JP2008286588A - 位置検知装置 - Google Patents

位置検知装置 Download PDF

Info

Publication number
JP2008286588A
JP2008286588A JP2007130462A JP2007130462A JP2008286588A JP 2008286588 A JP2008286588 A JP 2008286588A JP 2007130462 A JP2007130462 A JP 2007130462A JP 2007130462 A JP2007130462 A JP 2007130462A JP 2008286588 A JP2008286588 A JP 2008286588A
Authority
JP
Japan
Prior art keywords
magnet
detector
center
detection device
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007130462A
Other languages
English (en)
Other versions
JP4832358B2 (ja
Inventor
Tsutomu Takeya
努 竹谷
Takashi Noguchi
貴史 野口
Takashi Onodera
孝志 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007130462A priority Critical patent/JP4832358B2/ja
Priority to US12/035,824 priority patent/US7969145B2/en
Publication of JP2008286588A publication Critical patent/JP2008286588A/ja
Application granted granted Critical
Publication of JP4832358B2 publication Critical patent/JP4832358B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】 磁石とこの磁石に対向して移動する検知器を用いて、位置検知を正確にできるようにした磁気抵抗効果素子を用いた位置検知装置を提供する。
【解決手段】 磁石2の円形の表面2aがN極に着磁され、背面2bがS極に着磁されている。検知器10は、磁石2の表面2aから離れた位置でX−Y平面内で移動する。検知器10内にはX方向検知素子20xとY方向検知素子20yが設けられている。X方向検知素子20xとY方向検知素子20yは、それぞれ磁気抵抗効果素子である。磁石2の表面2aを中心Oが突出するテーパ形状とすることにより、X方向検知素子20xとY方向検知素子20yとで、中心Oからの距離を正確に得ることができる。
【選択図】図7

Description

本発明は、磁気抵抗効果素子と磁石とを使用して、平面内での可動部の位置を知ることができる位置検知装置に関する。
以下の特許文献1ないし3には、磁石と、この磁石から発せられた磁界を検知する検知器を使用した位置検知装置が開示されている。
これら文献に記載された位置検知装置は、いずれも、検知器にホール素子などの磁界の強度を検知できる素子が設けられており、磁石の表面から発せられる磁界のうちの前記表面に直交する向きの磁界の強度を前記検知器で検知することにより、磁石と検知器との対向位置を知ろうとしている。
以下の特許文献4には、円形の磁石が移動するときに、この磁石から発せられる磁界を検知する磁気センサが開示されている。この磁気センサには、4個の巨大磁気抵抗効果素子が設けられ、そのうちの2個の巨大磁気抵抗効果素子で磁石から出る磁束のX方向の成分が検知され、他の2個の巨大磁気抵抗効果素子で磁石から出る磁束のY方向の成分が検知される。そして、磁束のX方向の成分を検知する2個の巨大磁気抵抗効果素子の抵抗値の変化の差を求め、磁束のY方向の成分を検知する2個の巨大抵抗磁気効果素子の抵抗値の変化の差を求めることで、磁石の位置を認識しようとしている。
特開2005−331401号公報 特開2005−69744号公報 特開2004−69695号公報 特開2006−276983号公報
前記各特許文献に記載された位置検知装置は、いずれも磁石の表面が平坦面であり、ホール素子や巨大磁気抵抗効果素子などの検知素子を搭載した検知器は、前記磁石の表面に一定の距離を空けて、磁石の表面と平行な平面内を移動する。しかしながら、磁石の表面から発せられる磁界の強度を前記検知器で検知するときに、その検知出力は、必ずしも磁石の中心から端部に向かうにしたがって一次関数で変化するものではない。そのために、検知器からの検知出力によって、検知器と磁石との対向位置を計測する精度に限界がある。
また、磁石の表面に対向する検知器を、磁石の中心を含む狭い範囲内で移動させる場合には、磁石の中心からの距離に比例した検知出力を得やすいが、磁石の中心から離れた位置では、磁界の強度の変化量が大きくなる。よって、検知器を磁石の中心から離れた広い範囲まで移動させてその移動位置を検知する際の精度にも限界がある。
本発明は上記従来の課題を解決するものであり、磁石と検知器とを使用して、磁石の表面の中心を含む広い領域内で、磁石と検知器との対向位置を高精度に知ることができる磁気抵抗効果素子を使用した位置検知装置を提供することを目的としている。
本発明は、固定部と、この固定部に対向して移動する可動部とを有し、前記固定部と前記可動部の一方に磁石が、他方に前記磁石から発せられた磁界を検知する検知器が設けられた位置検知装置において、
前記磁石は、前記検知器が対向する表面を有し、前記表面と裏側部分とが互いに異なる磁極に着磁されており、
前記検知器には、前記磁石の表面から発せられて磁石の端部に向かう磁束の水平成分を検知する検知素子が搭載されており、
前記磁石の表面と前記検知器との間隔が、磁石の中心から磁石の端部に向かうにしたがって徐々に広がることを特徴とするものである。
本発明の位置検知装置では、磁石と検知器との対向間隔が、磁石の中心から磁石の端部に向かうにしたがって徐々に広くなるため、前記検知器内の検知素子で磁界の水平成分の強度を検知するときに、その水平成分の強度が磁石の中心からの距離の比例値に近似しやすくなる。そのため、磁石と検知器との対向位置が磁石の中心から離れた場所においても、その対向位置を精度良く検知できるようになる。
例えば、本発明は、前記検知器には、前記磁束の水平成分のうちのX方向成分を検知するX方向検知素子と、前記X方向成分と直交するY方向成分を検知するY方向検知素子とが搭載されているものである。
この場合に、前記磁石の表面は円形であり、前記磁石の中心から磁石の端部に向かって、どの方向であっても、前記端部に向かうにしたがって、前記磁石の表面と前記検知器との間隔が徐々に広がるものとして構成できる。
また、本発明は、前記磁石の表面は、磁石の中心が磁石の端部よりも前記検知器に向かって突出する形状であり、前記可動部は、平面内で移動するものである。
また、本発明は、前記磁石を前記中心を通る面で切断した断面図では、前記表面と前記面との交線が直線状に傾斜している簡単な構造で実現できる。
なお、本発明では、磁石の表面が平坦面であり、検知器が磁石の中心から離れるにしたがって、磁石の表面と検知器との対向間隔が徐々に広がるように、可動部を案内する案内機構を設けてもよい。
本発明は、磁石と検知器との対向位置が磁石の中心から離れたときに、検知器からの出力が、磁石の中心からの距離の一次関数に近似した値になりやすい。よって、検知器からの検知出力により、前記対向位置を高精度に把握できるようになる。また、磁石と検知器とを対向させる測定範囲を、磁石を中心とした広い範囲に設定しても、検知器からの検知出力により、磁石と検知器との対向位置を精度よく判断できるようになる。
図1は位置検知装置1を示す斜視図である。
位置検知装置1は、磁石2とこの磁石2に対向する検知器10を有している。磁石2は、表面2aと裏側部分に位置する背面2bとを有している。図1および図3などに示すX0軸とY0軸は直交座標を意味している。X0軸とY軸0を含む面と平行な面が移動平面であり、磁石2が前記移動平面内においてX−Y座標内の任意の位置へ移動する。あるいは、磁石2が固定されて、前記検知器10が、移動平面内においてX−Y座標内の任意の位置へ移動する。
以下では、磁石の厚み方向が、磁石2の表面2aに対する垂線であり、この垂線と直交する面が水平面である。前記移動平面は、水平面と平行な面であり、磁石2が円形である場合、磁石2の端部(外周縁)2cのどの位置であっても、磁石2の端部2cの表面と移動平面との間隔が均一である。
位置検知装置1は小型精密機器の内部に実装される。小型精密機器には、固定部と可動部とが設けられている。可動部は、X方向への駆動力を発揮する磁気駆動アクチュエータと、Y方向への駆動力を発揮する磁気駆動アクチュエータとで、X−Y座標内で移動させられる。固定部と可動部の一方に磁石2が他方に検知器10が設けられる。前記各磁気駆動アクチュエータによって移動させられる可動部の位置が、位置検知装置1によって検知される。位置検知装置1から得られる位置検知出力を制御部で監視することで、可動部の移動位置を高精度に認識しながら駆動できるようになる。
この実施の形態では、磁石2が固定部に設けられ、検知器10が可動部に搭載されているものとして説明する。ただし、前述のように、磁石2が可動部に搭載され、検知器10が固定部に設置されてもよい。
磁石2の表面2aと背面2bは円形であり、各図では、円の中心すなわち磁石2の中心を「O」で示している。直交座標のX0軸とY0軸との交点と、前記磁石の中心Oは、磁石2の表面2aから延びる同じ垂線上に位置している。図1に示すように、磁石2は表面2aがN極に着磁され、背面2bがS極に着磁されており、磁力線は、表面2aの全域から出て背面2bの全域に向かう。前記検知器10は、前記表面2aから所定の高さZhだけ離れた位置で、X0軸とY0軸を含む面と平行な移動平面内を移動する。ただし、検知器10がS極に着磁された背面2bに対向し、この背面2bから離れた位置で移動するものであってもよい。
図1では、磁石2のN極の表面2aから出て背面2bのS極に向かう磁力線のうちのX0軸上に位置する磁力線のみを破線で示している。図2は、磁石2の表面2aおよび背面2bの双方が平坦面で、磁石2の厚さ寸法が全ての位置で同じである場合において、X0軸上の各位置における磁界の水平方向の成分の強度変化を示している。図2の横軸は、磁石2の中心Oからの距離を示し、縦軸は、X0軸上の各位置におけるX方向成分の磁束密度Hx(mT)を示している。この磁束密度Hxは、X−Y平面内に向くベクトル値である。
磁石2の中心Oにおいては、理論上は、磁力線の向きはX−Y平面と垂直であり、中心Oでは、X−Y平面に向かう磁界の成分の磁束密度がゼロである。そして、磁石2の表面2aでは、中心Oから半径方向へ離れるにしたがって、垂線に対する磁力線の傾きが徐々に大きくなり、磁石2の表面2aから発せられる磁界のX方向成分の磁束密度Hxは、中心Oから離れるにしたがって大きくなる。
図2では、磁石2の表面2aが円形の平坦面で、その直径が6mmであり、磁石2の厚さが1mmである場合で、且つ磁石2の表面2aからの高さZhが、1.5mm、1.0mm、0.5mmの位置での、磁界のX方向成分の磁束密度Hxをそれぞれ示している。Zh=1.5mmでのX方向成分の磁束密度Hxの変化を示しているのが曲線(i)であり、Zh=1.0mmのときのX方向成分の磁束密度Hxの変化を示しているのが曲線(ii)であり、Zh=0.5mmのときのX方向成分の磁束密度Hxの変化を示しているのが曲線(iii)である。また、図2では、磁界のX(+)方向の成分の磁束密度Hxを正の符号で示し、X(−)方向の成分の磁束密度Hxを負の符号で示している。
磁石2の表面2aにおいて、中心Oを挟んでX方向での+Hrと−Hrの範囲が、検知器10が対向して移動する検知領域として使用される。+Hrと−Hrの範囲は、磁石の直径や磁界の強度などによって相違するが、直径が5mm以上または6mm以上であれば、+Hrが+2mmで、−Hrが−2mmの範囲である。
図5(A)は、表面2aが円形で平坦面の磁石2の場合であって、表面2aからの高さZhが1.5mmで且つ中心Oを通って前記表面2aと平行な線上で測定した水平方向成分の磁束密度を、+Hrが+2mmで−Hrが−2mmの範囲内においてさらに詳しく示している。図5(A)では、直径が10mmで厚みが1.5mmの磁石における前記線上での水平方向成分の磁束密度の変化をa1で示し、直径が10mmで厚みが1.0mmの磁石における前記水平方向成分の磁束密度の変化をa2で示している。
図5(B)は、図4に示す磁石2の表面2aにおける水平方向成分の磁束密度の変化を示している。図4に示す磁石2は、その表面2aにおいて、中心Oから端部2cにかけて、その厚みが徐々に小さくなるように、円錐状のテーパ面が形成されている。図5(B)は中心Oを通って前記表面2aと平行な線Lh上で測定した磁界の水平方向成分の磁束密度の変化を示している。磁石2の中心から前記線Lhまでの高さ寸法Zhは1.5mmである。直径D=10mm、厚みT=1.5mm、表面2aの傾斜面の段差S=0.1mmのときの水平方向成分の磁束密度の変化をb1で示し、直径D=10mm、厚みT=1.0mm、表面2aの傾斜面の段差S=0.1mmのときの水平方向成分の磁束密度の変化をb2で示している。
図5(A)(B)を比較すると、図4に示すように、磁石2の表面に中心Oが一番高い位置となるテーパ面が形成されていると、+Hrから−Hr(+2mmから−2mm)の範囲内において、水平成分の磁束密度が、中心Oからの距離のほぼ一次関数で変化することが解る。
図6(A)は、表面2aが円形の平坦面の磁石2を使用し、表面2aからの高さZhが1.5mmの位置で且つ中心Oを通る水平線上で測定した磁界の水平方向成分の磁束密度の変化を、+Hrが+2mmで−Hrが−2mmの範囲で示している。図6(A)では、直径が6mmで厚みが1.0mmの磁石における水平方向成分の磁束密度の変化をd1で示し、直径が6mmで厚みが1.5mmの磁石における水平方向成分の磁束密度の変化をd2で示している。
図6(B)は、図4に示す磁石2において、Zh=1.5mmの位置で中心O上を通過する水平な線Lh上での水平成分の磁束密度の変化を示している。磁石2が、直径D=6mm、厚みT=1.0mm、段差S=0.1mmである場合の、水平成分の磁束密度の変化をe1で示している。また、磁石2が、直径D=6mm、厚みT=1.5mm、段差S=0.1mmである場合の、前記水平成分の磁束密度の変化をe2で示している。
図6(B)においても、図4に示すように、磁石2の表面2aにおいて、中心Oが一番高い位置となるテーパ面を形成すると、+Hrから−Hr(+2mmから−2mm)の範囲内において、水平成分の磁束密度が、中心Oからの距離にほぼ比例することが解る。
図2に示されるように、磁石2の表面2aから一定の距離Zhだけ離れた位置で中心Oを通る線上では、中心Oから−1mmから+1mm程度の領域内では、水平成分の磁束密度がほぼ中心Oからの距離すなわち半径に比例する。しかし、中心Oから−Hr(−2mm)に近づくにつれて、また中心Oから+Hr(+2mm)に近づくにつれて、水平方向成分の磁束密度の増加度が上昇していく。そのため、この磁束密度の増加度を相殺するように、中心Oから−Hrに近づくにつれて、また中心Oから+Hrに近づくにつれて、水平線Lhと磁石2の表面2aとの距離を徐々に離すことで、図5(B)および図6(B)に示すように、水平方向成分の磁束密度が、中心Oからの距離の一次関数に近似した変化で増加できるようになる。
図5(B)と図6(B)の結果から、磁石2の直径が5mm以上で好ましくは6mm以上、磁石の厚みは0.8mm以上で好ましくは1.0mm以上で、好ましくは1.5mm以下であり、磁石2の半径に対するテーパ面の段差Sの比(2S/D)は、0.1/5以上で0.1/3以下が好ましい。
また、磁石2の半径に対するテーパ面の段差Sの比(2S/D)が前記範囲内であれば、中心Oを通る垂直切断面と表面2aのテーパ面との交線が、必ずしも図4に示すような直線である必要はなく、前記交線が湾曲線であってもよい。
図5(B)および図6(B)に示すように、前記+Hrから−Hrの範囲において、磁石2の表面と平行な移動平面に沿う向きの磁束密度が、磁石の中心からの半径に比例して一次関数で変化すると、磁石2の表面2aでのX方向成分の磁束密度とY方向成分の磁束密度を測定することで、検知器10と磁石2との対向位置をX−Y座標上で検出できるようになる。
図3では、X0軸とY0軸が磁石2の中心Oで交叉している。また、X0軸とY0軸以外の任意の軸であって中心Oを通過する直線である任意の放射軸をαで示している。磁石2の表面2aは円形であり、磁石2の表面2aから発せられる磁界のうちの放射軸α上においてα方向に向く成分の磁束密度Hαの変化は、X0軸上での磁界のX方向成分の磁束密度Hxの変化、およびY0軸上での磁界のY方向成分の磁束密度Hyの変化と同じ比率で、ほぼ一次関数で変化する。
図3では、磁石2の表面2aにおいて、X0軸と平行で、Y0軸上の位置Y1を通過する線をLで示している。Y0軸上において中心Oから位置Y1までの距離は半径ryである。前記放射軸αと前記線Lとの交点をYαとしたときに、中心Oから交点Yαまでの距離は半径rαである。
位置Y1における磁界のY方向成分の強度をHy0とし、交点Yαにおける磁界のα方向成分の強度をHαとする。中心Oからの半径が−Hrから+Hrの範囲であれば、水平方向成分の磁束密度Hy0は半径ryにほぼ比例し、磁束密度Hαも半径rαにほぼ比例する。また、Y0軸上において位置が変化したときの前記磁束密度Hy0の比例定数と、放射軸α上において位置が変化したときの前記磁束密度Hαの比例定数とが同じであり、比例定数は一次関数である。この一次関数の比例定数をaとすると、磁束密度Hy0=a・ryであり、磁束密度Hα=a・rαである。
Y0軸と放射軸αとの成す角度をθとすると、交点Yαでの磁界のY方向成分の磁束密度Hyは、Hy=Hα・cosθ=a・rα・cosθである。ここで、rα・cosθ=ryであるから、Hy=a・ry=Hy0である。
つまり、中心Oからの半径が−Hrから+Hrの範囲であれば、X0軸と平行な線上のどの位置であっても、磁界のY方向の成分の磁束密度Hyが同じであり、Y0軸と平行な線上のどの位置であっても、磁界のX方向の成分の磁束密度Hxが同じである。
図7に示すように、前記検知器10内には、X方向検知素子20xとY方向検知素子20yとが搭載されている。X方向検知素子20xとY方向検知素子20yは、磁気抵抗効果素子であり、その寸法は図7に示すものよりも十分に小さく、X方向検知素子20xとY方向検知素子20yとの距離も微小である。よって、X方向検知素子20xとY方向検知素子20yとが搭載された検知器10を、磁石2の表面2aと平行なX−Y平面内で移動させるときに、X−Y座標上でのX方向検知素子20xの座標位置とY方向検知素子20yの座標位置は、ほぼ同じ位置として見ることができる。
したがって、前記検知器10を水平面内で移動させ、X方向検知素子20xで、磁界のX方向の成分の磁束密度Hdxを検知し、Y方向検知素子20yで、磁界のY方向の成分の磁束密度Hdyを検知することにより、X−Y座標上での検知器10と磁石2との対面位置を知ることができる。
また、X方向検知素子20xは、磁界のX方向の成分の正負の方向を判別でき、Y方向検知素子20yは、磁界のY方向の成分の正負の方向を判別できる。したがって、検知器10が磁石2の表面2aに対向している位置が、磁石2の中心Oに対して(+)X側の位置であるか、(−)X側の位置であるかを検知でき、また前記対向位置が、中心Oに対して(+)Y側の位置であるか、(−)Y側の位置であるかを検知できる。
図8(A)は、前記X方向検知素子20x、および前記Y方向検知素子20yとして使用される磁気抵抗効果素子20を示している。
この磁気抵抗効果素子20は、複数の素子部21が互いに平行に形成され、個々の素子部21の前後端部は、接続電極28,29によって2個ずつ接続されている。さらに、図示上下両端部に位置する素子部21には引き出し電極31,32が接続されている。よって、各素子部21は直列に接続され、ミアンダ型パターンが構成されている。図8(A)では、素子部21の幾何学的な中心をOaで示している。
図9の断面図に示すように、個々の素子部21は、基板22の上に、反強磁性層23、固定磁性層24、非磁性導電層25、および自由磁性層26の順に積層されて成膜され、自由磁性層26の表面が保護層27で覆われている。
反強磁性層23は、Ir−Mn合金(イリジウム−マンガン合金)などの反強磁性材料で形成されている。固定磁性層24はCo−Fe合金(コバルト−鉄合金)などの軟磁性材料で形成されている。非磁性導電層25はCu(銅)などである。自由磁性層26は、Ni−Fe合金(ニッケル−鉄合金)などの軟磁性材料で形成されている。保護層27はTa(タンタル)の層である。
素子部21では、反強磁性層23と固定磁性層24との反強磁性結合により、固定磁性層24の磁化の方向が固定されている。図8(B)に示すように、個々の素子部21では、固定磁性層24の固定磁化の方向(P方向)が、素子部21の長手方向と直交している。
図8(A)に示すように、磁気抵抗効果素子20は、右側にマグネット33が左側にマグネット34が設けられて、各素子部21に対し長手方向と平行な向きにバイアス磁界が与えられており、このバイアス磁界により自由磁性層26の磁化がB方向に向けられて短磁区化されている。図8(B)に実線で示すように、固定磁性層24の磁化の固定方向(P方向)と平行な向きに作用する外部磁界の強度Hがゼロのとき、自由磁性層26内の磁化方向はバイアス磁界の作用方向Bに向けられている。つまり、自由磁性層26の磁化方向と固定磁性層24の固定磁化の方向(P方向)とが直交している。
磁気抵抗効果素子20は、固定磁性層24の固定磁化の方向(P方向)と、自由磁性層26の磁化の方向との関係で電気抵抗が変化する。磁気抵抗効果素子20の素子部21に対して、図8(B)の図示上方(固定方向Pと平行な(+)方向)への外部磁界(+)Hが与えられると、バイアス磁界が作用している自由磁性層26内の磁化の向きが(+)方向へ傾く。このとき、自由磁性層26内の磁化の向きと固定磁性層24の固定磁化の方向(P方向)との相対角度が小さくなるにしたがって、電気抵抗が小さくなる。これとは逆に、図8(B)の図示下方(固定方向Pと平行な(−)方向)へ外部磁界(−)Hが与えられると、バイアス磁界が作用している自由磁性層26内の磁化の向きが(−)方向へ傾く。この傾きが大きくなるにしたがって、自由磁性層26内の磁化の向きと固定磁性層24の固定磁化の方向(P方向)との相対角度が増大し、電気抵抗が大きくなる。
図7に示すように、検知器10内に設けられたX方向検知素子20xは、前記磁気抵抗効果素子20と同じ構造であり、図8(A)に示す幾何学的中心Oaが、磁石2の表面2aからの高さZh=0.5〜1.5mmの範囲で対向している。また、Y方向検知素子20yも、前記磁気抵抗効果素子20と同じであり、その幾何学的中心Oaが、磁石2の表面2aからの高さZh=0.5〜1.5mmの範囲で対向している。
図7に示すように、X方向検知素子20xは、素子部21の固定磁性層24の固定磁化の方向(P方向)が(+)X方向へ向けられ、バイアス方向(B方向)が(+)Z方向すなわちX−Y平面に対して垂直で上方に向けられている。また、Y方向検知素子20yは、素子部21の固定磁性層24の固定磁化の方向(P方向)が(+)Y方向へ向けられ、バイアス方向(B方向)が(+)Z方向すなわちX−Y平面に対して垂直で上方に向けられている。よって、X方向検知素子20xとY方向検知素子20yとでは、固定磁性層24の固定磁化の方向(P方向)がX−Y平面内で互いに直交している。
図10は、検知器10内において、X方向検知素子20xの抵抗変化を検出する検知回路の一例を示している。この検知回路では、X方向検知素子20xと固定抵抗素子35とが直列に接続され、直列に接続されてX方向検知素子20xと固定抵抗素子35とに定電圧の直流である電源電圧Vccが与えられている。そして、X方向検知素子20xと固定抵抗素子35との中間点36が、X方向検知素子20xの抵抗値の変化に基づく検知出力の出力部となっている。外部磁界が与えられていないときのX方向検知素子20xの電気抵抗値と、固定抵抗素子35の抵抗値は同じである。
検知器10が、磁石2の中心Oよりも(+)X側に移動すると、X方向検知素子20xにおいて自由磁性層26の磁化の向きが(+)X方向へ向けて傾くために、X方向検知素子20xの電気抵抗が徐々に小さくなる。よって、図10に示す中間点36の電位は、Vcc/2よりも高くなる。逆に、検知器10が、磁石2の中心Oよりも(−)X方向へ移動すると、X方向検知素子20xにおいて自由磁性層26の磁化の向きが(−)X方向へ傾くために、X方向検知素子20xの電気抵抗が大きくなる。そのため、図10に示す中間点36の電位は、Vcc/2よりも低くなる。このように、中間点36の電位を検知することにより、検知器10が、磁石2の中心Oよりも(+)X側へどの距離だけ移動したか、(−)X側へどの距離だけ移動したかを検知できる。
検知器10では、Y方向検知素子20yも、図10に示すのと同様に、固定抵抗素子35が直列に接続されて、外部磁界が作用していないときに、中間点36の電位がVcc/2に設定されている。そして、検知器10が磁石2の中心Oを超えて(+)Y方向へ移動するにしたがって、中間点36の電位がVcc/2よりも高くなり、検知器10が磁石2の中心Oを超えて(−)Y方向へ移動するにしたがって、中間点36の電位がVcc/2よりも低くなる。よって、Y方向検知素子20yと固定抵抗素子35との中間点36の電位を検出することで、検知器10が、磁石2の中心Oよりも(+)Y側へどの距離だけ移動したか、(−)Y側へどの距離だけ移動したかを検知できる。
図11は、本発明の第2の実施の形態の検知器110を示している。
この検知器110には、図8に示したのと同じ構造の磁気抵抗効果素子20がX方向検知素子120xと、Y方向検知素子120yとして搭載されている。X方向検知素子120xは、固定磁性層24の固定磁化の向き(P方向)がX方向であり、自由磁性層26に与えられているバイアス磁界の向き(B方向)がY方向である。また、Y方向検知素子120yは、固定磁性層24の固定磁化の向き(P方向)がY方向であり、自由磁性層26に与えられているバイアス磁界の向き(B方向)がX方向である。
図11に示す検知器110においても、磁石2の中心Oを超えて(+)X方向へ移動すると、X方向検知素子120xの自由磁性層26の磁化の向きが(+)X方向へ倒れてX方向検知素子120xの電気抵抗が下がる。磁石2の中心Oを超えて(−)X方向へ移動すると、X方向検知素子120xの磁気抵抗が大きくなる。よって、図10に示すように、X方向検知素子120xに固定抵抗素子35を直列に接続して電源電圧Vccを与える回路を構成し、中間点36の電位を検知することで、検知器120と磁石2との対向位置のX座標上の位置を知ることができる。これはY方向検知素子120yにおいても同じである。
なお、本発明は、検知器にX方向検知素子20xのみが搭載され、X方向への移動位置のみを検知するもの、またはY方向への移動位置のみを検知するものであってもよい。この場合に、磁石は、X方向またはY方向に細長の長方形であってもよい。この構成では、X方向への移動位置やY方向への移動位置を検知するリニアセンサとして機能できる。
また、磁石2の表面が平坦面であり、検知器10が磁石2の中心Oから半径方向に移動するにつれて、検知器10と磁石2の表面2aとの距離が徐々に広がるように、検知器10の移動を案内する案内機構を構成してもよい。
位置検知装置の構成を示す斜視図、 磁石の表面と平行に延びるX0軸上の水平成分の磁束密度Hxの変化を示す線図、 磁石の平面図、 本発明の実施の形態の位置検知装置に使用される磁石の側面図、 (A)は、表面が平坦面な磁石において、前記表面と平行に延びる線上の水平成分の磁束密度の変化を示す線図、(B)は、図4に示す磁石において、前記表面と平行に延びる線上の水平成分の磁束密度の変化を示す線図、 (A)は、表面が平坦面な磁石において、前記表面と平行に延びる線上の水平成分の磁束密度の変化を示す線図、(B)は、図4に示す磁石において、前記表面と平行に延びる線上の水平成分の磁束密度の変化を示す線図、 本発明の実施の形態の検知器に搭載されているX方向検知素子およびY方向検知素子と、磁石との位置関係を示す斜視図、 (A)は磁気抵抗効果素子の構造を示す平面図、(B)は磁気抵抗効果素子の固定磁性層の磁化方向と、バイアス磁界の方向を示す説明図、 磁気抵抗効果素子の素子部の断面図、 検知器の回路構成の一例を示す回路図、 本発明の他の実施の形態の検知器の説明図、
符号の説明
1 位置検知装置
2 磁石
2a 表面
2c 端部
10 検知器
20 磁気抵抗効果素子
20x X方向検知素子
20y Y方向検知素子
21 素子部
22 基板
23 反強磁性層
24 固定磁性層
25 非磁性導電層
26 自由磁性層
B バイアス磁界の方向
P 固定磁性層の固定磁化の方向
O 磁石の中心

Claims (7)

  1. 固定部と、この固定部に対向して移動する可動部とを有し、前記固定部と前記可動部の一方に磁石が、他方に前記磁石から発せられた磁界を検知する検知器が設けられた位置検知装置において、
    前記磁石は、前記検知器が対向する表面を有し、前記表面と裏側部分とが互いに異なる磁極に着磁されており、
    前記検知器には、前記磁石の表面から発せられて磁石の端部に向かう磁束の水平成分を検知する検知素子が搭載されており、
    前記磁石の表面と前記検知器との間隔が、磁石の中心から磁石の端部に向かうにしたがって徐々に広がることを特徴とする位置検知装置。
  2. 前記検知器には、前記磁束の水平成分のうちのX方向成分を検知するX方向検知素子と、前記X方向成分と直交するY方向成分を検知するY方向検知素子とが搭載されている請求項1記載の位置検知装置。
  3. 前記磁石の表面は円形であり、前記磁石の中心から磁石の端部に向かって、どの方向であっても、前記端部に向かうにしたがって、前記磁石の表面と前記検知器との間隔が徐々に広がる請求項2記載の位置検知装置。
  4. 前記磁石の表面は、磁石の中心が磁石の端部よりも前記検知器に向かって突出する形状である請求項1ないし3のいずれかに記載の位置検知装置。
  5. 前記可動部は、平面内で移動する請求項4記載の位置検知装置。
  6. 前記磁石を前記中心を通る面で切断した断面図では、前記表面と前記面との交線が直線状に傾斜している請求項4または5記載の位置検知装置。
  7. 前記磁石の表面が平坦面であり、磁石の中心から離れるにしたがって前記検知器と磁石との距離が徐々に離れるように前記可動部を案内する案内機構が設けられている請求項1ないし3のいずれかに記載の位置検知装置。
JP2007130462A 2007-05-16 2007-05-16 位置検知装置 Active JP4832358B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007130462A JP4832358B2 (ja) 2007-05-16 2007-05-16 位置検知装置
US12/035,824 US7969145B2 (en) 2007-05-16 2008-02-22 Position detecting device with a magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130462A JP4832358B2 (ja) 2007-05-16 2007-05-16 位置検知装置

Publications (2)

Publication Number Publication Date
JP2008286588A true JP2008286588A (ja) 2008-11-27
JP4832358B2 JP4832358B2 (ja) 2011-12-07

Family

ID=40026866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130462A Active JP4832358B2 (ja) 2007-05-16 2007-05-16 位置検知装置

Country Status (2)

Country Link
US (1) US7969145B2 (ja)
JP (1) JP4832358B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266305A (ja) * 2009-05-14 2010-11-25 Alps Electric Co Ltd 磁気抵抗効果素子を用いた位置検知装置
WO2014083460A1 (en) * 2012-11-29 2014-06-05 International Business Machines Corporation Position sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768066B2 (ja) * 2007-03-20 2011-09-07 アルプス電気株式会社 磁気抵抗効果素子を用いた位置検知装置
JP2008249556A (ja) * 2007-03-30 2008-10-16 Tdk Corp 磁気センサ
WO2008139930A1 (ja) * 2007-05-16 2008-11-20 Alps Electric Co., Ltd. 磁気抵抗効果素子を用いた位置検知装置
US11773293B2 (en) 2017-11-15 2023-10-03 S. C. Johnson & Son, Inc. Freeze-thaw stable water-in-oil emulsion cleaner and/or polish compositions
US11846529B2 (en) 2021-04-19 2023-12-19 Joral Llc Magnetic rack and pinion linear magnetic encoder and position sensing system

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846654A (ja) * 1971-10-15 1973-07-03
JPS55122113A (en) * 1979-03-16 1980-09-19 Ricoh Co Ltd Position detector
JPS5821158A (ja) * 1981-07-30 1983-02-07 Denki Onkyo Co Ltd 多チヤネル磁気センサ
JPS6183910A (ja) * 1984-10-01 1986-04-28 Matsushita Electric Ind Co Ltd 検出装置
JPS61134601A (ja) * 1984-12-06 1986-06-21 Kokusan Denki Co Ltd 磁気形変位センサ
JPS61187415A (ja) * 1985-02-14 1986-08-21 Omron Tateisi Electronics Co 光電スイツチ
JPS62288518A (ja) * 1986-06-07 1987-12-15 Graphtec Corp 非接触変移検出器
JPS63231201A (ja) * 1987-03-19 1988-09-27 Fujitsu Ltd 漏洩磁界型リニアポジシヨナ
JPS646701A (en) * 1987-06-27 1989-01-11 Graphtec Kk Non-contact displacement detector
JPS649302A (en) * 1987-07-01 1989-01-12 Graphtec Kk Non-contact displacement detector
JPH02131614A (ja) * 1988-11-11 1990-05-21 Mitsubishi Electric Corp パルス発生装置
JPH03277901A (ja) * 1990-02-13 1991-12-09 Nkk Corp 磁気式変位計
JPH04278415A (ja) * 1991-03-07 1992-10-05 Fujitsu Ltd ポテンショメータ
JPH0821880A (ja) * 1994-07-07 1996-01-23 Nippon Autom Kk 磁性体検出機
JP2000500862A (ja) * 1995-11-14 2000-01-25 フィッシャー コントロールズ インターナショナル,インコーポレイテッド 磁気変位センサー
JP2000180114A (ja) * 1998-12-09 2000-06-30 Cts Corp テ―パ―付きの二極の磁石を用いる非接触式のポジションセンサ
JP2002005613A (ja) * 2000-06-15 2002-01-09 Yazaki Corp 回転角検知センサ
JP2002022485A (ja) * 2000-07-12 2002-01-23 Kayaba Ind Co Ltd 回転角度センサ
JP2003084007A (ja) * 2001-09-14 2003-03-19 Takechi Kogyo Gomu Co Ltd 回転方向検出装置
US6552532B1 (en) * 1998-07-24 2003-04-22 Next Corporation Displacement detector with relatively movable magnet and sensor
JP2003167627A (ja) * 2001-12-04 2003-06-13 Sanetec:Kk 位置検出センサ
US20030112006A1 (en) * 2001-12-14 2003-06-19 Luetzow Robert H. Magnetic position sensor having shaped pole pieces to provide a magnetic field having a varying magnetic flux density field strength
JP2004508562A (ja) * 2000-09-08 2004-03-18 シーティーエス・コーポレーション 非接触式線形位置センサ
US6992478B2 (en) * 2003-12-22 2006-01-31 Cts Corporation Combination hall effect position sensor and switch
JP2006276983A (ja) * 2005-03-28 2006-10-12 Yamaha Corp ポインティングデバイス用の磁気センサ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060370A (en) * 1960-02-23 1962-10-23 Gen Motors Corp Displacement transducer
US4395695A (en) * 1980-07-25 1983-07-26 Copal Company Limited Non-contact magnetic potentiometer
US5644228A (en) * 1993-08-31 1997-07-01 Eastman Kodak Company Permanent magnet assembly with MR and DC compensating bias
US5955881A (en) * 1994-10-18 1999-09-21 Cts Corporation Linkage position sensor having a magnet with two ramped sections for providing variable magnetic field
US6323641B1 (en) * 1999-05-13 2001-11-27 Cts Corporation Non-contacting position sensor with helical flux linkage
JP3597733B2 (ja) * 1999-08-09 2004-12-08 アルプス電気株式会社 磁気式変位検出装置
US6639399B2 (en) * 2001-02-06 2003-10-28 Delphi Technologies, Inc. Target wheel sensor assembly for determining position and direction of motion of a rotating target wheel
JP4169536B2 (ja) * 2002-06-26 2008-10-22 株式会社日本自動車部品総合研究所 アクチュエータ
JP4315759B2 (ja) 2002-07-25 2009-08-19 旭化成エレクトロニクス株式会社 ポインティングデバイス用磁気センサ
JP2005069744A (ja) 2003-08-21 2005-03-17 Hamamatsu Koden Kk 磁気検出素子
JP2005331401A (ja) 2004-05-20 2005-12-02 Konica Minolta Photo Imaging Inc 位置検出装置、手振れ補正機構及び撮像装置
JP4607049B2 (ja) * 2006-02-23 2011-01-05 株式会社デンソー 回転角検出装置

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846654A (ja) * 1971-10-15 1973-07-03
JPS55122113A (en) * 1979-03-16 1980-09-19 Ricoh Co Ltd Position detector
JPS5821158A (ja) * 1981-07-30 1983-02-07 Denki Onkyo Co Ltd 多チヤネル磁気センサ
JPS6183910A (ja) * 1984-10-01 1986-04-28 Matsushita Electric Ind Co Ltd 検出装置
JPS61134601A (ja) * 1984-12-06 1986-06-21 Kokusan Denki Co Ltd 磁気形変位センサ
JPS61187415A (ja) * 1985-02-14 1986-08-21 Omron Tateisi Electronics Co 光電スイツチ
JPS62288518A (ja) * 1986-06-07 1987-12-15 Graphtec Corp 非接触変移検出器
JPS63231201A (ja) * 1987-03-19 1988-09-27 Fujitsu Ltd 漏洩磁界型リニアポジシヨナ
JPS646701A (en) * 1987-06-27 1989-01-11 Graphtec Kk Non-contact displacement detector
JPS649302A (en) * 1987-07-01 1989-01-12 Graphtec Kk Non-contact displacement detector
JPH02131614A (ja) * 1988-11-11 1990-05-21 Mitsubishi Electric Corp パルス発生装置
JPH03277901A (ja) * 1990-02-13 1991-12-09 Nkk Corp 磁気式変位計
JPH04278415A (ja) * 1991-03-07 1992-10-05 Fujitsu Ltd ポテンショメータ
JPH0821880A (ja) * 1994-07-07 1996-01-23 Nippon Autom Kk 磁性体検出機
JP2000500862A (ja) * 1995-11-14 2000-01-25 フィッシャー コントロールズ インターナショナル,インコーポレイテッド 磁気変位センサー
US6552532B1 (en) * 1998-07-24 2003-04-22 Next Corporation Displacement detector with relatively movable magnet and sensor
JP2000180114A (ja) * 1998-12-09 2000-06-30 Cts Corp テ―パ―付きの二極の磁石を用いる非接触式のポジションセンサ
JP2002005613A (ja) * 2000-06-15 2002-01-09 Yazaki Corp 回転角検知センサ
JP2002022485A (ja) * 2000-07-12 2002-01-23 Kayaba Ind Co Ltd 回転角度センサ
JP2004508562A (ja) * 2000-09-08 2004-03-18 シーティーエス・コーポレーション 非接触式線形位置センサ
JP2003084007A (ja) * 2001-09-14 2003-03-19 Takechi Kogyo Gomu Co Ltd 回転方向検出装置
JP2003167627A (ja) * 2001-12-04 2003-06-13 Sanetec:Kk 位置検出センサ
US20030112006A1 (en) * 2001-12-14 2003-06-19 Luetzow Robert H. Magnetic position sensor having shaped pole pieces to provide a magnetic field having a varying magnetic flux density field strength
US6992478B2 (en) * 2003-12-22 2006-01-31 Cts Corporation Combination hall effect position sensor and switch
JP2006276983A (ja) * 2005-03-28 2006-10-12 Yamaha Corp ポインティングデバイス用の磁気センサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266305A (ja) * 2009-05-14 2010-11-25 Alps Electric Co Ltd 磁気抵抗効果素子を用いた位置検知装置
WO2014083460A1 (en) * 2012-11-29 2014-06-05 International Business Machines Corporation Position sensor
US9719804B2 (en) 2012-11-29 2017-08-01 International Business Machines Corporation Position sensor

Also Published As

Publication number Publication date
US7969145B2 (en) 2011-06-28
US20080284420A1 (en) 2008-11-20
JP4832358B2 (ja) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4768066B2 (ja) 磁気抵抗効果素子を用いた位置検知装置
US10989769B2 (en) Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern
US9644994B2 (en) Magnetic sensor
JP4832358B2 (ja) 位置検知装置
JP6220971B2 (ja) 多成分磁場センサー
EP1292029B1 (en) Magnetic switch capable of instantaneous switching of an output signal and magnetic sensor
US9279866B2 (en) Magnetic sensor
US20060038559A1 (en) Magnetically biased eddy current sensor
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
JP2009192261A (ja) 直線変位検出装置
CN106066461B (zh) 磁阻装置
JP2016170167A (ja) 磁気センサ
US20150145506A1 (en) Magnetic sensor
US7800356B2 (en) Position detection apparatus using magnetoresistive effect element
JP2008170273A (ja) 磁気抵抗効果素子を用いた位置検知装置
JP4639216B2 (ja) 磁気センサ
JP5497621B2 (ja) 回転角度検出装置
US20160131683A1 (en) Magnetic sensor and electrical current sensor using the same
JP2011007685A (ja) 磁気センサ
JP5191946B2 (ja) 磁気抵抗効果素子を用いた位置検知装置
JP6954327B2 (ja) 位置検出装置
JP5139196B2 (ja) 磁性体通過検出装置
JP2015155796A (ja) 電流センサ
JP2010009170A (ja) 平面ポインティングデバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Ref document number: 4832358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350