JP2009035772A - Hydrogen storage material - Google Patents

Hydrogen storage material Download PDF

Info

Publication number
JP2009035772A
JP2009035772A JP2007200969A JP2007200969A JP2009035772A JP 2009035772 A JP2009035772 A JP 2009035772A JP 2007200969 A JP2007200969 A JP 2007200969A JP 2007200969 A JP2007200969 A JP 2007200969A JP 2009035772 A JP2009035772 A JP 2009035772A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage material
activated
hydrogen
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007200969A
Other languages
Japanese (ja)
Other versions
JP4925962B2 (en
Inventor
Akifumi Takenawa
亮史 竹縄
Takanori Suzuki
貴紀 鈴木
Norio Komura
規夫 小村
Izuru Kanoya
出 鹿屋
Mitsuya Hosoe
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007200969A priority Critical patent/JP4925962B2/en
Priority to US12/183,807 priority patent/US20090035175A1/en
Publication of JP2009035772A publication Critical patent/JP2009035772A/en
Application granted granted Critical
Publication of JP4925962B2 publication Critical patent/JP4925962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To activate a hydrogen storage material in a short time even under low temperature and low pressure conditions. <P>SOLUTION: An unactivated hard-to-activate hydrogen storage material is mixed with an activated hydrogen storage material to prepare a hydrogen storage material. When activation is applied thereafter to this hydrogen storage material, the above hard-to-activate hydrogen storage material can occlude hydrogen in an extremely short time. As this kind of hard-to-activate hydrogen storage material, a V-Cr-Ti type hydrogen storage alloy having a body-centered cubic (BCC) type crystal structure can be cited. As the activated hydrogen storage material, MgHx (where 0.1≤x≤2) to which nanoparticles of at least one element among Ni, Fe, Ti, Mn and V are added can be suitably used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、活性化によって水素を吸蔵することが可能となる水素吸蔵材に関する。   The present invention relates to a hydrogen storage material that can store hydrogen by activation.

近年、環境保護の観点から、温暖化ガスであるNOXやSOX、CO2、炭化水素ガス等を全く排出しない燃料電池を走行駆動源とする燃料電池車が特に着目されている。すなわち、燃料電池車は、前記燃料電池を構成するアノード側電極に供給された燃料ガス中の水素と、カソード側電極に供給された酸化剤ガス中の酸素とが反応することによって生成するH2Oしか排出しないからである。 Recently, from the viewpoint of environmental protection, a greenhouse gas NO X and SO X, CO 2, the fuel cell vehicle and a fuel cell drive source that does not emit a hydrocarbon gas or the like at all is particularly focused. That is, the fuel cell vehicle generates H 2 produced by a reaction between hydrogen in the fuel gas supplied to the anode side electrode constituting the fuel cell and oxygen in the oxidant gas supplied to the cathode side electrode. This is because only O is discharged.

ここで、燃料ガス及び酸化剤ガスとしては、それぞれ、水素及び大気が使用されることが一般的である。従って、燃料電池車には、水素を貯留する容器を搭載する必要がある。   Here, hydrogen and air are generally used as the fuel gas and the oxidant gas, respectively. Therefore, it is necessary to mount a container for storing hydrogen on the fuel cell vehicle.

水素貯留容器に貯留される水素の量が多いほど、燃料電池を長時間にわたって発電させることができる。換言すれば、燃料電池車の走行可能距離を大きくすることが可能となる。この観点から、水素貯留容器の水素貯蔵量を大きくすることが種々試みられており、その1つとしては、水素吸蔵合金等の水素吸蔵材を水素貯留容器に収容することが挙げられる。   The larger the amount of hydrogen stored in the hydrogen storage container, the longer the fuel cell can generate power. In other words, the travelable distance of the fuel cell vehicle can be increased. From this point of view, various attempts have been made to increase the amount of hydrogen stored in the hydrogen storage container, and one of them is to store a hydrogen storage material such as a hydrogen storage alloy in the hydrogen storage container.

水素吸蔵材は、自身の体積よりも多量の水素を吸蔵することが可能である。従って、単なる水素貯留容器に比して水素貯蔵量が増加する。しかも、水素の吸蔵が可逆的に行われるので、燃料電池を発電させる際に必要量の水素を放出させることも可能である。   The hydrogen storage material can store a larger amount of hydrogen than its own volume. Accordingly, the hydrogen storage amount is increased as compared with a simple hydrogen storage container. In addition, since the storage of hydrogen is performed reversibly, it is possible to release a necessary amount of hydrogen when generating power in the fuel cell.

ところで、水素吸蔵材(特に、水素吸蔵合金)は、当初、その表面が酸化膜で覆われており、この状態では水素を吸蔵することができない。このため、水素吸蔵材には、所定の水素圧力及び温度において前記酸化膜を還元除去する活性化が施される。水素吸蔵材は、この活性化処理によってはじめて、水素を可逆的に吸蔵・放出することが可能となる。   By the way, the surface of a hydrogen storage material (particularly a hydrogen storage alloy) is initially covered with an oxide film, and in this state, hydrogen cannot be stored. For this reason, the hydrogen storage material is activated to reduce and remove the oxide film at a predetermined hydrogen pressure and temperature. Only after this activation treatment, the hydrogen storage material can reversibly store and release hydrogen.

しかしながら、V−Ti−Cr系水素吸蔵合金等、結晶構造が体心立方(BCC)型の水素吸蔵材は特に活性化が困難であり、例えば、500℃で10-4torrまでの真空排気、水素圧力50atomでの加圧を4サイクル繰り返すか(特許文献1参照)、又は、真空排気後に400℃、水素圧力8MPaとして1時間保持し、その後に室温まで冷却することを3サイクル程度繰り返さなければならない。 However, it is particularly difficult to activate a hydrogen storage material having a body-centered cubic (BCC) type crystal structure such as a V—Ti—Cr-based hydrogen storage alloy, such as evacuation up to 10 −4 torr at 500 ° C., Either pressurization with a hydrogen pressure of 50 atoms is repeated for 4 cycles (see Patent Document 1), or after evacuation, holding at 400 ° C. and a hydrogen pressure of 8 MPa for 1 hour and then cooling to room temperature is repeated for about 3 cycles. Don't be.

また、水素吸蔵材を上記したように水素貯留容器に収容する場合、収容後に活性化を行うことがある。この場合、水素圧力及び温度を水素貯留容器の耐圧及び耐熱温度以下としなければならない。水素貯留容器の構成部材であるライナやシール等を樹脂製のものとした場合、耐圧は10MPa以下、耐熱温度は100℃以下であるが、このような水素圧力や温度下でV−Ti−Cr系水素吸蔵合金を活性化するためには、75時間もの長時間を要する。このように、比較的低圧、低温で水素吸蔵材を活性化する場合、数十時間が必要であるという不具合が顕在化している。   Moreover, when accommodating a hydrogen storage material in a hydrogen storage container as mentioned above, activation may be performed after accommodation. In this case, the hydrogen pressure and temperature must be lower than the pressure resistance and heat resistant temperature of the hydrogen storage container. When the liner, seal, or the like, which is a constituent member of the hydrogen storage container, is made of resin, the pressure resistance is 10 MPa or less and the heat resistant temperature is 100 ° C. or less. Under such hydrogen pressure and temperature, V-Ti-Cr It takes a long time of 75 hours to activate the hydrogen storage alloy. As described above, when the hydrogen storage material is activated at a relatively low pressure and low temperature, there is a problem that several tens of hours are required.

特許文献2には、BCC合金相とラーベス相との混合相とすることにより、活性化が容易な水素吸蔵合金が得られることが記載されている。該特許文献2によれば、活性化が容易なラーベス相が水素化して粉化することに伴い、活性化が困難なBCC合金相に破壊が伝播し、その結果、該破壊面において空気に被毒されていないBCC合金相が新たに露呈するので、この露呈した破壊面を起点としてBCC合金相が水素化して粉化するようになるため、活性化が加速度的に進行すると推察される、とのことである(段落[0008]参照)。   Patent Document 2 describes that a hydrogen storage alloy that is easily activated can be obtained by using a mixed phase of a BCC alloy phase and a Laves phase. According to Patent Document 2, as the Laves phase that is easily activated is hydrogenated and pulverized, the fracture propagates to the BCC alloy phase that is difficult to activate, and as a result, the fracture surface is exposed to air. Since the non-poisoned BCC alloy phase is newly exposed, the BCC alloy phase is hydrogenated and powdered starting from this exposed fracture surface, and it is assumed that activation proceeds at an accelerated rate. (See paragraph [0008]).

特開平10−110225号公報(特に、段落[0025])Japanese Patent Laid-Open No. 10-110225 (particularly, paragraph [0025]) 特開平10−245653号公報(特に、段落[0008])JP-A-10-245653 (in particular, paragraph [0008])

BCC合金相とラーベス相との混合相は、BCC型水素吸蔵合金を製造する際の原料粉末溶解時に、少量のZrを添加することで形成される。従って、このZr添加量を制御したりする等の煩雑な作業が必要となる。   The mixed phase of the BCC alloy phase and the Laves phase is formed by adding a small amount of Zr when the raw material powder is melted when producing the BCC type hydrogen storage alloy. Therefore, complicated operations such as controlling the amount of Zr added are required.

また、Zrは比較的重量が大の元素であり、このため、水素吸蔵合金の単位重量当たりの水素吸蔵量が低減するという不具合を惹起する。   Zr is an element having a relatively large weight, which causes a problem that the hydrogen storage amount per unit weight of the hydrogen storage alloy is reduced.

本発明は上記した問題を解決するためになされたもので、低温・低圧の条件下であっても短時間で活性化させることが可能であり、しかも、活性化に際して煩雑な作業を必要とせず、その上、水素吸蔵合金の単位重量当たりの水素吸蔵量が大きな水素吸蔵材を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can be activated in a short time even under conditions of low temperature and low pressure, and does not require complicated work for activation. Moreover, an object of the present invention is to provide a hydrogen storage material having a large hydrogen storage amount per unit weight of the hydrogen storage alloy.

前記の目的を達成するために、本発明に係る水素吸蔵材は、
10MPa以下の水素圧力下で且つ温度が100℃以下である際に活性化に10時間以上を要する難活性化水素吸蔵材と、
活性化が既に施された活性化済水素吸蔵材と、
を含むことを特徴とする。
In order to achieve the above object, the hydrogen storage material according to the present invention comprises:
A hardly-activated hydrogen storage material that requires 10 hours or more for activation under a hydrogen pressure of 10 MPa or less and at a temperature of 100 ° C. or less;
An activated hydrogen storage material that has already been activated,
It is characterized by including.

活性化済水素吸蔵材が混合された難活性化水素吸蔵材に対して活性化を行う場合、低温・低圧の条件下であっても、活性化が極めて短時間で終了する。すなわち、難活性化水素吸蔵材単体に対して活性化を行う場合に比して、活性化に要する時間を著しく短縮することができる。   When activation is performed on the hardly-activated hydrogen storage material mixed with the activated hydrogen storage material, the activation is completed in a very short time even under low temperature and low pressure conditions. That is, the time required for activation can be remarkably shortened as compared with the case where activation is performed on the hardly-activated hydrogen storage material alone.

しかも、低温・低圧で活性化を行うことができるので、該水素吸蔵材を水素貯留容器に収容した状態であっても短時間で活性化を施すことができる。従って、大気中では失活し易い物質が含まれていたとしても、水素貯留容器に収容して失活し難い状態とした上で、活性化を短時間で終了させることが可能となる。   In addition, since activation can be performed at a low temperature and low pressure, activation can be performed in a short time even when the hydrogen storage material is housed in a hydrogen storage container. Therefore, even if a substance that is easily deactivated is contained in the atmosphere, the activation can be completed in a short time after being placed in a hydrogen storage container to make it difficult to deactivate.

さらに、この場合、何らかの元素を添加しながら水素吸蔵材を調製する必要がないので、元素の添加量を制御する等の煩雑な作業を行う必要もない。その上、水素吸蔵合金の単位重量当たりの水素吸蔵量が小さくなることもない。   Furthermore, in this case, since it is not necessary to prepare the hydrogen storage material while adding any element, it is not necessary to perform complicated operations such as controlling the amount of element added. In addition, the hydrogen storage amount per unit weight of the hydrogen storage alloy does not decrease.

ここで、活性化済水素吸蔵材を混合することで難活性化水素吸蔵材に対する活性化が容易となる理由は、活性化済水素吸蔵材に吸蔵された活性な水素原子が難活性化水素吸蔵材の表面に存在する酸化膜に移動し、さらに、該酸化膜を還元するためであろうと推察される。   Here, the reason why the activation of the hardly-activated hydrogen storage material is facilitated by mixing the activated hydrogen storage material is that the active hydrogen atoms stored in the activated hydrogen storage material are hardly activated hydrogen storage material. It is presumed that the oxide film moves to the oxide film present on the surface of the material and further reduces the oxide film.

難活性化水素吸蔵材は、特に限定されるものではないが、結晶構造が体心立方(BCC)型となる水素吸蔵合金を好適な例として挙げることができる。すなわち、本発明によれば、一般的に活性化が困難であると認識されている物質に対しても極めて容易に活性化を施すことが可能となる。   Although the hardly activated hydrogen storage material is not particularly limited, a hydrogen storage alloy whose crystal structure is a body-centered cubic (BCC) type can be given as a suitable example. That is, according to the present invention, it is possible to activate a substance that is generally recognized to be difficult to activate, very easily.

一方、活性化済水素吸蔵材の好適な例としては、Ni、Fe、Ti、Mn、Vの少なくともいずれか1種のナノ粒子が添加されたMgHx(ただし、0.1≦x≦2)が挙げられる。この種のMgHxは、大気中であっても失活し難い。従って、難活性化水素吸蔵材と大気中で混合することも可能である等、ハンドリングが容易となる。   On the other hand, as a suitable example of the activated hydrogen storage material, MgHx (where 0.1 ≦ x ≦ 2) to which at least one kind of nanoparticles of Ni, Fe, Ti, Mn, and V is added is available. Can be mentioned. This type of MgHx is difficult to deactivate even in the atmosphere. Therefore, handling is facilitated, such as mixing with the hardly-activated hydrogen storage material in the air.

本発明によれば、難活性化水素吸蔵材に対して活性化済水素吸蔵材を混合することで水素吸蔵材を調製するようにしている。このようにして得られた水素吸蔵材中の難活性化水素吸蔵材に対する活性化は、当該難活性化水素吸蔵材単体に対して活性化をする場合に比して著しく短時間で終了する。すなわち、活性化済水素吸蔵材を混合することにより、難活性化水素吸蔵材に対して極めて容易に活性化を施すことができる。   According to the present invention, the hydrogen storage material is prepared by mixing the activated hydrogen storage material with the hardly-activated hydrogen storage material. The activation of the hardly-activated hydrogen storage material in the hydrogen storage material obtained in this way is completed in a considerably short time compared to the case of activating the hardly-activated hydrogen storage material alone. That is, by mixing the activated hydrogen storage material, the hardly-activated hydrogen storage material can be activated very easily.

以下、本発明に係る水素吸蔵材につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。   Preferred embodiments of the hydrogen storage material according to the present invention will be described below in detail with reference to the accompanying drawings.

本実施の形態に係る水素吸蔵材は、難活性化水素吸蔵材と、活性化済水素吸蔵材とを含む混合物であり、該混合物(水素吸蔵材)は、水素貯留容器に収容されている。   The hydrogen storage material which concerns on this Embodiment is a mixture containing a hardly activated hydrogen storage material and the activated hydrogen storage material, and this mixture (hydrogen storage material) is accommodated in the hydrogen storage container.

難活性化水素吸蔵材は、水素圧力が水素貯留容器の耐圧、具体的には、10MPa以下であり、且つ温度が100℃以下である際に活性化に10時間以上を要する水素吸蔵材として定義される。この種の難活性化水素吸蔵材の好適な例としては、BCC型水素吸蔵合金を挙げることができる。具体的には、V−Cr−Ti系、V−Cr−Al系、V−Cr−Mo系、V−Ti−Mo系、V−W系、V−Cr−Ti−Al系、V−Cr−Mo−Al系の各種水素吸蔵合金である。   The hardly-activated hydrogen storage material is defined as a hydrogen storage material that requires 10 hours or more for activation when the hydrogen pressure is the pressure resistance of the hydrogen storage container, specifically 10 MPa or less and the temperature is 100 ° C. or less. Is done. Preferable examples of this kind of hardly activated hydrogen storage material include a BCC type hydrogen storage alloy. Specifically, V-Cr-Ti, V-Cr-Al, V-Cr-Mo, V-Ti-Mo, V-W, V-Cr-Ti-Al, V-Cr -Various types of Mo-Al based hydrogen storage alloys.

このようなBCC型水素吸蔵合金は、活性化が困難ではあるものの、一旦活性化を施すと大量の水素を吸蔵し得るようになるので、水素吸蔵材の単位重量当たりの水素吸蔵量を向上させることができる。   Although it is difficult to activate such a BCC-type hydrogen storage alloy, a large amount of hydrogen can be stored once activated, so that the hydrogen storage amount per unit weight of the hydrogen storage material is improved. be able to.

難活性化水素吸蔵材の他の好適な例としては、室温での水素吸蔵平衡圧力が高圧(ゲージ圧で1MPa以上)の合金が挙げられ、具体的には、Ti−Zr−Fe−Cr−Ni系合金、Ti−Fe−Cr−Mn系合金、Ti−Fe−Cr−Cu系合金等をはじめとするAB2型合金や、La−Ce−Ni−Mn系合金、La−Ce−Ni−Fe系合金をはじめとするAB5型合金が例示される。   Other suitable examples of the hardly activated hydrogen storage material include alloys having a high hydrogen storage equilibrium pressure at room temperature (gauge pressure of 1 MPa or more). Specifically, Ti—Zr—Fe—Cr— AB2 type alloys including La alloys, Ti-Fe-Cr-Mn alloys, Ti-Fe-Cr-Cu alloys, La-Ce-Ni-Mn alloys, La-Ce-Ni-Fe Examples thereof include AB5 type alloys including alloy based alloys.

一方の活性化済水素吸蔵材は、活性化が既に施された水素吸蔵材であれば如何なる物質であってもよく、特に限定されるものではない。例えば、上記したような難活性化水素吸蔵材に対して活性化を施したものであってもよいし、活性化が比較的容易なLaNi5、TiCr2等に活性化を施したものであってもよい。 One activated hydrogen storage material may be any substance as long as it has already been activated, and is not particularly limited. For example, the above-mentioned hardly activated hydrogen storage material may be activated, or LaNi 5 , TiCr 2 or the like that is relatively easy to activate may be activated. May be.

又は、Ni、Fe、Ti、Mn、Vの少なくともいずれか1種のナノ粒子が添加されたMgHx(ただし、0.1≦x≦2)であってもよい。なお、ナノ粒子とは、平均粒径が10nm以内の微粒子を指称する。   Alternatively, MgHx (where 0.1 ≦ x ≦ 2) to which at least one kind of nanoparticles of Ni, Fe, Ti, Mn, and V is added may be used. Nanoparticles refer to fine particles having an average particle size within 10 nm.

このようなMgHxは、表面が水素化された状態であるので大気中であっても酸化がほとんど進行しない。換言すれば、大気中であっても失活することがほとんどない。従って、難活性化水素吸蔵材との混合を大気中で行うことが可能となる。すなわち、本実施の形態に係る水素吸蔵材を容易に調製することができるようになる。しかも、室温程度の比較的低温であっても、緩やかにではあるが水素を吸蔵し得る。   Since MgHx has a hydrogenated surface, oxidation hardly proceeds even in the atmosphere. In other words, it is hardly deactivated even in the atmosphere. Therefore, mixing with the hardly-activated hydrogen storage material can be performed in the atmosphere. That is, the hydrogen storage material according to the present embodiment can be easily prepared. Moreover, even at a relatively low temperature of about room temperature, hydrogen can be occluded moderately.

なお、前記したナノ粒子が添加されたMgHxは、該ナノ粒子とMg粒子とを混合し、水素加圧雰囲気下でメカニカルグラインディングを行うことで得ることができる。   In addition, MgHx to which the above-described nanoparticles are added can be obtained by mixing the nanoparticles and Mg particles and performing mechanical grinding under a hydrogen pressure atmosphere.

活性化済水素吸蔵材は、水素を吸蔵していないものであってもよいし、難活性化水素吸蔵材との混合前に水素を既に吸蔵したものであってもよい。勿論、これらの混合物であってもよい。   The activated hydrogen storage material may be one that has not occluded hydrogen, or one that has already occluded hydrogen before mixing with the hardly activated hydrogen storage material. Of course, a mixture thereof may be used.

水素吸蔵材中における活性化済水素吸蔵材の割合は、水素吸蔵材全体の重量を100重量%とした場合、0.1〜10重量%であれば十分である。   The ratio of the activated hydrogen storage material in the hydrogen storage material is sufficient if it is 0.1 to 10% by weight when the total weight of the hydrogen storage material is 100% by weight.

本実施の形態に係る水素吸蔵材は、以上の難活性化水素吸蔵材と活性化済水素吸蔵材とを混合・撹拌することによって得られる。この際、活性化済水素吸蔵材の割合を0.1〜10重量%程度とすることが好適である。   The hydrogen storage material according to the present embodiment can be obtained by mixing and stirring the above hardly activated hydrogen storage material and the activated hydrogen storage material. At this time, the ratio of the activated hydrogen storage material is preferably about 0.1 to 10% by weight.

なお、活性化済水素吸蔵材が大気中で失活するような物質である場合、難活性化水素吸蔵材との混合・撹拌を窒素ないしアルゴン等の不活性ガス雰囲気中で行うようにすればよい。   If the activated hydrogen storage material is a substance that is deactivated in the atmosphere, mixing and stirring with the hardly activated hydrogen storage material should be performed in an inert gas atmosphere such as nitrogen or argon. Good.

このようにして調製された水素吸蔵材は、例えば、水素貯留容器内で活性化される。すなわち、水素貯留容器が所定の温度に加温されるとともに、該水素貯留容器内に水素が所定の圧力で充填される。最終的な温度及び水素圧力は、水素貯留容器の耐熱温度及び耐圧にもよるが、一般的には100℃以下及び10MPa以下、好ましくは約80℃及び4〜8MPa程度である。   The hydrogen storage material thus prepared is activated in, for example, a hydrogen storage container. That is, the hydrogen storage container is heated to a predetermined temperature, and the hydrogen storage container is filled with hydrogen at a predetermined pressure. Although the final temperature and hydrogen pressure depend on the heat resistant temperature and pressure resistance of the hydrogen storage container, they are generally 100 ° C. or lower and 10 MPa or lower, preferably about 80 ° C. or 4 to 8 MPa.

本実施の形態に係る水素吸蔵材の活性化は、難活性化水素吸蔵材に対して単体で活性化を行う場合に比して著しく短時間で終了する。例えば、BCC型水素吸蔵合金であり且つ難活性化水素吸蔵合金であるV−13.5Cr−4Ti(数字は原子%。特に記載のない限りは以下同じ)系合金のみを80℃、5MPaで活性化する場合、水素を吸蔵可能とするまでに75時間を要する。これに対し、既に活性化されたV−13.5Cr−4Ti系合金を未活性化V−13.5Cr−4Ti系合金に対して1重量%の割合で添加した場合、僅か1時間で水素を吸蔵することが可能となる。その他の難活性化水素吸蔵材であっても、最長でも10時間で十分である。   The activation of the hydrogen storage material according to the present embodiment is completed in a considerably short time compared to the case where the hardly activated hydrogen storage material is activated alone. For example, only a V-13.5Cr-4Ti (number is atomic% unless otherwise specified), which is a BCC-type hydrogen storage alloy and a hardly-activated hydrogen storage alloy, is activated at 80 ° C. and 5 MPa. When it is converted into hydrogen, it takes 75 hours until hydrogen can be occluded. On the other hand, when the already activated V-13.5Cr-4Ti alloy is added at a rate of 1% by weight with respect to the unactivated V-13.5Cr-4Ti alloy, hydrogen is consumed in only one hour. It can be occluded. Even for other hardly activated hydrogen storage materials, a maximum of 10 hours is sufficient.

また、仮に水素貯留容器内で水素吸蔵材が失活した場合であっても、短時間で再活性化を行うことができる。上記したように、この水素吸蔵材では、活性化に要する時間が著しく短いからである。   Even if the hydrogen storage material is deactivated in the hydrogen storage container, reactivation can be performed in a short time. As described above, this hydrogen storage material has a remarkably short time required for activation.

しかも、上記から諒解されるように、本実施の形態においては、活性化に際して煩雑な作業を必要としない。加えて、余分な元素を添加することがないので、水素吸蔵合金の単位重量当たりの水素吸蔵量が低減することもない。   Moreover, as can be understood from the above, in this embodiment, no complicated work is required for activation. In addition, since no extra elements are added, the hydrogen storage amount per unit weight of the hydrogen storage alloy is not reduced.

活性化済水素吸蔵材を難活性化水素吸蔵材に添加することによって活性化に要する時間が著しく短縮する理由は、現時点では明らかではないが、触媒化学におけるスピルオーバーに類似した現象が起こっているとも考えられる。すなわち、活性化済水素吸蔵材に吸蔵された活性な水素原子が難活性化水素吸蔵材の表面に存在する酸化膜に移動して該酸化膜を還元し、これにより難活性化水素吸蔵材が活性化されて水素を吸蔵することが可能となると推察される。   The reason why the activation time is significantly shortened by adding the activated hydrogen storage material to the hardly-activated hydrogen storage material is not clear at this time. Conceivable. That is, active hydrogen atoms stored in the activated hydrogen storage material move to the oxide film present on the surface of the hardly-activated hydrogen storage material and reduce the oxide film, whereby the hardly-activated hydrogen storage material becomes It is presumed that it becomes activated and can occlude hydrogen.

V−13.5Cr−4Ti系合金の組成に対応するように、16.49kgのV、2.75kgのCr、0.75kgのTiを不活性雰囲気中で溶解した。なお、溶解に際しては高周波溶解炉を使用した。   16.49 kg of V, 2.75 kg of Cr, and 0.75 kg of Ti were dissolved in an inert atmosphere so as to correspond to the composition of the V-13.5Cr-4Ti alloy. A high frequency melting furnace was used for melting.

得られた溶湯を用い、鋳造によってインゴットを形成した。このインゴットを機械的に粉砕した後に分級し、平均粒径が500μmであるV−13.5Cr−4Ti系合金の粒子を15kg得た。   An ingot was formed by casting using the obtained molten metal. This ingot was mechanically pulverized and classified to obtain 15 kg of V-13.5Cr-4Ti alloy particles having an average particle diameter of 500 μm.

次に、この中から3gを秤量して密閉可能な容器に収容し、該容器内を真空排気後に400℃、水素圧力8MPaとして1時間保持し、さらに、室温まで冷却した。この真空排気、保持、冷却を3サイクル繰り返して、活性化されたV−13.5Cr−4Ti系合金を得た。   Next, 3 g of this was weighed and stored in a sealable container, and the inside of the container was evacuated and maintained at 400 ° C. and a hydrogen pressure of 8 MPa for 1 hour, and further cooled to room temperature. This evacuation, holding, and cooling were repeated for 3 cycles to obtain an activated V-13.5Cr-4Ti alloy.

この活性化済V−13.5Cr−4Ti系合金の0.1gと、活性化されていない1.9gのV−13.5Cr−4Ti系合金とを、窒素ガス雰囲気下で耐圧容器に収容し、該耐圧容器を密閉して撹拌・混合して水素吸蔵材を調製した。すなわち、水素吸蔵材中の活性化済V−13.5Cr−4Ti系合金の割合は、5重量%であった。同様にして、活性化済V−13.5Cr−4Ti系合金の割合が1重量%、3重量%である水素吸蔵材をそれぞれ2gずつ調製した。   0.1 g of this activated V-13.5Cr-4Ti-based alloy and 1.9 g of unactivated V-13.5Cr-4Ti-based alloy are placed in a pressure vessel in a nitrogen gas atmosphere. The pressure vessel was sealed and stirred and mixed to prepare a hydrogen storage material. That is, the ratio of the activated V-13.5Cr-4Ti alloy in the hydrogen storage material was 5% by weight. Similarly, 2 g each of hydrogen storage materials in which the ratio of the activated V-13.5Cr-4Ti alloy was 1 wt% and 3 wt% were prepared.

以上の水素吸蔵材に対し、前記耐圧容器を80℃に加温するとともに水素圧力を5MPaとして1時間保持した。その後、前記耐圧容器を室温まで除冷した。   With respect to the above hydrogen storage material, the pressure vessel was heated to 80 ° C. and the hydrogen pressure was maintained at 5 MPa for 1 hour. Thereafter, the pressure vessel was cooled to room temperature.

次に、各水素吸蔵材につき、容積型水素圧力−組成等温線図(PCT)測定装置を用いて水素化速度を測定した。なお、水素吸蔵材のぞれぞれをPCT測定装置のサンプルセル内にセットした後、該サンプルセルを80℃として1時間真空排気し、さらに、80℃で水素圧力を5MPaとして1時間保持した。その後に室温まで冷却し、この冷却が終了した時点を測定開始点とした。   Next, the hydrogenation rate was measured for each hydrogen storage material using a positive displacement hydrogen pressure-composition isotherm (PCT) measuring device. Each of the hydrogen storage materials was set in the sample cell of the PCT measuring device, and then the sample cell was evacuated to 80 ° C. for 1 hour, and further, the hydrogen pressure was maintained at 80 ° C. and 5 MPa for 1 hour. . Thereafter, it was cooled to room temperature, and the time when this cooling was completed was taken as the measurement start point.

比較のため、活性化されていない2gのV−13.5Cr−4Ti系合金を同一形状の耐圧容器に収容し、該耐圧容器を80℃に加温するとともに水素圧力を5MPaとして1時間保持した後に前記耐圧容器を室温まで除冷した場合についても、上記と同一の条件下で水素化速度を測定した。   For comparison, 2 g of the unactivated V-13.5Cr-4Ti alloy was accommodated in a pressure vessel of the same shape, the pressure vessel was heated to 80 ° C., and the hydrogen pressure was maintained at 5 MPa for 1 hour. Also when the pressure vessel was later cooled to room temperature, the hydrogenation rate was measured under the same conditions as described above.

結果をグラフとして、図1に併せて示す。この図1における横軸及び縦軸は、それぞれ、経過時間、水素吸蔵材の水素吸蔵量を示す。なお、水素吸蔵量は、水素吸蔵材の重量に対する吸蔵された水素重量の割合を百分率(重量%)で表している。   The results are shown as a graph in FIG. The horizontal axis and the vertical axis in FIG. 1 indicate the elapsed time and the hydrogen storage amount of the hydrogen storage material, respectively. The hydrogen storage amount represents the ratio of the stored hydrogen weight to the weight of the hydrogen storage material as a percentage (% by weight).

この図1から、活性化済V−13.5Cr−4Ti系合金を未活性化V−13.5Cr−4Ti系合金に添加して水素吸蔵材とした場合、その添加割合が1重量%、3重量%、5重量%のいずれであっても、時間の経過とともに水素が吸蔵されていることが分かる。このことは、温度を80℃、水素圧力を5MPaとして1時間保持することによって、残余の未活性化V−13.5Cr−4Ti系合金にも活性化が施されたことを意味する。   From FIG. 1, when the activated V-13.5Cr-4Ti alloy is added to the non-activated V-13.5Cr-4Ti alloy to form a hydrogen storage material, the addition ratio is 1% by weight, 3% It can be seen that hydrogen is occluded with the passage of time regardless of whether it is 5% by weight or 5% by weight. This means that the remaining unactivated V-13.5Cr-4Ti alloy was also activated by maintaining the temperature at 80 ° C. and the hydrogen pressure at 5 MPa for 1 hour.

一方、未活性化V−13.5Cr−4Ti系合金のみ(図1中の比較例)では、水素吸蔵量が全く増加していない。すなわち、活性化済V−13.5Cr−4Ti系合金を添加しない場合、温度を80℃、水素圧力を5MPaとして1時間保持したのみでは活性化することができない。   On the other hand, only with the unactivated V-13.5Cr-4Ti-based alloy (comparative example in FIG. 1), the hydrogen storage amount does not increase at all. That is, when the activated V-13.5Cr-4Ti alloy is not added, it cannot be activated only by maintaining the temperature at 80 ° C. and the hydrogen pressure at 5 MPa for 1 hour.

なお、図示していないが、未活性化V−13.5Cr−4Ti系合金は、温度80℃、水素圧力5MPaの条件下では、75時間保持してはじめて水素吸蔵量が上昇した。すなわち、活性化することができた。   Although not shown in the drawings, the unactivated V-13.5Cr-4Ti alloy did not increase in hydrogen storage capacity until it was maintained for 75 hours under the conditions of a temperature of 80 ° C. and a hydrogen pressure of 5 MPa. That is, it could be activated.

以上の結果から、活性化済V−13.5Cr−4Ti系合金を添加することによって活性化に至るまでの時間を著しく短縮することが可能であることが明らかである。   From the above results, it is clear that the time until activation can be remarkably shortened by adding the activated V-13.5Cr-4Ti alloy.

5gのMg粉末、0.036gのNi粉末、及び0.023gのFe粉末を、直径10mmのステンレス製ボール18個とともに内容量80mlのボールミルポットに収容し、該ボールミルポットに水素を1MPaの圧力となるように導入して密封した。   5 g of Mg powder, 0.036 g of Ni powder, and 0.023 g of Fe powder were placed in a ball mill pot with an internal capacity of 80 ml together with 18 stainless steel balls having a diameter of 10 mm, and hydrogen was added to the ball mill pot at a pressure of 1 MPa. Introduced and sealed.

次に、このボールミルポットを、遊星型ボールミルを構成する直径300mmの台板部上に載置し、台板部の回転数を350rpm、ボールミルポットの回転数を800rpm、ミリング時間を10時間として、メカニカルグライディングの1種であるボールミリングを行った。これにより、Ni、Feのナノ粒子が添加されたMgHx(0.1≦x≦2)を5.059g得た。このMgHxは、ボールミリングが施された直後であっても表面が水素化された状態である。すなわち、活性化されている。また、表面が水素化されているために酸素との反応速度が極めて小さいので、大気中であっても失活することがほとんどない。   Next, this ball mill pot is placed on a base plate portion having a diameter of 300 mm constituting the planetary ball mill, the rotation speed of the base plate portion is 350 rpm, the rotation speed of the ball mill pot is 800 rpm, and the milling time is 10 hours. Ball milling, which is a kind of mechanical gliding, was performed. As a result, 5.059 g of MgHx (0.1 ≦ x ≦ 2) to which nanoparticles of Ni and Fe were added was obtained. This MgHx is in a state where the surface is hydrogenated even immediately after ball milling. That is, it is activated. Moreover, since the surface is hydrogenated, the reaction rate with oxygen is extremely low, so that it hardly deactivates even in the atmosphere.

このMgHxから0.1gを秤量し、上記のようにして得られた未活性化V−13.5Cr−4Ti系合金の粒子1.9gとともに、密閉可能な耐圧容器に大気下で収容して撹拌・混合することで水素吸蔵材を調製した。この水素吸蔵材における活性化済MgHxの割合は、5重量%であった。同様にして、活性化済MgHxの割合が1重量%、3重量%である水素吸蔵材をそれぞれ2gずつ調製した。   0.1 g of this MgHx is weighed and stirred together with 1.9 g of the non-activated V-13.5Cr-4Ti alloy particles obtained as described above in an airtight sealable pressure vessel. -The hydrogen storage material was prepared by mixing. The ratio of activated MgHx in this hydrogen storage material was 5% by weight. Similarly, 2 g each of hydrogen storage materials having a ratio of activated MgHx of 1 wt% and 3 wt% were prepared.

以降は上記と同様に、前記耐圧容器を80℃に加温するとともに水素圧力を5MPaとして1時間保持することで水素吸蔵材の活性化を行った。その後、前記耐圧容器を室温まで除冷した。さらに、PCT測定装置を用いて水素化速度を測定した。   Thereafter, similarly to the above, the hydrogen storage material was activated by heating the pressure vessel to 80 ° C. and maintaining the hydrogen pressure at 5 MPa for 1 hour. Thereafter, the pressure vessel was cooled to room temperature. Furthermore, the hydrogenation rate was measured using a PCT measuring device.

結果をグラフとして、上記の比較例と併せて図2に示す。この図2から、難活性化水素吸蔵材(V−13.5Cr−4Ti系合金)とは別種の物質(MgHx)を活性化済水素吸蔵材として添加した場合であっても、活性化するに至るまでの時間を著しく短縮することが可能であることが分かる。   The results are shown as a graph in FIG. 2 together with the comparative example. From FIG. 2, even when a substance (MgHx) different from the hardly activated hydrogen storage material (V-13.5Cr-4Ti alloy) is added as an activated hydrogen storage material, it is activated. It can be seen that it is possible to significantly shorten the time to the point.

以上のように、難活性化水素吸蔵材に対して活性化済水素吸蔵材を混合して水素吸蔵材とすることにより、該水素吸蔵材中の難活性化水素吸蔵材を著しく短時間で活性化することができるようになる。   As described above, by mixing the hardly-activated hydrogen storage material with the activated hydrogen storage material to obtain a hydrogen storage material, the hardly-activated hydrogen storage material in the hydrogen storage material can be activated in a very short time. It becomes possible to become.

本実施の形態に係る実施例の水素吸蔵材及び比較例の水素吸蔵材における経過時間と水素吸蔵量の関係を示すグラフである。It is a graph which shows the relationship between the elapsed time and the hydrogen storage amount in the hydrogen storage material of the Example which concerns on this Embodiment, and the hydrogen storage material of a comparative example. 別の実施例の水素吸蔵材及び比較例の水素吸蔵材における経過時間と水素吸蔵量の関係を示すグラフである。It is a graph which shows the relationship between the elapsed time and the hydrogen storage amount in the hydrogen storage material of another Example, and the hydrogen storage material of a comparative example.

Claims (3)

10MPa以下の水素圧力下で且つ温度が100℃以下である際に活性化に10時間以上を要する難活性化水素吸蔵材と、
活性化が既に施された活性化済水素吸蔵材と、
を含むことを特徴とする水素吸蔵材。
A hardly-activated hydrogen storage material that requires 10 hours or more for activation under a hydrogen pressure of 10 MPa or less and at a temperature of 100 ° C. or less;
An activated hydrogen storage material that has already been activated,
The hydrogen storage material characterized by including.
請求項1記載の水素吸蔵材において、前記難活性化水素吸蔵材として体心立方型水素吸蔵合金を含むことを特徴とする水素吸蔵材。   2. The hydrogen storage material according to claim 1, wherein the hardly-activated hydrogen storage material includes a body-centered cubic type hydrogen storage alloy. 請求項1又は2記載の水素吸蔵材において、前記活性化済水素吸蔵材として、Ni、Fe、Ti、Mn、Vの少なくともいずれか1種のナノ粒子が添加されたMgHx(ただし、0.1≦x≦2)を含むことを特徴とする水素吸蔵材。   The hydrogen storage material according to claim 1 or 2, wherein the activated hydrogen storage material includes MgHx (provided that at least one kind of nanoparticles selected from Ni, Fe, Ti, Mn, and V is added). ≦ x ≦ 2).
JP2007200969A 2007-08-01 2007-08-01 Hydrogen storage material Expired - Fee Related JP4925962B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007200969A JP4925962B2 (en) 2007-08-01 2007-08-01 Hydrogen storage material
US12/183,807 US20090035175A1 (en) 2007-08-01 2008-07-31 Hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200969A JP4925962B2 (en) 2007-08-01 2007-08-01 Hydrogen storage material

Publications (2)

Publication Number Publication Date
JP2009035772A true JP2009035772A (en) 2009-02-19
JP4925962B2 JP4925962B2 (en) 2012-05-09

Family

ID=40338340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200969A Expired - Fee Related JP4925962B2 (en) 2007-08-01 2007-08-01 Hydrogen storage material

Country Status (2)

Country Link
US (1) US20090035175A1 (en)
JP (1) JP4925962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073825B1 (en) 2009-04-22 2011-10-18 한국에너지기술연구원 Ti-V-Cr-Mn-Mg alloy for the hydrogen storage and the method of preparing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168385B2 (en) 2016-11-01 2021-11-09 Ohio State Innovation Foundation High-entropy AlCrTiV alloys

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895601A (en) * 1981-11-28 1983-06-07 Agency Of Ind Science & Technol Initial activation of hydrogen-occulding alloy
JPS6369701A (en) * 1986-09-10 1988-03-29 Nippon Steel Corp Metallic material for occluding hydrogen
JP2000281301A (en) * 1999-03-30 2000-10-10 Aisin Seiki Co Ltd Production of hydrogen storage device
JP2006205029A (en) * 2005-01-27 2006-08-10 Taiheiyo Cement Corp Hydrogen storage material and its production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626298B2 (en) * 1996-10-03 2005-03-02 トヨタ自動車株式会社 Hydrogen storage alloy and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895601A (en) * 1981-11-28 1983-06-07 Agency Of Ind Science & Technol Initial activation of hydrogen-occulding alloy
JPS6369701A (en) * 1986-09-10 1988-03-29 Nippon Steel Corp Metallic material for occluding hydrogen
JP2000281301A (en) * 1999-03-30 2000-10-10 Aisin Seiki Co Ltd Production of hydrogen storage device
JP2006205029A (en) * 2005-01-27 2006-08-10 Taiheiyo Cement Corp Hydrogen storage material and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073825B1 (en) 2009-04-22 2011-10-18 한국에너지기술연구원 Ti-V-Cr-Mn-Mg alloy for the hydrogen storage and the method of preparing the same

Also Published As

Publication number Publication date
US20090035175A1 (en) 2009-02-05
JP4925962B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US4839085A (en) Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
US4370163A (en) Hydrogen storage alloy and process for making same
Anik Improvement of the electrochemical hydrogen storage performance of Mg2Ni by the partial replacements of Mg by Al, Ti and Zr
JP6948441B1 (en) Low Co hydrogen storage alloy powder
JP2008266781A (en) METHOD FOR MANUFACTURING Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER AND Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER OBTAINED BY THE MANUFACTURING METHOD
JP4602926B2 (en) Method for producing alloy powder
JP4925962B2 (en) Hydrogen storage material
US4996002A (en) Tough and porus getters manufactured by means of hydrogen pulverization
EP1215294B1 (en) Method for producing hydrogen storage alloy powder
JP4403499B2 (en) Hydrogen storage material
CN100482833C (en) Surface catalyzed high activity magnesium-base hydrogen storing material and preparing method thereof
JP4280816B2 (en) Hydrogen storage material and manufacturing method thereof
JPH05247568A (en) Hydrogen storage alloy electrode and battery using them
US8257464B2 (en) Pulverulent intermetallic materials for the reversible storage of hydrogen
Choi et al. Electrochemical characteristics of the composite metal hydride of TiFe and TiMn2 synthesized by mechanical alloying
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
JP2002241884A (en) Hydrogen storage alloy
JP2022543828A (en) METHOD FOR PRODUCING HYDROGEN STORAGE ALLOY
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JP2005305394A (en) Hydrogen occlusion material
JP4086241B2 (en) Hydrogen storage alloy powder
WO2008032774A1 (en) Hydrogen storage material and method for manufacturing the same
JP4322647B2 (en) Hydrogen storage complex and method for producing the same
JPH11106847A (en) Production of hydrogen storage alloy, alloy thereof and electrode using the alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees