JP4068268B2 - Lead-acid battery charging method - Google Patents

Lead-acid battery charging method Download PDF

Info

Publication number
JP4068268B2
JP4068268B2 JP25368199A JP25368199A JP4068268B2 JP 4068268 B2 JP4068268 B2 JP 4068268B2 JP 25368199 A JP25368199 A JP 25368199A JP 25368199 A JP25368199 A JP 25368199A JP 4068268 B2 JP4068268 B2 JP 4068268B2
Authority
JP
Japan
Prior art keywords
charging
lead
seconds
energization
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25368199A
Other languages
Japanese (ja)
Other versions
JP2001078369A (en
Inventor
和成 安藤
直人 星原
邦明 宮岡
淳 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Chugoku Electric Power Co Inc
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP25368199A priority Critical patent/JP4068268B2/en
Publication of JP2001078369A publication Critical patent/JP2001078369A/en
Application granted granted Critical
Publication of JP4068268B2 publication Critical patent/JP4068268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池の充電方法に関し、サイクル使用される蓄電池の充電方法に関するものである。
【0002】
【従来の技術】
近年、鉛電池においては1.0C以上の比較的大きな定電流による急速充電が行われている。しかしながら、1.0C以上の比較的大きな定電流による急速充電方式では、十分な充電量を充電する前に電池電圧がガス発生電圧以上となり、酸素ガス及び水素ガスが発生して充電効率の低下とともに寿命特性の低下を引き起こす。
【0003】
高効率な急速充電方式としてパルス充電が提案されている。この充電方式はアルカリ蓄電池を含む蓄電池一般に対して、比較的大きな定電流を通電と停止を短時間で交互に繰り返すことにより、急激な電池電圧の上昇とガス発生を抑止させた高効率な充電方法である(特開昭64−81628号公報)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のパルス充電を鉛電池に適用すると、ある程度充電が進んだ状態では、通電中、分極成分により電圧の急激な上昇が起こってガス発生電圧以上となり、電極よりガス発生が起こって充電効率が低下する。
【0005】
上記した、充電が進んだ状態では、通電中、分極成分により電圧の急激な上昇が起こってガス発生電圧以上となり、電極よりガス発生が起こって充電効率が低下するという課題は、特に高率電流パルスを用いた場合だけではなく、通電時間T1と停止時間T2との関係がT1>T2であるパルスを用いた場合においてもみられる。
【0006】
本発明の目的は、鉛電池に対して効率の良い鉛電池の充電方法を提供することにある。
【0007】
本発明の他の目的は、通電中に電極よりガスが発生しない鉛電池の充電方法を提供することにある。
【0008】
本発明のさらに他の目的は、通電中に分極成分により電圧の急激な上昇が起こらない鉛電池の充電方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明に係る蓄電池の充電方法は、通電と停止の充電パルスをなす1.0C以上の定電流により蓄電池を充電する蓄電池の充電方法であって、所定の通電時間Tの間前記蓄電池を充電するステップと、所定の停止時間Tの間前記蓄電池の充電を停止するステップとを包含し、分極成分による好ましくない電圧上昇が発生しないように、前記通電時間T 0.005秒以上0.1秒未満の範囲に、かつ、前記停止時間T を0.1秒未満に設定し、前記通電時間T 1 と前記停止時間T 2 とを、T ≦T ≦3T なる関係を満足するように設定するものであり、そのことにより上記目的が達成される。
【0012】
本発明のある局面に従えば、従来のパルス充電において、通電時間T1及び停止時間T2を短縮することによって分極成分による電圧上昇を抑制し、効率良く充電させることが可能となる。
【0013】
【発明の実施の形態】
本発明は、蓄電池に対するパルス充電の通電時間T1と停止時間T2に関するものである。
【0014】
鉛電池に対して、通電と停止からなるパルス電流によって効率良く充電を実施する場合、通電時間T1と停止時間T2及び電流値Ipを決定することが求められる。
【0015】
通常、充電と停止からなるパルス電流を鉛電池に印加したときの電圧挙動は図1のようになる。図1において、パルス電流11を印加した直後の電圧12の上昇は、電極や導電体・電解液などによる抵抗成分に起因する。通電時間に依存する電圧12の上昇は、電極界面での電荷や物質の移動による分極成分に起因する。
【0016】
前者のパルス電流11を印加した直後の抵抗成分は、充電の進行に伴い殆ど変化しない。しかし、後者の電極界面での電荷や物質の移動による分極成分は、充電の進行に伴い増大する。
【0017】
このことから、通電時間を短く制御する程、分極成分に起因する電圧上昇が抑制される。
【0018】
公称電圧12V、定格容量60Ah(3HR)の制御弁式鉛電池において、25℃雰囲気下、1/3C定電流でSOCが50%になるまで放電させ、図2に示すパルス波形定電流21を用いて、表1に示す通電時間T1及び停止時間T2を実施例A〜実施例L及び実施例XおよびY、電流値Ip=3.0Cでパルス充電を行った。
【0019】
【表1】

Figure 0004068268
【0020】
通常、充電末期には充電反応以外に副反応が起こり電極よりガスが発生する。そのため、本実施例の充電停止条件は充電効率がほぼ100%となるように、制御弁式鉛電池の安全弁が開弁し、鉛電池の外にガスが放出された時とした。
【0021】
図3より明らかなように、通電時間T1及び停止時間T2に関して実施例Aから実施例Gを実施するにつれて、パルス充電後のSOCが68%から85%まで上昇し、通電時間T1及び停止時間T2が0.10秒未満の実施例Hから実施例Lでは83%以上の高いSOCを確保することが可能であることがわかる。
【0022】
このことから、充電効率がほぼ100%である充電において、効率の良いパルス波形はT1<0.1秒かつT2<0.1秒である。
【0023】
逆に、T1<0.005秒かつT2<0.005秒の一例である実施例Yでは充電反応が十分に行われないためSOCは70%以下まで低下した。
【0024】
従って、本実施の形態に係る鉛電池の充電方法では、通電時間T1は、0.005秒以上0.1秒未満の範囲に設定される。
【0025】
また、Ipを1.0C、2.0C、3.0C、4.0Cのように変化させても、実施例Gから実施例Lで同様の高いSOCを確保することが可能であるため、Ipを変化させても同様の効果があることを確認した。さらに、環境温度、放電パターン、充電開始SOCを変化させても同様の効果があることを確認した。
【0026】
また、表2に示すように実施例aから実施例eにおいて、電流値Ip=4.0Cでパルス充電を行った。本試験においても充電停止条件は充電効率がほぼ100%となるように、制御弁式鉛電池の安全弁が開弁し、電池外にガスが放出された時に設定した。
【0027】
【表2】
Figure 0004068268
【0028】
図4から明らかなように実施例aから実施例cでは、通電時間T1=0.01秒で停止時間T2を0.01秒から0.03秒へ増大させるとSOCが75%から85%へ増大し、T1≦T2でSOC増大に対する効果がみられた。
【0029】
逆に、実施例d、eでは停止時間T2=0.01秒で通電時間T1を0.01秒から0.03秒へ増大させると、図5に示すようにSOCは75%から60%まで減少し、T1>T2においてはSOC増加に対する効果は見られなかった。
【0030】
従って、本実施の形態に係る鉛電池の充電方法では、通電時間T1と停止時間T2とは、T1≦T2なる関係を満足するように設定される。
【0031】
以上のように本実施の形態によれば、所定の通電時間T1の間蓄電池を充電するステップと、所定の停止時間T2の間蓄電池の充電を停止するステップとを包含し、通電時間T1は、分極成分による好ましくない電圧上昇が発生しないように十分短く設定されるので、通電中に電極よりガスが発生せず、鉛電池に対して効率の良い鉛電池の充電方式を提供することができる。
【0032】
【発明の効果】
以上のように本発明によれば、鉛電池に対して効率の良い鉛電池の充電方法を提供することができる。
【0033】
また本発明によれば、通電中に電極よりガスが発生しない鉛電池の充電方法を提供することができる。
【0034】
さらに本発明によれば、通電中に分極成分により電圧の急激な上昇が起こらない鉛電池の充電方法を提供することができる。
【0035】
以上の通り本発明は、特定条件のパルス波形となる定電流により蓄電池を効率良く急速充電することができるため、実用上極めて有用である。
【図面の簡単な説明】
【図1】実施の形態に係るパルス充電時の電圧変化を示すグラフ。
【図2】実施の形態に係る鉛電池の充電方法におけるパルス電流波形を示すグラフ。
【図3】実施の形態に係るパルス幅に対する充電特性(T1:T2=1:1)を示すグラフ。
【図4】実施の形態に係るパルス幅に対する充電特性(T1≦T2)を示すグラフ。
【図5】実施の形態に係るパルス幅に対する充電特性(T1>T2)を示すグラフ。
【符号の説明】
1 通電時間
2 停止時間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for charging a storage battery, and relates to a method for charging a storage battery used in a cycle.
[0002]
[Prior art]
In recent years, lead batteries have been rapidly charged with a relatively large constant current of 1.0 C or more. However, in the quick charge method with a relatively large constant current of 1.0C or more, the battery voltage becomes equal to or higher than the gas generation voltage before charging a sufficient charge amount, and oxygen gas and hydrogen gas are generated, resulting in a decrease in charging efficiency. It causes a decrease in life characteristics.
[0003]
Pulse charging has been proposed as a highly efficient rapid charging method. This charging method is a highly efficient charging method that suppresses sudden battery voltage rise and gas generation by repeating energization and stopping alternately in a short time with a relatively large constant current for general storage batteries including alkaline storage batteries. (Japanese Patent Laid-Open No. 64-81628).
[0004]
[Problems to be solved by the invention]
However, when the above pulse charging is applied to a lead battery, in a state where the charging has progressed to some extent, a sudden increase in voltage occurs due to the polarization component during energization, resulting in a gas generation voltage or more, and gas generation occurs from the electrode, resulting in charging efficiency. Decreases.
[0005]
In the state where the charging is advanced as described above, the problem that the voltage suddenly rises due to the polarization component and becomes higher than the gas generation voltage during energization, and gas generation occurs from the electrode and the charging efficiency decreases, particularly the high rate current. Not only when the pulse is used, but also when the pulse whose relationship between the energization time T 1 and the stop time T 2 is T 1 > T 2 is used.
[0006]
An object of the present invention is to provide a lead battery charging method that is more efficient than lead batteries.
[0007]
Another object of the present invention is to provide a method for charging a lead battery in which gas is not generated from an electrode during energization.
[0008]
Still another object of the present invention is to provide a method for charging a lead battery in which a sudden increase in voltage does not occur due to a polarization component during energization.
[0009]
[Means for Solving the Problems]
A method of charging a lead storage battery according to the present invention is a method of charging a lead storage battery to charge the lead-acid battery by 1.0C or more constant current forming the charge pulse energization and stop, during said predetermined energization time T 1 a step of charging the lead-acid battery, includes a step of stopping the charging of predetermined said lead-acid battery during the stop time T 2, as undesirable voltage rise due to the polarization component does not occur, the energization time T 1, the range of less than 0.005 seconds 0.1 seconds, and the stopping time T 2 is set to less than 0.1 seconds, the energization time T 1 and the said stop time T 2, T 1 T 2 It is set so as to satisfy the relationship of ≦ 3T 1 , thereby achieving the above object.
[0012]
According to an aspect of the present invention, in conventional pulse charging, it is possible to suppress the voltage increase due to the polarization component by shortening the energization time T 1 and the stop time T 2, and to charge efficiently.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an energization time T 1 and a stop time T 2 of pulse charging for a storage battery.
[0014]
When the lead battery is efficiently charged with a pulse current composed of energization and stop, it is required to determine the energization time T 1 , the stop time T 2, and the current value I p .
[0015]
Normally, the voltage behavior when a pulse current consisting of charging and stopping is applied to a lead battery is as shown in FIG. In FIG. 1, the increase in the voltage 12 immediately after applying the pulse current 11 is caused by a resistance component due to an electrode, a conductor, an electrolytic solution, or the like. The rise in the voltage 12 depending on the energization time is caused by the polarization component due to the charge and the movement of the substance at the electrode interface.
[0016]
The resistance component immediately after the former pulse current 11 is applied hardly changes as the charging progresses. However, the polarization component due to charge and substance movement at the latter electrode interface increases with the progress of charging.
[0017]
For this reason, as the energization time is controlled to be shorter, the voltage increase due to the polarization component is suppressed.
[0018]
In a control valve type lead-acid battery with a nominal voltage of 12V and a rated capacity of 60Ah (3HR), discharge was performed at 25C in an atmosphere at 1 / 3C constant current until the SOC reached 50%, and a pulse waveform constant current 21 shown in FIG. 2 was used. Then, pulse charging was performed with the energization time T 1 and the stop time T 2 shown in Table 1 at Examples A to L and Examples X and Y and the current value I p = 3.0C.
[0019]
[Table 1]
Figure 0004068268
[0020]
Usually, at the end of charging, side reactions occur in addition to charging reactions, and gas is generated from the electrodes. For this reason, the charging stop condition of this example was set to be when the safety valve of the control valve type lead battery was opened and gas was released out of the lead battery so that the charging efficiency was almost 100%.
[0021]
As is clear from FIG. 3, as Example A to Example G are performed with respect to the energization time T 1 and the stop time T 2 , the SOC after pulse charging increases from 68% to 85%, and the energization time T 1 and It can be seen that in Examples H to L where the stop time T 2 is less than 0.10 seconds, a high SOC of 83% or more can be secured.
[0022]
From this, in charging where the charging efficiency is almost 100%, efficient pulse waveforms are T 1 <0.1 seconds and T 2 <0.1 seconds.
[0023]
Conversely, in Example Y, which is an example of T 1 <0.005 seconds and T 2 <0.005 seconds, the SOC was lowered to 70% or less because the charging reaction was not sufficiently performed.
[0024]
Therefore, in the lead battery charging method according to the present embodiment, the energization time T 1 is set in the range of 0.005 seconds or more and less than 0.1 seconds.
[0025]
Further, even if I p is changed to 1.0C, 2.0C, 3.0C, 4.0C, it is possible to ensure the same high SOC in Example G to Example L. It was confirmed that the same effect was obtained even when I p was changed. Furthermore, it was confirmed that the same effect was obtained even when the environmental temperature, the discharge pattern, and the charge start SOC were changed.
[0026]
Further, as shown in Table 2, in Examples a to e, pulse charging was performed at a current value I p = 4.0C. Also in this test, the charge stop condition was set when the safety valve of the control valve type lead battery was opened and gas was released out of the battery so that the charge efficiency was almost 100%.
[0027]
[Table 2]
Figure 0004068268
[0028]
As is apparent from FIG. 4, in Examples a to c, when the energization time T 1 = 0.01 seconds and the stop time T 2 is increased from 0.01 seconds to 0.03 seconds, the SOC is increased from 75% to 85%. %, And an effect on increasing SOC was observed when T 1 ≦ T 2 .
[0029]
On the other hand, in Examples d and e, when the energization time T 1 is increased from 0.01 seconds to 0.03 seconds with the stop time T 2 = 0.01 seconds, the SOC decreases from 75% to 60 as shown in FIG. %, And no effect on increasing SOC was found at T 1 > T 2 .
[0030]
Therefore, in the lead battery charging method according to the present embodiment, the energization time T 1 and the stop time T 2 are set so as to satisfy the relationship T 1 ≦ T 2 .
[0031]
As described above, according to the present embodiment, the method includes the step of charging the storage battery for a predetermined energization time T 1 and the step of stopping the charging of the storage battery for a predetermined stop time T 2. 1 is set sufficiently short so as not to cause an undesired voltage increase due to the polarization component, so that no gas is generated from the electrode during energization, and an efficient lead battery charging method is provided for lead batteries Can do.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a lead battery charging method that is more efficient than lead batteries.
[0033]
Moreover, according to this invention, the charging method of the lead battery which does not generate | occur | produce gas from an electrode during electricity supply can be provided.
[0034]
Furthermore, according to the present invention, it is possible to provide a method for charging a lead battery in which a sudden increase in voltage does not occur due to a polarization component during energization.
[0035]
As described above, the present invention is extremely useful in practice because the storage battery can be quickly and efficiently charged with a constant current having a pulse waveform under a specific condition.
[Brief description of the drawings]
FIG. 1 is a graph showing a voltage change during pulse charging according to an embodiment.
FIG. 2 is a graph showing a pulse current waveform in the lead battery charging method according to the embodiment;
FIG. 3 is a graph showing charging characteristics with respect to pulse width (T 1 : T 2 = 1: 1) according to the embodiment.
FIG. 4 is a graph showing charging characteristics with respect to pulse width (T 1 ≦ T 2 ) according to the embodiment.
FIG. 5 is a graph showing charging characteristics with respect to pulse width (T 1 > T 2 ) according to the embodiment.
[Explanation of symbols]
T 1 energization time T 2 stop time

Claims (1)

通電と停止の充電パルスをなす1.0C以上の定電流により蓄電池を充電する蓄電池の充電方法であって、
所定の通電時間Tの間前記蓄電池を充電するステップと、
所定の停止時間Tの間前記蓄電池の充電を停止するステップとを包含し、
分極成分による好ましくない電圧上昇が発生しないように、前記通電時間T 0.005秒以上0.1秒未満の範囲に、かつ、前記停止時間T を0.1秒未満に設定し、
前記通電時間T 1 と前記停止時間T 2 とを、T ≦T ≦3T なる関係を満足するように設定する、鉛蓄電池の充電方法。
The 1.0C above constant current forming the charge pulse energization and stop a charging method for lead-acid battery to charge the lead-acid battery,
A step of charging the lead storage battery for a predetermined energization time T 1,
Includes a step of stopping the predetermined charging of the lead acid battery during the stop time T 2,
The energization time T 1 is set in the range of 0.005 seconds or more and less than 0.1 seconds, and the stop time T 2 is set to less than 0.1 seconds so that an undesirable voltage increase due to the polarization component does not occur. ,
The lead- acid battery charging method , wherein the energization time T 1 and the stop time T 2 are set so as to satisfy a relationship of T 1 ≦ T 2 ≦ 3T 1 .
JP25368199A 1999-09-07 1999-09-07 Lead-acid battery charging method Expired - Fee Related JP4068268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25368199A JP4068268B2 (en) 1999-09-07 1999-09-07 Lead-acid battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25368199A JP4068268B2 (en) 1999-09-07 1999-09-07 Lead-acid battery charging method

Publications (2)

Publication Number Publication Date
JP2001078369A JP2001078369A (en) 2001-03-23
JP4068268B2 true JP4068268B2 (en) 2008-03-26

Family

ID=17254684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25368199A Expired - Fee Related JP4068268B2 (en) 1999-09-07 1999-09-07 Lead-acid battery charging method

Country Status (1)

Country Link
JP (1) JP4068268B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI21248B (en) * 2002-06-20 2008-12-31 Mikro + Polo Druĺ˝Ba Za Inĺ˝Eniring, Proizvodnjo In Trgovino D.O.O. Method and device for fast recharging of batteries
JP2007012546A (en) * 2005-07-04 2007-01-18 Gs Yuasa Corporation:Kk Method of charging lead accumulator and charger for lead accumulator
US8933662B2 (en) 2012-07-26 2015-01-13 Daifuku Co., Ltd. Charging apparatus for lead storage battery
JP5982317B2 (en) * 2013-03-29 2016-08-31 Kyb株式会社 Charge control device and hybrid construction machine
CN106058347B (en) * 2016-06-30 2018-12-14 济源市万洋绿色能源有限公司 A kind of lead-acid accumulator is internalized into pulse charge method

Also Published As

Publication number Publication date
JP2001078369A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
KR101897859B1 (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
JP2004032977A (en) Method of calculating maximum charging and discharging current values of hybrid electric vehicle battery
JP4068268B2 (en) Lead-acid battery charging method
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP5137603B2 (en) Charge / discharge control method and charge / discharge control system for alkaline storage battery
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
JP4715075B2 (en) Control valve type lead acid battery
JP3746135B2 (en) Charging method for sealed lead-acid batteries
JP5359485B2 (en) Control method of all-solid-state lithium ion secondary battery
JPH10302845A (en) Charging method of storage battery
JP2010062007A (en) Method of regenerating lead-acid battery
JP3642212B2 (en) Lead-acid battery charging method
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP2006079973A (en) Lead storage battery
JP2003346911A (en) Method for charging lead storage battery
CN116653701B (en) Power battery full life cycle safety control method, system, equipment and medium
JP6411606B1 (en) Recycling method for sealed lead-acid battery
JP2001250589A (en) Charging method of sealed lead storage battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP4120084B2 (en) Lead-acid battery charging method
JP4411729B2 (en) Lead-acid battery charging method
JP2001339864A (en) Charge/discharge control method and charge/discharge control apparatus for lead battery
JP2002165378A (en) Charging system of control valve type lead-acid battery
JPS6118311B2 (en)
JP4364478B2 (en) Control method of lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4068268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees