JP2008230896A - Remote plasma cvd device and manufacturing method of carbon nano-tube using the same - Google Patents

Remote plasma cvd device and manufacturing method of carbon nano-tube using the same Download PDF

Info

Publication number
JP2008230896A
JP2008230896A JP2007072270A JP2007072270A JP2008230896A JP 2008230896 A JP2008230896 A JP 2008230896A JP 2007072270 A JP2007072270 A JP 2007072270A JP 2007072270 A JP2007072270 A JP 2007072270A JP 2008230896 A JP2008230896 A JP 2008230896A
Authority
JP
Japan
Prior art keywords
substrate
plasma
shielding member
plasma cvd
cvd apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007072270A
Other languages
Japanese (ja)
Other versions
JP5140296B2 (en
Inventor
Minao Nakano
美尚 中野
Takahisa Yamazaki
貴久 山崎
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007072270A priority Critical patent/JP5140296B2/en
Publication of JP2008230896A publication Critical patent/JP2008230896A/en
Application granted granted Critical
Publication of JP5140296B2 publication Critical patent/JP5140296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a remote plasma CVD device eliminating an etching product from a member for shielding an ion seed generated at a CNT growth process and to provide the CNT growth process. <P>SOLUTION: In the remote plasma CVD device 1, a plasma generating region P is separated from a treatment substrate S so that the treatment substrate S is not exposed to plasma and also a mesh-type shield member 5 composed of a substance selected among Mo, Ti, W and WC is provided between the plasma generating region P and a substrate stage 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リモートプラズマCVD装置及びこの装置を用いたカーボンナノチューブの(以下、「CNT」と称す)作製方法に関する。   The present invention relates to a remote plasma CVD apparatus and a carbon nanotube (hereinafter referred to as “CNT”) production method using the apparatus.

CNTは、化学的安定性を有し、低電界において電子を放出するという特性を有することから、例えば電界電子放出型表示装置(FED:Field Emission Display)用の電子源等に応用されている。   Since CNT has chemical stability and has a characteristic of emitting electrons in a low electric field, it is applied to, for example, an electron source for a field emission display (FED).

CNTを作製する場合、所定の基板表面の任意の部位に直接作製することで精製の手間を省くことができ、また、作製されるCNTの長さ、太さを略均一にできると共に、基板に対して垂直方向に揃った配向性を有するように成長させることが望まれている。   In the case of producing CNTs, it is possible to save the time and effort of purification by directly producing them at an arbitrary site on the surface of a predetermined substrate, and the length and thickness of the produced CNTs can be made substantially uniform, On the other hand, it is desired to grow so as to have an orientation aligned in the vertical direction.

従来、例えばプラズマCVD法を用いることで、上記のCNTを作製できることが知られている。即ち、Ni、Fe、Co等の遷移金属若しくはこの遷移金属の少なくとも1種を含む合金の基板、又はガラス、石英やSiウェハー等のCNTを作製できない基板表面の任意の部位に、上記金属を種々の任意のパターンで形成した基板を用いている。   Conventionally, it is known that the above CNTs can be produced by using, for example, a plasma CVD method. That is, various metals can be applied to any part of a substrate surface of a transition metal such as Ni, Fe, Co or an alloy containing at least one of these transition metals, or a substrate surface such as glass, quartz, or Si wafer that cannot produce CNTs. A substrate formed with an arbitrary pattern is used.

そして、所定の真空度に保持された真空チャンバ内に上記基板を載置し、炭化水素ガスと水素ガスとからなる原料ガスを真空チャンバ内に導入した後、プラズマを発生させ、基板をプラズマに曝し、基板を例えば500℃以上に加熱し、プラズマで分解された原料ガスを基板表面に接触させて、CNTを気相成長させ、基板全表面に又は任意のパターン部分の表面にのみ所望のCNTを作製することが知られている(例えば、特許文献1参照)。   Then, the substrate is placed in a vacuum chamber maintained at a predetermined degree of vacuum, a raw material gas composed of hydrocarbon gas and hydrogen gas is introduced into the vacuum chamber, plasma is generated, and the substrate is turned into plasma. The substrate is exposed and heated to, for example, 500 ° C. or higher, the source gas decomposed by plasma is brought into contact with the substrate surface, CNT is vapor-grown, and the desired CNT is formed only on the entire surface of the substrate or on the surface of an arbitrary pattern portion. Is known (see, for example, Patent Document 1).

しかしながら、原料ガスを分解すべく発生させたプラズマからのエネルギーによって基板が加熱されるため、基板表面にCNTを気相成長させる際に、基板温度を制御することができず、また、基板温度を低温化するのに限界があった。その上、プラズマによって基板表面に気相成長させたCNTが損傷を受ける虞があった。   However, since the substrate is heated by the energy from the plasma generated to decompose the raw material gas, the substrate temperature cannot be controlled when the CNT is vapor-phase grown on the substrate surface, and the substrate temperature is There was a limit to lowering the temperature. In addition, the CNT vapor-phase grown on the substrate surface by the plasma may be damaged.

そこで、上記点に鑑み、基板表面にCNTを気相成長させる際に基板温度の制御ができ、低い基板温度でCNTを成長させることに適しており、その上、基板表面に、損傷を与えることなくCNTを気相成長させることができるCNTの作製方法及びこの方法を実施するリモートプラズマCVD装置が提案されている(例えば、特許文献2参照)。   Therefore, in view of the above points, the substrate temperature can be controlled when vapor-phase-growing CNTs on the substrate surface, which is suitable for growing CNTs at a low substrate temperature, and in addition, the substrate surface is damaged. There has been proposed a CNT production method capable of vapor-phase CNT growth and a remote plasma CVD apparatus for performing this method (see, for example, Patent Document 2).

このリモートプラズマCVD装置を用いて、リモートプラズマ法によりCNTを成長させる場合、イオン種を遮るために、このCVD装置に設けられているメッシュ状の遮蔽部材はSUSで作製されている。このメッシュ状の遮蔽部材は、CNT成長プロセス中に直接プラズマに曝されるため、微量ではあるがエッチングされ、このエッチング生成物が不純物として、処理基板上へ堆積したり、成長するCNT内へ混入することが生じる。これらの不純物は、CNTをFED用の電子源や半導体素子の配線等に利用する場合に問題となる。
特開2001−48512号公報(特許請求の範囲) 特開2005−350342号公報(特許請求の範囲)
When growing CNTs by the remote plasma method using this remote plasma CVD apparatus, a mesh-shaped shielding member provided in this CVD apparatus is made of SUS in order to block ion species. Since this mesh-shaped shielding member is directly exposed to plasma during the CNT growth process, it is etched although it is a trace amount, and this etching product is deposited as impurities on the processing substrate or mixed into the growing CNT. To occur. These impurities become a problem when CNT is used for an electron source for FED, wiring of a semiconductor element, or the like.
JP 2001-48512 A (Claims) Japanese Patent Laying-Open No. 2005-350342 (Claims)

そこで、本発明の課題は、上記した従来技術の問題点を解決することにあり、リモートプラズマ法によりCNTを成長せしめるプロセスにおいて発生するイオン種を遮るためのメッシュ状の遮蔽部材からのエッチング生成物をなくしたリモートプラズマCVD装置及びこの装置を用いて行うCNTの作製方法を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and an etching product from a mesh-shaped shielding member for shielding ion species generated in a process of growing CNTs by a remote plasma method. It is an object to provide a remote plasma CVD apparatus that eliminates the problem and a method for producing CNTs using this apparatus.

本発明者らは、特定の材質を有する金属材料で作製した遮蔽部材を用いることにより、上記課題を解決できることに気がつき、本発明を完成させるに至った。   The present inventors have realized that the above problem can be solved by using a shielding member made of a metal material having a specific material, and have completed the present invention.

本発明のリモートプラズマCVD装置は、真空チャンバ内に、処理基板載置用基板ステージと、処理基板を所定温度に加熱するための加熱手段と、原料ガス導入手段とが設けられ、そして該真空チャンバ内にプラズマを発生させるプラズマ発生手段を備えている、カーボンナノチューブを気相成長させるリモートプラズマCVD装置において、該基板が該真空チャンバ内に発生させるプラズマに曝されないように、プラズマの発生領域と基板とを離間すると共に、プラズマ発生領域と該基板ステージとの間に、Mo、Ti、W及びWCから選ばれた物質で構成されているメッシュ状の遮蔽部材を設けたことを特徴とする。   In the remote plasma CVD apparatus of the present invention, a processing substrate mounting substrate stage, a heating means for heating the processing substrate to a predetermined temperature, and a source gas introducing means are provided in the vacuum chamber, and the vacuum chamber In a remote plasma CVD apparatus having a plasma generating means for generating plasma in a vapor phase growth of carbon nanotubes, the plasma generation region and the substrate are prevented from being exposed to plasma generated in the vacuum chamber. And a mesh-shaped shielding member made of a material selected from Mo, Ti, W, and WC is provided between the plasma generation region and the substrate stage.

前記遮蔽部材と基板との間の距離を、20〜100mmの範囲に設定することが好ましい。20mmより距離が短いと、遮蔽部材と基板との間で放電が起こり易くなり、例えば基板に損傷を与える虞があり、また、100mmを超えた距離では、基板にバイアス電圧を印加する際に、遮蔽部材が対極としての役割を果たすことができない。   It is preferable that the distance between the shielding member and the substrate is set in a range of 20 to 100 mm. When the distance is shorter than 20 mm, discharge is likely to occur between the shielding member and the substrate, for example, there is a risk of damaging the substrate, and when the distance exceeds 100 mm, a bias voltage is applied to the substrate. The shielding member cannot serve as a counter electrode.

前記基板にバイアス電圧を印加するために、遮蔽部材と基板との間にバイアス電源を設けることが好ましい。   In order to apply a bias voltage to the substrate, it is preferable to provide a bias power source between the shielding member and the substrate.

本発明のCNTの作製方法は、上記リモートプラズマCVD装置を用い、真空チャンバ内に炭素原子含有原料ガスを導入して、カーボンナノチューブを処理基板の表面に気相成長させる際に、処理基板がプラズマに曝されないようにプラズマを発生させ、加熱手段によって基板を所定温度に加熱し、プラズマで分解された炭素原子含有原料ガスをプラズマを発生させた領域と基板との間に設けた、Mo、Ti、W及びWCから選ばれた物質で構成されているメッシュ状の遮蔽部材の網目を通過せしめて、プラズマで分解された原料ガスを基板表面に接触させて基板表面にカーボンナノチューブを成長せしめることを特徴とする。   The CNT manufacturing method of the present invention uses the above-mentioned remote plasma CVD apparatus to introduce a carbon atom-containing source gas into a vacuum chamber, and when the carbon nanotube is vapor-phase grown on the surface of the processing substrate, the processing substrate is plasma. Mo, Ti is generated by generating plasma so that the substrate is not exposed to heat, heating the substrate to a predetermined temperature by heating means, and providing a carbon atom-containing source gas decomposed by plasma between the region where the plasma is generated and the substrate. Passing the mesh of a mesh-shaped shielding member made of a substance selected from W and WC, and bringing the source gas decomposed by plasma into contact with the substrate surface to grow carbon nanotubes on the substrate surface Features.

前記CNTの作製方法において、処理基板にバイアス電圧を印加して実施し、そして炭素原子含有原料ガスとして、炭化水素若しくはアルコール、又はこれらに水素、アンモニア、窒素若しくはアルゴンのうち少なくとも1つを混合したガスを使用することが好ましい。   In the CNT manufacturing method, a bias voltage is applied to the processing substrate, and a carbon atom-containing source gas is mixed with hydrocarbon or alcohol, or at least one of hydrogen, ammonia, nitrogen, or argon. It is preferable to use a gas.

メッシュ状の遮蔽部材と基板との間にバイアス電圧を印加する際に、バイアス電圧を−400〜200Vの範囲に設定することが好ましい。この電圧範囲を外れると、例えば放電が起こり易くなり、基板自体や基板表面に気相成長させたCNTに損傷を与える虞がある。   When applying a bias voltage between the mesh-shaped shielding member and the substrate, the bias voltage is preferably set in the range of −400 to 200V. Outside this voltage range, for example, discharge is likely to occur, and there is a risk of damage to the substrate itself or the CNT grown on the surface of the substrate by vapor phase growth.

本発明のリモートプラズマCVD装置を用いてCNTを成長させれば、CNT成長後に基板表面に不純物が検出されないと共に、成長したCNT中にも不純物が混入しない或いは不純物を減少させことができるという効果を奏する。   If CNT is grown using the remote plasma CVD apparatus of the present invention, impurities are not detected on the substrate surface after CNT growth, and impurities are not mixed into the grown CNT or impurities can be reduced. Play.

以下、本発明に係るリモートプラズマCVD装置及びこの装置を用いて実施するCNT作製方法の実施の形態について、説明する   Hereinafter, embodiments of a remote plasma CVD apparatus according to the present invention and a CNT manufacturing method performed using the apparatus will be described.

本発明のリモートプラズマCVD装置によれば、所定の基板を真空チャンバ内に設置した後にプラズマを発生させる場合、基板がプラズマに曝されないように、すなわちプラズマの発生領域と基板とを所定の距離だけ離間せしめて、プラズマからのエネルギーを受けて基板が加熱されないようにすると共に、プラズマ発生領域と基板との間にメッシュ状の遮蔽部材を設け、その各網目を通してプラズマで分解された炭素原子含有原料ガスを基板表面に接触させて基板表面にCNTを成長させるように構成する。この場合、基板は、別個に設けた加熱手段により加熱するようにする。   According to the remote plasma CVD apparatus of the present invention, when plasma is generated after a predetermined substrate is placed in a vacuum chamber, the substrate is not exposed to plasma, that is, the plasma generation region and the substrate are separated by a predetermined distance. The carbon atom-containing material decomposed by the plasma through each network by providing a mesh-shaped shielding member between the plasma generation region and the substrate while preventing the substrate from being heated by receiving energy from the plasma. A gas is brought into contact with the substrate surface to grow CNTs on the substrate surface. In this case, the substrate is heated by heating means provided separately.

この場合、別個の加熱手段のみによって基板を加熱することとしたため、CNTを気相成長させる際に、基板温度の制御が容易になり、また、低温でCNTを気相成長させることが可能になる。さらに、プラズマに曝されないようにしたため、基板表面が損傷を受けることなく、CNTを気相成長させることが可能になる。   In this case, since the substrate is heated only by a separate heating means, it becomes easy to control the substrate temperature when vapor-phase growing CNT, and it is possible to vapor-phase CNT at low temperature. . Furthermore, since it is not exposed to plasma, CNT can be grown in a vapor phase without damaging the substrate surface.

前記基板が300〜700℃の範囲内の所定温度に保持されるように、加熱手段の作動を制御することが好ましい。300℃より低い温度では、著しくCNTの成長が悪く、また、700℃を超えた温度では、基板表面で原料の炭化水素が分解し、アモルファス状炭素が堆積する。   It is preferable to control the operation of the heating means so that the substrate is maintained at a predetermined temperature in the range of 300 to 700 ° C. When the temperature is lower than 300 ° C., the growth of CNTs is remarkably poor, and when the temperature exceeds 700 ° C., the raw material hydrocarbon is decomposed on the substrate surface, and amorphous carbon is deposited.

ところで、基板がプラズマに曝されないようにした場合でも、基板に対して垂直方向に揃った配向性を有するCNTを成長するためには、プラズマで分解された原料ガスを、エネルギーをもって基板表面に到達させる必要がある。この場合、基板にバイアス電圧を印加するようにバイアス電源を設けておけば、プラズマで分解された原料ガスをエネルギーをもった状態で円滑に基板方向に送ることができ、基板に対して垂直方向に揃った配向性を有するCNTを成長させることができる。メッシュ状の遮蔽部材と基板との間にバイアス電圧を印加する場合、バイアス電圧を−400〜200Vの範囲で設定するのがよい。−400〜200Vの範囲から逸脱した電圧では、例えば放電が起こり易くなり、基板や基板表面に気相成長させたCNTに損傷を与える虞がある。   By the way, even when the substrate is not exposed to plasma, in order to grow CNTs having alignment aligned in a direction perpendicular to the substrate, the source gas decomposed by the plasma reaches the substrate surface with energy. It is necessary to let In this case, if a bias power source is provided so as to apply a bias voltage to the substrate, the source gas decomposed by the plasma can be smoothly sent in the direction of the substrate with energy, and is perpendicular to the substrate. CNTs having a uniform orientation can be grown. When a bias voltage is applied between the mesh-shaped shielding member and the substrate, the bias voltage is preferably set in the range of −400 to 200V. When the voltage deviates from the range of −400 to 200 V, for example, discharge is likely to occur, and there is a risk of damage to the substrate or the CNT grown on the surface of the substrate by vapor phase growth.

本発明のリモートプラズマCVD装置について、図1を参照して説明する。図1に示す本発明のリモートプラズマCVD装置1は、ロータリーポンプやターボ分子ポンプなどの真空排気手段12を設けた真空チャンバ11を有する。真空チャンバ11の天井部には、公知の構造を有するシャワープレートのようなガス導入手段2が設けられ、このガス導入手段2は、ガス管21を介して図示しないガス源に連通している。   The remote plasma CVD apparatus of the present invention will be described with reference to FIG. A remote plasma CVD apparatus 1 of the present invention shown in FIG. 1 has a vacuum chamber 11 provided with a vacuum exhaust means 12 such as a rotary pump or a turbo molecular pump. A gas introducing means 2 such as a shower plate having a known structure is provided on the ceiling of the vacuum chamber 11, and the gas introducing means 2 communicates with a gas source (not shown) via a gas pipe 21.

ここで、CNTを基板S表面に気相成長させる際に導入する炭素原子含有原料ガスとしては、メタン、アセチレンなどの炭化水素ガス若しくは気化させたアルコール、又は気相成長における希釈と触媒作用のために、これらのガスに水素、アンモニア、窒素若しくはアルゴンのうち少なくとも1つを混合したものを用いる。好ましくは、メタン等のような、加熱した基板温度で分解しないものを用いる。   Here, the carbon atom-containing source gas introduced when vapor-phase-growing CNTs on the surface of the substrate S is a hydrocarbon gas such as methane or acetylene or vaporized alcohol, or for dilution and catalytic action in vapor-phase growth. In addition, a mixture of these gases with at least one of hydrogen, ammonia, nitrogen, or argon is used. Preferably, a material that does not decompose at a heated substrate temperature, such as methane, is used.

また、真空チャンバ11には、ガス導入手段2に対向して、基板Sが載置される基板ステージ3が設けられ、基板ステージ3とガス導入手段2との間にプラズマを発生させるために、プラズマ発生装置であるマイクロ波発生器4が導波管41を介して設けられている。この場合、マイクロ波発生器4は、公知の構造を有するものであればよく、例えばスロットアンテナを用いてECRプラズマを発生させるもの等が挙げられる。   The vacuum chamber 11 is provided with a substrate stage 3 on which the substrate S is placed so as to face the gas introduction unit 2, and in order to generate plasma between the substrate stage 3 and the gas introduction unit 2, A microwave generator 4, which is a plasma generator, is provided via a waveguide 41. In this case, the microwave generator 4 only needs to have a known structure, and examples thereof include those that generate ECR plasma using a slot antenna.

基板ステージ3上に載置され、CNTを気相成長させる基板Sとしては、CNTを成長できる公知の基板であれよく、例えばNi、Fe、Co等の遷移金属からなる基板、この遷移金属の少なくとも1種を含む合金の基板、又はガラス、石英やSiウェハー等のCNTを直接気相成長できない基板表面の任意の部位に、上記金属を種々の任意のパターンで形成した基板を用いることができる。また、ガラス、石英やSiウェハー等の基板表面に上記金属を形成する際に、その基板と金属との間にタンタル等の化合物を形成しない層を設けてもよい。   The substrate S placed on the substrate stage 3 and used for vapor phase growth of CNTs may be a known substrate capable of growing CNTs. For example, a substrate made of a transition metal such as Ni, Fe, Co, etc. A substrate made of an alloy containing one kind or a substrate in which the above metal is formed in various arbitrary patterns can be used at any part of the substrate surface where CNTs such as glass, quartz, and Si wafers cannot be directly vapor-phase grown. Further, when the metal is formed on the surface of a substrate such as glass, quartz, or Si wafer, a layer that does not form a compound such as tantalum may be provided between the substrate and the metal.

そして、上記基板Sを基板ステージ3上に載置した後、真空排気手段12を作動して真空チャンバ11を所定の真空度まで排気し、マイクロ波発生器4を作動してプラズマを発生させる。次いで、基板Sを所定温度まで加熱した後、上記炭素原子含有原料ガスを真空チャンバ11内に導入し、プラズマで分解された原料ガスを基板Sに接触させることで、基板S表面にCNTを気相成長させ、基板S全表面に又はそのパターンの部分の表面のみに、基板Sに対して垂直な向きに揃った配向性を有するCNTを作製せしめる。   Then, after placing the substrate S on the substrate stage 3, the vacuum evacuation means 12 is operated to evacuate the vacuum chamber 11 to a predetermined vacuum level, and the microwave generator 4 is operated to generate plasma. Next, after heating the substrate S to a predetermined temperature, the carbon atom-containing source gas is introduced into the vacuum chamber 11, and the source gas decomposed by the plasma is brought into contact with the substrate S, whereby CNTs are vaporized on the surface of the substrate S. Phase growth is performed to produce CNTs having orientation aligned in a direction perpendicular to the substrate S on the entire surface of the substrate S or only on the surface of the pattern portion.

ところで、従来技術のように、原料ガスを分解すべく発生させたプラズマによって基板が加熱されるのでは、基板表面にCNTを気相成長させる際に、基板温度を制御することが困難になり、また、基板温度を低温化できない。その上、プラズマによって、基板表面に気相成長させたCNTが損傷を受ける虞がある。   By the way, when the substrate is heated by the plasma generated to decompose the raw material gas as in the prior art, it becomes difficult to control the substrate temperature when vapor-phase-growing CNT on the surface of the substrate, In addition, the substrate temperature cannot be lowered. Moreover, there is a risk that the CNT vapor-phase grown on the substrate surface may be damaged by the plasma.

そこで、本実施の形態では、真空チャンバ11内でマイクロ波発生器4を作動させて発生させたプラズマに基板Sが曝されないように、プラズマ発生領域Pから離間して基板ステージ3を配置すると共に、プラズマ発生領域Pと基板Sとの間に、基板ステージ3に対向して金属製であってメッシュ状の遮蔽部材5を設けてある。そして、基板Sを所定温度に加熱するために、例えば、抵抗加熱式の加熱手段(図示せず)を基板ステージ3に内蔵せしめればよい。この場合、加熱手段は、CNTを気相成長させる間、300〜700℃の範囲内の所定温度に保持されるように制御される。   Therefore, in the present embodiment, the substrate stage 3 is disposed apart from the plasma generation region P so that the substrate S is not exposed to the plasma generated by operating the microwave generator 4 in the vacuum chamber 11. Between the plasma generation region P and the substrate S, a metal-made shielding member 5 made of metal is provided facing the substrate stage 3. In order to heat the substrate S to a predetermined temperature, for example, a resistance heating type heating means (not shown) may be built in the substrate stage 3. In this case, the heating means is controlled so as to be maintained at a predetermined temperature within a range of 300 to 700 ° C. during vapor phase growth of CNTs.

メッシュ状の遮蔽部材5の構成材料は、CNT作製プロセス中に、エッチングされて、エッチング生成物として基板上に堆積しても又は成長したCNT中に混入しても得られたCNTの機能に対して悪影響を及ぼさない高融点かつ高硬度の金属であり、例えば、Mo、Ti、W及びWCから選ばれたCNT成長用の触媒とならない金属であることが好ましい。また、この遮蔽部材の構成材料としては、CNT成長プロセス中に、チャージアップしてその成長を妨げないように、導電性の物質であることが必要である。さらに、エッチング生成物として基板上に堆積しても問題のない物質であり、或いは洗浄などの工程で容易に取り除ける物質であればよい。さらにまた、WC等の炭素含有物質であっても、炭素が不純物として入っても問題のないプロセスに使用することはできる。   The constituent material of the mesh-shaped shielding member 5 is etched during the CNT manufacturing process, and is deposited on the substrate as an etching product or mixed in the grown CNT. It is preferably a metal having a high melting point and a high hardness that does not adversely affect, for example, a metal that does not become a catalyst for CNT growth selected from Mo, Ti, W, and WC. In addition, as a constituent material of the shielding member, it is necessary to be a conductive substance so as not to charge up and prevent the growth during the CNT growth process. Furthermore, any material that does not cause a problem even if it is deposited on the substrate as an etching product or that can be easily removed by a process such as cleaning may be used. Furthermore, even a carbon-containing material such as WC can be used in a process that does not cause a problem even if carbon enters as an impurity.

この遮蔽部材5は、真空チャンバ11内に、グランドに接地するか、または基板Sとの間にバイアスを印加できるように設けられる。この場合、遮蔽部材5の各網目が、1〜3mmの大きさに設定されたものであることが好ましい。これにより、遮蔽部材5によってイオンシース領域が形成され、プラズマ粒子(イオン)が基板S側に侵入することが防止され、プラズマ発生領域Pから離間して基板ステージ3を配置することと相俟って基板Sがプラズマに曝されることが防止できる。なお、各網目の大きさを、1mmより小さく設定すると、原料ガスの流れを遮ってしまい、3mmより大きく設定すると、プラズマを遮ることができない。   The shielding member 5 is provided in the vacuum chamber 11 so as to be grounded or to be biased with the substrate S. In this case, it is preferable that each mesh of the shielding member 5 is set to a size of 1 to 3 mm. Accordingly, an ion sheath region is formed by the shielding member 5 and plasma particles (ions) are prevented from entering the substrate S side, which is coupled with the arrangement of the substrate stage 3 away from the plasma generation region P. Thus, the substrate S can be prevented from being exposed to plasma. If the size of each mesh is set to be smaller than 1 mm, the flow of the source gas is blocked, and if it is set to be larger than 3 mm, the plasma cannot be blocked.

この遮蔽部材5を、遮蔽部材と基板との間の距離Dが20〜100mmの範囲になるように設置することが好ましい。20mmより距離が短いと、遮蔽部材と基板との間で放電が起こり易くなり、例えば基板に損傷を与える虞がある。また、100mmを超えた距離では、基板Sにバイアス電圧を印加する際に、遮蔽部材5が対極としての役割を果たすことができず、他方で、分解したガスが再結合して煤になってしまう。   The shielding member 5 is preferably installed so that the distance D between the shielding member and the substrate is in the range of 20 to 100 mm. When the distance is shorter than 20 mm, electric discharge is likely to occur between the shielding member and the substrate, and for example, the substrate may be damaged. In addition, when the bias voltage is applied to the substrate S at a distance exceeding 100 mm, the shielding member 5 cannot play a role as a counter electrode, and on the other hand, the decomposed gas is recombined to become a soot. End up.

また、基板Sに対して垂直方向に揃った配向性を有するCNTを成長すべく、プラズマで分解された原料ガスをエネルギーをもって基板S上に到達させるために、遮蔽部材5と基板Sとの間に、基板Sにバイアス電圧を印加するためのバイアス電源6を設けている。これにより、プラズマで分解された原料ガスは、遮蔽部材5の各網目を通過して基板S方向に円滑に送られるようになる。   Further, in order to grow the CNTs having the orientation aligned in the vertical direction with respect to the substrate S, in order to cause the source gas decomposed by plasma to reach the substrate S with energy, the gap between the shielding member 5 and the substrate S is increased. Further, a bias power source 6 for applying a bias voltage to the substrate S is provided. Thereby, the source gas decomposed by the plasma passes through each mesh of the shielding member 5 and is smoothly sent in the direction of the substrate S.

この場合、バイアス電圧は−400V〜200Vの範囲で設定される。−400Vより低い電圧では、放電が起こりやすくなり、基板S自体や、基板S表面に成長させたCNTに損傷を与える虞がある。また、200Vを超えた電圧では、CNTの成長速度が遅くなる。   In this case, the bias voltage is set in the range of −400V to 200V. At a voltage lower than −400 V, discharge tends to occur, and there is a risk of damaging the substrate S itself or the CNT grown on the surface of the substrate S. On the other hand, at a voltage exceeding 200 V, the growth rate of CNTs is slow.

上記のように構成されたリモートプラズマCVD装置では、基板ステージ上に基板Sを載置した後、プラズマを発生させると、基板Sがプラズマに曝されず、すなわち、プラズマからのエネルギーで基板Sが加熱されず、基板Sは、基板ステージ3に内蔵された加熱手段のみによって加熱される。このため、CNTを気相成長させる際に、基板温度の制御が容易になり、また、低温でかつ総称を受けることなく基板S表面にCNTを気相成長させることが可能になる。   In the remote plasma CVD apparatus configured as described above, when plasma is generated after placing the substrate S on the substrate stage, the substrate S is not exposed to the plasma, that is, the substrate S is exposed to energy from the plasma. Without being heated, the substrate S is heated only by the heating means built in the substrate stage 3. For this reason, when the CNT is vapor-phase grown, the substrate temperature can be easily controlled, and the CNT can be vapor-grown on the surface of the substrate S at a low temperature without receiving a generic name.

なお、本実施の形態では、基板ステージ3に加熱手段を内蔵したものについて説明したが、これに限定されるものではなく、基板ステージ3上の基板Sを所定温度まで加熱できるものであれば、その形態は問わない。   In the present embodiment, the substrate stage 3 including the heating means has been described. However, the present invention is not limited to this, as long as the substrate S on the substrate stage 3 can be heated to a predetermined temperature. The form is not ask | required.

また、本実施の形態では、プラズマで分解された原料ガスをエネルギーをもって基板S上に到達させるために、遮蔽部材5と基板Sとの間で基板Sにバイアス電圧を印加したものについて説明したが、これに限定されるものではなく、遮蔽部材5と基板Sとの間にバイアス電圧を印加しない場合でも、損傷を受けることなく基板S表面にCNTを気相成長させることができる。また、基板S表面にSiOのような絶縁層が形成されている場合には、基板S表面へのチャージアップを防止するなどの目的で、バイアス電源6を介して基板Sに0〜200Vの範囲でバイアス電圧を印加するようにしてもよい。この場合、200Vを超えた電圧では、CNTの成長速度が遅くなる。 In the present embodiment, a description has been given of a case where a bias voltage is applied to the substrate S between the shielding member 5 and the substrate S in order to cause the source gas decomposed by plasma to reach the substrate S with energy. However, the present invention is not limited to this, and even when a bias voltage is not applied between the shielding member 5 and the substrate S, CNT can be vapor-phase grown on the surface of the substrate S without being damaged. Further, when an insulating layer such as SiO 2 is formed on the surface of the substrate S, 0 to 200 V is applied to the substrate S via the bias power source 6 for the purpose of preventing charge-up on the surface of the substrate S. A bias voltage may be applied within a range. In this case, at a voltage exceeding 200 V, the growth rate of CNTs is slow.

次に、本発明を実施例に基づいて具体的に説明する。   Next, the present invention will be specifically described based on examples.

本実施例では、CNT成長用基板としてNi/TiN/Si基板を使用し、この基板を500℃に加熱した。また、リモートプラズマCVD装置として、真空チャンバ内に、内径50mmの石英管であって、その一端にガス供給口を設け、かつ他端にガス排出口を設けた石英管と、このガス排出口の近傍にMoで作製されたメッシュ状の遮蔽部材とを設けた装置を使用した。   In this example, a Ni / TiN / Si substrate was used as a substrate for CNT growth, and this substrate was heated to 500 ° C. In addition, as a remote plasma CVD apparatus, a quartz tube having an inner diameter of 50 mm in a vacuum chamber and having a gas supply port at one end and a gas discharge port at the other end, The apparatus which provided the mesh-shaped shielding member produced with Mo in the vicinity was used.

この石英管のガス供給口から、メタンガスと水素ガスとからなる混合ガス(CH:H=20sccm:80sccm)を、2.67×10Paの圧力下で供給すると共に、石英管横方向の外側から石英管内部にマイクロ波(出力:500W)を導入し、発生したプラズマ中を通過した混合ガスを、石英管のガス排出口から吹き出させ、そのガス排出口の吹き出し口の近傍に設けられた遮蔽部材のメッシュ部分を通過させ、ガス中のイオン成分を取り除いたガスを用いて、基板上にCNTを成長せしめた。 A mixed gas (CH 4 : H 2 = 20 sccm: 80 sccm) composed of methane gas and hydrogen gas is supplied from the gas supply port of the quartz tube under a pressure of 2.67 × 10 2 Pa, and the quartz tube is laterally moved. A microwave (output: 500 W) is introduced into the quartz tube from the outside, and the mixed gas that has passed through the generated plasma is blown out from the gas outlet of the quartz tube, and is provided near the outlet of the gas outlet. The CNTs were grown on the substrate using a gas that passed through the mesh portion of the shielding member and removed the ionic component in the gas.

また、比較のために、メッシュがMoで作製された遮蔽部材の代わりに、メッシュがSUSで作製された遮蔽部材を用い、上記と同様にしてCNTを成長せしめた。   For comparison, CNTs were grown in the same manner as described above using a shielding member having a mesh made of SUS instead of a shielding member made of Mo.

上記のようにしてCNTを成長せしめた後、基板表面をオージェ電子分光(AES)とX線光電子分光(XPS)により観測したところ、メッシュがMoで作製された遮蔽部材を用いた場合には、基板表面からはMoは検出されず、また、成長したCNTに対して、AES、XPSにより観測したところ、Moは混入していなかった。一方、メッシュがSUSで作製された遮蔽部材を用いた場合についても、同様に観測したところ、基板表面にFe等のSUSの構成成分が堆積しており、また、成長したCNTに対しても、Fe等の成分が混入していた。   After growing the CNT as described above, the substrate surface was observed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). When a shielding member made of Mo was used as a mesh, Mo was not detected from the surface of the substrate, and Mo was not mixed when the grown CNTs were observed by AES and XPS. On the other hand, in the case of using a shielding member made of mesh made of SUS, when observed in the same manner, SUS components such as Fe are deposited on the substrate surface, and also for the grown CNT, Components such as Fe were mixed.

本実施例では、図1に示すリモートプラズマCVD装置1を用い、所定の基板S上にCNTを気相成長により作製した。この場合、基板Sと遮蔽部材5との間の距離を20mmに設定した。基板Sとして、シリコン基板上にスパッタリング法によりタンタルを100nmの膜厚で成膜し、次いで、タンタル膜上に、EB蒸着法によりFeを5nmの膜厚で成膜したものを用いた。この遮蔽部材としては、メッシュがTi又はWCから作製されたものを用いた。   In this example, CNTs were produced on a predetermined substrate S by vapor phase growth using the remote plasma CVD apparatus 1 shown in FIG. In this case, the distance between the substrate S and the shielding member 5 was set to 20 mm. As the substrate S, a tantalum film having a thickness of 100 nm was formed on a silicon substrate by a sputtering method, and then an Fe film having a thickness of 5 nm was formed on the tantalum film by an EB vapor deposition method. As the shielding member, a mesh made of Ti or WC was used.

このように作製した基板Sを基板ステージ3上に載置し、真空排気手段12を作動して真空チャンバ11内の圧力を3×10−1Pa以下になるまで排気した後、前処理である基板クリーニングを行った。 The substrate S thus produced is placed on the substrate stage 3 and the vacuum exhaust means 12 is operated to exhaust the pressure in the vacuum chamber 11 to 3 × 10 −1 Pa or less, followed by pretreatment. Substrate cleaning was performed.

この場合、ガス導入手段2を介して水素を80sccmの流量で真空チャンバ11内に導入して、チャンバ内圧力を2.67×10Paに保持し、加熱手段を作動して基板Sを500℃まで加熱した後、マイクロ波発生器4を作動してプラズマを発生させた。遮蔽部材5と基板Sとの間に、基板S側の電圧が−150Vとなるようにバイアス電源6によりバイアス電圧を印加してクリーニングした。10分経過後、バイアス電源6の作動を停止し、マイクロ波発生器4の作動を停止した後、ガスの導入を停止した。そして、真空排気手段12を作動して真空チャンバ11内の圧力を再び3×10−1Pa以下になるまで排気した。 In this case, hydrogen is introduced into the vacuum chamber 11 through the gas introduction means 2 at a flow rate of 80 sccm, the pressure in the chamber is maintained at 2.67 × 10 2 Pa, and the heating means is operated to make the substrate S 500 After heating to 0 ° C., the microwave generator 4 was activated to generate plasma. Cleaning was performed by applying a bias voltage from the bias power source 6 between the shielding member 5 and the substrate S so that the voltage on the substrate S side was −150V. After 10 minutes, the operation of the bias power source 6 was stopped, the operation of the microwave generator 4 was stopped, and then the introduction of gas was stopped. And the vacuum exhaust means 12 was operated and the pressure in the vacuum chamber 11 was exhausted again until it became 3 × 10 −1 Pa or less.

次いで、炭素原子含有原料ガスとして、メタンと水素との混合ガスを用い、メタンを20sccm、水素を80sccmの流量で、ガス管21及びガス導入手段2を介して真空チャンバ11内に導入した。この場合、真空チャンバ11内の圧力が2.67×10Paに保持されるように真空排気手段12の作動を制御した。そして、加熱手段を作動して基板を500℃まで加熱した後、マイクロ波発生器4を作動してプラズマを発生させた。遮蔽部材5と基板Sとの間に、基板S側の電圧が−300Vとなるようにバイアス電源6によりバイアス電圧を印加し、CNTを気相成長させた。 Next, a mixed gas of methane and hydrogen was used as the carbon atom-containing source gas, and methane was introduced into the vacuum chamber 11 through the gas pipe 21 and the gas introduction means 2 at a flow rate of 20 sccm and hydrogen at 80 sccm. In this case, the operation of the vacuum evacuation unit 12 was controlled so that the pressure in the vacuum chamber 11 was maintained at 2.67 × 10 2 Pa. Then, after heating the substrate to 500 ° C. by operating the heating means, the microwave generator 4 was operated to generate plasma. A bias voltage was applied between the shielding member 5 and the substrate S by the bias power source 6 so that the voltage on the substrate S side was −300 V, and CNT was vapor-phase grown.

本実施例では、図1に示すプラズマCVD装置1を用い、上記実施例2と同一条件でCNTを形成した。但し、基板Sとして、シリコン基板上に形成したFe膜上に、このFe膜の一部が露出するように、さらにスパッタリング法によりSiOを成膜したものを用いた。また、クリーニングの際に、基板S側の電圧が−300Vとなるようにバイアス電源6によりバイアス電圧を印加すると共に、処理時間を5分とした。さらに、CNTを気相成長させる際には、バイアス電圧を印加しないこととした。 In this example, CNTs were formed using the plasma CVD apparatus 1 shown in FIG. However, as the substrate S, a substrate in which SiO 2 was further formed by sputtering so that a part of the Fe film was exposed on the Fe film formed on the silicon substrate was used. In cleaning, a bias voltage was applied by the bias power source 6 so that the voltage on the substrate S side was −300 V, and the processing time was 5 minutes. Furthermore, no bias voltage is applied when CNT is vapor-phase grown.

上記実施例2及び3においてCNTを成長せしめた後、基板表面及び成長したCNTについて、実施例1の場合と同様に観測したところ、メッシュがTiで作製された遮蔽部材の場合もWCで作製された遮蔽部材の場合も、基板表面からはTiもWも検出されず、また、成長したCNT内にTiもWも混入していなかった。   After the CNTs were grown in Examples 2 and 3, the substrate surface and the grown CNTs were observed in the same manner as in Example 1. As a result, the shielding member in which the mesh was made of Ti was also made of WC. In the case of the shielding member, neither Ti nor W was detected from the substrate surface, and neither Ti nor W was mixed in the grown CNT.

本発明によれば、リモートプラズマCVD法によりCNTを成長させた後に、基板表面に不純物が検出されないと共に、成長したCNT中にも不純物が混入しないか或いは不純物を減少させことができるので、CNTを利用する産業分野、例えば電界電子放出型表示装置用の電子源や半導体素子の配線等を作製する半導体技術分野で利用可能である。   According to the present invention, after growing CNTs by the remote plasma CVD method, impurities are not detected on the substrate surface, and impurities are not mixed into the grown CNTs or impurities can be reduced. The present invention can be used in an industrial field to be used, for example, in a semiconductor technology field in which an electron source for a field electron emission display device or a wiring of a semiconductor element is manufactured.

本発明のリモートプラズマCVD装置の構成を概略的に説明する図。The figure which illustrates roughly the structure of the remote plasma CVD apparatus of this invention.

符号の説明Explanation of symbols

1 CVD装置 2 ガス導入手段
3 基板ステージ 4 マイクロ波発生器
5 遮蔽部材 6 バイアス電源
11 真空チャンバ 12 真空排気手段
21 ガス管 41 導波管
P プラズマ発生領域 S 処理基板
D 遮蔽部材と基板との間の距離
DESCRIPTION OF SYMBOLS 1 CVD apparatus 2 Gas introduction means 3 Substrate stage 4 Microwave generator 5 Shielding member 6 Bias power supply 11 Vacuum chamber 12 Vacuum exhaust means 21 Gas pipe 41 Waveguide P Plasma generation area S Process substrate
D Distance between shielding member and substrate

Claims (7)

真空チャンバ内に、処理基板載置用基板ステージと、処理基板を所定温度に加熱するための加熱手段と、原料ガス導入手段とが設けられ、そして該真空チャンバ内にプラズマを発生させるプラズマ発生手段を備えている、カーボンナノチューブを気相成長させるリモートプラズマCVD装置において、該基板が該真空チャンバ内に発生させるプラズマに曝されないように、プラズマの発生領域と基板とを離間すると共に、プラズマ発生領域と該基板ステージとの間に、Mo、Ti、W及びWCから選ばれた物質で構成されているメッシュ状の遮蔽部材を設けたことを特徴とするリモートプラズマCVD装置。 In the vacuum chamber, a processing substrate mounting substrate stage, a heating means for heating the processing substrate to a predetermined temperature, and a source gas introducing means are provided, and plasma generating means for generating plasma in the vacuum chamber In the remote plasma CVD apparatus for vapor-growing carbon nanotubes, the plasma generation region and the substrate are separated from each other so that the substrate is not exposed to the plasma generated in the vacuum chamber. A remote plasma CVD apparatus characterized in that a mesh-shaped shielding member made of a material selected from Mo, Ti, W, and WC is provided between the substrate stage and the substrate stage. 前記遮蔽部材と基板との間の距離を、20〜100mmの範囲に設定したことを特徴とする請求項1記載のプラズマCVD装置。 The plasma CVD apparatus according to claim 1, wherein a distance between the shielding member and the substrate is set in a range of 20 to 100 mm. 前記基板にバイアス電圧を印加するために、遮蔽部材と基板との間にバイアス電源を設けたことを特徴とする請求項1又は2記載のリモートプラズマCVD装置。 The remote plasma CVD apparatus according to claim 1 or 2, wherein a bias power source is provided between the shielding member and the substrate in order to apply a bias voltage to the substrate. 請求項1〜3のいずれかに記載のリモートプラズマCVD装置を用い、真空チャンバ内に炭素原子含有原料ガスを導入して、カーボンナノチューブを処理基板の表面に気相成長させる際に、処理基板がプラズマに曝されないようにプラズマを発生させ、加熱手段によって基板を所定温度に加熱し、プラズマで分解された炭素原子含有原料ガスを該プラズマを発生させた領域と該基板との間に設けた、Mo、Ti、W及びWCから選ばれた物質で構成されているメッシュ状の遮蔽部材の網目を通過せしめて、プラズマで分解された該原料ガスを基板表面に接触させて基板表面にカーボンナノチューブを成長せしめることを特徴とするカーボンナノチューブの作製方法。 When the remote plasma CVD apparatus according to any one of claims 1 to 3 is used and a carbon atom-containing source gas is introduced into a vacuum chamber to cause carbon nanotubes to vapor-phase grow on the surface of the processing substrate, the processing substrate is Plasma is generated so as not to be exposed to plasma, the substrate is heated to a predetermined temperature by a heating means, and a carbon atom-containing source gas decomposed by plasma is provided between the region where the plasma is generated and the substrate. A mesh-shaped shielding member made of a material selected from Mo, Ti, W, and WC is passed through the mesh, and the source gas decomposed by the plasma is brought into contact with the substrate surface to form carbon nanotubes on the substrate surface. A method for producing a carbon nanotube, comprising growing the carbon nanotube. 前記基板にバイアス電圧を印加することを特徴とする請求項4記載のカーボンナノチューブの作製方法。 The method for producing a carbon nanotube according to claim 4, wherein a bias voltage is applied to the substrate. 前記遮蔽部材と基板との間にバイアス電圧を印加する際に、バイアス電圧を−400〜200Vの範囲に設定することを特徴とする請求項5記載のカーボンナノチューブの作製方法。 6. The method for producing a carbon nanotube according to claim 5, wherein when a bias voltage is applied between the shielding member and the substrate, the bias voltage is set in a range of −400 to 200V. 前炭素原子含有原料ガスとして、炭化水素若しくはアルコール、又はこれらに水素、アンモニア、窒素若しくはアルゴンのうち少なくとも1つを混合したガスを使用することを特徴とする請求項4〜6のいずれかに記載のカーボンナノチューブの作製方法。 7. The pre-carbon atom-containing raw material gas is a hydrocarbon or alcohol, or a gas obtained by mixing at least one of hydrogen, ammonia, nitrogen, or argon with these. Carbon nanotube production method.
JP2007072270A 2007-03-20 2007-03-20 Remote plasma CVD apparatus and carbon nanotube production method using this apparatus Active JP5140296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072270A JP5140296B2 (en) 2007-03-20 2007-03-20 Remote plasma CVD apparatus and carbon nanotube production method using this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072270A JP5140296B2 (en) 2007-03-20 2007-03-20 Remote plasma CVD apparatus and carbon nanotube production method using this apparatus

Publications (2)

Publication Number Publication Date
JP2008230896A true JP2008230896A (en) 2008-10-02
JP5140296B2 JP5140296B2 (en) 2013-02-06

Family

ID=39904147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072270A Active JP5140296B2 (en) 2007-03-20 2007-03-20 Remote plasma CVD apparatus and carbon nanotube production method using this apparatus

Country Status (1)

Country Link
JP (1) JP5140296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961618B2 (en) 2014-07-16 2021-03-30 Imperial College Innovations Limited Process for producing carbon-nanotube grafted substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166378A (en) * 1989-11-24 1991-07-18 Sumitomo Electric Ind Ltd Diamond synthesizing method
JP2005187309A (en) * 2003-12-04 2005-07-14 Univ Nagoya Method and apparatus for manufacturing carbon nanotube
JP2005206408A (en) * 2004-01-21 2005-08-04 Ideal Star Inc Apparatus and method of manufacturing doped fullerene
JP2005213104A (en) * 2004-01-30 2005-08-11 New Industry Research Organization Method of forming highly oriented carbon nanotube and apparatus suitable for forming highly oriented carbon nanotube
JP2005350342A (en) * 2004-05-10 2005-12-22 Ulvac Japan Ltd Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
WO2006091291A2 (en) * 2005-02-23 2006-08-31 Motorola, Inc. Apparatus and process for carbon nanotube growth
JP2006265079A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
JP2008038164A (en) * 2006-08-02 2008-02-21 Ulvac Japan Ltd Plasma cvd apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166378A (en) * 1989-11-24 1991-07-18 Sumitomo Electric Ind Ltd Diamond synthesizing method
JP2005187309A (en) * 2003-12-04 2005-07-14 Univ Nagoya Method and apparatus for manufacturing carbon nanotube
JP2005206408A (en) * 2004-01-21 2005-08-04 Ideal Star Inc Apparatus and method of manufacturing doped fullerene
JP2005213104A (en) * 2004-01-30 2005-08-11 New Industry Research Organization Method of forming highly oriented carbon nanotube and apparatus suitable for forming highly oriented carbon nanotube
JP2005350342A (en) * 2004-05-10 2005-12-22 Ulvac Japan Ltd Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
WO2006091291A2 (en) * 2005-02-23 2006-08-31 Motorola, Inc. Apparatus and process for carbon nanotube growth
JP2006265079A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
JP2008038164A (en) * 2006-08-02 2008-02-21 Ulvac Japan Ltd Plasma cvd apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961618B2 (en) 2014-07-16 2021-03-30 Imperial College Innovations Limited Process for producing carbon-nanotube grafted substrate

Also Published As

Publication number Publication date
JP5140296B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4963539B2 (en) Method for producing carbon nanotube and plasma CVD apparatus for carrying out the method
KR101190136B1 (en) A method for forming a carbon nanotube and a plasma cvd apparatus for carrying out the method
US6841003B2 (en) Method for forming carbon nanotubes with intermediate purification steps
Ahn et al. Non-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission
Tsakadze et al. Self-assembly of uniform carbon nanotip structures in chemically active inductively coupled plasmas
JP5089898B2 (en) Carbon nanotube growth method
Liu et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review
KR102192283B1 (en) Plasma annealing method and device for same
JP2001048512A (en) Preparation of perpendicularly oriented carbon nanotube
Gautier et al. Field emission properties of graphenated multi-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition
JP2008038164A (en) Plasma cvd apparatus
Choi et al. Generation of carbon nanowhiskers, nanotips, and nanodots by controlling plasma environment: Ion energy and radical effects
JP4963584B2 (en) Plasma CVD apparatus and plasma CVD method
JP5042482B2 (en) Method for producing aggregate of carbon nanotubes
KR20050085073A (en) Method for forming carbon nanotubes
JP5032042B2 (en) Plasma CVD apparatus and film forming method
JP5140296B2 (en) Remote plasma CVD apparatus and carbon nanotube production method using this apparatus
US20150140232A1 (en) Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires
JP4919272B2 (en) Carbon nanotube forming apparatus and carbon nanotube forming method
JP2007314391A (en) Substrate for growth of carbon nanotube and fabrication process for carbon nanotube using the same
Sankaran et al. Nitrogen incorporated (ultra) nanocrystalline diamond films for field electron emission applications
JP6210445B2 (en) Method for producing carbon nanotube
Show et al. Development of triode type RF plasma enhanced CVD equipment for low temperature growth of carbon nanotube
KR100928970B1 (en) Manufacturing method of diamond like carbon films doped with the third elements
JP2006199582A (en) Method for manufacturing carbon nanotube using focused ion beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

R150 Certificate of patent or registration of utility model

Ref document number: 5140296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250