JP2009068756A - Grain drying machine - Google Patents

Grain drying machine Download PDF

Info

Publication number
JP2009068756A
JP2009068756A JP2007236681A JP2007236681A JP2009068756A JP 2009068756 A JP2009068756 A JP 2009068756A JP 2007236681 A JP2007236681 A JP 2007236681A JP 2007236681 A JP2007236681 A JP 2007236681A JP 2009068756 A JP2009068756 A JP 2009068756A
Authority
JP
Japan
Prior art keywords
grain
drying
moisture
moisture value
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007236681A
Other languages
Japanese (ja)
Inventor
Masashi Yumitate
正史 弓立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2007236681A priority Critical patent/JP2009068756A/en
Publication of JP2009068756A publication Critical patent/JP2009068756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform drying while eliminating dispersion and unevenness of moisture content in a grain drying machine for drying grain while measuring a moisture value every one block of grain divided into the plurality of blocks. <P>SOLUTION: This grain drying machine comprises a circulating means for circulating the charged grain from a storage chamber 10 to the storage chamber 10 again through a drying chamber 11, a drying means 4 for drying the grain, an air sucking/exhausting fan 7 for distributing the drying air to the drying chamber 11, a moisture measuring means 9 for taking the grain from the charged grain and measuring its moisture value, and a control portion 41 for controlling the circulating means, the drying means 4 and the moisture measuring means 9, the moisture measuring means 9 measures the grain of determined number during drying work by the drying means 4, and the control portion 41 drives the circulating means in a state of stopping the drying means 4 and the air sucking/exhausting fan 7 when the dispersion of the moisture value of the measured grain is determined to be more than the predetermined dispersion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、穀粒乾燥機に関する。   The present invention relates to a grain dryer.

穀粒乾燥機において、乾燥開始後に穀粒水分が所定水分値より高水分、あるいは穀粒間の水分値に所定水分値以上のバラツキがある場合には、外気風による通風乾燥で穀粒を循環させる技術や休止させる技術が記載されている(特許文献1)。
特開平6−273039号公報
In the grain dryer, when the grain moisture is higher than the predetermined moisture value after the start of drying, or when the moisture value between the grains is more than the prescribed moisture value, the kernel is circulated by ventilating with the outside air. The technology to make it stop and the technology to make it pause are described (patent document 1).
JP-A-6-273039

乾燥開始後に穀粒のバラツキを小さくするために通風して循環すると穀温が低下して穀粒間の水分移行がなされ難くバラツキ解消までに時間を要してしまう。また、休止乾燥の場合には水分のバラツキが解消し難い。また、大型の乾燥機になると異なる圃場からの収穫穀粒が順次投入されるため、異なる水分値の穀粒層、いわゆる水分ムラができ易い。   When the air is circulated in order to reduce the grain variation after the start of drying, the grain temperature is lowered and it is difficult to transfer moisture between grains, and it takes time to eliminate the variation. In addition, in the case of rest drying, it is difficult to eliminate moisture variation. In addition, since a harvested grain from different fields is sequentially introduced when a large dryer is used, a grain layer having different moisture values, that is, so-called moisture unevenness is easily generated.

本発明は穀粒の水分バラツキを迅速に小さくすることを課題とする。また、穀粒層毎の水分ムラを小さくすることを課題とする。   An object of the present invention is to quickly reduce moisture variation in grains. Moreover, let it be a subject to make the water | moisture-content nonuniformity for every grain layer small.

請求項1の発明は、貯溜室(10)から乾燥室(11)を経て再度貯溜室(10)に張込穀粒を循環させる循環手段と、穀粒を乾燥する乾燥手段(4)と、前記乾燥室(11)に乾燥風を送る吸引排気ファン(7)と、張込穀粒から穀粒を採取して水分値を測定する水分測定手段(9)と、前記循環手段、乾燥手段(4)、水分測定手段(9)を制御する制御部(41)を設け、乾燥手段(4)で乾燥作業を行っている時に水分測定手段(9)が設定数の穀粒を測定し、制御部(41)は当該測定した穀粒の水分値のバラツキが予め設定したバラツキよりも大きいと判定した場合に、乾燥手段(4)及び吸気排気ファン(7)を停止した状態で前記循環手段を駆動する構成としたことを特徴とする穀粒乾燥機とする。   The invention of claim 1 circulates the circulating grain from the storage chamber (10) through the drying chamber (11) to the storage chamber (10) again, the drying means (4) for drying the grain, A suction exhaust fan (7) for sending drying air to the drying chamber (11), a moisture measuring means (9) for collecting the grain from the stretched grain and measuring the moisture value, the circulating means, the drying means ( 4) A control unit (41) for controlling the moisture measuring means (9) is provided, and when the drying means (4) is performing a drying operation, the moisture measuring means (9) measures and controls a set number of grains. When the unit (41) determines that the variation in the moisture value of the measured grain is larger than the variation set in advance, the drying unit (4) and the intake / exhaust fan (7) are stopped in the state where the circulation unit is stopped. It is set as the grain dryer characterized by having set it as the structure driven.

請求項2の発明は、貯溜室(10)から乾燥室(11)を経て再度貯溜室(10)に張込穀粒を循環させる循環手段と、穀粒を乾燥する乾燥手段(4)と、前記乾燥室(11)に乾燥風を送る吸引排気ファン(7)と、張込穀粒から穀粒を採取して水分値を測定する水分測定手段(9)と、前記循環手段、乾燥手段(4)、水分測定手段(9)を制御する制御部(41)を設け、
水分測定手段(9)は一回の測定で設定粒数を測定し、制御部(41)がその設定粒数の平均水分値(m)を演算し、該平均水分値(m)を当該測定した張込穀粒位置の水分値とし、該平均水分値(m)を張込穀粒の全体にわたって設定間隔毎に複数個所測定・演算する構成とし、該複数個所の平均水分値(m)から水分ムラ状態を検出し、該水分ムラが予め設定した水分ムラよりも大きいと判定した場合には、乾燥手段(4)で設定水分値まで乾燥した後に、乾燥手段(4)及び吸気排気ファン(7)を停止した状態で前記循環手段を駆動する構成としたことを特徴とする穀粒乾燥機とする。
The invention of claim 2 circulates the circulating grain from the storage chamber (10) through the drying chamber (11) to the storage chamber (10) again, the drying means (4) for drying the grain, A suction exhaust fan (7) for sending drying air to the drying chamber (11), a moisture measuring means (9) for collecting the grain from the stretched grain and measuring the moisture value, the circulating means, the drying means ( 4) A control unit (41) for controlling the moisture measuring means (9) is provided,
The moisture measuring means (9) measures the set number of grains in one measurement, the control unit (41) calculates the average moisture value (m) of the set number of grains, and the average moisture value (m) is measured. It is set as the moisture value of the stretched grain position, and the average moisture value (m) is measured and calculated at a plurality of set intervals for the entire stretched grain, from the average moisture value (m) at the plurality of places. When the moisture unevenness state is detected and it is determined that the moisture unevenness is larger than the preset moisture unevenness, the drying means (4) and the intake / exhaust fan ( In the state which stopped 7), it was set as the structure which drives the said circulation means, It is set as the grain dryer characterized by the above-mentioned.

請求項1の発明は、乾燥穀粒の水分バラツキが設定以上あると判定した場合には、乾燥手段4及び吸引排気ファン7の駆動を停止し、かつ循環手段を駆動する構成としたことで、穀温が上昇して維持した状態で穀粒を循環するため、穀粒間の水分移行を促進させて水分バラツキを小さくすることができる。   When the invention of claim 1 determines that the moisture variation of the dried grain is greater than or equal to the setting, the driving of the drying means 4 and the suction exhaust fan 7 is stopped and the circulation means is driven. Since the grain is circulated in a state where the grain temperature is raised and maintained, moisture transfer between grains can be promoted to reduce moisture variation.

請求項2の発明は、水分ムラ状態が予め設定した水分ムラよりも大きいと判定した場合には、乾燥手段(4)で設定水分値まで乾燥した後に、乾燥手段(4)及び吸気排気ファン(7)を停止した状態で前記循環手段を駆動する構成としたことで、穀温が上昇して維持した状態で穀粒を循環するため、異なる穀粒層の混合を促進させて穀粒層毎の水分ムラを小さくすることができる。   When it is determined that the moisture unevenness state is larger than the preset moisture unevenness, the drying means (4) and the intake / exhaust fan (4) Since the circulation means is driven in a state where 7) is stopped, the grains are circulated in a state in which the grain temperature is raised and maintained, so that mixing of different grain layers is promoted for each grain layer. The moisture unevenness can be reduced.

本発明の穀粒乾燥機の実施形態について説明する。図1には穀粒乾燥機の正面図、図2には穀粒乾燥機の側面図が図示されている。
穀粒乾燥機Sは、穀粒を収納する多段の箱体1を備え、箱体1の前側には穀粒揚穀用の昇降機2と、熱風発生用の燃焼バーナ4を内装している燃焼バーナ収容室5と、乾燥作業操作用の各種スイッチを備えた操作盤6を備え、箱体1の天井部には昇降機2で揚穀した穀粒を箱体1内に搬送する搬送装置3を備えている。
Embodiment of the grain dryer of this invention is described. FIG. 1 shows a front view of the grain dryer, and FIG. 2 shows a side view of the grain dryer.
The grain dryer S includes a multi-stage box 1 that stores grains, and a front side of the box 1 is equipped with an elevator 2 for raising grains and a combustion burner 4 for generating hot air. A burner storage chamber 5 and an operation panel 6 equipped with various switches for drying operation are provided, and a transport device 3 for transporting grains cerealed by the elevator 2 to the box 1 is provided on the ceiling of the box 1. I have.

また、箱体1の後側には、箱体1内の熱風を吸引排出する吸引排気ファン7を備え、箱体1の左右一側には穀粒投入口19と開閉扉19aを備えている。そして、前記昇降機2には穀粒の水分を検出する水分計9と、箱体1内の穀粒を機外に排出する穀粒排出口18を設け、搬送装置3の搬送中途部には集塵装置50を設け、搬送穀粒に混じる藁屑類を除去するように構成している。また、操作盤6内には乾燥作業制御用の制御部41を備えている。   In addition, a suction exhaust fan 7 that sucks and discharges hot air in the box 1 is provided on the rear side of the box 1, and a grain inlet 19 and an open / close door 19 a are provided on the left and right sides of the box 1. . The elevator 2 is provided with a moisture meter 9 for detecting the moisture of the grain and a grain outlet 18 for discharging the grain in the box 1 to the outside of the machine. The dust device 50 is provided, and it is configured to remove swarf mixed with the transported grain. The operation panel 6 includes a control unit 41 for controlling the drying operation.

箱体1の上部には貯溜室10を、下部には乾燥室11を備えている。前記搬送装置3の終端側には拡散羽根12を設け、搬送装置3の上部ラセン3aで搬送された穀粒を貯溜室10に拡散するように構成している。   A storage chamber 10 is provided in the upper part of the box 1, and a drying chamber 11 is provided in the lower part. A diffusion blade 12 is provided on the terminal side of the conveying device 3 so that the grains conveyed by the upper spiral 3 a of the conveying device 3 are diffused into the storage chamber 10.

また、箱体1内の貯溜室10には、張込穀粒量検出用の張込穀粒量検出センサ20を設けている。この張込穀粒量検出センサ20は、錘20aを紐20bで吊り下げ支持する構成で、巻取装置20cの巻戻し回転により錘20aを下降させて張込穀粒の上面に接触させ、次いで、巻取装置20cの巻取り回転により錘20aを上昇させて、張込穀粒の張込高さを検出し、穀粒張込量を検出するものである。   Further, the storage chamber 10 in the box 1 is provided with an overhanging grain amount detection sensor 20 for detecting the overhanging grain amount. This tension grain amount detection sensor 20 is configured to suspend and support the weight 20a with the string 20b, and lowers the weight 20a by rewinding rotation of the winding device 20c to contact the upper surface of the tension grain. The weight 20a is raised by the winding rotation of the winding device 20c to detect the tension height of the stretched grain and detect the grain tension amount.

乾燥室11は、燃焼バーナ4により発生した熱風が流れる熱風室13と、貯溜室10の穀粒が流下する流下通路14,14と、吸引排気ファン7に連通している排風室15により構成されている。なお、燃焼バーナ4の燃焼面を熱風室13に対向配置している。流下通路14,14の下端部にはロータリバルブ16を設け、流下通路14,14の穀粒を所定量ずつ繰り出し、繰り出した穀粒を下部ラセン17で昇降機2に搬送している。   The drying chamber 11 includes a hot air chamber 13 through which hot air generated by the combustion burner 4 flows, flow-down passages 14 and 14 through which grains of the storage chamber 10 flow, and an exhaust air chamber 15 communicating with the suction exhaust fan 7. Has been. Note that the combustion surface of the combustion burner 4 is disposed opposite to the hot air chamber 13. A rotary valve 16 is provided at the lower end of the flow-down passages 14, 14, and the grains in the flow-down passages 14, 14 are fed out by a predetermined amount, and the fed-out grains are conveyed to the elevator 2 by the lower spiral 17.

次に、図3に基づき操作盤6について説明する。張込スイッチSW0、通風乾燥スイッチSW1、乾燥スイッチSW2、排出スイッチSW3、停止スイッチSW4、乾燥速度の設定や穀粒種類等を設定する液晶の表示画面h等を備えている。   Next, the operation panel 6 will be described with reference to FIG. A tension switch SW0, a ventilation drying switch SW1, a drying switch SW2, a discharge switch SW3, a stop switch SW4, a liquid crystal display screen h for setting a drying speed, a grain type, and the like are provided.

乾燥速度の設定は、遅い(乾減率0.6%/時間)、やや遅い(乾減率0.7%/時間)、標準(乾減率0.8%/時間)、速い(乾減率0.9%/時間)を手動で設定する構成である。   The drying speed setting is slow (drying rate 0.6% / hour), slightly slow (drying rate 0.7% / hour), standard (drying rate 0.8% / hour), fast (drying rate) The rate is set manually (0.9% / hour).

次に、図6に基づき制御ブロック構成ついて説明する。制御部41の入力側には、前記スイッチSW0〜SW4等の各種スイッチ、外気温度センサSE1、熱風温度センサSE2、排風温度センサSE3、水分計センサSE5、張込穀粒量検出センサ20、穀温センサSE8等の各種センサ情報が入力される。また、制御部41の出力側から燃焼バーナ4、水分計9、吸引排気ファン7、循環手段であるロータリバルブ16、下部ラセン17、昇降機2、上部ラセン3a、拡散羽根12等の駆動手段に制御信号が出力される。   Next, a control block configuration will be described with reference to FIG. On the input side of the control unit 41, various switches such as the switches SW0 to SW4, the outside air temperature sensor SE1, the hot air temperature sensor SE2, the exhaust air temperature sensor SE3, the moisture meter sensor SE5, the stretched grain amount detection sensor 20, the grain Various sensor information such as the temperature sensor SE8 is input. Further, from the output side of the control unit 41, the combustion burner 4, the moisture meter 9, the suction exhaust fan 7, the rotary valve 16 as the circulation means, the lower spiral 17, the elevator 2, the upper spiral 3a, the diffusion blade 12 and the like are controlled. A signal is output.

次に、穀粒乾燥機における穀粒の張込工程から乾燥工程の制御内容について説明する。
張込スイッチSW0を押すと、下部ラセン17、昇降機2、上部ラセン3a、拡散羽根12が駆動を開始し、オペレータは開閉扉19aを開けて収穫穀粒の投入を開始する。すると、穀粒は下部ラセン17、昇降機2、上部ラセン3aにより順次搬送され、拡散羽根12で貯溜室10内に拡散供給される。
Next, the contents of control from the grain filling process to the drying process in the grain dryer will be described.
When the tension switch SW0 is pressed, the lower spiral 17, the elevator 2, the upper spiral 3a, and the diffusion blade 12 start to drive, and the operator opens the open / close door 19a and starts to input harvested grains. Then, the grains are sequentially conveyed by the lower spiral 17, the elevator 2, and the upper spiral 3 a, and are diffused and supplied into the storage chamber 10 by the diffusion blade 12.

乾燥スイッチSW2を押すと、乾燥工程が開始され、燃焼バーナ4が燃焼を開始し、吸引排気ファン7や集塵装置50が駆動を開始すると共に、ロータリバルブ16、下部ラセン17、昇降機2、上部ラセン3a、拡散羽根12が駆動を開始し、穀粒の循環が開始される。循環する穀粒は、乾燥室11の穀粒流下通路14,14を流下するときに、熱風室13から排風室15に流れる熱風を浴びて乾燥され、水分計9により所定時間毎に水分が測定されながら乾燥され、測定水分値が設定水分になると、乾燥工程は終了する。   When the drying switch SW2 is pressed, the drying process is started, the combustion burner 4 starts combustion, the suction exhaust fan 7 and the dust collector 50 start driving, the rotary valve 16, the lower spiral 17, the elevator 2, and the upper part. The spiral 3a and the diffusion blade 12 start driving, and the circulation of the grains is started. The circulating grains are dried by the hot air flowing from the hot air chamber 13 to the exhaust air chamber 15 when flowing down the grain flow passages 14, 14 of the drying chamber 11. When drying is performed while the measured moisture value reaches the set moisture, the drying process ends.

次に、図4及び図5に基づき、張込工程から乾燥工程終了までの具体的な乾燥作業内容及び表示画面hの表示内容について説明する。
張込工程が開始されると、昇降機駆動モータの負荷電流値を負荷電流センサSE7により検出し、検出負荷電流値と過負荷基準値が時系列に表示画面hに表示される(図4の画面イ)。しかして、昇降機2の穀粒の詰まり具合を検出することができる。
Next, based on FIG.4 and FIG.5, the specific drying operation content from a sticking process to the completion | finish of a drying process and the display content of the display screen h are demonstrated.
When the tensioning process is started, the load current value of the elevator drive motor is detected by the load current sensor SE7, and the detected load current value and the overload reference value are displayed on the display screen h in time series (the screen of FIG. 4). I). Thus, the degree of clogging of the elevator 2 can be detected.

また、オペレータが停止スイッチSW4を押すと、張込工程が停止され、張込穀粒量検出センサ20により穀粒の張込量検出を開始する。その間には表示画面hに待機画面(図4−ロ)が表示される。張込量の検出が終了すると、表示画面hには張込量「3000kg]、張込レベル、残りの張込可能量の「3000kg」がそれぞれ表示される(図4−ハ)。   Further, when the operator presses the stop switch SW4, the tensioning process is stopped, and the tension amount detection sensor 20 starts detecting the grain tension. In the meantime, the standby screen (FIG. 4B) is displayed on the display screen h. When the detection of the tension amount is completed, the tension amount “3000 kg”, the tension level, and the remaining tension amount “3000 kg” are displayed on the display screen h (FIG. 4C).

そして、穀粒種類や張込量、仕上げ水分値の設定、乾燥速度等の乾燥条件の内容が表示画面hの設定画面(図4−ニ)に表示され、オペレータは設定画面を操作し適宜設定をする。   Then, the contents of the drying conditions such as the grain type, the amount of filling, the setting of the finishing moisture value, and the drying speed are displayed on the setting screen (FIG. 4-D) of the display screen h, and the operator operates the setting screen to set appropriately. do.

なお、オペレータが再度張込スイッチSW0を押すと、張込工程が再開され、張込画面(図4−イ)に切り替わり、前述と同様の画面表示を繰り返す。
張込穀粒量検出センサ20あるいは手動の張込量設定スイッチ(図示省略)により、張込穀粒量が検出あるいは設定され制御部41に入力される。すると、図8に示すように、張込穀粒量に応じた水分測定回数kが、張込穀粒量の乾燥開始から1回循環するまでの循環時間t内において、設定時間毎に行なわれる。
When the operator presses the tension switch SW0 again, the tensioning process is resumed and the screen is switched to the tensioning screen (FIG. 4A), and the same screen display as described above is repeated.
The stretched grain amount detection sensor 20 or a manual stretch amount setting switch (not shown) detects or sets the stretched grain amount and inputs it to the control unit 41. Then, as shown in FIG. 8, the number k of moisture measurements according to the amount of squeezed kernel is performed every set time within the circulation time t from the start of drying the amount of squeezed kernel until it circulates once. .

なお、全張込穀粒が1回循環するのに要する時間tは張込穀粒量から制御部41で演算される。張込レベルがLV10で張込穀粒量が6000kgの場合には、1回循環するのに48分要し、測定回数は12回、即ち4分間隔毎に水分を測定することになる。   In addition, the time t required for the whole stretched grain to circulate once is calculated by the control unit 41 from the stretched grain amount. When the tension level is LV10 and the grain content is 6000 kg, it takes 48 minutes to circulate once, and the number of measurements is 12 times, that is, moisture is measured every 4 minutes.

乾燥スイッチSW2を押すと、燃焼バーナ4が燃焼を開始し、循環装置が駆動され穀粒が箱体1内の循環を開始する。そのとき、表示画面hには「運転中である」旨を表示し(図5−ホ)、水分計9は乾燥開始から1回循環するまでの間に設定時間毎に設定された回数の水分測定を行なう。このとき表示画面hには「乾燥初期の水分測定中である」旨を表示する(図6−ヘ)。   When the drying switch SW2 is pressed, the combustion burner 4 starts combustion, the circulation device is driven, and the grains start to circulate in the box 1. At that time, the display screen h displays “in operation” (FIG. 5-E), and the moisture meter 9 has the number of times of moisture set for each set time from the start of drying until it circulates once. Measure. At this time, the display screen h displays that “moisture measurement is in the initial stage of drying” (FIG. 6F).

なお、1回の水分測定では図7に示すように32粒の水分値をそれぞれ測定し、その都度平均水分値mを算出している。また、1回の水分測定で測定された32粒の水分バラツキ具合を、測定回数毎に画面に表示する(図5−ト)。また、乾燥開始から1回目の穀粒循環が終了すると、LV1〜LV10の穀粒層毎に測定した平均水分値mを表示し(図5−チ、図9)、穀粒層毎の水分の分布状態、すなわち水分ムラの状態を表示する。また、乾燥作業が進行するに従い、表示画面hの表示内容は図5−リか図5−トが表示される。   In addition, in one water | moisture content measurement, as shown in FIG. 7, 32 water | moisture-content values are measured, respectively, and the average water | moisture-content value m is calculated each time. In addition, 32 moisture variations measured by one moisture measurement are displayed on the screen for each measurement (FIG. 5-G). Moreover, when the 1st grain circulation is complete | finished from the drying start, the average moisture value m measured for every grain layer of LV1-LV10 will be displayed (FIG. 5-C, FIG. 9), and the water | moisture content for every grain layer will be displayed. The distribution state, that is, the state of moisture unevenness is displayed. Further, as the drying operation proceeds, the display content of the display screen h is displayed as shown in FIG.

前記構成によると、乾燥工程の開始直後に張込穀粒量に応じた水分測定回数を設定することにより、全張込穀粒の層別の水分の状態を正確に把握することができる。
次に水分ムラ及び水分バラツキを小さくするための乾燥制御について説明する。
According to the said structure, the state of the water | moisture content according to the layer of all the tension grains can be grasped | ascertained correctly by setting the frequency | count of moisture measurement according to the amount of tension grains immediately after the start of a drying process.
Next, drying control for reducing moisture unevenness and moisture variation will be described.

張込作業終了後、乾燥スイッチSW2を押すと、張込穀粒量検出センサ20が測定を開始し、その測定に基づき制御部41で張込穀粒量を算出する。そして、前述の通り、燃焼バーナ4が燃焼を開始し、吸引排気ファン7や集塵装置50が駆動を開始すると共に、ロータリバルブ16、下部ラセン17、昇降機2、上部ラセン3a、拡散羽根12が駆動を開始し、穀粒の循環が開始される。循環する穀粒は、乾燥室11の穀粒流下通路14,14を流下するときに、熱風室13から排風室15に流れる熱風を浴びて乾燥される。   When the drying switch SW2 is pressed after completion of the tension work, the tension grain amount detection sensor 20 starts measurement, and the control part 41 calculates the tension grain amount based on the measurement. As described above, the combustion burner 4 starts combustion, the suction exhaust fan 7 and the dust collector 50 start driving, and the rotary valve 16, the lower spiral 17, the elevator 2, the upper spiral 3a, and the diffusion blade 12 are Driving is started and the circulation of the grain is started. The circulating grains are dried by the hot air flowing from the hot air chamber 13 to the exhaust air chamber 15 when flowing down the grain flow passages 14, 14 of the drying chamber 11.

乾燥開始直後に、測定された張込穀粒量に応じて設定間隔毎に32粒ずつの穀粒の水分値を測定することで穀粒層(LV1〜LV10)の水分ムラ状態をし、各穀粒層の測定水分値を平均して穀粒層毎に平均水分値mを算出し、また、全穀粒層(LV1〜LV10)の平均水分値mを平均して全体平均水分値nを算出し、全張込穀粒量の穀粒層毎の水分ムラ状態を表示画面hに表示する(図5−チ、図9)。この水分ムラ測定は乾燥開始直後に行なわれ、その後は設定時間毎(例えば15分毎)に32粒毎の水分を測定して水分のバラツキ状態を表示する(図5−ト)。   Immediately after the start of drying, the moisture content of the grain layer (LV1 to LV10) is determined by measuring the moisture content of 32 grains at every set interval according to the measured amount of squeezed grain. The average moisture value m is calculated for each grain layer by averaging the measured moisture value of the grain layer, and the average moisture value m of all grain layers (LV1 to LV10) is averaged to obtain the overall average moisture value n. It calculates and displays the water | moisture-content nonuniformity state for every grain layer of the total amount of squeezed grains on the display screen h (FIG. 5-C, FIG. 9). This moisture unevenness measurement is performed immediately after the start of drying, and thereafter, moisture is measured for every 32 grains at a set time (for example, every 15 minutes) to display the moisture variation state (FIG. 5-G).

そして、前記平均水分値mに対して例えば±3%以上の穀粒が10粒以上あった場合には水分バラツキが大と判定する。そして、水分バラツキ大の場合には、水分値が設定水分値(例えば18%程度)まで乾燥が進むと、前記吸引排気ファン7の駆動を所定時間にわたり停止し、無通風の乾燥室11に乾燥穀粒を循環する水分ムラ・バラツキ解消制御工程を行なう(水分バラツキが大きいほど長時間の制御、小のときには短時間の制御に設定しても良い)。その後再度吸引排気ファン7を再度駆動を開始して熱風乾燥をし、設定仕上水分値になるまで乾燥作業を継続する(図11参照)。   For example, when there are 10 or more grains of ± 3% or more with respect to the average moisture value m, it is determined that the moisture variation is large. In the case where the moisture variation is large, when drying proceeds to a set moisture value (for example, about 18%), the driving of the suction exhaust fan 7 is stopped for a predetermined time, and drying is performed in the ventilation chamber 11 without ventilation. A moisture unevenness / variation elimination control process for circulating the grain is performed (the longer the moisture variation, the shorter the time control may be set). Thereafter, the suction exhaust fan 7 is again driven to perform hot air drying, and the drying operation is continued until the set finish moisture value is reached (see FIG. 11).

前記構成によると、測定水分値が例えば18%程度まで乾燥が進み穀温の上昇している状態で、吸引排気ファン7の駆動を所定時間停止することで、吸引排気ファン7の通風による穀温の低下を防止し、穀温が高い状態を維持できることで、穀粒間の水分移行が促進され、水分のバラツキを小さくすることができる。   According to the above-described configuration, the grain temperature due to the ventilation of the suction exhaust fan 7 is stopped by stopping the driving of the suction exhaust fan 7 for a predetermined time in a state where the measured moisture value is dried to about 18% and the grain temperature is rising. Is prevented, and the state where the grain temperature is high can be maintained, the moisture transfer between the grains is promoted, and the variation in moisture can be reduced.

水分バラツキを判定する水分測定時は平均水分値mが設定水分値(例えば20%や18%)でも良いし、水分ムラ測定終了後に設定時間毎に測定する任意の時点の平均水分値mでも良い。   At the time of moisture measurement for determining moisture variation, the average moisture value m may be a set moisture value (for example, 20% or 18%), or may be an average moisture value m at an arbitrary time point that is measured every set time after the measurement of moisture unevenness. .

また、前述の水分ムラ測定で測定した前記平均水分値mと全体平均水分値nから水分ムラの大小を判定する。例えば、前記平均水分値mと全体平均水分値nから水分ムラの大小を判定する。例えば、全体平均水分値nと3%以上の水分差がある平均水分値mある場合に水分ムラが大きい穀粒層があると判定する。   Further, the magnitude of the moisture unevenness is determined from the average moisture value m and the overall average moisture value n measured by the moisture unevenness measurement described above. For example, the level of moisture unevenness is determined from the average moisture value m and the overall average moisture value n. For example, it is determined that there is a grain layer having a large moisture unevenness when there is an average moisture value m having a moisture difference of 3% or more from the overall average moisture value n.

このときも、水分値が設定水分値(例えば18%程度)まで乾燥が進むと、前記吸引排気ファン7の駆動を所定時間にわたり停止し、無通風の乾燥室11に乾燥穀粒を循環する水分ムラ・バラツキ解消制御工程を行なう(水分ムラが大きいほど長時間の制御、小のときには短時間の制御に設定しても良い)。その後再度吸引排気ファン7を再度駆動を開始して熱風乾燥をし、設定仕上水分値になるまで乾燥作業を継続する(図13参照)。   Also at this time, when the moisture value reaches the set moisture value (for example, about 18%), the suction exhaust fan 7 is stopped for a predetermined time, and the moisture that circulates the dried grains in the non-ventilated drying chamber 11. The unevenness / variation elimination control process is performed (the longer the moisture unevenness, the longer the time of control, and the smaller the time, the shorter the time of control may be set). Thereafter, the suction exhaust fan 7 is again driven to perform hot air drying, and the drying operation is continued until the set finishing moisture value is reached (see FIG. 13).

このため、吸引排気ファンの停止中は穀粒を循環させることで、水分移行を促進させると共に穀粒層毎の穀粒の混合が促進され、穀粒層毎の水分ムラを小さくすることができる。   For this reason, while the suction exhaust fan is stopped, the grains are circulated to promote moisture transfer and to promote mixing of the grains for each grain layer, and to reduce moisture unevenness for each grain layer. .

なお、水分ムラ・バラツキ解消制御工程は水分バラツキか水分ムラの何れかが設定よりも大きいときに行なっても良いし、両方とも満たす場合に行なっても良い。
次に、乾燥作業終了付近の乾燥制御について説明する。
The moisture unevenness / variation elimination control step may be performed when either the moisture variation or the moisture unevenness is larger than the setting, or may be performed when both are satisfied.
Next, the drying control near the end of the drying operation will be described.

図12は複数の穀粒乾燥機Sを並列して設置し、それぞれの穀粒乾燥機で乾燥済み穀粒を放冷タンクVに排出して貯留し、後工程の籾摺機X、米選機Yで調整処理するように構成していることを示す図である。そして、前述の通り、乾燥作業中には箱体1内の乾燥穀粒を一粒式水分計9により、前述の通り乾燥開始直後の水分ムラ測定後には所定時間毎に所定粒数(32粒)の水分測定をし平均水分値mを算出する。そして、平均水分値mが設定水分値(例えば14%)になると、乾燥作業を終了するように構成する。   FIG. 12 shows a plurality of grain dryers S installed in parallel, and each grain dryer discharges and stores the dried grains in the cooling tank V. It is a figure which shows having comprised so that adjustment processing may be carried out with the machine Y. FIG. As described above, during the drying operation, the dried grain in the box 1 is measured by the single-grain moisture meter 9 after the moisture unevenness measurement immediately after the start of drying as described above. ) And the average moisture value m is calculated. Then, when the average moisture value m reaches a set moisture value (for example, 14%), the drying operation is finished.

設定仕上水分値に対して例えば2%以下(本例だと16%)まで乾燥が進行した時に測定した水分バラツキが、例えば平均水分値mより3%以上離れた穀粒数が6粒以上検出した場合には、平均水分値mが設定仕上げ水分値になり乾燥作業を終了し、次いで、穀粒を放冷タンクに排出する際に、吸引排気ファン7の駆動を停止し、乾燥済み穀粒を無風状態の流下通路14,14を流下しながら排出し、放冷タンクVに移送する。   For example, when the drying progresses to 2% or less (16% in this example) with respect to the set finishing moisture value, for example, the number of grains that are 3% or more away from the average moisture value m is detected. In such a case, the average moisture value m becomes the set finish moisture value, the drying operation is terminated, and then the suction exhaust fan 7 is stopped when the kernel is discharged to the cooling tank, and the dried kernel Is discharged while flowing down the downflow passages 14 and 14 in a windless state, and transferred to the cooling tank V.

前記構成によると、穀粒を放冷タンクVに排出する際に、吸引排気ファン7の駆動を停止することで、通風による穀温の低下を少なくし、穀温の高いままで放冷タンクに排出貯溜することができ、放冷タンクでの穀粒間の水分移行を促進し、比較的短い時間で水分バラツキの均等化を図ることができる。   According to the said structure, when discharging | emitting a grain to the cooling tank V, by stopping the drive of the suction exhaust fan 7, the fall of the grain temperature by ventilation is decreased, and it becomes a cooling tank with a high grain temperature. It is possible to discharge and store, promote moisture transfer between grains in the cooling tank, and achieve equalization of moisture variation in a relatively short time.

次に、乾燥開始直後における一実施の形態について説明する。
穀粒乾燥機で穀粒の乾燥作業を開始すると、前記張込穀粒量検出センサ20により張込穀粒量を検出し(あるいは、図示省略の張込量設定スイッチにより乾燥作業開始前に張込穀粒量を設定する。)、ロータリバルブ16の繰出循環能力から全張込穀粒量の1循環に要する循環時間を算出する。
Next, an embodiment immediately after the start of drying will be described.
When the grain drying operation is started by the grain dryer, the tension amount detecting sensor 20 detects the tension amount (or, before the drying operation is started by the tension amount setting switch not shown). The amount of included kernels is set.) From the feeding circulation capacity of the rotary valve 16, the circulation time required for one circulation of the total amount of included kernels is calculated.

そして、乾燥開始後の1回目の循環時間中は、前記吸引排気ファン7のみを駆動し、穀粒を通風循環しながら前記穀温センサSE8により所定時間毎に穀温を検出し、検出穀温のバラツキの大小を判定する穀温判定手段を設ける。   Then, during the first circulation time after the start of drying, only the suction exhaust fan 7 is driven, and the grain temperature is detected by the grain temperature sensor SE8 every predetermined time while circulating the grain, and the detected grain temperature is detected. There is provided a grain temperature judging means for judging the size of the variation.

前記穀温判定手段が例えば5度以上の穀温差があり穀温差大と判定すると、2回目の穀粒循環時にも穀粒を通風状態で循環しながら乾燥し、穀温の収束安定を図りながら通風乾燥を継続する。そして、例えば、3度以内まで穀温が収束安定すると、燃焼バーナ4を着火した熱風乾燥に移行する。   When the grain temperature determining means determines that the grain temperature difference is, for example, 5 degrees or more and the grain temperature difference is large, the grain is dried while circulating in a ventilation state even during the second grain circulation, while achieving stable convergence of the grain temperature. Continue ventilation drying. Then, for example, when the grain temperature converges and stabilizes to within 3 degrees, the process shifts to hot air drying in which the combustion burner 4 is ignited.

前記構成によると、夏場での高温穀粒のむれを抑制しながら、胴割れ等の品質低下を防止し、水分むらを防止しながら乾燥することができる。
次に、乾燥作業中における穀粒層の表示の一実施の形態について説明する。
According to the said structure, it can dry, preventing quality deterioration, such as a body crack, preventing moisture irregularity, suppressing the irregularity of the high temperature grain in summer.
Next, an embodiment of displaying the grain layer during the drying operation will be described.

穀粒乾燥機の箱体1には張込穀粒量確認用の張込量確認用窓51,…を上下方向に所定間隔毎に設け(図2に示す)、また、表示画面hの横軸には張込量確認用窓51,…に対応する窓番号「1〜7」を表示している。また、水分計9により乾燥開始から循環乾燥穀粒に所定時間毎に所定回数の水分測定を行ない穀粒層毎の平均水分値m、及び、全穀粒層の平均水分値nを測定する。   The box body 1 of the grain dryer is provided with tension amount confirmation windows 51,... For confirmation of the amount of tension grain (shown in FIG. 2) in the vertical direction, and the side of the display screen h. Window numbers “1 to 7” corresponding to the extension amount confirmation windows 51,... Are displayed on the axes. In addition, the moisture meter 9 measures the moisture content of the circulated and dried kernels a predetermined number of times every predetermined time from the start of drying, and measures the average moisture value m for each grain layer and the average moisture value n of all the grain layers.

そして、測定水分値を図10に示すように表示する。即ち、1回目の水分測定では図7に示すように、32粒の水分測定をし、水分値測定の都度算出した平均水分値mを実線で縦軸に表示し、また、1回目の水分測定で測定された32粒間のバラツキの上限値及び下限値を点線で縦軸に表示し、張込穀粒量確認用窓51,…の窓番号「1〜7」に対応するように表示する。   Then, the measured moisture value is displayed as shown in FIG. That is, in the first moisture measurement, as shown in FIG. 7, 32 grains of moisture are measured, the average moisture value m calculated every time the moisture value is measured is displayed on the vertical axis with a solid line, and the first moisture measurement is performed. The upper limit value and the lower limit value of the variation between the 32 grains measured in the above are displayed on the vertical axis by dotted lines, and displayed so as to correspond to the window numbers “1 to 7” of the onset grain amount confirmation windows 51,. .

前記構成によると、穀粒乾燥機の箱体1内に張り込んだ穀粒層毎に平均水分値及び穀粒間のバラツキ具合を一目で確認することができ、全体の乾燥進行状態を容易に把握することができる。   According to the said structure, the average moisture value and the dispersion | variation condition between grains can be confirmed at a glance for every grain layer stuck in the box 1 of a grain dryer, and the whole drying progress state is easy. I can grasp it.

また、前記平均水分値m及び穀粒間の水分バラツキの上限値及び下限値を表示するにあたり、乾燥穀粒の循環に応じて張込穀粒量確認用窓51,…の窓番号「1〜7」に、スライドして表示するようにしてもよい。また、表示切換スイッチ(図示省略)の切換操作により、穀粒の循環状態に応じた表示としたり、あるいは、張込時の状態に応じた水分値表示に切り換えるようにしてもよい。   Further, when displaying the upper limit value and the lower limit value of the average moisture value m and the moisture variation between the grains, the window numbers “1 to 1” of the stretched grain amount confirmation windows 51 according to the circulation of the dried grains. 7 ”may be displayed by sliding. Further, a display changeover switch (not shown) may be changed to display according to the circulation state of the grain, or may be switched to the moisture value display according to the state at the time of tension.

前記構成によると、全体の乾燥穀粒に対して極端に異なる水分値の穀粒ブロックを一旦機外に取り出し別に乾燥することができ、乾燥時間を短縮することができる。
次に、乾燥制御の他の実施形態について説明する。
According to the said structure, the grain block of a moisture value extremely different with respect to the whole dry grain can be once taken out outside the apparatus, and can be dried separately, and drying time can be shortened.
Next, another embodiment of the drying control will be described.

穀粒乾燥機で穀粒の乾燥作業を開始すると、前記張込穀粒量検出センサ20により張込穀粒量を検出し、ロータリバルブ16の繰出循環能力から全張込穀粒量の1回の循環に要する循環時間を算出する。また、乾燥開始後の1回目の循環時間中は、穀粒を通風循環しながら前記排風温度センサSE3により所定時間毎に排風温度を検出し、検出排風温度のバラツキの大小を判定する排風温度判定手段を設ける。   When the drying operation of the grain is started by the grain dryer, the amount of squeezed grain is detected by the squeezed grain amount detection sensor 20, and the total amount of squeezed grain is determined once from the feeding circulation capacity of the rotary valve 16. Calculate the circulation time required for circulation. In addition, during the first circulation time after the start of drying, the exhaust air temperature sensor SE3 detects the exhaust air temperature every predetermined time while circulating the grain, and determines whether the detected exhaust air temperature varies. Exhaust air temperature determining means is provided.

前記排風温度判定手段で例えば5度以上の温度差を検出し穀温のバラツキ大と判定すると、2回目の穀粒循環でも穀粒を通風状態で循環しながら乾燥し、排風温度が収束安定するまで通風乾燥を継続する。そして、排風温度が例えば3度以下の温度差に収束安定すると、燃焼バーナ4を着火した熱風乾燥に移行する。   For example, when the temperature difference of 5 ° C. or more is detected by the exhaust air temperature determination means and it is determined that the variation in the grain temperature is large, the grain is dried while circulating the grain in the second grain circulation, and the exhaust air temperature converges. Continue to ventilate until stable. When the exhaust air temperature converges and stabilizes at a temperature difference of 3 degrees or less, for example, the process shifts to hot air drying in which the combustion burner 4 is ignited.

前記構成によると、夏場での水分値の高い穀粒のむれを抑制しながら、胴割れ等の品質低下を防止し、水分むらを防止しながら乾燥することができる。
次に、本実施の形態における水分ムラの解消の制御について説明する。
According to the said structure, it can dry, preventing quality deterioration, such as a body crack, preventing moisture irregularity, suppressing the irregularity of the grain with a high moisture value in summer.
Next, control for eliminating water unevenness in the present embodiment will be described.

前述の通り、箱体1内の張込穀粒を張り込み量に応じて複数の穀粒層を設定し、乾燥開始直後、各穀粒層毎の検出粒数の測定水分値を平均して平均水分値mを算出し、各穀粒層の平均水分値mを平均して全体平均水分値nを算出し、穀粒全体の水分ムラを表示画面hに表示する(図5−チ)。また、一粒式水分計9で測定した一回または複数回の一粒の水分測定値のバラツキを算出し表示する(図5−ト)。   As described above, a plurality of grain layers are set in accordance with the amount of squeezed grains in the box 1, and immediately after the start of drying, the measured moisture values of the number of detected grains for each grain layer are averaged and averaged. The moisture value m is calculated, the average moisture value m of each grain layer is averaged to calculate the overall average moisture value n, and the moisture unevenness of the whole grain is displayed on the display screen h (FIG. 5C). Moreover, the dispersion | variation in the water | moisture-content measured value of the one time or the one time measured with the single-grain moisture meter 9 is calculated and displayed (FIG. 5-G).

そして、前記平均水分値mと全体平均水分値nから水分ムラの大小を判定する。例えば、全体平均水分値nと3%以上の水分差がある平均水分値mある場合に水分ムラが大きい穀粒層があると判定する。しかして、水分ムラ大の場合には、ロータリバルブ16の循環量を通常循環量よりも多くしながら乾燥作業をする。   Then, the level of moisture unevenness is determined from the average moisture value m and the overall average moisture value n. For example, it is determined that there is a grain layer having a large moisture unevenness when there is an average moisture value m having a moisture difference of 3% or more from the overall average moisture value n. Therefore, when the moisture unevenness is large, the drying operation is performed while increasing the circulation amount of the rotary valve 16 from the normal circulation amount.

前記構成によると、穀粒の循環速度を速くすることにより、各穀粒層の混合作用が促進し、水分ムラを少なくしながら乾燥することができる。
次に、乾燥制御の他の実施形態について説明する。
According to the said structure, by making the circulation speed of a grain fast, the mixing effect | action of each grain layer is accelerated | stimulated and it can dry, reducing a moisture nonuniformity.
Next, another embodiment of the drying control will be described.

前述の通り、各穀粒層毎の検出粒数の測定水分値を平均して平均水分値mを算出し、各穀粒層の平均水分値mを平均して全体平均水分値nを算出し、穀粒全体の水分ムラを表示画面hに表示する(図5−チ)。   As described above, the average moisture value m is calculated by averaging the measured moisture values of the number of detected grains for each grain layer, and the overall average moisture value n is calculated by averaging the average moisture value m of each grain layer. Then, the moisture unevenness of the whole grain is displayed on the display screen h (FIG. 5C).

次いで、2回目の循環でも同様に平均水分値m及び全体平均水分値nを算出し、1回目の水分値と2回目の水分値の差を循環時間で割って、穀粒の乾燥速度を算出する。次いで、算出乾燥速度と設定乾燥速度とを比較し、例えば、算出乾燥速度が大のときには、設定乾燥速度を遅く補正する。   Next, the average moisture value m and the overall average moisture value n are similarly calculated in the second circulation, and the grain drying rate is calculated by dividing the difference between the first moisture value and the second moisture value by the circulation time. To do. Next, the calculated drying speed is compared with the set drying speed. For example, when the calculated drying speed is large, the set drying speed is corrected to be slow.

前記構成によると、張込穀粒を複数の穀粒層として看做し、各穀粒層毎の前後の平均水分値mを比較して実際の乾燥速度を算出するので、水分ムラがある場合にも、全体として安定した乾燥速度に補正することができ、乾燥速度制御の精度の向上を図ることができる。   According to the above-described configuration, the cereal grains are regarded as a plurality of grain layers, and the average moisture value m before and after each grain layer is compared to calculate the actual drying speed. In addition, the overall drying rate can be corrected, and the accuracy of drying rate control can be improved.

穀粒乾燥機の切断背面図Cutting back view of grain dryer 穀粒乾燥機の切断側面図Cutting side view of grain dryer 操作盤の正面図Front view of operation panel 表示画面の表示内容を示す図The figure which shows the display contents of the display screen 表示画面の表示内容を示す図The figure which shows the display contents of the display screen 制御ブロック図Control block diagram 乾燥開始直後の水分測定結果を示す図Figure showing moisture measurement results immediately after the start of drying 張込穀粒量と1回の循環時間と水分測定回数の関係を示す図The figure which shows the relationship between the amount of cereal grain, the circulation time of one time, and the number of times of moisture measurement 穀粒ブロック毎の水分値の分布を示す図The figure which shows distribution of the moisture value for every grain block 張込穀粒量確認用窓毎の穀粒ブロックの水分値分布を示す図The figure which shows the moisture value distribution of the grain block for every window for confirmation フローチャートflowchart 乾燥調製設備を示す図Diagram showing drying preparation equipment フローチャートflowchart

符号の説明Explanation of symbols

4 乾燥手段
7 吸引排気ファン
9 水分測定手段
10 貯溜室
11 乾燥室
20 張込穀粒量設定手段
41 制御部
4 Drying means 7 Suction / exhaust fan 9 Moisture measuring means 10 Storage chamber 11 Drying chamber 20 Stretched grain amount setting means 41 Control unit

Claims (2)

貯溜室(10)から乾燥室(11)を経て再度貯溜室(10)に張込穀粒を循環させる循環手段と、穀粒を乾燥する乾燥手段(4)と、前記乾燥室(11)に乾燥風を送る吸引排気ファン(7)と、張込穀粒から穀粒を採取して水分値を測定する水分測定手段(9)と、前記循環手段、乾燥手段(4)、水分測定手段(9)を制御する制御部(41)を設け、
乾燥手段(4)で乾燥作業を行っている時に水分測定手段(9)が設定数の穀粒を測定し、制御部(41)は当該測定した穀粒の水分値のバラツキが予め設定したバラツキよりも大きいと判定した場合に、乾燥手段(4)及び吸気排気ファン(7)を停止した状態で前記循環手段を駆動する構成としたことを特徴とする穀粒乾燥機。
Circulating means for circulating the squeezed grain from the storage chamber (10) through the drying chamber (11) to the storage chamber (10) again, drying means (4) for drying the grain, and the drying chamber (11) A suction exhaust fan (7) for sending dry air, a moisture measuring means (9) for collecting the grain from the stretched grain and measuring the moisture value, the circulating means, the drying means (4), the moisture measuring means ( 9) provided with a control unit (41) for controlling,
When the drying means (4) is performing the drying operation, the moisture measuring means (9) measures the set number of grains, and the control unit (41) sets the variation of the measured moisture value of the grains in advance. The grain dryer is configured to drive the circulation means in a state in which the drying means (4) and the intake / exhaust fan (7) are stopped when it is determined that it is larger than the above.
貯溜室(10)から乾燥室(11)を経て再度貯溜室(10)に張込穀粒を循環させる循環手段と、穀粒を乾燥する乾燥手段(4)と、前記乾燥室(11)に乾燥風を送る吸引排気ファン(7)と、張込穀粒から穀粒を採取して水分値を測定する水分測定手段(9)と、前記循環手段、乾燥手段(4)、水分測定手段(9)を制御する制御部(41)を設け、
水分測定手段(9)は一回の測定で設定粒数を測定し、制御部(41)がその設定粒数の平均水分値(m)を演算し、該平均水分値(m)を当該測定した張込穀粒位置の水分値とし、該平均水分値(m)を張込穀粒の全体にわたって設定間隔毎に複数個所測定・演算する構成とし、該複数個所の平均水分値(m)から水分ムラ状態を検出し、該水分ムラが予め設定した水分ムラよりも大きいと判定した場合には、乾燥手段(4)で設定水分値まで乾燥した後に、乾燥手段(4)及び吸気排気ファン(7)を停止した状態で前記循環手段を駆動する構成としたことを特徴とする穀粒乾燥機。
Circulating means for circulating the squeezed grain from the storage chamber (10) through the drying chamber (11) to the storage chamber (10) again, drying means (4) for drying the grain, and the drying chamber (11) A suction exhaust fan (7) for sending dry air, a moisture measuring means (9) for collecting the grain from the stretched grain and measuring the moisture value, the circulating means, the drying means (4), the moisture measuring means ( 9) provided with a control unit (41) for controlling,
The moisture measuring means (9) measures the set number of grains in one measurement, the control unit (41) calculates the average moisture value (m) of the set number of grains, and the average moisture value (m) is measured. It is set as the moisture value of the stretched grain position, and the average moisture value (m) is measured and calculated at a plurality of set intervals for the entire stretched grain, from the average moisture value (m) at the plurality of places. When the moisture unevenness state is detected and it is determined that the moisture unevenness is larger than the preset moisture unevenness, the drying means (4) and the intake / exhaust fan ( A grain dryer characterized in that the circulation means is driven in a state in which 7) is stopped.
JP2007236681A 2007-09-12 2007-09-12 Grain drying machine Pending JP2009068756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236681A JP2009068756A (en) 2007-09-12 2007-09-12 Grain drying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236681A JP2009068756A (en) 2007-09-12 2007-09-12 Grain drying machine

Publications (1)

Publication Number Publication Date
JP2009068756A true JP2009068756A (en) 2009-04-02

Family

ID=40605205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236681A Pending JP2009068756A (en) 2007-09-12 2007-09-12 Grain drying machine

Country Status (1)

Country Link
JP (1) JP2009068756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152140A (en) * 2018-07-05 2018-09-27 株式会社クボタ Processing facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152140A (en) * 2018-07-05 2018-09-27 株式会社クボタ Processing facility

Similar Documents

Publication Publication Date Title
JP5293004B2 (en) Circulating grain dryer
JP2010054148A5 (en)
JP2009068756A (en) Grain drying machine
JP2015224835A (en) Crop dryer machine
JP2008039221A (en) Grain drier
JP2008032257A (en) Grain drying machine
JP2008298324A (en) Grain drier
JP2011220563A (en) Grain drying apparatus
JP3358198B2 (en) Overload detection method of motor for grain dryer
JP2010127551A (en) Grain dryer
JP3526465B2 (en) Display of scheduled drying time of grain dryer
JPH02236436A (en) Detection of impurity in grain drier and drying control system
JP3116567B2 (en) Grain moisture detection method of grain dryer
JP2011075244A (en) Grain load control device for circulation type grain dryer
JP2008032256A (en) Grain drying machine
JP2008256328A (en) Grain drier
JP2016061479A (en) Grain drier
JPH06273048A (en) Operation display system for grain dryer
JP6299387B2 (en) Grain dryer
JP5011983B2 (en) Grain dryer
JP5359592B2 (en) Grain dryer
JP2002350056A (en) Control unit for grain drier
JP2019082276A (en) Grain dryer
JPH01247983A (en) Control of drying degree of grain in grain drying machine
JP2008256327A (en) Grain drier