3重量%添加することにより、水和物結晶を短時間で生成でき、凝固と融解とを1000回繰返しても過冷却防止性は低下せず、3〜16℃の温度範囲の潜熱量の低下が少ない蓄熱剤又はその主成分を提供できる、ことを確認することができた。
(イ)比較例1
当初原料溶液を3℃に冷却したところ、24時間経過しても水和物の結晶が生成せず過冷却状態が続いた。これに対し、上記実施例では5分程度以内に水和物結晶が生成し過冷却が防止されている。それ故、弗化テトラnブチルアンモニウムが過冷却防止の効果を奏していることが分かる。
(ウ)比較例2
弗化テトラnブチルアンモニウムの調和水溶液を多孔質体である活性炭粒子に含浸させ、当初原料溶液にその活性炭粒子を数粒投入した。これは、弗化テトラnブチルアンモニウム調和水溶液を当初原料溶液に対して約0.1重量%添加したことに相当する。
当初原料溶液に上記の活性炭粒子を投入後3℃に冷却した。冷却開始から数分後に活性炭粒子の周辺から水和物結晶が生成し始め、過冷却の解除が確認できた。その水和物結晶が直径10mm程度にまで成長するのに要した時間は、約10分程度であった。
当初原料溶液に上記の活性炭粒子を投入後3℃に冷却し水和物を生成させ、40℃に加熱し生成した水和物を融解させる凝固と融解との繰返しを行い、過冷却防止性の変化を調べたところ、凝固と融解との繰返し僅か4〜6回目で水和物結晶が生成しなくなった。
このように、上記の活性炭粒子の投入によれば、過冷却防止の効果は認められる。しかし、この方法では、水和物結晶が10mm程度にまで成長するために、上記の実施例の場合に比して、約2倍の時間がかかった。また、凝固と融解との繰返し僅か4〜6回目で水和物結晶が生成しなくなった。それ故、上記の活性炭粒子の投入による過冷却防止方法では、蓄熱剤又はその主成分の凝固と融解との繰返しにより過冷却防止性が短期で低下してしまい、実用上著しく問題がある。
(エ)比較例3
弗化テトラnブチルアンモニウムの調和水溶液をアルミナ多孔質体に含浸させ、比較例2の場合と同様の計測を行った。過冷却の解除が確認できた。生成した水和物結晶が直径10mm程度にまで成長するのに要した時間は、約10分程度であった。しかし、凝固と融解との繰返し僅か20〜22回目で水和物結晶が生成しなくなった。それ故、上記のアルミナ多孔質体の投入による過冷却防止方法でも、蓄熱剤又はその主成分の凝固と融解との繰返しにより過冷却防止性が短期で低下してしまい、実用上著しく問題がある。
30重量%及び35重量%の臭化テトラnブチルアンモニウムの各水溶液と臭化トリnブチルnペンチルアンモニウムの調和水溶液とを配合し、これに弗化テトラnブチルアンモニウムの調和水溶液を添加して水和物生成用の水溶液(低濃度被検溶液)を準備した。このとき、低濃度被検溶液に対する弗化テトラnブチルアンモニウムの調和水溶液の添加量は3.5重量%とした。即ち、重量100相当の前者に、重量3.5相当の後者を添加して、合計重量103.5相当になるように調製した。各低濃度被検溶液をを3℃に冷却し水和物を生成させ、40℃に加熱し生成した水和物を融解させる凝固と融解とを1000回繰返して、過冷却防止性の変化を調べたところ、過冷却防止性の低下は認められなかった。また、弗化テトラnブチルアンモニウムの調和水溶液を添加しない場合に比べて、短時間に水和物結晶が生成し成長することが確認できた。
4.腐食抑制剤について
臭化テトラnブチルアンモニウム、臭化トリnブチルnペンチルアンモニウム及び弗化テトラnブチルアンモニウムを含む水溶液中には臭素イオンと弗素イオンが存在し、これらのイオンが炭素鋼やアルミニウムの腐食の原因となるので、当該水溶液中に腐食抑制剤を添加することが好ましい。
腐食抑制剤としては、例えば亜硫酸塩、チオ硫酸塩のナトリウム塩、リチウム塩が挙げられ、蓄熱剤に添加して溶存する酸素を消費して腐食を抑制することができる(脱酸型腐食抑制剤という)。他の腐食抑制剤としては、ポリリン酸塩、トリポリリン酸塩、テトラポリリン酸塩、燐酸水素二塩、ピロ燐酸塩またはメタ珪酸塩のナトリウム塩、カリウム塩、カルシウム塩、リチウム塩が挙げられ、金属表面に腐食を防止する被膜を形成して腐食を抑制することができる(被膜形成型腐食抑制剤という)。これらの被膜形成型腐食抑制剤と前述した脱酸型腐食抑制剤の亜硫酸塩またはチオ硫酸塩を併用することにより、さらに腐食抑制効果を高めることができる。
さらに他の腐食抑制剤として亜硝酸塩、ベンゾトリアゾール、ヒドラジン、エリソルビン酸塩、アスコルビン酸塩、糖類が挙げられる。
上記の腐食抑制剤を添加することにより、融点や蓄熱量を大きく変えずに腐食性の少ない水和物生成用の水溶液や蓄熱剤又はその主成分を提供することができる。
当初原料溶液において、臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との重量比を5:5に設定し、弗化テトラnブチルアンモニウムの調和水溶液を添加して水和物生成用の水溶液を準備した。このとき、当初原料溶液に対する弗化テトラnブチルアンモニウムの調和水溶液の添加量は3重量%とした。即ち、重量100相当の前者に、重量3相当の後者を添加して、合計重量103相当になるように調製した。かくして調整される被検原料溶液に腐食抑制剤を添加して腐食抑制効果について評価した。
被検原料溶液(1〜4)に、表11に示す各腐食抑制剤を添加して、炭素鋼板とアルミニウム板を浸漬し90℃にて1週間保持したのち、重量減少量を測定して腐食速度を求めた。その結果を表11に併せて示す。
Figure 2009079160
亜硫酸ナトリウムを添加した場合(被検原料溶液1)、腐食抑制剤を添加しない場合(被検原料溶液4)に比して、炭素鋼では腐食速度が0.48mm/年から0.08mm/年になり、アルミニウムでは腐食速度が0.28mm/年から0.06mm/年になった。いずれの場合にも腐食速度を数分の1以下に抑制でき、腐食抑制効果が認められた。
ポリリン酸ナトリウムを添加した場合(被検原料溶液2)にも、腐食抑制剤を添加しない場合(被検原料溶液4)に比して、炭素鋼では腐食速度が0.48mm/年から0.10mm/年になり、アルミニウムでは腐食速度が0.28mm/年から0.02mm/年になった。いずれの場合にも亜硫酸ナトリウムを添加の場合と同様に腐食速度を数分の1以下に抑制でき、腐食抑制効果が認められた。
亜硫酸ナトリウムとポリリン酸ナトリウムを併用した場合(被検原料溶液3)には、腐食抑制剤を添加しない場合(被検原料溶液4)に比して、炭素鋼では腐食速度が0.48mm/年から0.04mm/年になり、アルミニウムでは腐食速度が0.28mm/年から0mm/年になった。いずれの場合にも各腐食抑制剤を単独で用いたときよりも高い腐食抑制効果が認められた。
なお、上述した他の腐食抑制剤でも同様に腐食を十分に抑制できる効果があることを確認した。
5.蓄熱剤又はその主成分を生成するための水溶液の調製方法について
(ア) 調和濃度、調和濃度より小さい濃度及び調和濃度より大きい濃度にそれぞれ調製された臭化テトラnブチルアンモニウムの水溶液及び臭化トリnブチルnペンチルアンモニウムの水溶液を混合して所望の融点に調整された混合水溶液を準備し、当該混合水溶液に対し、調和濃度、調和濃度より小さい濃度及び調和濃度より大きい濃度のうちのいずれかに調製された弗化テトラnブチルアンモニウムの水溶液を添加して水和物生成用或いは蓄熱剤又はその主成分を生成するための水溶液を準備する。このとき、臭化テトラnブチルアンモニウムの調和水溶液に対する弗化テトラnブチルアンモニウムの調和水溶液の添加量は1〜16重量%とする。このように調製することにより、過冷却防止性が優れて、かつ、3〜16℃の温度範囲の潜熱量の低下が少ない水和物であって、蓄熱剤若しくはその主成分となるものを得ることができる。
水和物生成用の水溶液の冷却により生成する水和物が蓄積する潜熱に相当する熱エネルギーは、その水溶液におけるゲスト分子の濃度が調和濃度であるときに最大となる。それ故、水和物を主成分として含む蓄熱剤の潜熱量をより多くするためには、臭化テトラnブチルアンモニウムや臭化トリnブチルnペンチルアンモニウムの水溶液が調和濃度であることが好ましく、過冷却防止剤として添加される弗化テトラnブチルアンモニウムの水溶液も調和濃度であることが好ましい。
調和濃度より小さい濃度又は大きい濃度の臭化テトラnブチルアンモニウム及び臭化トリnブチルnペンチルアンモニウムの各水溶液を適当な組み合わせと適当な配合比により混合すれば、その混合により調整される水和物生成用の水溶液を冷却することにより、その水溶液から生成する水和物の融点を調和融点より低くすることができる。
過冷却防止の効果又は過冷却防止性を発揮させる又は低下させないようにするという本来の添加目的を念頭に入れずに水和物生成用の水溶液の冷却により生成する水和物の融点を調和融点より低くすることだけを目的とするのであれば、弗化化テトラnブチルアンモニウムを当該水溶液に添加するに当たり、調和濃度の弗化化テトラnブチルアンモニウム水溶液に限らず調和濃度より小さい濃度又は大きい濃度の弗化化テトラnブチルアンモニウム水溶液を用いることもできる。
(イ) 過冷却防止剤として弗化テトラnブチルアンモニウムを添加する場合、それを水溶液として添加する必要はなく、弗化テトラnブチルアンモニウム三水和物の粉末を添加してもよい。蓄熱剤又はその主成分を生成するための水溶液の調製するためには、臭化テトラnブチルアンモニウムの水溶液と弗化テトラnブチルアンモニウムの水溶液を混合してもよいし、臭化テトラnブチルアンモニウムの水和物の粉末と弗化テトラnブチルアンモニウムの水和物の粉末に水を投入して混合してもよく、水にこれらの粉末を投入して混合してもよく、いずれにおいても同じ結果になることは言うまでもない。
(ウ) 臭化テトラnブチルアンモニウムと弗化テトラnブチルアンモニウムを含む水溶液の過冷却を防止するためには、リン酸水素二ナトリウムを過冷却防止剤として添加してもよい。弗化テトラnブチルアンモニウムとリン酸水素二ナトリウムを過冷却防止剤として併用して添加すれば、より効果的に過冷却を防止することができる。この併用によれば、弗化テトラnブチルアンモニウムの添加率を低減させても同水準の過冷却防止の効果を得ることができるとともに、弗化テトラnブチルアンモニウムの添加に起因する、水和物又はこれを主成分として含む蓄熱剤の潜熱量の変化を小さく抑えることできる。臭化テトラnブチルアンモニウム調和溶液と臭化トリnブチルnペンチルアンモニウム調和溶液とを配合してなる水和物生成用の水溶液(又は蓄熱剤主成分)の場合であれば、その水溶液に対する、リン酸水素二ナトリウムの好適な添加量は、0.1〜2重量%である。
最後に、本発明の技術的範囲は、以上の実施形態によって限定されるものではなく、本発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲まで及ぶものである。
臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液との混合水溶液に対する臭化テトラnブチルアンモニウム調和水溶液の比率と混合物融点との関係を示すグラフである。 本発明に係る蓄熱剤のDSC測定結果を、横軸に温度、縦軸に潜熱量をとってグラフ化した図である。 TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)(%)を横軸にとり、TBAF調和水溶液添加率(%)を縦軸にとった座標に、TBAB調和水溶液/(TBAB調和水溶液+TBPAB調和水溶液)(%)に対するTBAF調和水溶液添加率(%)について過冷却防止効果の低下のないTBAF調和水溶液添加率(%)の最小値を示す曲線Cと、3〜16℃の温度範囲の潜熱量の低下が10%より少なくなるような最大値を示す曲線Dを示した図である。 臭化テトラnブチルアンモニウム調和水溶液と臭化トリnブチルnペンチルアンモニウム調和水溶液を配合した混合水溶液に弗化テトラnブチルアンモニウム調和水溶液を添加した蓄熱剤の融点を横軸に、弗化テトラnブチルアンモニウム調和水溶液の添加率を縦軸にとった座標に、表2〜表6に示した融点とTBAF調和水溶液の添加率の関係をプロットした図である。

Claims (10)

  1. 臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムと弗化テトラnブチルアンモニウムと水を含有してなることを特徴とする包接水和物生成用の水溶液。
  2. 臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの水溶液に、過冷却防止剤として弗化テトラnブチルアンモニウムの水溶液を添加してなることを特徴とする包接水和物生成用の水溶液。
  3. 臭化テトラnブチルアンモニウムと臭化トリnブチルnペンチルアンモニウムの重量の合計に対する弗化テトラnブチルアンモニウムの重量比率が0.8%以上15.5%以下であることを特徴とする請求項1又は2に記載の包接水和物生成用の水溶液。
  4. 臭化テトラnブチルアンモニウム(TBAB)と臭化トリnブチルnペンチルアンモニウム(TBPAB)と弗化テトラnブチルアンモニウム(TBAF)と水を含有してなる水溶液であって、TBABとTBPABの合計重量に対するTBAFの重量比率であるTBAF添加率とTBABとTBPABとTBAF の合計重量に対する水の重量比率である水比率を、TBABとTBPABの合計重量に対するTBABの重量比率(TBAB/(TBAB+TBPAB))に対応して、
    TBAB/(TBAB+TBPAB)が1.2%以上11.6%未満ではTBAF添加率は6.7%以上15.5%以下であり水比率は1.90倍から1.95倍の範囲である、
    TBAB/(TBAB+TBPAB)が11.6%以上22.7%未満ではTBAF添加率は5.6%以上12.4%以下であり水比率は1.86倍から1.91倍の範囲である、
    TBAB/(TBAB+TBPAB)が22.7%以上33.5%未満ではTBAF添加率は4.6%以上10.3%以下であり水比率は1.81倍から1.86倍の範囲である、
    TBAB/(TBAB+TBPAB)が33.5%以上44.0%未満ではTBAF添加率は3.6%以上9.2%以下であり水比率は1.76倍から1.81倍の範囲である、
    TBAB/(TBAB+TBPAB)が44.0%以上54.1%未満ではTBAF添加率は2.7%以上8.2%以下であり水比率は1.72倍から1.77倍の範囲である、
    TBAB/(TBAB+TBPAB)が54.1%以上63.8%未満ではTBAF添加率は2.6%以上8.0%以下であり水比率は1.67倍から1.73倍の範囲である、
    TBAB/(TBAB+TBPAB)が63.8%以上73.3%未満ではTBAF添加率は2.6%以上7.0%以下であり水比率は1.63倍から1.68倍の範囲である、
    TBAB/(TBAB+TBPAB)が73.3%以上82.5%未満ではTBAF添加率は2.6%以上6.9%以下であり水比率は1.59倍から1.64倍の範囲である、
    TBAB/(TBAB+TBPAB)が82.5%以上91.4%未満ではTBAF添加率は1.7%以上6.0%以下であり水比率は1.55倍から1.60倍の範囲である、
    TBAB/(TBAB+TBPAB)が91.4%以上99.1%未満ではTBAF添加率は0.8%以上5.9%以下であり水比率は1.51倍から1.57倍の範囲である、
    ことを特徴とする包接水和物生成用の水溶液。
  5. 腐食抑制剤が添加されていることを特徴とする請求項1乃至4のいずれかに記載の水溶液。
  6. 請求項1乃至5のいずれかに記載の水溶液が水和物生成温度以下に冷却されることにより生成される包接水和物を主成分として含むことを特徴とする蓄熱剤。
  7. 請求項1乃至5のいずれかに記載の水溶液が水和物生成温度以下に冷却されることにより生成される包接水和物がその水溶液に分散又は懸濁してなるスラリーを含むことを特徴とする蓄熱剤。
  8. 請求項1乃至5のいずれかに記載の水溶液を準備する工程と、前記水溶液を冷却して包接水和物を生成させる工程とを有することを特徴とする包接水和物又はそのスラリーの製造方法。
  9. 請求項1乃至5のいずれかに記載の水溶液を冷却し、包接水和物を生成させることにより熱エネルギーを蓄積し、生成した包接水和物を融解させることにより熱エネルギーを放出することを特徴とする蓄放熱方法。
  10. 潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法であって、臭化テトラnブチルアンモニウムとと臭化トリnブチルnペンチルアンモニウムとを含む水溶液に、弗化テトラnブチルアンモニウムの調和融点を与える濃度の水溶液を添加する工程とを有することを特徴とする水溶液の調製方法。
JP2007250308A 2007-09-26 2007-09-26 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに、潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法 Pending JP2009079160A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250308A JP2009079160A (ja) 2007-09-26 2007-09-26 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに、潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250308A JP2009079160A (ja) 2007-09-26 2007-09-26 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに、潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法

Publications (1)

Publication Number Publication Date
JP2009079160A true JP2009079160A (ja) 2009-04-16

Family

ID=40654167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250308A Pending JP2009079160A (ja) 2007-09-26 2007-09-26 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに、潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法

Country Status (1)

Country Link
JP (1) JP2009079160A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291272A (ja) * 1996-04-25 1997-11-11 Mitsubishi Electric Corp 蓄熱材
JP2007161893A (ja) * 2005-12-14 2007-06-28 Jfe Engineering Kk 蓄熱剤、熱輸送媒体、蓄熱剤用融点調整剤、蓄熱剤用過冷却防止剤、蓄熱剤または熱輸送媒体の主剤の製造方法及び塩化トリnブチルnペンチルアンモニウム水和物
JP2007161894A (ja) * 2005-12-14 2007-06-28 Jfe Engineering Kk 保冷剤および保冷材
JP2007186667A (ja) * 2005-06-08 2007-07-26 Jfe Engineering Kk 蓄熱性物質、蓄熱剤、蓄熱材、熱輸送媒体、蓄熱剤用融点調整剤、蓄熱剤用過冷却防止剤及び蓄熱剤または熱輸送媒体の主剤の製造方法
JP4839903B2 (ja) * 2006-03-15 2011-12-21 Jfeエンジニアリング株式会社 蓄熱剤および蓄熱剤の調製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291272A (ja) * 1996-04-25 1997-11-11 Mitsubishi Electric Corp 蓄熱材
JP2007186667A (ja) * 2005-06-08 2007-07-26 Jfe Engineering Kk 蓄熱性物質、蓄熱剤、蓄熱材、熱輸送媒体、蓄熱剤用融点調整剤、蓄熱剤用過冷却防止剤及び蓄熱剤または熱輸送媒体の主剤の製造方法
JP2007161893A (ja) * 2005-12-14 2007-06-28 Jfe Engineering Kk 蓄熱剤、熱輸送媒体、蓄熱剤用融点調整剤、蓄熱剤用過冷却防止剤、蓄熱剤または熱輸送媒体の主剤の製造方法及び塩化トリnブチルnペンチルアンモニウム水和物
JP2007161894A (ja) * 2005-12-14 2007-06-28 Jfe Engineering Kk 保冷剤および保冷材
JP4839903B2 (ja) * 2006-03-15 2011-12-21 Jfeエンジニアリング株式会社 蓄熱剤および蓄熱剤の調製方法

Similar Documents

Publication Publication Date Title
KR101123425B1 (ko) 포접 수화물 생성용 수용액, 축열제, 포접 수화물 또는 그 슬러리의 제조 방법, 축방열 방법 및 잠열 축열제 또는 그 주성분을 생성하기 위한 수용액의 조제 방법
JP5003213B2 (ja) 蓄熱剤、包接水和物の蓄熱速度を増加させる方法
JP4839903B2 (ja) 蓄熱剤および蓄熱剤の調製方法
JP4497130B2 (ja) 蓄熱性物質、蓄熱剤、蓄熱材、熱輸送媒体、蓄熱剤用融点調整剤、蓄熱剤用過冷却防止剤及び蓄熱剤または熱輸送媒体の主剤の製造方法
JP3324392B2 (ja) 蓄熱材
WO2006132322A1 (ja) 蓄熱性物質、蓄熱剤、蓄熱材、熱輸送媒体、保冷剤、保冷材、蓄熱剤用融点調整剤、蓄熱剤用過冷却防止剤、及び蓄熱剤と熱輸送媒体と保冷剤のうちいずれかの主剤の製造方法
JP6598076B2 (ja) 潜熱蓄冷材
JP2007186667A5 (ja)
JP4893036B2 (ja) 蓄熱剤および蓄熱剤の調製方法
WO2019172260A1 (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
JP5104160B2 (ja) 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法
JP5104159B2 (ja) 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法
JP2009079159A (ja) 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法
JP5104636B2 (ja) 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法
JP5691861B2 (ja) 蓄熱剤
JP2009079160A (ja) 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに、潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法
JP2009096826A (ja) 蓄熱材組成物
JP4840075B2 (ja) 保冷剤および保冷材
JP4895007B2 (ja) 蓄熱剤の調製方法
JP2009051905A (ja) 包接水和物を生成する性質を有する水溶液、第四級アンモニウム塩をゲスト化合物とする包接水和物及び当該包接水和物のスラリ並びに、包接水和物の生成方法、包接水和物が生成又は成長する速度を増加させる方法及び包接水和物が生成又は成長する際に起こる過冷却現象を防止又は抑制する方法
WO2012169549A1 (ja) 蓄熱剤
JP5691862B2 (ja) 蓄熱剤
JP5590102B2 (ja) 包接水和物の蓄熱速度の増加方法、包接水和物が生成又は成長する速度の増加方法、包接水和物及び包接水和物のスラリ
JPH1192756A (ja) 蓄冷材
JPH1135931A (ja) 潜熱蓄冷材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423