JP2005305394A - Hydrogen occlusion material - Google Patents

Hydrogen occlusion material Download PDF

Info

Publication number
JP2005305394A
JP2005305394A JP2004130130A JP2004130130A JP2005305394A JP 2005305394 A JP2005305394 A JP 2005305394A JP 2004130130 A JP2004130130 A JP 2004130130A JP 2004130130 A JP2004130130 A JP 2004130130A JP 2005305394 A JP2005305394 A JP 2005305394A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage material
temperature
compound phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004130130A
Other languages
Japanese (ja)
Inventor
Masakazu Aoki
正和 青木
Nobuko Oba
伸子 大庭
Kazutoshi Miwa
和利 三輪
Tatsuo Noritake
達夫 則竹
Shinichi Towata
真一 砥綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004130130A priority Critical patent/JP2005305394A/en
Publication of JP2005305394A publication Critical patent/JP2005305394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly practical hydrogen occlusion material a constitution element of which is Li. <P>SOLUTION: This hydrogen occlusion material has the following compositional formula: Li<SB>1-x-y</SB>Si<SB>x</SB>M<SB>y</SB>(wherein M is at least one selected from Be, B, C, N, Na, Mg, Al, P, K, Ca, Ga, Ge, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Pd, Y, Zr, Nb and rare earth elements; 0<x<1; and 0≤y<1). Since Li and Si are fundamental constitution elements, the hydrogen occlusion material is light in weight and inexpensive. The hydrogen occlusion, a discharge temperature (operation temperature) and the amounts of hydrogen occlusion and discharge are easily controlled by adjusting the adding ratio of Si, the kind of the added element M and its adding ratio. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、可逆的に水素を吸蔵、放出することのできる水素吸蔵材料に関する。   The present invention relates to a hydrogen storage material capable of reversibly storing and releasing hydrogen.

近年、二酸化炭素の排出による地球の温暖化等の環境問題や、石油資源の枯渇等のエネルギー問題から、クリーンな代替エネルギーとして水素エネルギーが注目されている。水素エネルギーの実用化にむけて、水素を安全に貯蔵、輸送する技術の開発が重要となる。水素を貯蔵できる水素吸蔵材料として、活性炭、フラーレン、ナノチューブ等の炭素材料や、水素吸蔵合金等の開発が進められている。   In recent years, hydrogen energy has attracted attention as a clean alternative energy due to environmental problems such as global warming caused by carbon dioxide emissions and energy problems such as exhaustion of petroleum resources. For the practical application of hydrogen energy, it is important to develop technology for safely storing and transporting hydrogen. As hydrogen storage materials capable of storing hydrogen, development of carbon materials such as activated carbon, fullerene, and nanotubes, and hydrogen storage alloys has been underway.

室温付近で水素を吸蔵、放出することができる実用的な水素吸蔵合金として、例えば、LaNi5、TiFe等が知られている(例えば、非特許文献1参照。)。また、最も軽い元素という理由から、リチウム(Li)を構成元素とした水素吸蔵材料の開発も試みられている(例えば、特許文献1参照。)。
大角泰章著,「新版 水素吸蔵合金−その物性と応用−」, 株式会社アグネ技術センター,1999年2月5日,p.14〜16 特表2002−526658号公報
As practical hydrogen storage alloys capable of storing and releasing hydrogen near room temperature, for example, LaNi 5 , TiFe, and the like are known (see, for example, Non-Patent Document 1). In addition, for the reason that it is the lightest element, development of a hydrogen storage material using lithium (Li) as a constituent element has also been attempted (for example, see Patent Document 1).
Osamu Yasuaki, “New edition of hydrogen storage alloy-its physical properties and applications-”, Agne Technology Center Co., Ltd., February 5, 1999, p. 14-16 Japanese translation of PCT publication No. 2002-526658

上記LaNi5、TiFeは、La、Ni、Tiといった希少な金属を含んでいるため、その資源の確保が困難であり、コストも高い。また、水素吸蔵合金自体が重いため、単位重量当たりの水素吸蔵量は2wt%以下にとどまる。さらに、TiFeについては、初期の水素化が難しく、水素を吸蔵、放出させるためには、予め高温、高圧下での活性化処理が必要となる。一方、Liを構成元素とした水素吸蔵材料については、水素吸蔵、放出特性が未だ満足できるレベルではなく、実用化に向けたさらなる研究開発が必要である。 Since LaNi 5 and TiFe contain rare metals such as La, Ni, and Ti, it is difficult to secure the resources and the cost is high. Further, since the hydrogen storage alloy itself is heavy, the hydrogen storage amount per unit weight is limited to 2 wt% or less. Furthermore, TiFe is difficult to hydrogenate in the initial stage, and in order to occlude and release hydrogen, activation treatment under high temperature and high pressure is required in advance. On the other hand, hydrogen storage materials containing Li as a constituent element are not yet satisfactory in hydrogen storage and release characteristics, and further research and development for practical use is necessary.

本発明は、このような実状に鑑みてなされたものであり、Liを構成元素とした実用性の高い水素吸蔵材料を提供することを課題とする。   The present invention has been made in view of such a situation, and an object thereof is to provide a highly practical hydrogen storage material using Li as a constituent element.

(1)本発明の水素吸蔵材料は、組成式Li1-x-ySixy(Mは、Be、B、C、N、Na、Mg、Al、P、K、Ca、Ga、Ge、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pd、Y、Zr、Nb、希土類元素から選ばれる少なくとも一種、0<x<1、0≦y<1)で表されることを特徴とする。 (1) hydrogen storage material of the present invention, the composition formula Li 1-xy Si x M y (M is, Be, B, C, N , Na, Mg, Al, P, K, Ca, Ga, Ge, Ti , V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Pd, Y, Zr, Nb, at least one selected from rare earth elements, 0 <x <1, 0 ≦ y <1) It is characterized by that.

本発明の水素吸蔵材料は、Li、Siを基本構成元素とする。Li、Siは、資源が豊富で比較的安価な材料である。また、Liは最も軽量であり、Siも比較的軽量である。したがって、Li、Siを基本構成元素とする本発明の水素吸蔵材料は、軽量かつ安価な材料となる。このため、単位重量当たりの水素吸蔵量は大きくなる。   The hydrogen storage material of the present invention uses Li and Si as basic constituent elements. Li and Si are materials that are rich in resources and relatively inexpensive. Li is the lightest and Si is relatively light. Therefore, the hydrogen storage material of the present invention having Li and Si as basic constituent elements is a lightweight and inexpensive material. For this reason, the hydrogen storage amount per unit weight becomes large.

本発明の水素吸蔵材料において、Liは、水素と反応し易い親水素性の元素であり、Siは、水素と反応し難い疎水素性の元素である。よって、LiとSiとを合金化することで、水素化物を不安定化させ、実用的な温度範囲での水素の吸蔵、放出が可能となる。また、必要に応じて添加される添加元素Mは、その役割により、以下の二つのグループに分けられる。一つは、水素化物中の水素を不安定化させるグループであり、もう一つは、水素との反応速度が大きく、水素吸蔵材料を活性化させるグループである。具体的には、前者の元素は、Be、B、C、N、Na、Mg、Al、P、K、Ca、Ga、Geである。また、後者の元素は、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pd、Y、Zr、Nb、希土類元素である。   In the hydrogen storage material of the present invention, Li is a hydrophilic element that easily reacts with hydrogen, and Si is a hydrophobic element that hardly reacts with hydrogen. Therefore, by alloying Li and Si, the hydride is destabilized, and hydrogen can be stored and released within a practical temperature range. Further, the additive element M added as necessary is divided into the following two groups depending on its role. One is a group that destabilizes hydrogen in a hydride, and the other is a group that has a high reaction rate with hydrogen and activates a hydrogen storage material. Specifically, the former elements are Be, B, C, N, Na, Mg, Al, P, K, Ca, Ga, and Ge. The latter elements are Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Pd, Y, Zr, Nb, and rare earth elements.

前者の元素を含有することで、水素放出温度を低下させることができる。また、後者の元素を含有することで、水素吸蔵、放出速度を向上させることができる。このように、本発明の水素吸蔵材料では、Siの含有割合、および添加元素Mの種類や添加割合を調整することにより、水素の吸蔵、放出温度(動作温度)や、水素の吸蔵、放出量を容易に調整することができる。そして、好適な組成とすることで、動作温度を低くすることができ、水素吸蔵量を大きくすることができる。   By containing the former element, the hydrogen release temperature can be lowered. Further, by containing the latter element, it is possible to improve the hydrogen storage and release rates. As described above, in the hydrogen storage material of the present invention, by adjusting the content ratio of Si and the type and addition ratio of the additive element M, the storage and release temperature (operating temperature) of hydrogen, and the storage and release amount of hydrogen. Can be adjusted easily. And by setting it as a suitable composition, operating temperature can be lowered | hung and hydrogen storage amount can be enlarged.

(2)本発明の水素吸蔵材料の化合物相調整方法は、上記本発明の水素吸蔵材料に対して、室温〜400℃の温度下で水素を吸蔵、放出させる水素吸蔵放出処理を行うことで、該水素吸蔵材料に含まれる特定の化合物相の体積割合を調整することを特徴とする。   (2) The method for adjusting the compound phase of the hydrogen storage material of the present invention includes performing hydrogen storage / release treatment for storing and releasing hydrogen at a temperature of room temperature to 400 ° C. with respect to the hydrogen storage material of the present invention. The volume ratio of the specific compound phase contained in the hydrogen storage material is adjusted.

一般に、水素吸蔵材料では、水素吸蔵能の高い化合物相の体積割合が大きい方が望ましい。特定の化合物相の体積割合を変化させる方法として、熱処理法が知られている。熱処理法は、温度による化合物相の安定性の違いを利用した方法である。すなわち、水素吸蔵材料を、ある化合物相が安定であり、それ以外の化合物相が不安定である温度下に長時間保持して、安定な化合物相の体積割合を増加させる。従来では、水素吸蔵材料を800℃以上の高温下で、数十時間保持することにより、水素吸蔵能の高い化合物相の体積割合を増加させていた。   Generally, in the hydrogen storage material, it is desirable that the volume ratio of the compound phase having a high hydrogen storage capacity is large. As a method of changing the volume ratio of a specific compound phase, a heat treatment method is known. The heat treatment method is a method using the difference in stability of the compound phase depending on the temperature. That is, the hydrogen storage material is maintained for a long time at a temperature at which a certain compound phase is stable and the other compound phases are unstable, thereby increasing the volume ratio of the stable compound phase. Conventionally, the volume ratio of the compound phase having a high hydrogen storage capacity has been increased by holding the hydrogen storage material at a high temperature of 800 ° C. or higher for several tens of hours.

本発明の水素吸蔵材料は、上述したように、比較的低温下で水素を吸蔵、放出することが可能である。この特性を利用して、本発明者は、本発明の水素吸蔵材料に含まれる化合物相の体積割合の調整を試みた。その結果、室温〜400℃という比較的低温下で水素を吸蔵、放出させることで、特定の化合物相の体積割合が変化するという知見を得た。本発明の水素吸蔵材料では、水素の吸蔵により特定の化合物相が微結晶化し、原子が相互拡散し易くなると考えられる。このため、本発明の化合物相調整方法によれば、例えば、水素吸蔵能の高い化合物相の体積割合を、低温下で短時間に増加させることができる。さらには、水素吸蔵材料を、特定の化合物相のみで構成することもできる。   As described above, the hydrogen storage material of the present invention can store and release hydrogen at a relatively low temperature. Using this characteristic, the present inventor tried to adjust the volume ratio of the compound phase contained in the hydrogen storage material of the present invention. As a result, it has been found that the volume ratio of a specific compound phase is changed by inserting and extracting hydrogen at a relatively low temperature of room temperature to 400 ° C. In the hydrogen storage material of the present invention, it is considered that a specific compound phase is microcrystallized due to the storage of hydrogen, and atoms easily diffuse. For this reason, according to the compound phase adjustment method of the present invention, for example, the volume ratio of the compound phase having a high hydrogen storage capacity can be increased in a short time at a low temperature. Furthermore, the hydrogen storage material can be composed of only a specific compound phase.

本発明の水素吸蔵材料は、組成式Li1-x-ySixy(Mは、Be、B、C、N、Na、Mg、Al、P、K、Ca、Ga、Ge、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pd、Y、Zr、Nb、希土類元素から選ばれる少なくとも一種、0<x<1、0≦y<1)で表される。Li、Siを基本構成元素とするため、軽量かつ安価である。また、Siの含有割合および添加元素Mの種類や添加割合を調整することにより、動作温度を低くすることができ、水素吸蔵量を大きくすることができる。 Hydrogen storage material of the present invention, the composition formula Li 1-xy Si x M y (M is, Be, B, C, N , Na, Mg, Al, P, K, Ca, Ga, Ge, Ti, V, At least one selected from Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Pd, Y, Zr, Nb, and a rare earth element, 0 <x <1, 0 ≦ y <1). Since Li and Si are the basic constituent elements, they are lightweight and inexpensive. Further, by adjusting the Si content ratio and the type and addition ratio of the additive element M, the operating temperature can be lowered and the hydrogen storage amount can be increased.

以下、本発明の水素吸蔵材料、および水素吸蔵材料の化合物相調整方法について詳細に説明する。なお、本発明の水素吸蔵材料および水素吸蔵材料の化合物相調整方法は、下記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, the hydrogen storage material of the present invention and the compound phase adjustment method of the hydrogen storage material will be described in detail. Note that the hydrogen storage material and the method for adjusting the compound phase of the hydrogen storage material of the present invention are not limited to the following embodiments, and modifications and improvements that can be made by those skilled in the art without departing from the scope of the present invention. It can implement with the various form which gave.

〈水素吸蔵材料〉
本発明の水素吸蔵材料は、組成式Li1-x-ySixyで表される。Siの含有割合xが大きくなると、水素吸蔵量は小さくなる。よって、Siの含有割合xは、水素吸蔵量を考慮して決定すればよい。例えば、実用的な水素吸蔵量を確保するためには、Siの含有割合xの範囲を0<x≦0.4とするとよい。また、添加元素Mの割合yは、本水素吸蔵材料の動作温度、水素吸蔵、放出量に影響する。よって、使用する添加元素Mの種類により、動作温度、水素吸蔵、放出量を適宜考慮して、添加元素Mの割合yを決定すればよい。例えば、水素吸蔵量を考慮して、Siの含有割合xを0<x≦0.4とした場合には、添加元素Mの割合yを0≦y≦0.33とすればよい。
<Hydrogen storage material>
Hydrogen storage material of the present invention is represented by the composition formula Li 1-xy Si x M y . As the Si content ratio x increases, the hydrogen storage amount decreases. Therefore, the Si content ratio x may be determined in consideration of the hydrogen storage amount. For example, in order to ensure a practical hydrogen storage amount, the range of the Si content ratio x is preferably 0 <x ≦ 0.4. Further, the ratio y of the additive element M affects the operating temperature, hydrogen storage, and release amount of the present hydrogen storage material. Therefore, the proportion y of the additive element M may be determined depending on the type of additive element M to be used, taking into account the operating temperature, hydrogen storage and release amount as appropriate. For example, in consideration of the hydrogen storage amount, when the Si content ratio x is 0 <x ≦ 0.4, the additive element M ratio y may be 0 ≦ y ≦ 0.33.

上述したように、添加元素Mは、その役割により二つのグループに分けられる。例えば、水素化物の水素を不安定化させ、水素放出温度を低下させるという観点では、添加元素Mとして、Be、B、C、N、Na、Mg、Al、P、K、Ca、Ga、Geから選ばれる一種以上を用いればよい。特に、Al、Ge、Mg等が好適である。また、水素吸蔵材料を活性化させ、水素吸蔵、放出速度を向上させるという観点では、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pd、Y、Zr、Nb、希土類元素から選ばれる一種以上を用いればよい。特に、Zn、Ag、V等が好適である。   As described above, the additive element M is divided into two groups depending on its role. For example, from the viewpoint of destabilizing hydrogen in the hydride and lowering the hydrogen release temperature, the additive element M is Be, B, C, N, Na, Mg, Al, P, K, Ca, Ga, Ge. One or more selected from the above may be used. In particular, Al, Ge, Mg, etc. are suitable. Further, from the viewpoint of activating the hydrogen storage material and improving the hydrogen storage and release rate, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Pd, Y, Zr, Nb, One or more selected from rare earth elements may be used. In particular, Zn, Ag, V and the like are suitable.

本発明の水素吸蔵材料の一実施形態として、Li1-xSix(0<x<1)が挙げられる(上記組成式中y=0に相当。)。Li1-xSixは、軽量かつ安価なLi、Siのみから構成されるため、単位重量当たりの水素吸蔵量が大きく、安価で製造し易いという利点を有する。この場合、水素吸蔵量をより大きくするという理由から、Siの含有割合xの範囲を0<x<0.5とするとよい。0<x<0.36とするとより好適である。 One embodiment of the hydrogen storage material of the present invention is Li 1-x Si x (0 <x <1) (corresponding to y = 0 in the above composition formula). Since Li 1-x Si x is composed only of light and inexpensive Li and Si, it has an advantage that it has a large hydrogen storage amount per unit weight, is inexpensive and easy to manufacture. In this case, the range of the Si content ratio x is preferably 0 <x <0.5 because the hydrogen storage amount is increased. It is more preferable that 0 <x <0.36.

本発明の水素吸蔵材料の製造方法は、特に限定されるものではない。例えば、アーク溶解法、高周波誘導加熱溶解法等の通常の合金の製造方法により製造することができる。例えば、上記溶解法では、Li粒、Si粉末、必要に応じて添加元素Mの粉末を目的の組成となるよう秤量、混合した後、溶解して凝固させればよい。溶解法によれば、メカニカルミリング等の機械的処理法と比較して、本発明の水素吸蔵材料を容易に低コストで製造することができる。   The method for producing the hydrogen storage material of the present invention is not particularly limited. For example, it can be manufactured by a normal alloy manufacturing method such as an arc melting method or a high frequency induction heating melting method. For example, in the above melting method, Li particles, Si powder, and if necessary, powder of additive element M may be weighed and mixed so as to have a target composition, and then dissolved and solidified. According to the melting method, the hydrogen storage material of the present invention can be easily produced at low cost as compared with a mechanical processing method such as mechanical milling.

〈水素吸蔵材料の化合物相調整方法〉
本発明の水素吸蔵材料の化合物相調整方法は、上記本発明の水素吸蔵材料に対して、室温〜400℃の温度下で水素を吸蔵、放出させる水素吸蔵放出処理を行うことで、該水素吸蔵材料に含まれる特定の化合物相の体積割合を調整する。
<Method of adjusting compound phase of hydrogen storage material>
The method for adjusting the compound phase of the hydrogen storage material of the present invention comprises performing a hydrogen storage / release treatment for storing and releasing hydrogen at a temperature of room temperature to 400 ° C. with respect to the hydrogen storage material of the present invention. The volume ratio of the specific compound phase contained in the material is adjusted.

水素吸蔵放出処理は、室温〜400℃の温度下で行う。水素吸蔵材料により、水素の吸蔵、放出に最適な温度を適宜採用すればよい。そして、水素吸蔵材料に、所定の温度、水素圧力下で水素を吸蔵させ、その後、水素を排気し、所定の温度下で水素を放出させる。水素を吸蔵させる際の水素圧力は、1〜10MPaとすればよい。また、水素の吸蔵、放出は、それぞれ1〜5時間程度行えばよい。この水素吸蔵放出処理により、特定の化合物相の体積割合が変化する。   The hydrogen storage / release treatment is performed at a temperature of room temperature to 400 ° C. What is necessary is just to employ | adopt suitably the optimal temperature for occlusion and discharge | release of hydrogen with a hydrogen storage material. Then, the hydrogen storage material is allowed to store hydrogen under a predetermined temperature and hydrogen pressure, and then the hydrogen is exhausted and released under a predetermined temperature. The hydrogen pressure at the time of occlusion of hydrogen may be 1 to 10 MPa. In addition, hydrogen storage and release may be performed for about 1 to 5 hours, respectively. By this hydrogen storage / release treatment, the volume ratio of the specific compound phase changes.

体積割合を調整する化合物相の好適な態様として、例えば、Ge2Os型結晶構造を有する化合物相が挙げられる。この化合物相は、水素吸蔵能が高い。よって、その体積割合を増加させることにより、本発明の水素吸蔵材料の水素吸蔵、放出能をより向上させることができる。 As a preferred embodiment of the compound phase adjusting the volume ratio, for example, a compound phase having a Ge 2 Os-type crystal structure. This compound phase has a high hydrogen storage capacity. Therefore, by increasing the volume ratio, the hydrogen storage / release capability of the hydrogen storage material of the present invention can be further improved.

上記実施形態に基づいて、本発明の水素吸蔵材料を種々製造した。そして、製造した水素吸蔵材料に、所定の条件下で水素を吸蔵させ、それらの水素吸蔵能を評価した。また、水素吸蔵放出処理を行い、特定の化合物相の体積割合の変化を調査した。以下、製造した水素吸蔵材料ごとに説明する。   Based on the above embodiment, various hydrogen storage materials of the present invention were produced. And the produced hydrogen storage material was made to occlude hydrogen on predetermined conditions, and those hydrogen occlusion ability was evaluated. In addition, hydrogen storage / release treatment was performed, and changes in the volume ratio of specific compound phases were investigated. Hereinafter, each manufactured hydrogen storage material will be described.

(1)Li0.65Si0.35
(a)Li0.65Si0.35の製造
Li粒(純度99%以上)とSi粉末(純度99.999%)とを、目的とする組成となるよう秤量、混合した後、金型に入れ、アルゴンガス雰囲気の加熱炉にて加熱、溶解した。自然冷却した後、得られたインゴットをアルゴンガスで満たされたグローブボックス内で粉砕し、粉末状のLi0.65Si0.35を得た。得られたLi0.65Si0.35について、CuΚα線を用いた粉末法によるX線回折測定を行った。X線回折プロファイルから、得られたLi0.65Si0.35は、Li2Si相(Ge2Os型結晶構造)と、Li12Si7相(Li12Si7型結晶構造)との混相であることを確認した。
(1) Li 0.65 Si 0.35
(A) Production of Li 0.65 Si 0.35 Li particles (purity 99% or more) and Si powder (purity 99.999%) were weighed and mixed to achieve the desired composition, then placed in a mold, and argon gas It heated and melt | dissolved in the heating furnace of atmosphere. After natural cooling, the obtained ingot was pulverized in a glove box filled with argon gas to obtain powdery Li 0.65 Si 0.35 . The obtained Li 0.65 Si 0.35 was subjected to X-ray diffraction measurement by a powder method using CuΚα rays. From the X-ray diffraction profile, the obtained Li 0.65 Si 0.35 is a mixed phase of Li 2 Si phase (Ge 2 Os type crystal structure) and Li 12 Si 7 phase (Li 12 Si 7 type crystal structure). confirmed.

(b)水素吸蔵能の評価
製造したLi0.65Si0.35を、水素加圧チャンバーに入れ、温度300℃、水素圧力9MPaの条件で水素を吸蔵させた。吸蔵された水素量は、圧力−組成等温線(PCT線)を求めるジーベルツ法により測定した(JIS H 7201−1991、以下同様。)。水素の吸蔵開始から約5時間経過後の水素吸蔵量は、約2wt%となった。また、水素吸蔵後に、X線回折プロファイルが変化することを確認した。
(B) Evaluation of hydrogen storage capacity The produced Li 0.65 Si 0.35 was put in a hydrogen pressure chamber, and hydrogen was stored under conditions of a temperature of 300 ° C. and a hydrogen pressure of 9 MPa. The amount of hydrogen occluded was measured by the Siebelz method for obtaining a pressure-composition isotherm (PCT line) (JIS H 7201-1991, the same applies hereinafter). The hydrogen storage amount after about 5 hours from the start of hydrogen storage was about 2 wt%. It was also confirmed that the X-ray diffraction profile changed after hydrogen storage.

(2)Li0.82Si0.18
(a)Li0.82Si0.18の製造
Li粒(純度99%以上)とSi粉末(純度99.999%)とを、目的とする組成となるよう秤量、混合した後、金型に入れ、アルゴンガス雰囲気の加熱炉にて加熱、溶解した。自然冷却した後、得られたインゴットをアルゴンガスで満たされたグローブボックス内で粉砕し、粉末状のLi0.82Si0.18を得た。得られたLi0.82Si0.18について、上記同様にX線回折測定を行った。X線回折プロファイルから、得られたLi0.82Si0.18は、Li22Si5相(Li22Pb5型結晶構造)を主相とすることを確認した。
(2) Li 0.82 Si 0.18
(A) Production of Li 0.82 Si 0.18 Li particles (purity 99% or more) and Si powder (purity 99.999%) were weighed and mixed to achieve the desired composition, then placed in a mold, and argon gas It heated and melt | dissolved in the heating furnace of atmosphere. After natural cooling, the obtained ingot was pulverized in a glove box filled with argon gas to obtain powdered Li 0.82 Si 0.18 . X-ray diffraction measurement was performed on the obtained Li 0.82 Si 0.18 in the same manner as described above. From the X-ray diffraction profile, it was confirmed that the obtained Li 0.82 Si 0.18 has a Li 22 Si 5 phase (Li 22 Pb 5 type crystal structure) as a main phase.

(b)水素吸蔵能の評価
製造したLi0.82Si0.18を、水素加圧チャンバーに入れ、温度350℃、水素圧力9MPaの条件で水素を吸蔵させた。水素の吸蔵開始から約5時間経過後の水素吸蔵量は、約3.2wt%となった。また、水素吸蔵後に、X線回折プロファイルが変化することを確認した。
(B) Evaluation of hydrogen storage capacity The produced Li 0.82 Si 0.18 was placed in a hydrogen pressure chamber, and hydrogen was stored under conditions of a temperature of 350 ° C. and a hydrogen pressure of 9 MPa. The hydrogen storage amount after about 5 hours from the start of hydrogen storage was about 3.2 wt%. It was also confirmed that the X-ray diffraction profile changed after hydrogen storage.

(3)Li0.63Si0.21Al0.16
(a)Li0.63Si0.21Al0.16の製造
Li粒(純度99%以上)とSi粉末(純度99.999%)と、Al粉末(純度99.99%)とを、目的とする組成となるよう秤量、混合した後、アルゴンガス雰囲気にて高周波溶解した。自然冷却した後、得られたインゴットをアルゴンガスで満たされたグローブボックス内で粉砕し、粉末状のLi0.63Si0.21Al0.16を得た。得られたLi0.63Si0.21Al0.16について、上記同様にX線回折測定を行った。
(3) Li 0.63 Si 0.21 Al 0.16
(A) Production of Li 0.63 Si 0.21 Al 0.16 Li grains (purity 99% or more), Si powder (purity 99.999%), and Al powder (purity 99.99%) so as to have the intended composition After weighing and mixing, high-frequency dissolution was performed in an argon gas atmosphere. After natural cooling, the obtained ingot was pulverized in a glove box filled with argon gas to obtain powdered Li 0.63 Si 0.21 Al 0.16 . X-ray diffraction measurement was performed on the obtained Li 0.63 Si 0.21 Al 0.16 in the same manner as described above.

(b)水素吸蔵能の評価
製造したLi0.63Si0.21Al0.16を、水素加圧チャンバーに入れ、温度350℃、水素圧力9MPaの条件で水素を吸蔵させた。水素の吸蔵開始から約4時間経過後の水素吸蔵量は、約3wt%となった。また、水素吸蔵後に、X線回折プロファイルが変化することを確認した。
(B) Evaluation of hydrogen storage capacity The produced Li 0.63 Si 0.21 Al 0.16 was placed in a hydrogen pressure chamber, and hydrogen was stored under conditions of a temperature of 350 ° C. and a hydrogen pressure of 9 MPa. The hydrogen storage amount after about 4 hours from the start of hydrogen storage was about 3 wt%. It was also confirmed that the X-ray diffraction profile changed after hydrogen storage.

(4)Li0.5Si0.25Zn0.25
(a)Li0.5Si0.25Zn0.25の製造
Li粒(純度99%以上)とSi粉末(純度99.999%)と、Zn粉末(純度99.99%)とを、目的とする組成となるよう秤量、混合した後、アルゴンガス雰囲気にて高周波溶解した。自然冷却した後、得られたインゴットをアルゴンガスで満たされたグローブボックス内で粉砕し、粉末状のLi0.5Si0.25Zn0.25を得た。得られたLi0.5Si0.25Zn0.25について、上記同様にX線回折測定を行った。
(4) Li 0.5 Si 0.25 Zn 0.25
(A) Production of Li 0.5 Si 0.25 Zn 0.25 Li grains (purity 99% or more), Si powder (purity 99.999%), and Zn powder (purity 99.99%) so as to have the intended composition After weighing and mixing, high-frequency dissolution was performed in an argon gas atmosphere. After natural cooling, the obtained ingot was pulverized in a glove box filled with argon gas to obtain powdered Li 0.5 Si 0.25 Zn 0.25 . The obtained Li 0.5 Si 0.25 Zn 0.25 was subjected to X-ray diffraction measurement in the same manner as described above.

(b)水素吸蔵能の評価
製造したLi0.5Si0.25Zn0.25を、水素加圧チャンバーに入れ、温度350℃、水素圧力9MPaの条件で水素を吸蔵させた。水素の吸蔵開始から約4時間経過後の水素吸蔵量は、約1wt%となった。また、水素吸蔵後に、X線回折プロファイルが変化することを確認した。
(B) Evaluation of hydrogen storage capacity The produced Li 0.5 Si 0.25 Zn 0.25 was placed in a hydrogen pressurization chamber, and hydrogen was stored under conditions of a temperature of 350 ° C. and a hydrogen pressure of 9 MPa. The hydrogen storage amount after about 4 hours from the start of hydrogen storage was about 1 wt%. It was also confirmed that the X-ray diffraction profile changed after hydrogen storage.

(c)水素吸蔵放出処理による化合物相の体積割合の調整
製造したLi0.5Si0.25Zn0.25を、水素加圧チャンバーに入れ、温度350℃、水素圧力9MPaの条件で、3時間水素を吸蔵させた。その後、350℃の温度下で、ロータリーポンプによる真空排気を3時間行い、水素を放出させた。
(C) Adjustment of the volume ratio of the compound phase by hydrogen storage / release treatment The produced Li 0.5 Si 0.25 Zn 0.25 was placed in a hydrogen pressure chamber, and hydrogen was stored for 3 hours under conditions of a temperature of 350 ° C. and a hydrogen pressure of 9 MPa. . Thereafter, evacuation with a rotary pump was performed for 3 hours at a temperature of 350 ° C. to release hydrogen.

この水素吸蔵放出処理後のX線回折プロファイルと、水素吸蔵前のX線回折プロファイルとから、Ca2ZnSi相の体積割合を算出した。Ca2ZnSi相の体積割合は、水素吸蔵前では約72%であったのに対し、水素吸蔵放出処理後では約97%となった。つまり、水素の吸蔵放出処理により、Ca2ZnSi相の体積割合が増加した。 The volume ratio of the Ca 2 ZnSi phase was calculated from the X-ray diffraction profile after this hydrogen storage / release treatment and the X-ray diffraction profile before hydrogen storage. The volume ratio of the Ca 2 ZnSi phase was about 72% before hydrogen storage, and about 97% after hydrogen storage / release treatment. That is, the volume ratio of the Ca 2 ZnSi phase was increased by the hydrogen storage / release treatment.

水素吸蔵放出処理によりCa2ZnSi相の体積割合が増加したLi0.5Si0.25Zn0.25は、温度350℃、水素圧力9MPaの条件で、約2wt%の水素を吸蔵した。 Li 0.5 Si 0.25 Zn 0.25 , in which the volume ratio of the Ca 2 ZnSi phase was increased by the hydrogen storage / release treatment, occluded about 2 wt% of hydrogen under conditions of a temperature of 350 ° C. and a hydrogen pressure of 9 MPa.

(5)Li0.55Si0.29Al0.16
(a)Li0.55Si0.29Al0.16の製造
Li粒(純度99%以上)とSi粉末(純度99.999%)と、Al粉末(純度99.99%)とを、目的とする組成となるよう秤量、混合した後、アルゴンガス雰囲気にて高周波溶解した。自然冷却した後、得られたインゴットをアルゴンガスで満たされたグローブボックス内で粉砕し、粉末状のLi0.55Si0.29Al0.16を得た。得られたLi0.55Si0.29Al0.16について、上記同様にX線回折測定を行った。
(5) Li 0.55 Si 0.29 Al 0.16
(A) Production of Li 0.55 Si 0.29 Al 0.16 Li grains (purity 99% or more), Si powder (purity 99.999%), and Al powder (purity 99.99%) so as to have the intended composition After weighing and mixing, high-frequency dissolution was performed in an argon gas atmosphere. After natural cooling, the obtained ingot was pulverized in a glove box filled with argon gas to obtain powdered Li 0.55 Si 0.29 Al 0.16 . X-ray diffraction measurement was performed on the obtained Li 0.55 Si 0.29 Al 0.16 in the same manner as described above.

(b)水素吸蔵能の評価
製造したLi0.55Si0.29Al0.16を、水素加圧チャンバーに入れ、温度350℃、水素圧力9MPaの条件で水素を吸蔵させた。水素の吸蔵開始から約4時間経過後の水素吸蔵量は、約2.7wt%となった。
(B) Evaluation of hydrogen storage capacity The produced Li 0.55 Si 0.29 Al 0.16 was placed in a hydrogen pressure chamber, and hydrogen was stored under conditions of a temperature of 350 ° C. and a hydrogen pressure of 9 MPa. The hydrogen storage amount after about 4 hours from the start of hydrogen storage was about 2.7 wt%.

(c)水素吸蔵放出処理による化合物相の体積割合の調整
製造したLi0.55Si0.29Al0.16を、水素加圧チャンバーに入れ、温度350℃、水素圧力9MPaの条件で、3時間水素を吸蔵させた。その後、350℃の温度下で、ロータリーポンプによる真空排気を3時間行い、水素を放出させた。
(C) Adjustment of volume ratio of compound phase by hydrogen storage / release treatment The manufactured Li 0.55 Si 0.29 Al 0.16 was put into a hydrogen pressure chamber, and hydrogen was stored for 3 hours under conditions of a temperature of 350 ° C. and a hydrogen pressure of 9 MPa. . Thereafter, evacuation with a rotary pump was performed for 3 hours at a temperature of 350 ° C. to release hydrogen.

この水素吸蔵放出処理後のX線回折プロファイルと、水素吸蔵前のX線回折プロファイルとから、LiAlSi相の体積割合を算出した。LiAlSi相の体積割合は、水素吸蔵前では約30%であったのに対し、水素吸蔵放出処理後では約70%となった。つまり、水素の吸蔵放出処理により、LiAlSi相の体積割合が増加した。   The volume ratio of the LiAlSi phase was calculated from the X-ray diffraction profile after this hydrogen storage / release treatment and the X-ray diffraction profile before hydrogen storage. The volume ratio of the LiAlSi phase was about 30% before hydrogen storage, and about 70% after hydrogen storage / release treatment. That is, the volume ratio of the LiAlSi phase was increased by the hydrogen storage / release treatment.

Claims (6)

組成式Li1-x-ySixy(Mは、Be、B、C、N、Na、Mg、Al、P、K、Ca、Ga、Ge、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pd、Y、Zr、Nb、希土類元素から選ばれる少なくとも一種、0<x<1、0≦y<1)で表される水素吸蔵材料。 Compositional formula Li 1-xy Si x M y (M is, Be, B, C, N , Na, Mg, Al, P, K, Ca, Ga, Ge, Ti, V, Cr, Mn, Fe, Co, A hydrogen storage material represented by at least one selected from Ni, Cu, Zn, Ag, Pd, Y, Zr, Nb, and a rare earth element, 0 <x <1, 0 ≦ y <1). 前記組成式中のxの範囲は0<x≦0.4であり、yの範囲は0≦y≦0.33である請求項1に記載の水素吸蔵材料。   The hydrogen storage material according to claim 1, wherein a range of x in the composition formula is 0 <x ≦ 0.4, and a range of y is 0 ≦ y ≦ 0.33. 組成式Li1-xSix(0<x<1)で表される請求項1に記載の水素吸蔵材料。 The hydrogen storage material according to claim 1, represented by a composition formula Li 1-x Si x (0 <x <1). 組成式Li1-xSix(0<x<0.5)で表される請求項1に記載の水素吸蔵材料。 The hydrogen storage material according to claim 1, represented by a composition formula Li 1-x Si x (0 <x <0.5). 組成式Li1-xSix(0<x<0.36)で表される請求項1に記載の水素吸蔵材料。 The hydrogen storage material according to claim 1, represented by a composition formula Li 1-x Si x (0 <x <0.36). 請求項1に記載の水素吸蔵材料に対して、室温〜400℃の温度下で水素を吸蔵、放出させる水素吸蔵放出処理を行うことで、該水素吸蔵材料に含まれる特定の化合物相の体積割合を調整する水素吸蔵材料の化合物相調整方法。
The volume ratio of the specific compound phase contained in the hydrogen storage material by performing a hydrogen storage / release treatment for storing and releasing hydrogen at a temperature of room temperature to 400 ° C. with respect to the hydrogen storage material according to claim 1. For adjusting the compound phase of the hydrogen storage material.
JP2004130130A 2004-04-26 2004-04-26 Hydrogen occlusion material Pending JP2005305394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130130A JP2005305394A (en) 2004-04-26 2004-04-26 Hydrogen occlusion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130130A JP2005305394A (en) 2004-04-26 2004-04-26 Hydrogen occlusion material

Publications (1)

Publication Number Publication Date
JP2005305394A true JP2005305394A (en) 2005-11-04

Family

ID=35434766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130130A Pending JP2005305394A (en) 2004-04-26 2004-04-26 Hydrogen occlusion material

Country Status (1)

Country Link
JP (1) JP2005305394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270209A (en) * 2006-03-30 2007-10-18 Toshiba Corp Hydrogen storage alloy, hydrogen storage film and hydrogen storage tank
JP2014047113A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Silicon compound, anode for lithium battery, lithium battery and method of manufacturing silicon compound
EP3292578A4 (en) * 2015-05-04 2018-12-05 BASF Corporation Electrochemical hydrogen storage electrodes and cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270209A (en) * 2006-03-30 2007-10-18 Toshiba Corp Hydrogen storage alloy, hydrogen storage film and hydrogen storage tank
JP2014047113A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Silicon compound, anode for lithium battery, lithium battery and method of manufacturing silicon compound
EP3292578A4 (en) * 2015-05-04 2018-12-05 BASF Corporation Electrochemical hydrogen storage electrodes and cells
US10522827B2 (en) 2015-05-04 2019-12-31 Basf Corporation Electrochemical hydrogen storage electrodes and cells

Similar Documents

Publication Publication Date Title
JP5152822B2 (en) Mg-MH-based hydrogen storage alloy and method for producing the same
JP2001527017A (en) Method for producing nanocrystalline metal hydride
JPH0436431A (en) Hydrogen storage alloy
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JP4403499B2 (en) Hydrogen storage material
JP4602926B2 (en) Method for producing alloy powder
JP2005305394A (en) Hydrogen occlusion material
JP4280816B2 (en) Hydrogen storage material and manufacturing method thereof
JPS626739B2 (en)
JP4925962B2 (en) Hydrogen storage material
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JP2003147472A (en) Hydrogen storage magnesium alloy
JP2005324972A (en) Hydrogen occlusion material
JPH11246923A (en) Hydrogen storage alloy and its production
JPH0210210B2 (en)
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP3795443B2 (en) Titanium-chromium-manganese hydrogen storage alloy
Song et al. Improvement of hydrogen storage characteristics of Mg by planetary ball milling under H2 with metallic element (s) and/or Fe2O3
JPH0397827A (en) Titanium-chromium-copper series hydrogen storage alloy
JP6958611B2 (en) Hydrogen storage alloy
JP5329498B2 (en) Hydrogen storage alloy
JP4634256B2 (en) Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery
JP2004277829A (en) Hydrogen storage alloy
JP2021031751A (en) Hydrogen storage alloy
JP4322647B2 (en) Hydrogen storage complex and method for producing the same