JPS58217654A - Titanium-chromium-vanadium alloy for occluding hydrogen - Google Patents

Titanium-chromium-vanadium alloy for occluding hydrogen

Info

Publication number
JPS58217654A
JPS58217654A JP57098993A JP9899382A JPS58217654A JP S58217654 A JPS58217654 A JP S58217654A JP 57098993 A JP57098993 A JP 57098993A JP 9899382 A JP9899382 A JP 9899382A JP S58217654 A JPS58217654 A JP S58217654A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
pressure
hydrogen storage
hydrogen occluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57098993A
Other languages
Japanese (ja)
Other versions
JPS5938293B2 (en
Inventor
Yasuaki Osumi
大角 泰章
Hiroshi Suzuki
博 鈴木
Akihiko Kato
明彦 加藤
Keisuke Oguro
小黒 啓介
Takao Sugioka
孝雄 杉岡
Toshiaki Fujita
敏明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatsu Gas Kogyo Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Koatsu Gas Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Koatsu Gas Kogyo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP57098993A priority Critical patent/JPS5938293B2/en
Publication of JPS58217654A publication Critical patent/JPS58217654A/en
Publication of JPS5938293B2 publication Critical patent/JPS5938293B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PURPOSE:To provide a hydogen occluding alloy excellent in practicality, obtained by melting and solidifying Ti, Cr and V in a specific ratio. CONSTITUTION:Ti, Cr and V is mixed to be melted in a high purity Ar atmosphere and the molten mixture is allowed to cool to obtain an intermetallic compound having a hexagonal crystal structure having a composition shown by formula [ I ]. This compound is comminuted into a fine powder to be used as a hydrogen occluding alloy. This alloy forms metal hydride at a temp. of 100- 250 deg.C sufficiently utilizable as industrial waste heat under 1-10atm, has a hydrogen occluding amount not inferior to an Mg alloy, is easy in activation and is a hydrogen occluding alloy fast in a hydrogen occluding and releasing speed and excellent in practicality.

Description

【発明の詳細な説明】 本発明はチタン系水素g&蔵用合金に関し、特に工業的
な排熱として十分存在し得る利用温度範囲100〜25
0’O,水素圧力1〜10気圧で金属水素化物を形成す
る水素#&蔵開用合金関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a titanium-based hydrogen g&storage alloy, particularly in the usage temperature range of 100 to 25, which can be used as industrial waste heat.
0'O, hydrogen pressure 1 to 10 atmospheres to form metal hydride alloys.

水素は資源的に制限がなくクリーンであること、輸送及
び貯蔵が容易である仁と等の理由から化石燃料に代る新
しいエネルギー源として注目されている。
Hydrogen is attracting attention as a new energy source to replace fossil fuels because it is clean, has no resource limitations, and is easy to transport and store.

しかし、水素は常温で気体でありしかも液化温度が極め
て低いから、その貯蔵技術が重要となる。
However, since hydrogen is a gas at room temperature and its liquefaction temperature is extremely low, storage technology is important.

この貯蔵法としては水素を金属に吸蔵させ金属水素化物
として貯蔵する方法があり、このような金属水素化物は
水素を液体水素とほぼ同じ程度あるいはそれ以上の密度
で貯蔵し得るため、最近注目を集めている。また金属に
よる水素の吸蔵・放出反応は可逆的であり、反応に伴っ
て相当量の反応熱が発生し或は吸収されること、及び水
素の吸蔵・放出圧力が温度に依存することを利用して冷
暖房装置や熱エネルギー#圧力(機械)エネルギー変換
装置等への応用研究も進められている。
One way to store this is to absorb hydrogen into a metal and store it as a metal hydride.These metal hydrides have been attracting attention recently because they can store hydrogen at a density that is almost the same as or higher than that of liquid hydrogen. are collecting. In addition, the hydrogen absorption/release reaction by metals is reversible, and a considerable amount of reaction heat is generated or absorbed during the reaction, and the hydrogen absorption/release pressure depends on temperature. Application research is also underway for heating and cooling equipment, thermal energy/pressure (mechanical) energy conversion equipment, etc.

従来から水素を多量に吸蔵し、金属水素化物を形成する
水素貯蔵用材料としてOa 、 Li 、 K 。
Oa, Li, and K have traditionally been used as hydrogen storage materials that absorb large amounts of hydrogen and form metal hydrides.

Ti、V、Mg、希土類元素などが知られており、また
最近では鉄−チタン系、ランタン−ニッケル系、カルシ
ウム−ニッケル系、マグネシウム−ニッケル系、マグネ
シラ五−銅系などの金属間化合物も知られている。
Ti, V, Mg, and rare earth elements are known, and recently intermetallic compounds such as iron-titanium, lanthanum-nickel, calcium-nickel, magnesium-nickel, and magnesila penta-copper are also known. It is being

これらの金属あるいは合金は、それぞれに適した水素圧
と温度との関係において水素を吸蔵する水素化反応およ
びその逆の分解放出反応を容易に行う。しかしなから、
実用化に際しては圧力・温度の制約を受けるので当然そ
の種類は限定される。
These metals or alloys easily undergo a hydrogenation reaction in which hydrogen is stored, and a decomposition and release reaction in the opposite manner, under the appropriate hydrogen pressure and temperature relationship. However, because
When put into practical use, there are restrictions on pressure and temperature, so of course the types are limited.

たとえば工業的に多用される水素の圧力は約1〜10気
圧であるから水素平衡圧がこの範囲であってかつ平衡時
の温度が実際に吸蔵用材料を使用するときの使用温度範
囲に含まれる吸蔵用材料を選定する必要がある。もしこ
の選定をあやまれば平衡圧が異状に上昇したり又は常圧
以下に低下したりして、いずれも実用面や装置の安全性
の点で問題が多い。
For example, the pressure of hydrogen, which is often used industrially, is about 1 to 10 atmospheres, so the hydrogen equilibrium pressure must be within this range and the temperature at equilibrium must be within the operating temperature range when the storage material is actually used. It is necessary to select the storage material. If this selection is incorrect, the equilibrium pressure may rise abnormally or fall below normal pressure, both of which pose many problems in terms of practicality and safety of the device.

一方、従来の金属水素化物のなかで高温領域で利用され
水素吸蔵量が非常に多いことで知られている金属あるい
は合金としてMgおよびMg系合金があゐ。しかしKg
は活性化に高温・高圧を要し水素化物形成および水素化
物からの水素放出に極めて長時間を要するという欠点が
ある。上記の問題点が少し改善された合金としてマグネ
シウム−ニッケル系、マグネシウム−銅系合金があるが
、なお活性化が難しく水゛素吸蔵・放出速度が遅いなど
の問題点を残しいまだ完全に改善されるに至っていない
On the other hand, among conventional metal hydrides, Mg and Mg-based alloys are metals or alloys that are used in high-temperature regions and are known to have a very large hydrogen storage capacity. However, Kg
has the drawback that activation requires high temperature and high pressure, and it takes an extremely long time for hydride formation and hydrogen release from the hydride. Magnesium-nickel alloys and magnesium-copper alloys are alloys that have slightly improved the above-mentioned problems, but they still have problems such as difficulty in activation and slow hydrogen storage and release rates, which have not yet been completely improved. This has not yet been achieved.

そこで本発明はMg系合金に匹敵する水素吸蔵量を有し
、工業的なm熱として十分存在し得る利用温度範tHA
100〜250℃で1〜10気圧の解離平衡圧を示し、
さらに活性化が容易でしかも水素吸蔵・放出速度が極め
て速i全く新規な水嵩吸蔵用合金を与えるものである。
Therefore, the present invention has a hydrogen storage capacity comparable to that of Mg-based alloys, and has a utilization temperature range tHA that can sufficiently exist as industrial m-heat.
exhibits a dissociation equilibrium pressure of 1 to 10 atm at 100 to 250°C,
Furthermore, the present invention provides a completely new water bulk storage alloy that is easy to activate and exhibits extremely fast hydrogen storage and release rates.

すなわち本発明の要旨は一般式、 TizOr2−y Vy (式中x t Vは夫々0.8≦X≦1.4およびO〈
y<2である。
That is, the gist of the present invention is the general formula, TizOr2-y Vy (where x t V is 0.8≦X≦1.4 and O〈
y<2.

但しyは0と2を除く)で表わされる水嵩吸蔵用合金に
存する。
However, y exists in the water bulk storage alloy represented by 0 and 2 (excluding 0 and 2).

本発明の上記チタン系合金は本発明者等が始め−て開発
した新規な合金であり、(1)水素吸蔵量が非常に多く
Mg系合金に匹敵する。(2)広い貞好なプラトー領域
を有する+(3)活性化が容易である。(4)工業的に
有利な利用範囲、すなわち100〜250°Cの温度で
1〜10気圧の解離平衡圧を示す+(5)水素化物の生
成熱が小さい、(6)水嵩吸蔵・放出速度がきわめて速
かである。(7)組成比によって水嵩吸蔵・放出特性を
連続的に変化させることが可能であり、とのことは使用
目的に応じて適当な組成比を選択できるなど水素吸蔵用
合金としてすぐれた特性を有している。
The titanium-based alloy of the present invention is a new alloy developed by the present inventors for the first time, and (1) has a very large hydrogen storage capacity comparable to that of Mg-based alloys. (2) It has a wide and stable plateau region + (3) It is easy to activate. (4) Industrially advantageous application range, that is, exhibiting a dissociation equilibrium pressure of 1 to 10 atm at a temperature of 100 to 250°C + (5) Low heat of formation of hydride, (6) Water bulk occlusion/desorption rate is extremely fast. (7) It is possible to continuously change the water bulk storage and release characteristics by changing the composition ratio, which means that the alloy has excellent properties as a hydrogen storage alloy, such as being able to select an appropriate composition ratio depending on the purpose of use. are doing.

本発明の水嵩吸蔵用合金は〒1.Or及びVかもなる三
元系合金であり六方晶形の結II′&構造を有する金網
間化合物を形成し、一般式’Fixer 2−31vV
で表わされる水嵩吸蔵用合金である。但し式中Xは0.
8〜1.4の範Hの数であ抄、yはθ〜2の範囲の数で
ありyは0及び2を除く。ここでXが14を越えると吸
蔵水素の放出が困難であり高温加熱或は真空加熱(又は
若干の減圧加#!l)の条件下でなければ水素の放出が
行われなくなり、Xが0.8より小さい数になると活性
化が極めて困難になる。
The water bulk storage alloy of the present invention is as follows: 1. It is a ternary alloy consisting of Or and V, and forms an interwire compound having a hexagonal crystal structure II'& structure, and has the general formula 'Fixer 2-31vV.
It is an alloy for water bulk storage represented by However, X in the formula is 0.
The numbers are in the range H from 8 to 1.4, y is a number in the range θ to 2, and y excludes 0 and 2. Here, if X exceeds 14, it is difficult to release the occluded hydrogen, and hydrogen will not be released unless under high temperature heating or vacuum heating (or slight reduced pressure application #!l), and if X exceeds 0. If the number is smaller than 8, activation becomes extremely difficult.

またyが0のときは全く特性の異なる金属水素化物にな
ってしまい、yが2のときはV&蔵した水素を殆んど放
出しなくなり、yが0あるいは2では水嵩吸蔵用合金と
して実用的ではない。
Also, when y is 0, the metal hydride becomes a metal hydride with completely different properties, when y is 2, it hardly releases V& stored hydrogen, and when y is 0 or 2, it is not practical as an alloy for bulk storage of water. isn't it.

本発明の水嵩吸蔵用合金は、Ti−Or系合金を母合金
としてOrt第三元素のVで置換することにより、母合
金のもつ特性を大幅に改善し水素吸蔵量においてMg系
合金に匹敵する水素貯蔵用合金である。たとえば母合金
である’I’10r2は一78℃で約0.2気圧の解離
平衡圧を示し、水素吸蔵量は約2.4vt−1であるの
に比べ母合金のOr tVで置換した本発明の水嵩吸蔵
用合金’I’i1.EOr。、8V1.zは150℃で
約1〜2気圧の解離平衡圧を示し、水素吸蔵量は約3.
8wt−1と非常に多くなり、Mg系合金たとえばMg
gNiの水素吸蔵量的3.6 wt−’4を越える値を
示す。
The water bulk storage alloy of the present invention significantly improves the properties of the mother alloy by substituting the Ti-Or alloy as a mother alloy with V, which is the third element of Ort, and is comparable to Mg-based alloys in terms of hydrogen storage capacity. It is an alloy for hydrogen storage. For example, the mother alloy 'I'10r2 exhibits a dissociation equilibrium pressure of approximately 0.2 atm at -78°C, and the hydrogen storage capacity is approximately 2.4 vt-1, whereas Water bulk storage alloy 'I'i1 of the invention. EOr. , 8V1. z shows a dissociation equilibrium pressure of about 1 to 2 atm at 150°C, and the hydrogen storage capacity is about 3.
8wt-1, and Mg-based alloys such as Mg
The hydrogen storage capacity of gNi exceeds 3.6 wt-'4.

本発明合金の製造は何ら制限されず公知の方法をすべて
適用できるが最も好ましいのはアーク溶解法である。
The production of the alloy of the present invention is not limited in any way and all known methods can be applied, but the most preferred method is arc melting.

即ち、’I’i0r及びVの各元素を秤取して混合した
後任意の形状にプレス成形し、次いでこれをアーク溶解
することにより容易に製造することができる。このよう
にして得た水嵩吸蔵用合金は表面積を拡大し水素吸蔵能
力を高める為に粉末状にして使用するのがよい。
That is, it can be easily manufactured by weighing and mixing the elements 'I'i0r and V, press-molding it into an arbitrary shape, and then melting it in an arc. The water bulk storage alloy thus obtained is preferably used in powder form in order to expand the surface area and increase the hydrogen storage capacity.

この様にして得た粉末状の水素吸蔵用合金は極めて容易
に活性化することができ、活性化後は大量の水素を比較
的低い温度及び圧力で急速に吸蔵し且つ放出する。例え
ば上記合金粉末を適当な容器に充填し、減圧下300℃
以下の温度で脱ガス処理して活性化を行った後、100
°C以上の温度で水素を封入し例えば40 kq/cd
以下の水素圧を印加することによシ、数分以内でほぼ飽
和状態まで水素を吸蔵させることができる。またこの金
属水素化物からの水素の放出は該水素化物を100゛C
以上に加熱するかわずかに減圧し或は双方を組み合わせ
て実施する仁とにより、数分以内で効率曳く行うことが
できる。
The powdered hydrogen storage alloy thus obtained can be activated very easily and, after activation, rapidly stores and releases large amounts of hydrogen at relatively low temperatures and pressures. For example, fill the above alloy powder in a suitable container and heat it to 300°C under reduced pressure.
After degassing and activation at the following temperature, 100
Hydrogen is sealed at a temperature above °C, e.g. 40 kq/cd.
By applying the following hydrogen pressure, hydrogen can be occluded to a nearly saturated state within several minutes. Moreover, the release of hydrogen from this metal hydride is
It can be efficiently carried out within several minutes by heating to the above temperature, slightly reducing the pressure, or a combination of both.

本発明の水素吸蔵用合金は概略以上の様に構成されてお
り、後述する実施例でも明らかにする如く水素吸蔵材料
として要求される諸性能を全て具備するものである。し
かもこの合金は活性化が極めて容易であシ、大量の水素
を極めてすみやかに密度高く吸蔵、し得ると共に水素の
吸蔵・放出反応が可逆的に行われ吸蔵と放出を何回繰如
返しても合金自体の劣化は実質的に認められず、更には
酸素、窒素、アルゴン、炭酸ガスの様な不純ガスによる
影響が殆んどない等の緒特性を有しており、理想的な水
素吸蔵用材料と言うことができる。従って本来の水素吸
蔵材料としての用途はもとより水素吸蔵・放出反応に伴
う反応熱を利用する他の用途に対しても卓越し九効果を
発揮する。
The hydrogen storage alloy of the present invention is roughly constructed as described above, and has all the performances required as a hydrogen storage material, as will be made clear in the examples described later. Moreover, this alloy is extremely easy to activate and can absorb large amounts of hydrogen extremely quickly and with high density, and hydrogen storage and desorption reactions occur reversibly, no matter how many times the hydrogen storage and desorption reactions are repeated. The alloy itself shows virtually no deterioration, and furthermore, it has properties such as being almost unaffected by impurity gases such as oxygen, nitrogen, argon, and carbon dioxide, making it an ideal hydrogen storage material. You can say it's a material. Therefore, it exhibits outstanding effects not only for its original use as a hydrogen storage material but also for other uses that utilize the reaction heat accompanying the hydrogen storage/release reaction.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例1,2.3) 市販のTi 、 Or 、及びVを原子数比でTi:O
r: V=1.2 : 1.2 : 0.8 (実施例
1)、Ti:Or:V=1.2:1:1(実施例2)及
び’Fi:Clr:V=1.2 : 0.8 : 1.
2 (実施例3)となるようにそれぞれ分取しこれを高
真空アーク溶融炉の鋼製るっ゛ぼ内に装入し、炉内を高
純度アルゴン雰囲気とした後、約2000°Cで加熱溶
解して放冷しTil、20r 1.Jl! V o、a
 、 ’I’11.20rV及びTi 1.2Or0,
13V14よシなる組成の合金を製造した。
(Example 1, 2.3) Commercially available Ti, Or, and V were mixed in an atomic ratio of Ti:O
r: V=1.2:1.2:0.8 (Example 1), Ti:Or:V=1.2:1:1 (Example 2) and 'Fi:Clr:V=1.2 : 0.8 : 1.
2 (Example 3) and charged them into a steel vessel of a high vacuum arc melting furnace.After creating a high purity argon atmosphere in the furnace, they were heated at approximately 2000°C. Melt by heating and allow to cool. Til, 20r 1. Jl! Vo, a
, 'I' 11.20rV and Ti 1.2Or0,
An alloy of composition 13V14 was produced.

この合金を1100℃で7時間熱処理を行った。This alloy was heat treated at 1100°C for 7 hours.

得られた合金を100〜120メツシユに粉砕してその
5.Ofをステンレス製氷素吸蔵・放出容器に採取し、
反応器を排気装置に接続して減圧下の250°Cで脱ガ
スを行った。次いで器内に純度99.999%の水素を
導入し水素圧を40に9/cd以下に保持すると直ちに
水素の吸蔵が起こった。
5. Grind the obtained alloy into 100-120 meshes. Collect Of into a stainless steel ice storage/release container,
The reactor was connected to an exhaust system and degassed at 250°C under reduced pressure. Next, when hydrogen with a purity of 99.999% was introduced into the vessel and the hydrogen pressure was maintained at 40.9/cd or less, hydrogen absorption occurred immediately.

水素の吸蔵が完了した後、再び排気して水素の放出を行
い活性化処理を完了した。この反応容器を一定温度に維
持した恒温槽に浸漬し、水素を導入した後放出水素蓋と
圧力変化を測定し第1図の解離圧−組成等混線を得た。
After hydrogen storage was completed, the chamber was evacuated again to release hydrogen and the activation process was completed. This reaction vessel was immersed in a constant temperature bath maintained at a constant temperature, and after hydrogen was introduced, the released hydrogen lid and pressure changes were measured to obtain the dissociation pressure-composition crosstalk shown in FIG.

第1図における曲線1及び曲線2は150°Cにおける
解離圧−組成等温線であシ、曲線3は160℃における
解離圧−組成等温線である。図かられかるように本発明
合金は良好なプラトー領域を示しバナジウムの組成が大
きくなるに伴い解離平衡圧は低下し、150℃で10気
圧以下の解離圧を示す。tた、(表1)に示すようにバ
ナジウムの組成が0.8から1,2まで大きくすること
によって水素吸蔵量はMg系合金に匹敵、あゐいは越え
る3、 2 wt−%から3,8wt−56まで徐々に
増加する。
Curves 1 and 2 in FIG. 1 are dissociation pressure-composition isotherms at 150°C, and curve 3 is a dissociation pressure-composition isotherm at 160°C. As can be seen from the figure, the alloy of the present invention exhibits a good plateau region, and as the vanadium composition increases, the dissociation equilibrium pressure decreases, and the dissociation pressure is 10 atm or less at 150°C. In addition, as shown in Table 1, by increasing the composition of vanadium from 0.8 to 1.2, the hydrogen storage capacity is comparable to, or even exceeds, that of Mg-based alloys, from 3.2 wt-% to 3. , 8wt-56.

(実施例4.5) 本発明の水素吸蔵用合金、例えFj:、Ti□・、gO
Yl、2N’0.8(実施例4)及び’I’ i x、
s’ Or i;2V o、a (実施例5)について
(実施例1.2.3)と同様の操作で合金の製造、活性
化処理及び水素化物の特性を測定した。
(Example 4.5) Hydrogen storage alloy of the present invention, e.g. Fj:, Ti□・, gO
Yl, 2N'0.8 (Example 4) and 'I' i x,
Regarding s' Or i;2V o,a (Example 5), alloy production, activation treatment, and hydride properties were measured in the same manner as in (Example 1.2.3).

(表2)はTi0.90r1.mV6.s及びTi1,
3’ Orl、2V0.8の150°Cにおけるそれぞ
れの水素吸蔵量を示している。(表2)かられかるよう
にこれらの合金も(実施例1.、2 、3 )に示され
る合金と同等の水素吸蔵能力を示し、しかも上記の水素
化物の緒特性をも兼ね備えた優れた水素吸蔵用合金であ
る。
(Table 2) is Ti0.90r1. mV6. s and Ti1,
The hydrogen storage amounts of 3' Orl and 2V0.8 at 150°C are shown. As can be seen from (Table 2), these alloys also exhibit hydrogen storage capacity equivalent to that of the alloys shown in Examples 1, 2, and 3, and also have the excellent properties of hydrides described above. It is an alloy for hydrogen storage.

第2表 なお、本発明組成範囲のTi、−0r−Vの3元系合金
に対して、Ag、Si、Mg、Oa、Zn、Mn。
Table 2: Ag, Si, Mg, Oa, Zn, Mn for the Ti, -0r-V ternary alloy in the composition range of the present invention.

Pa、Oo、Ni、Zr、Nb 及びMoのいずれか1
つを第4元素として組合せてTi、Or、Vのうちのい
ずれかを1部置換するかもしくは全体に僅量添加しても
叙述と同様な発明効果が得られることを実験によって確
認した。
Any one of Pa, Oo, Ni, Zr, Nb and Mo
It was confirmed through experiments that the same effects of the invention as described above can be obtained by combining Ti, Or, and V as a fourth element and replacing a portion of Ti, Or, and V, or by adding a small amount to the whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1,2.3における本発明合金の150
℃あるいは160℃における解離圧−組成等混線である
。 (符号の説明) 1・・・実施例1合金の150°Cにおける解離圧−組
成等温線、 2・・・実施例2合金の150°C1(あ・ける解離反
−m収縛二轢、 3・・・実施例3合金の160℃における解離圧−組成
等温線。
Figure 1 shows 150% of the alloy of the present invention in Examples 1 and 2.3.
It is a crosstalk such as dissociation pressure and composition at 160°C or 160°C. (Explanation of symbols) 1...Dissociation pressure-composition isotherm at 150°C for the alloy of Example 1, 2...Dissociation pressure-composition isotherm at 150°C for the alloy of Example 2, 3...Dissociation pressure-composition isotherm at 160°C of the alloy of Example 3.

Claims (1)

【特許請求の範囲】 1、一般式 %式% (式中、x r ’Iは夫々0.8≦X≦1.4および
Oくy〈2である。但し、yVio及び2を除く)で表
わされるチタン−クロム−バナジウム系水素吸蔵用合金
[Claims] 1. In the general formula % (wherein x r 'I are respectively 0.8≦X≦1.4 and Okuy<2, excluding yVio and 2) The titanium-chromium-vanadium hydrogen storage alloy represented herein.
JP57098993A 1982-06-09 1982-06-09 Titanium-chromium-vanadium hydrogen storage alloy Expired JPS5938293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098993A JPS5938293B2 (en) 1982-06-09 1982-06-09 Titanium-chromium-vanadium hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098993A JPS5938293B2 (en) 1982-06-09 1982-06-09 Titanium-chromium-vanadium hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS58217654A true JPS58217654A (en) 1983-12-17
JPS5938293B2 JPS5938293B2 (en) 1984-09-14

Family

ID=14234504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098993A Expired JPS5938293B2 (en) 1982-06-09 1982-06-09 Titanium-chromium-vanadium hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPS5938293B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227301A (en) * 1985-07-26 1987-02-05 Nippon Yakin Kogyo Co Ltd Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas
JPH04337045A (en) * 1991-05-15 1992-11-25 Japan Steel Works Ltd:The Hydrogen storage material
US5261940A (en) * 1986-12-23 1993-11-16 United Technologies Corporation Beta titanium alloy metal matrix composites
WO1998014627A1 (en) * 1996-10-03 1998-04-09 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloy and process for preparing the same
US6835490B1 (en) 1999-03-29 2004-12-28 Tohoku Techno Arch Co., Ltd. Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method
WO2005017218A2 (en) * 2003-08-08 2005-02-24 Texaco Ovonic Hydrogen Systems Llc Hydrogen storage alloys providing for the reversible storage of hydrogen at low temperatures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132091U (en) * 1984-07-31 1986-02-26 京王重機整備株式会社 container
CA2424861A1 (en) * 2000-10-02 2003-03-13 Tohoku Techno Arch Co., Ltd. Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227301A (en) * 1985-07-26 1987-02-05 Nippon Yakin Kogyo Co Ltd Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas
JPH0224764B2 (en) * 1985-07-26 1990-05-30 Nippon Yakin Kogyo Co Ltd
US5261940A (en) * 1986-12-23 1993-11-16 United Technologies Corporation Beta titanium alloy metal matrix composites
JPH04337045A (en) * 1991-05-15 1992-11-25 Japan Steel Works Ltd:The Hydrogen storage material
KR100319570B1 (en) * 1996-10-03 2002-01-05 사이토 아키히코 Hydrogen absorbing alloy and process for preparing the same
US6153032A (en) * 1996-10-03 2000-11-28 Toyota Jidosha Kabushiki Kaisha Hydrogen-absorbing alloy and process for preparing the same
WO1998014627A1 (en) * 1996-10-03 1998-04-09 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloy and process for preparing the same
CN1080320C (en) * 1996-10-03 2002-03-06 丰田自动车株式会社 Hydrogen absorbing alloy and process for preparing same
US6835490B1 (en) 1999-03-29 2004-12-28 Tohoku Techno Arch Co., Ltd. Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method
US7094493B2 (en) 1999-03-29 2006-08-22 Tohoku Techno Arch Co., Ltd. Hydrogen storage metal alloy, method for absorption and release of hydrogen using the said alloy and hydrogen fuel battery using the said method
WO2005017218A2 (en) * 2003-08-08 2005-02-24 Texaco Ovonic Hydrogen Systems Llc Hydrogen storage alloys providing for the reversible storage of hydrogen at low temperatures
WO2005017218A3 (en) * 2003-08-08 2006-02-16 Texaco Ovonic Hydrogen Systems Hydrogen storage alloys providing for the reversible storage of hydrogen at low temperatures
US7108757B2 (en) * 2003-08-08 2006-09-19 Ovonic Hydrogen Systems Llc Hydrogen storage alloys providing for the reversible storage of hydrogen at low temperatures

Also Published As

Publication number Publication date
JPS5938293B2 (en) 1984-09-14

Similar Documents

Publication Publication Date Title
Shen et al. Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
US4347082A (en) Mischmetal alloy for storage of hydrogen
US4400348A (en) Alloy for occlusion of hydrogen
JPS626739B2 (en)
US4421718A (en) Alloy for occlusion of hydrogen
JP2022543828A (en) METHOD FOR PRODUCING HYDROGEN STORAGE ALLOY
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPH039175B2 (en)
JPS5950742B2 (en) Titanium quaternary hydrogen storage alloy
JPH04337045A (en) Hydrogen storage material
JPS604256B2 (en) Alloy for hydrogen storage
JPS5841333B2 (en) Alloy for hydrogen storage
JPS6159389B2 (en)
JPS597774B2 (en) Titanium-chromium-manganese hydrogen storage alloy
JPS5821021B2 (en) Alloy for hydrogen storage
JPS6296632A (en) Metallic alloy for hydrogen storage
JPS5824498B2 (en) Vanadium-containing hydrogen storage alloy
JPS5837373B2 (en) Titanium-based hydrogen storage alloy