JP2008258325A - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
JP2008258325A
JP2008258325A JP2007097631A JP2007097631A JP2008258325A JP 2008258325 A JP2008258325 A JP 2008258325A JP 2007097631 A JP2007097631 A JP 2007097631A JP 2007097631 A JP2007097631 A JP 2007097631A JP 2008258325 A JP2008258325 A JP 2008258325A
Authority
JP
Japan
Prior art keywords
measurement
substrate
exposure apparatus
focus
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007097631A
Other languages
English (en)
Inventor
Satoru Oishi
哲 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007097631A priority Critical patent/JP2008258325A/ja
Publication of JP2008258325A publication Critical patent/JP2008258325A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】基板の表面位置の計測精度を向上させる。
【解決手段】原版からの光を投影する投影光学系を有し、投影光学系を介して基板を露光する露光装置であって、計測器と制御器とを有する。計測器は、基板に配されたショット内の計測点に関し、投影光学系の光軸の方向における基板の表面の位置を計測する。制御器は、計測点の複数の大きさそれぞれに関し、基板に配された複数のショットにおいて計測器に該表面の位置を計測させる。そして、計測器は、計測された位置に基づき、複数の大きさそれぞれに関して計測の再現性を示す指標を算出し、算出された指標に基づいて計測点の大きさを決定する。
【選択図】図1

Description

本発明は、露光装置に関する。
フォトリソグラフィー技術を用いて微細な半導体素子又は液晶表示素子を製造する際に、レチクル(マスク)に描画された回路パターンを投影光学系によって基板に投影して回路パターンを転写する投影露光装置が使用されている。投影露光装置においては、半導体素子の高集積化に伴い、より高い解像力でレチクルの回路パターンを基板に投影露光することが要求されている。投影露光装置で転写できる最小の寸法(解像度)は、露光に用いる光の波長に比例し、投影光学系の開口数(NA)に反比例する。したがって、波長を短くすればするほど解像力はよくなる。このため、近年の光源は、超高圧水銀ランプ(g線、i線)から波長の短いKrFエキシマレーザやArFエキシマレーザになり、液浸露光装置の実用化の検討も進んでいる。更に、露光領域の一層の拡大も要求されている。
これらの要求を達成するために、ステッパーに換わってスキャナーが主流になりつつある。ステッパーは、略正方形形状の露光領域を基板に縮小して一括露光するステップ・アンド・リピート方式の露光装置である。また、スキャナーは、露光領域を矩形のスリット形状としてレチクルと基板を相対的に高速走査し、大画面を精度よく露光するステップ・アンド・スキャン方式の露光装置である。
スキャナーでは、露光中に、基板の所定位置が露光スリット領域にさしかかる前にフォーカスチルト計測系により当該基板の所定位置における表面位置を計測し、その所定位置を露光する際には、基板表面を最適の露光結像位置に合わせ込む補正を行っている。また、基板の表面位置の高さ(フォーカス)だけではなく、表面の傾き(チルト)を計測するために、露光スリットの長手方向(走査方向と直交する方向)も含め、露光スリット領域内には複数の計測チャンネルを有している。このようなフォーカス及びチルトの計測方法は、特許文献1に記載されている。
従来のオフセットを計測する方法を、図2を用いて説明する。図2(a)は、基板40内のフォーカス計測のためのサンプルショット(図2(a)では8ショット)を示す。図2(b)は、サンプルショット内の計測チャンネルと計測点の一例を示す。図2(b)において、前記計測チャンネルの夫々には、平均化効果を目的として、不図示の複数の計測マークが配置されているものとする。基板40上の所定のサンプルショットに対して走査方向に所定の間隔(例えば1mm)で複数の計測マークによるフォーカス計測を行う。次に、サンプルショット内で、基準となる計測チャンネルの基準となる計測点でのフォーカス計測値から基準面を作成する。図2(c)に示すように、各計測点Pj(j=1、2、3、・・・、m)でのフォーカス計測値と基準面との差分をサンプルショットで平均したものを、各計測点Pjにおけるオフセットとして求める。当該オフセットを用いて、次の基板からのフォーカス計測値を補正して、基板の面位置(フォーカス及びチルト)を計測している。
特開平6−260391号公報
しかし、近年では露光光の短波長化及び投影光学系の高NA化が進み、焦点深度が極めて小さくなり、露光すべき基板表面を最良結像面に合わせ込む精度、いわゆるフォーカス精度もより厳しいものが求められてきている。特に、最近では基板上のパターンの粗密や基板に塗布されたレジストの厚さむらに起因する表面位置計測器の計測誤差が無視することができなくなってきている。
レジストの厚さむらに起因する計測誤差としては、周辺回路パターンやスクライブライン近傍には、焦点深度と比べれば小さいが、フォーカス計測にとっては大きな段差が発生している。このため、塗布されるレジスト表面の傾斜角度が大きくなり、表面位置計測器の計測する反射光が反射や屈折によって正反射角度からずれを生じ、計測誤差(オフセット)となる。
図3は、基板上のパターンの粗密に起因する計測誤差を示すものである。例えばパターンが粗な領域では基板の反射率が高く、パターンが密な領域では反射率が低いというように、基板の反射率に差が生じてしまう。このため、表面位置計測器により計測される反射光の反射強度が変化し、パターンの粗密のない場合の本来の信号波形Aに対して信号波形Bのように非対称性が発生し、例えば重心処理等の信号処理では計測誤差(オフセット)が生じる。
図4は、ある計測点における計測マークと、基板下地のパターンの位置関係とそれによって生じる計測誤差(オフセット)について示した図である。基板の下地のパターンと計測マークとの位置関係によっては、計測領域Aではオフセットが小さいが、計測領域Bでは大きなオフセットが生じるところまで計測領域が含まれている。さらに、反射率大と反射率小との境界には僅かな段差があり、レジストの塗布状態がサンプルショットによって異なるような場合にはサンプルショットによってオフセットが変化することが考えられる。
図5は、ある計測チャンネルにおける計測点に対する基準面からのオフセットを示した図である。図5において、オフセットのサンプルショット間のばらつきを上下の矢印で示してある。図5では、例えば、計測点P4でのオフセットが他の計測点に比べてばらつきが大きく、オフセットの安定性(再現性)に欠けていることがわかる。上記オフセットのばらつきが基板の平坦度の許容範囲より大きい場合には、計測点P4で求められたオフセットで補正しても、ショットによっては許容範囲以上のデフォーカスが生じてフォーカス精度が悪化する。その結果、CD(Critical Dimension,線幅)がその許容範囲から外れてしまう恐れがある。
本発明は、基板の表面位置の計測精度を向上させることを例示的目的とする。
本発明は、原版からの光を投影する投影光学系を有し、投影光学系を介して基板を露光する露光装置であって、基板に配されたショット内の計測点に関し、投影光学系の光軸の方向における基板の表面の位置を計測する計測器と、計測点の複数の大きさそれぞれに関し、基板に配された複数のショットにおいて計測器に表面の位置を計測させ、計測された位置に基づき、複数の大きさそれぞれに関して計測の再現性を示す指標を算出し、算出された指標に基づいて計測点の大きさを決定する制御器と、を有することを特徴とする。
本発明によれば、例えば、基板の表面位置の計測精度を向上させることができる。
以下、添付図面を参照しながら本発明の好適な実施形態を説明する。
[露光装置の実施形態]
図20は、本発明に係る半導体露光装置の全体的な構成を示す図である。露光装置1は、ステップ・アンド・スキャン方式でレチクル20に形成された回路パターンを基板40に露光する走査露光装置である。かかる露光装置1は、サブミクロンやクオーターミクロン以下のリソグラフィ工程に好適である。露光装置1は、照明装置10と、レチクル20を載置するレチクルステージ25と、投影光学系30と、基板40を保持し且つ移動する基板ステージ45と、フォーカスチルト計測系50と、アライメント計測系70と、制御器60とを有する。制御器60は、CPUやメモリを有し、照明装置10、レチクルステージ25、基板ステージ45、フォーカスチルト計測系50、アライメント計測系70と電気的に接続され、露光装置1の動作を制御する。
照明装置10は、転写用の回路パターンが形成されたレチクル20を照明し、光源部12と、照明光学系14とを有する。光源部12は、レーザ光を使用し、例えば、波長約193nmのArFエキシマレーザ、波長約248nmのKrFエキシマレーザなどを使用することができる。しかし、光源の種類はエキシマレーザに限定されず、波長約157nmのF2レーザや波長20nm以下のEUV(Extreme Ultraviolet)光を使用してもよい。
照明光学系14は、光源部12から射出した光束を用いて被照明面を照明する光学系であり、光束を露光に最適な所定の形状の露光スリットに成形し、レチクル20を照明する。照明光学系14は、レンズ、ミラー、オプティカルインテグレーター、絞り等を含み、例えば、コンデンサーレンズ、ハエの目レンズ、開口絞り、コンデンサーレンズ、スリット、結像光学系の順で配置する。照明光学系14は、軸上光、軸外光を問わず使用することができる。オプティカルインテグレーターは、ハエの目レンズや2組のシリンドリカルレンズアレイ(又はレンチキュラーレンズ)板を重ねることによって構成されるインテグレーターを含むが、光学ロッドや回折素子に置換される場合もある。
レチクル20は、例えば、石英製で、その上には転写されるべき回路パターンが形成され、レチクルステージ25に支持され、駆動されている。レチクル20から発せられた回折光は、投影光学系30を通り、基板40上に投影される。レチクル20と基板40とは、光学的に共役の関係に配置される。レチクル20と基板40を縮小倍率比の速度比で走査することによりレチクル20のパターンを基板40上に転写する。露光装置1には、不図示の光斜入射系のレチクル計測器が設けられており、レチクル20は、レチクル計測器によって位置が計測され、所定の位置に配置される。レチクルステージ25は、不図示のレチクルチャックを介してレチクル20を支持し、不図示の移動機構に接続されている。不図示の移動機構は、リニアモーター等で構成され、X軸方向、Y軸方向、Z軸方向及び各軸の回転方向にレチクルステージ25を駆動することでレチクル20を移動させることができる。投影光学系30は、物体面からの光束を像面に結像する機能を有し、レチクル20に形成されたパターンを経た回折光を基板40上に結像する。
基板40は、被処理体であり、フォトレジストが基板上に塗布されている。基板40は、アライメント計測系70及びフォーカスチルト計測系50が位置計測を行うための被計測体でもある。アライメント計測系70は、基板40のXY位置ずれを計測するためのものであり、図では露光投影光学系の光軸とは別の光軸上に配置されて非露光光を用いる、いわゆるオフアクシス方式を示している。基板ステージ45は、基板チャック46によって基板40を支持する。基板チャック46には、少なくとも3つ以上の基板チャックマークが配置されており、フォーカスチルト計測系50によってZ高さ情報を、アライメント計測系によってXY位置情報を得ることができる。基板ステージ45は、レチクルステージ25と同様に、リニアモーターを利用して、X軸方向、Y軸方向、Z軸方向及び各軸の回転方向に基板40及び基板チャック46を移動させる。また、レチクルステージ25の位置と基板ステージ45の位置は、例えば、レーザ干渉計などにより監視され、両ステージ25,45は一定の速度比率で駆動される。基板ステージ45は、例えば、ダンパを介して床等の上に支持されるステージ定盤上に設けられ、レチクルステージ25及び投影光学系30は、例えば、床等に載置されたベースフレーム上にダンパを介して支持される図示しない鏡筒定盤上に設けられる。
次に、図20の露光装置1におけるフォーカスチルト計測系50を説明する。フォーカスチルト計測系50は、光学的な計測器を用いて投影光学系30の光字句の方向における露光中の基板40の表面の位置(Z軸方向)の位置情報を計測する。投影光学系30を用いて基板40の表面に対して高入射角度で投影し、受光光学系を用いてフォーカス計測用のスリット状の計測マークの投影像をCCD等の光電変換素子に再結像させ、光電変換素子からの信号波形を用いて基板40の面位置を計測する。
スキャナーでは、フォーカスチルト計測系50が、基板の所定の位置が露光スリット領域に差し掛かる前に当該基板の所定の位置における表面位置を計測し、その所定の位置を露光する際には、基板表面を最適な露光結像位置に合わせ込む補正を行う。また、基板の表面位置の高さ(フォーカス)だけではなく、表面の傾き(チルト)を計測するために、露光スリットの長手方向(即ち、走査方向と直交する方向)も含め、露光スリット領域内には複数の計測チャンネルを有している。
[計測領域の最適化]
図1は、本発明のフォーカス計測方法の概要を説明するフロー図である。ステップ100において、制御器60は、フォーカスチルト計測系50が基板40上に設けられた複数のショット内の複数の計測点のそれぞれにおいて異なる計測領域で計測した計測結果である基板表面の位置情報を複数取得する。ステップ110において、制御器60は、まず、取得した複数の位置情報に基づいて、異なる計測領域のそれぞれについて基準面からのオフセットの指標(計測の再現性を示す指標)を算出する。ステップ120において、制御器60は、ステップ110で算出された、異なる計測領域でのオフセットの指標に基づいて、最適な計測領域を決定する。
本明細書において、「計測チャンネル」とは、非走査方向に配置されたCCD等の受光素子の計測部と定義し、「計測点」とは同一CCDにおける走査方向の計測地点と定義する。また、「計測領域」とは、フォーカス計測時に各計測点における計測マークが基板上を走査する際の走査方向の領域と定義する。以下、計測領域の最適化手法に関する実施形態を説明する。
[第1の実施形態]
図6は、計測領域の最適化に関する第1の実施形態を示すフロー図である。
ステップ200において先行基板を搬入する。ステップ210において、制御器60はフォーカス計測のための計測領域の初期設定を行う。ステップ220において、制御器60は、フォーカスチルト計測系50に基板のあるショットでフォーカス計測を行わせ、制御器60は計測した面位置情報を取得する。ステップ230において、制御器60は、設定したすべてのサンプルショットのフォーカス計測が終了していないと判断すれば、ステップS240において、制御器60は、フォーカスチルト計測系50にサンプルショットを変更してフォーカス計測を行わせる。ステップ250において、制御器60は、想定している計測領域のすべてのフォーカス計測が終了していないと判断すれば、ステップ260において計測領域を変更する。ステップ260における計測領域の変更方法について詳細を以下説明する。
図8は本実施形態における計測領域の一例を示した図であり、紙面下方向にステージが走査しているとする。図8の計測領域A1が初期計測領域であるとすると、計測領域A1とは異なる計測領域A2、A3、・・・、計測領域Akに順次変更していく。計測領域を変更する方法としては、(1)基板ステージの走査速度を変更する方法と、(2)CCDの蓄積時間を変更する方法とが挙げられるが、本実施形態では上記(1)及び(2)のいずれを変更してもよい。計測点はショット内の所定の位置として予め決定されていることが多い。計測領域によらずに計測点を一致させる場合には、CCD蓄積時間のタイミングを調整して、図8に示されるように、計測領域A1〜Akが所定の計測点に対して紙面上下方向に対称に変化させるようにすればよい。
図6に戻り、ステップ250において、制御器60は、全サンプルショットでA1からAkまでの全計測領域でフォーカス計測が終了していると判断すれば、ステップ270に進む。ステップ270において、制御器60は、それぞれの計測領域Aiにおける基準面からの差分をオフセットとして算出する。
図7はステップ270の詳細を示すフロー図である。ステップ300において、制御器60は、基準面を求めるための基準となる計測チャンネル及び基準となる計測点を指定する。例えば、本実施形態における基準となる計測チャンネルは図2(b)のch3であり、基準となる計測点は図2(b)のP3であるとする。ステップ310において、制御器60は、異なる計測領域のうちの一つの計測領域Aiを設定し、ステップ320において、計測領域Aiにおける基準面を算出する。具体的には、基準となる計測チャンネルch3に着目し、基準となる計測点P3で、指定した計測領域Aiにおけるフォーカス計測値をサンプルショット分(図2(a)では8ショット)取得する。取得した8ショット分のフォーカス計測値をもとに近似を行い基準面とする。なお、上記基準面は平面近似でもよいし、より詳細な基板の基準面を求めるために、高次の多項式を用いた曲面で近似してもよい。
ステップ330において、制御器60は、計測領域Aiにおいて、各計測チャンネルch1、ch2、・・・、chnの各計測点Pj(j=1,2・・・m)で、基準面からの差分をオフセットとしてサンプルショット分算出する。ステップ340において、制御器60は、全計測領域Aiでオフセットを算出したと判断しなければ、ステップ350において計測領域Aiを変更し、ステップ320に戻ることを繰り返す。制御器60(決定部62)は、図6のステップ270が終了したと判断すれば、ステップ280において、計測領域の最適化を行う。
図9は、ステップ280において、特定の計測点で計測領域の最適化を実施した例を示す図である。図9(a)は、図8(b)の計測領域A1、A2、・・・Akにおけるある計測チャンネルにおける計測点Pj(j=1,2・・・m)での基準面からのオフセットのサンプルショット間のばらつきを示した図である。このオフセットのサンプルショット間のばらつきは、計測の再現性を示す指標である。なお、図9(a)には所定のトレランスが記されている。このトレランスは基板プロセスのデザインルールによって決められる。このトレランスは、例えば、65nmNodeのW−CMPプロセスの場合では50nm、Cuのデュアルダマシンプロセスの場合では30nmというように規定できるものである。
図9(b)は、現行の計測領域A1におけるサンプルショット間ばらつきのうち、前記トレランスを超えている計測点P1及びP4について計測領域毎にプロットさせた図である。この例では、計測点P1については、計測領域A3のみでオフセットのサンプルショット間ばらつきが所定のトレランスよりも小さいことが示され、現行の計測領域A1の代わりに計測領域A3を最適な計測領域として設定すればよい。計測点P4については、複数の計測領域A3及びA4で所定のトレランスよりも小さいことが示されている。特に、オフセットのショット間ばらつきが小さいほどフォーカス精度は向上するという観点に立ち、ショット間ばらつき(計測の再現性を示す指標)が最小である計測領域A4を最適な計測領域として設定すればよい。
[第2の実施形態]
図10は、計測領域の最適化に関する第2の実施形態を示す図であり、全計測点で最適化を実施した図である。第2の実施形態は、各計測チャンネルに着目した場合に、CCDの蓄積時間は同一走査においては一定であるほうが望ましい、という場合に特に効果がある。図10(a)では、ある計測チャンネルにおいて、基板ステージの走査速度を一定にし、CCDの蓄積時間を複数設定することで得られた各計測領域A1、A2、・・・Akにおけるオフセットのサンプルショット間ばらつきを示す。なお、各計測領域Aiによらずに各計測点Pjが一致するために、CCDの蓄積開始時間のタイミングを調整している。図10(a)では、上述の基板プロセスのデザインルールによって決まる所定のトレランスが記されており、現行の計測領域A1においては、当該計測チャンネルにつきオフセットのサンプルショット間のばらつきの平均がトレランスを超えている。図10(b)は、現行の計測領域A1も含め、各計測領域毎にオフセットのサンプルショット間のばらつきの平均値(計測の再現性を示す指標の平均値)をプロットしたものを示す。この例では、図10(b)において、オフセットのサンプルショット間ばらつき(指標)の平均値が所定のトレランスよりも小さい計測領域A4を、当該計測チャンネルにおける全計測点で共通する最適な計測領域として設定すればよい。
[第3の実施形態]
図11は、第3の実施形態を示すフロー図である。第3の実施形態は、事前に最小単位の計測領域でフォーカス計測を実施しておき、それより長い計測領域でのフォーカス計測値を推定してから、その結果に基づいて計測領域を最適化する。ステップ200において、先行基板を搬入した後、ステップ215において、制御器60はフォーカス計測のための最小計測領域を設定する。ステップ220において最小計測領域のみで事前にフォーカス計測を実施し、ステップ250においてサンプルショットでのフォーカス計測が終了するまでステップ260でサンプルショットを移動することを繰り返す。続いて、ステップ265において、最小計測領域でのフォーカス計測値に基づいて各計測領域Aiにおけるフォーカス計測値を推測する。
図12は、第3の実施形態における計測領域を示す図であり、計測領域によらず計測点が一致している例である。図12を用いて、最小計測領域でのフォーカス計測値から各計測領域Aiでのフォーカス計測値を推定する手法を説明する。図12において、例えば計測領域A1は最小計測領域4つ分に相当しており、計測領域A2は最小計測領域6つ分に相当している。したがって、計測領域A1におけるフォーカス計測値は、A1に相当する最小計測領域4つのフォーカス計測値の積分によって求めることができる。また、計測領域A2におけるフォーカス計測値は、A2に相当する最小計測領域6つのフォーカス計測値の積分によって求めることができる。
次に、これまでの記載した実施形態と同様に、ステップ270において各計測領域における各計測チャンネル、各計測点でのオフセットの算出をし、ステップ280にて、計測領域の最適化を行えばよい。
[第4の実施形態]
図13は、第4の実施形態における計測領域Aiを示す図である。これまでの実施形態では、計測点Pjの位置が、計測領域Aiによって不変である場合について記載してきた。しかし、計測点Pjの位置は微小にずれていてもよい。図13は、例えば、ステージの走査速度は変えずに、CCD蓄積開始時間を一致させ、蓄積終了時間を変えた場合の図で、計測領域Aiは計測開始位置が一致しており、計測終了位置が異なっている。この場合、計測領域Aiの変化に伴って計測点が厳密には若干ずれることとなるが、計測終了位置付近のみの基板プロセスの影響をキャンセルさせるためには効果がある。
図14(a)は、ある計測チャンネルの現行の計測点Pjを示しており、図14(b)が本発明による計測領域の最適化によって求められた計測点Pj'及びオフセットである。特に、ツインステージの場合、計測ステーションにおいてフォーカス計測を詳細に行って事前に基板全体の平面度を取得し、露光ステーションにおいてステージの基準マークの高さ計測のみを行って露光スリットと基板との高さ制御を行っている。したがって、計測ステーションにおけるフォーカス計測時には計測点は必ずしも等間隔である必要はなく、本発明による計測領域の最適化が適用可能である。
図14(b)のように、計測点Pj'が不等間隔であるとする。そのような場合でも、当該計測点Pj'でのオフセットを算出した後に、図14(c)のように計測点Pj'でのフォーカス計測値に対してオフセット補正を行えば、計測点Pj'において許容範囲を超えるデフォーカが生じにくくなる。そして、露光ステーションと計測ステーションとの間で基板ステージのスワップ(交換)または移動が行われている間に、直線補間や3次スプライン補間のような統計的な手法により、露光制御に必要な基板の表面形状(高さ分布)を算出することが可能である。
[第5の実施形態]
図15は第5の実施形態における計測領域Aiを示す図である。図15は、第3の実施形態において、各計測領域でフォーカス計測の計測開始位置を一致させた場合に相当する。図15を用いて、最小計測領域でのフォーカス計測値から各計測領域Aiでのフォーカス計測値を推定することを説明する。図15において、例えば計測領域A1は最小計測領域3つ分に相当しており、計測領域A2は最小計測領域4つ分に相当している。したがって、計測領域A1におけるフォーカス計測値は、A1に相当する最小計測領域3つのフォーカス計測値の積分によって求めることができる。また、計測領域A2におけるフォーカス計測値は、A2に相当する最小計測領域4つのフォーカス計測値の積分によって求めることができる。
本発明の第5の実施形態も、計測点の位置が微小にずれる場合であるが、第4の実施形態と同様の最適化をツインステージの場合に適用すれば効果がある。
[第6の実施形態]
図16は第6の実施形態における計測領域Aiを示す図である。これまで記載した実施形態ではいずれも計測領域Aiの幅(以下、計測幅と呼ぶ)が変化している場合を記載してきたが、これに限らず、計測幅が一定の場合でも計測点を微小にずらすことにより、結果的に計測領域をずらすことが可能である。
図16は計測幅が一定であり、計測点をステージ走査方向に微小にずらして計測した計測領域の一例を示した図である。具体的には、ステージの走査速度やCCDのトータルの蓄積時間は変えずに、蓄積開始時間のタイミングを変えることによって実現が可能である。本実施形態では、特に各計測領域における計測点Pjの微小なずれに対応するために、図16に示すように計測領域Aiにおける計測点Pjに対してはPj(Ai)と記載して区別する。
図17(a)は、図16における計測領域Aiにおけるオフセットのサンプルショット間ばらつきを示した図である。ここで、計測点に関しては、計測領域A1、計測領域A2の計測点P1に対して、P1(A1)、P1(A2)のように区別をしている。図17(b)は、現行の計測領域A1に着目し、所定のトレランスを超える計測点P1について、異なる計測領域AiでのオフセットP1(A1)、P1(A2)、・・・P1(Ak)のサンプルショット間ばらつきを計測領域毎にプロットしたものである。図17(b)では、計測領域A3でサンプルショット間ばらつき(計測の再現性を示す指標)が所定のトレランスより小さいために、現行の計測領域A1の代わりに計測点P1では計測領域A3を選択すればよい。
[第7の実施形態]
第7の実施形態は、フォーカス計測領域の最適化の応用例を示した実施形態である。図18は、実際の露光の前に、フォーカス及び露光量を変えて露光条件出しを行う、いわゆるFEM(Focus Exposure Matrix)露光時に、計測領域の最適化手法を適用した場合のフロー図である。FEM露光時には、露光量を細かく振って設定する必要があるために、基板ステージの走査速度は実際の露光時よりも低速で行われることが多い。そこで、ステップ400では、本発明のフォーカス計測を低速の走査速度で実施して、計測領域の最適化を事前に行っておく。ステップ410において、FEM露光により露光条件を設定する。その後に、ステップ420において、ステップ400で最適化した計測領域を一致させるように、FEM露光時より高速な実際の露光での基板ステージの走査速度に対応したCCDの蓄積時間を設定する。ステップ430では設定したCCD蓄積時間を用いて実際の露光で用いる基板でフォーカス計測を行い、ステップ440にて露光処理を実施すればよい。
[第8の実施形態]
これまで記載した実施形態は、いずれも先行基板についてのみ計測領域の最適化を行う場合を記載してきたが、これに限らず実際の露光の途中でも露光すべき基板毎に計測領域の最適化を行ってもよい。図19は、第8の実施形態を示すフロー図である。まず、ステップ500で実際の露光すべき基板を搬入したあと、ステップ510にて所定のサンプルショットで、設定した計測領域でフォーカス計測を行い、オフセットのサンプルショット間のばらつきを取得する。ステップ530で、このばらつきが事前に設定した所定のトレランスより超えている場合には、ステップ540にて、再度計測領域の最適化を実施するというシーケンスも可能である。その後、ステップ550で露光処理を行い、ステップ560にて基板を搬出し、ステップ570ですべての基板が露光済みになるまで繰り返せばよい。
[デバイス製造の実施形態]
図21及び図22を参照して、上述の露光装置1を利用したデバイスの製造方法の実施例を説明する。図21は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)ではデバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスク(原版またはレチクルともいう)を製作する。ステップ3(ウエハ製造)ではシリコンなどの材料を用いてウエハ(基板ともいう)を製造する。ステップ4(基板プロセス)は前工程と呼ばれ、マスクと基板を用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
図22は、ステップ4の基板プロセスの詳細なフローチャートである。ステップ11(酸化)では、基板の表面を酸化させる。ステップ12(CVD)では、基板の表面に絶縁膜を形成する。ステップ13(電極形成)では、基板上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)では基板上にイオンを打ち込む。ステップ15(レジスト処理)では基板に感光剤を塗布する。ステップ16(露光)では、露光装置1を用い、マスクに形成されたパターンを介し基板を露光する。ステップ17(現像)では、露光した基板を現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって基板上に多重に回路パターンが形成される。
本発明の計測方法の概要を説明するフロー図。 オフセット計測方法を説明する図。 基板上のパターンの反射率差による計測誤差を説明する図。 計測領域におけるオフセットを説明した図。 各計測点におけるオフセットのショット間ばらつきを示した図。 第1の実施形態を示すフロー図。 第1の実施形態における基準面からのオフセットを算出する方法を示すフロー図。 第1の実施形態における計測領域の一例を示した図。 第1の実施形態における計測領域を最適化する手法を示した図。 第2の実施形態における計測領域を最適化する手法を示した図。 第3の実施形態を示すフロー図。 第3の実施形態における計測領域の一例を示した図。 第4の実施形態における計測領域の一例を示す図。 第4の実施形態を示した図。 第5の実施形態における計測領域の一例を示す図。 第6の実施形態における計測領域の一例を示す図。 第6の実施形態における計測領域を最適化する手法を示した図。 本発明におけるフォーカス計測をFEM露光時に適用した場合のフロー図。 第8の実施形態を示すフロー図。 本発明に係る半導体露光装置の全体的な構成を説明する図である。 本発明に係るデバイス製造プロセスを説明するフロー図。 本発明に係る基板プロセスを説明するフロー図。

Claims (9)

  1. 原版からの光を投影する投影光学系を有し、前記投影光学系を介して基板を露光する露光装置であって、
    基板に配されたショット内の計測点に関し、前記投影光学系の光軸の方向における該基板の表面の位置を計測する計測器と、
    該計測点の複数の大きさそれぞれに関し、該基板に配された複数のショットにおいて前記計測器に該表面の位置を計測させ、該計測された位置に基づき、該複数の大きさそれぞれに関して計測の再現性を示す指標を算出し、該算出された指標に基づいて該計測点の大きさを決定する制御器と、
    を有することを特徴とする露光装置。
  2. 前記制御器は、該計測点を該ショット内に複数設定し、該複数の計測点それぞれの大きさを決定することを特徴とする請求項1に記載の露光装置。
  3. 前記制御器は、該計測点を該ショット内に複数設定し、該複数の大きさそれぞれに関して該複数の計測点における該指標の平均値を算出し、該算出された平均値に基づき、該複数の計測点に対して共通の計測点の大きさを決定することを特徴とする請求項1に記載の露光装置。
  4. 前記制御器は、該計測点の大きさの単位を設定し、該単位ごとに該計測器に該表面の位置を計測させ、該単位ごとに計測された該表面の位置に基づき、該複数の大きさそれぞれに関して該表面の位置を算出し、該算出された該表面の位置に基づき、該複数の大きさそれぞれに関して該指標を算出することを特徴とする請求項1乃至請求項3のいずれか1項に記載の露光装置。
  5. 前記制御器は、該複数のショットそれぞれに関して前記計測器により計測された該表面の位置に基づき、該複数のショットそれぞれに関して該計測点に対応したオフセットを算出し、該複数のショット間での該オフセットのばらつきを該指標として算出することを特徴とする請求項1乃至請求項4のいずれか1項に記載の露光装置。
  6. 前記制御器は、該複数の大きさのうち該オフセットのばらつきが最小となるものを選択することを特徴とする請求項5に記載の露光装置。
  7. 走査露光装置であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の露光装置。
  8. 該基板を保持し且つ移動する基板ステージを有し、前記計測器は、移動している前記基板ステージに保持された該基板の表面の位置を計測することを特徴とする請求項7に記載の露光装置。
  9. 請求項1乃至請求項8のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
    該露光された基板を現像する工程と、
    を有することを特徴とするデバイス製造方法。
JP2007097631A 2007-04-03 2007-04-03 露光装置 Withdrawn JP2008258325A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097631A JP2008258325A (ja) 2007-04-03 2007-04-03 露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097631A JP2008258325A (ja) 2007-04-03 2007-04-03 露光装置

Publications (1)

Publication Number Publication Date
JP2008258325A true JP2008258325A (ja) 2008-10-23

Family

ID=39981612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097631A Withdrawn JP2008258325A (ja) 2007-04-03 2007-04-03 露光装置

Country Status (1)

Country Link
JP (1) JP2008258325A (ja)

Similar Documents

Publication Publication Date Title
JP4898419B2 (ja) 露光量のおよびフォーカス位置のオフセット量を求める方法、プログラムおよびデバイス製造方法
JP5036429B2 (ja) 位置検出装置、露光装置、デバイス製造方法及び調整方法
US9046788B2 (en) Method for monitoring focus on an integrated wafer
US7209215B2 (en) Exposure apparatus and method
JP2007250947A (ja) 露光装置および像面検出方法
CN113196177B (zh) 量测传感器、照射***、和产生具有能够配置的照射斑直径的测量照射的方法
US8345221B2 (en) Aberration measurement method, exposure apparatus, and device manufacturing method
JP2005030963A (ja) 位置検出方法
US7313873B2 (en) Surface position measuring method, exposure apparatus, and device manufacturing method
JP2009094256A (ja) 露光方法、露光装置およびデバイス製造方法
KR100889843B1 (ko) 주사형 노광장치 및 디바이스 제조방법
JP4174324B2 (ja) 露光方法及び装置
JP2006080444A (ja) 測定装置、テストレチクル、露光装置及びデバイス製造方法
JP4590213B2 (ja) 露光装置及びデバイス製造方法
JP2006287103A (ja) 露光装置及び方法、並びに、デバイス製造方法
JP2008258325A (ja) 露光装置
JP5518124B2 (ja) 収差計測方法、露光装置及びデバイス製造方法
JP2006086450A (ja) 波形選択方法、位置補正方法、露光装置、並びにデバイス製造方法
JP2006120660A (ja) 位置補正方法及び位置補正装置、露光装置、並びにデバイス製造方法
JP4497988B2 (ja) 露光装置及び方法、並びに、波長選択方法
TW202244461A (zh) 測量設備、曝光設備及物品製造方法
JP2004079585A (ja) 結像特性計測方法及び露光方法
JP2005347593A (ja) 計測方法及び装置、露光装置、並びに、デバイス製造方法
JP2010182892A (ja) デバイス製造プロセス及び露光装置の評価方法
JP2009099694A (ja) 露光装置およびデバイス製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706