JPH03166378A - Diamond synthesizing method - Google Patents

Diamond synthesizing method

Info

Publication number
JPH03166378A
JPH03166378A JP1305055A JP30505589A JPH03166378A JP H03166378 A JPH03166378 A JP H03166378A JP 1305055 A JP1305055 A JP 1305055A JP 30505589 A JP30505589 A JP 30505589A JP H03166378 A JPH03166378 A JP H03166378A
Authority
JP
Japan
Prior art keywords
cathode
mesh
diamond
pitch
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1305055A
Other languages
Japanese (ja)
Inventor
Takayuki Shibata
隆行 柴田
Yukihiro Ota
進啓 太田
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1305055A priority Critical patent/JPH03166378A/en
Publication of JPH03166378A publication Critical patent/JPH03166378A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably maintain a D.C. electric current for a long time and to facilitate increase in area and temp. reduction in diamond synthesis by using, as a cathode, a mesh in which wire diameter and pitch are specified and which is composed of a material selected from Mo, W, and Ta. CONSTITUTION:In diamond synthesis, a mesh composed of a material consisting of one or plural elements among Mo, W, and Ta and having <=0.5mm wire diameter and <=3mm pitch is used as a cathode. By using the above mesh, the emissivity of electrons can be improved and high density plasma can be maintained stably for a long time. In addition, ignition in the electric discharge in the initial stage can be facilitated. By this method, a cathode having a shape corresponding to the shape of a material to be coated can be used, and the application of diamond coating to a base material having a three-dimensional shape is made possible.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ダイヤモンドの気相合成方法に関するもの
であり、詳しくは陰極としてメッシュを用いることによ
り、長時間安定に放電を維持でき、低温かつ大面積にダ
イヤモンドを形成できる合成方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention relates to a method for vapor phase synthesis of diamond. Specifically, by using a mesh as a cathode, a stable discharge can be maintained for a long time, and it can be used at low temperatures and This invention relates to a synthesis method that allows diamond to be formed over a large area.

〈従来の技術〉 ダイヤモンドは、高硬度、耐摩耗性を有し、圧縮率・熱
膨張率が小さく、かつ絶縁体でありながら熱伝導度が非
常に高い。また、屈折率が高く、光学的(紫外・可視・
赤外)に透明、耐薬品性などという優れた特性をも同時
に備えた物質である。また、音波の伝播速度に優れ、さ
らに、特定の不純物をドーブすることにより半導体特性
を与えることができる。このため各種分野での応用が考
えられており、産業界に於て必要不可欠な物質となって
いる。
<Prior Art> Diamond has high hardness and wear resistance, low compressibility and low coefficient of thermal expansion, and although it is an insulator, it has extremely high thermal conductivity. In addition, it has a high refractive index and optical (ultraviolet, visible,
It is a material that also has excellent properties such as transparency to infrared (infrared) and chemical resistance. It also has excellent sound wave propagation speed, and can be given semiconductor properties by doping with specific impurities. For this reason, it has been considered for application in various fields, and has become an indispensable substance in industry.

周知の通り、マイクロ波CVD法あるいは熱フィラメン
トCVD法をはじめとする各種のCVD法により、気相
からのダイヤモンド合成が実現されており、ダイヤモン
ドの持つ優れた特性を膜状にして、あるいは他の材料表
面に被覆して利用できるようになり、その応用範囲が更
に拡大されつつある。これら多くの気相合成法の中で直
流放電を利用したダイヤモンド合成も既に開発されてお
り、グイ・ヤモンドの高速合成が可能な一手法であるこ
とが知られている。
As is well known, diamond synthesis from the gas phase has been achieved using various CVD methods, including microwave CVD and hot filament CVD. It can now be used by coating the surface of materials, and its range of applications is expanding further. Among these many vapor phase synthesis methods, diamond synthesis using direct current discharge has already been developed, and is known to be a method capable of high-speed synthesis of Gouy Yamond.

〈発明が解決しようとする課題〉 しかしながら、従来の直流放電を利用したダイヤモンド
合成は、比較的圧力の高い条件(100 Torr以上
)での放電を利用したものであり、ガス温度が比較的高
く、大幅な低温化は難しいと考えられる。また、異常グ
ローないしはグロー・アーク移行領域での放電であるこ
とから、プラズマを安定に長時間維持すること、さらに
は、放電領域の拡大も非常に困難である。加えて、3次
元形状を有する基体への被覆も難しい。
<Problems to be Solved by the Invention> However, conventional diamond synthesis using direct current discharge utilizes discharge under relatively high pressure conditions (100 Torr or more), and the gas temperature is relatively high. It is considered difficult to significantly lower the temperature. Furthermore, since the discharge occurs in the abnormal glow or glow-arc transition region, it is extremely difficult to maintain the plasma stably for a long time and furthermore to expand the discharge region. In addition, it is difficult to coat a substrate having a three-dimensional shape.

この発明は、直流放電を長時間安定に維持でき、しかも
、ダイヤモンド合成に於ける低温化、大面積化が容易で
、さらには3次元形状を有する基体上への被覆が可能な
合成方法を提供することを目的とするものである。
The present invention provides a synthesis method that can maintain stable DC discharge for a long time, can easily reduce the temperature and increase the area of diamond synthesis, and can coat a substrate having a three-dimensional shape. The purpose is to

〈課題を解決するための手段〉 この発明は上記のような課題を解消すべく鋭意検討した
結果、陰極にメッシュを用いることにより解消しうるこ
とを見出し、この発明に至ったものである。
<Means for Solving the Problems> As a result of intensive studies to solve the above-mentioned problems, it was discovered that the problems could be solved by using a mesh for the cathode, and this invention was achieved.

即ち、この発明はダイヤモンド気相合成用原料ガスを直
流放電によりプラズマ化し、基体上にダイヤモンドを析
出させる方法に於て、陰極としてMo、W,Taから選
ばれた少なくとも1種あるいは複数の材質で構成された
線径0. 5mm以下、ピッチ3mm以下のメッシュを
用いることを特徴とするダイヤモンド合成方法を提供す
るものである。
That is, the present invention provides a method for converting raw material gas for diamond vapor phase synthesis into plasma by direct current discharge and depositing diamond on a substrate, in which the cathode is made of at least one or more materials selected from Mo, W, and Ta. Constructed wire diameter 0. The present invention provides a diamond synthesis method characterized by using a mesh having a mesh size of 5 mm or less and a pitch of 3 mm or less.

く作用〉 以下、この発明を図面を参照しつつ詳細に説明すると、
直流放電を行なう際に、陰極にメッシュを用いることに
より電子の放射率が向上し、高密度なプラズマを極めて
安定に長時間維持することができる。加えて、初期の放
電の点火も容易に行なえる。また、グロー放電を利用し
ているため基体の温度は水冷することなく低温に保持で
きる。
Function> This invention will be described in detail below with reference to the drawings.
When performing DC discharge, by using a mesh for the cathode, the emissivity of electrons is improved, and high-density plasma can be maintained extremely stably for a long time. In addition, the initial discharge can be easily ignited. Furthermore, since glow discharge is used, the temperature of the substrate can be maintained at a low temperature without water cooling.

この際用いられるメッシュは線径0. 5mm以下、ピ
ッチ3mm以下が望ましく、これ以上のものを使用した
場合には放電が不安定となる。これは、電子の放射率の
向上に対する効果が該メッシュ寸法内に存在するためで
ある。
The mesh used at this time has a wire diameter of 0. Desirably, the pitch is 5 mm or less and the pitch is 3 mm or less; if larger than this, the discharge becomes unstable. This is because the effect on improving the electron emissivity exists within the mesh size.

陰極としてのメッシュは、その形状を工夫することによ
り、例えば第1図に示すように多数のフィンを備え付け
た形状の陰極とすることによりその表面積が増加し、更
に効率よく電子の放射がなされ、基体上でより高密度な
プラズマを発生させることができる。
By devising the shape of the mesh as a cathode, for example, by creating a cathode with a large number of fins as shown in Figure 1, its surface area can be increased and electrons can be emitted more efficiently. Higher density plasma can be generated on the substrate.

また、この発明の方法では電子の放射効率のよいメッシ
ュを陰極電極として用いているため陰極の形状を複雑に
した場合に於いても安定な放電を発生させることが可能
である。このため被覆物の形状に対応した形状の陰極を
用いることができ、それにより3次元形状を有する基体
への被覆をも行なうことができる。簡単な一例として、
第2図に示すように電極と基体との形状を対応させるこ
とにより両者のギャップが一定となり均一にダイヤモン
ドの被覆が行なえる。これはより形状が複雑な場合にも
対応でき非球面上への被覆も可能である。
Further, in the method of the present invention, since a mesh with high electron emission efficiency is used as the cathode electrode, stable discharge can be generated even when the cathode has a complicated shape. Therefore, it is possible to use a cathode having a shape corresponding to the shape of the coating, thereby making it possible to coat even a substrate having a three-dimensional shape. As a simple example,
As shown in FIG. 2, by matching the shapes of the electrode and the substrate, the gap between them becomes constant and uniform diamond coating can be achieved. This can be used even when the shape is more complex, and it is also possible to coat aspherical surfaces.

さらに、放電領域は電極面積を増加させることにより容
易に拡大することができる。このため大面積への被覆も
可能である。
Furthermore, the discharge area can be easily expanded by increasing the electrode area. Therefore, it is possible to cover a large area.

〈実施例〉 次にこの発明を実施例により詳細に説明する。<Example> Next, the present invention will be explained in detail with reference to examples.

実施例1 陰極として用いるメッシュの線径およびピッチを第1表
に示すように種々変化させて直流放電を行なった。その
結果を第1表に示した。電極の形状は第3図に示したよ
うに陰極にはL字型に作或したMoメッシュ1を用い、
陽極2はWの円柱形状のものを使用した。両電極間の距
離は10mmと固定し、放電条件としては真空容器内に
メタン2secm 、水素200secmを導入し、系
内の圧力を40Torrとした。陰極に使用したメッシ
ュの線径が0. 5mm以下ではグロー放電が安定に発
生するが、線径を0. 6mmとした場合には両電極間
でスパーク放電が起こりグロー放電へ移行しなかった。
Example 1 Direct current discharge was performed while varying the wire diameter and pitch of the mesh used as the cathode as shown in Table 1. The results are shown in Table 1. The shape of the electrode is as shown in Figure 3, using Mo mesh 1 made in an L shape as the cathode.
The anode 2 was made of W and had a cylindrical shape. The distance between both electrodes was fixed at 10 mm, and as discharge conditions, methane at 2 sec and hydrogen at 200 sec were introduced into the vacuum vessel, and the pressure in the system was set at 40 Torr. The wire diameter of the mesh used for the cathode is 0. Glow discharge occurs stably when the wire diameter is 5 mm or less, but when the wire diameter is reduced to 0. When the diameter was 6 mm, spark discharge occurred between both electrodes and did not shift to glow discharge.

また、ピッチを変化させた場合には3mm以下では放電
が発生するが、ピッチを4mmと増加させると、グロー
放電の発生が起こらなかった。これは、メッシュの材質
をW,Taとした場合にも同様であった。
Further, when the pitch was changed, discharge occurred when the pitch was 3 mm or less, but when the pitch was increased to 4 mm, no glow discharge occurred. This was also the case when the mesh material was W or Ta.

第 l 表 実施例2 第4図に示すように、電極はL字型のMoメッシュlを
陰極とし、直流電源5を接続し陽極2はWの円柱形状の
ものを使用した。寸法はそれぞれ陰極のL字底部が30
X 30mm,線径0.2+nm ,ビッチ1mrQの
メッシュを、陽極は直径3 0 m m %高さ10m
mの円柱を用いた。電極間距離は10mmとした。基体
3は20X20mmの単結晶SLを使用し、陽極を介し
ヒーター4により加熱され600℃に保持された。真空
容器内にメタン2sCCffi、水素200sccmを
導入し系内の圧力を40Torrとした。そして上記電
極間で直流放電を発生させ20時間の反応を行なった。
Table 1 Example 2 As shown in FIG. 4, an L-shaped Mo mesh 1 was used as a cathode, a DC power source 5 was connected, and a W cylindrical anode 2 was used. The dimensions of each cathode L-shaped bottom are 30mm.
x 30mm, wire diameter 0.2+nm, pitch 1mrQ mesh, anode diameter 30mm % height 10m
A cylinder of m was used. The distance between the electrodes was 10 mm. The substrate 3 was a 20×20 mm single crystal SL, heated by a heater 4 through an anode, and maintained at 600°C. Methane (2s CCffi) and hydrogen (200 sccm) were introduced into the vacuum vessel, and the pressure inside the system was set to 40 Torr. Then, a direct current discharge was generated between the electrodes, and a reaction was carried out for 20 hours.

このときの電圧、電流はそれぞれ350 V, 0.8
 Aであった。その結果、約8 umの膜が得られ、ラ
マン分光分析により良質なダイヤモンドであることが確
認された。また、SEM観察により膜表面は0.1μm
程度の微粒子で覆われた非常に緻密で平坦な膜面である
ことがわった。
The voltage and current at this time were 350 V and 0.8, respectively.
It was A. As a result, a film with a thickness of about 8 um was obtained, and Raman spectroscopic analysis confirmed that it was a good quality diamond. Furthermore, SEM observation revealed that the membrane surface was 0.1 μm thick.
The surface of the film was found to be extremely dense and flat, covered with very fine particles.

〈発明の効果〉 以上説明したように、この発明は陰極としてメッシュを
用いることにより電子の放射率が向上し、高密度なプラ
ズマを極めて安定に長時間維持することができるのであ
る。また、基体温度の低温化および大面積化に適し、加
えて形状が複雑な陰極を用いる場合に於いても安定な放
電を発生させることが可能であり、3次元形状を有する
基体への被覆が可能である。
<Effects of the Invention> As explained above, in the present invention, by using a mesh as a cathode, the electron emissivity is improved, and high-density plasma can be maintained extremely stably for a long time. In addition, it is suitable for lowering the substrate temperature and increasing the area, and in addition, it is possible to generate stable discharge even when using a cathode with a complicated shape, and it is possible to coat a substrate with a three-dimensional shape. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の方法において、陰極と
して用いるメッシュの形状の一例を示す説明図、第3図
はこの発明の他の実施例を示す電極形状の説明図であり
、第4図はこの発明の実施例にて使用する装置の概略図
である。
1 and 2 are explanatory diagrams showing an example of the shape of a mesh used as a cathode in the method of this invention, FIG. 3 is an explanatory diagram of an electrode shape showing another embodiment of this invention, and FIG. The figure is a schematic diagram of an apparatus used in an embodiment of the invention.

Claims (1)

【特許請求の範囲】[Claims] ダイヤモンド気相合成用原料ガスを直流放電によりプラ
ズマ化し、基体上にダイヤモンドを析出させる方法に於
て、陰極としてMo、W、Taから選ばれた少なくとも
1種あるいは複数の材質で構成された線径0.5mm以
下、ピッチ3mm以下のメッシュを用いることを特徴と
するダイヤモンド合成方法。
In the method of converting raw material gas for diamond vapor phase synthesis into plasma by direct current discharge and depositing diamond on a substrate, a wire diameter made of at least one or more materials selected from Mo, W, and Ta is used as a cathode. A diamond synthesis method characterized by using a mesh having a mesh size of 0.5 mm or less and a pitch of 3 mm or less.
JP1305055A 1989-11-24 1989-11-24 Diamond synthesizing method Pending JPH03166378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305055A JPH03166378A (en) 1989-11-24 1989-11-24 Diamond synthesizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305055A JPH03166378A (en) 1989-11-24 1989-11-24 Diamond synthesizing method

Publications (1)

Publication Number Publication Date
JPH03166378A true JPH03166378A (en) 1991-07-18

Family

ID=17940575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305055A Pending JPH03166378A (en) 1989-11-24 1989-11-24 Diamond synthesizing method

Country Status (1)

Country Link
JP (1) JPH03166378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230896A (en) * 2007-03-20 2008-10-02 Ulvac Japan Ltd Remote plasma cvd device and manufacturing method of carbon nano-tube using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230896A (en) * 2007-03-20 2008-10-02 Ulvac Japan Ltd Remote plasma cvd device and manufacturing method of carbon nano-tube using the same

Similar Documents

Publication Publication Date Title
JP7156648B2 (en) Carbon nanostructured material and method of forming carbon nanostructured material
US4767517A (en) Process of depositing diamond-like thin film by cathode sputtering
JP2541434B2 (en) Carbon nano tube manufacturing method
JPH01156474A (en) Glow discharge activating reactive accumulation of metal from gaseous phase
US5007373A (en) Spiral hollow cathode
JPS5963732A (en) Thin film forming device
KR20070106365A (en) Method for manufacturing diamond-like carbon film
WO2007015445A1 (en) Plasma generator and film forming method employing same
JPH04958B2 (en)
US5201986A (en) Diamond synthesizing method
JPS60103099A (en) Manufacture of diamond film
JPH03166378A (en) Diamond synthesizing method
RU2158037C2 (en) Process of manufacture of diamond films by method of gas- phase synthesis
JPH0420984B2 (en)
JPH0421638B2 (en)
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JPH0420985B2 (en)
WO2008026395A1 (en) Method for forming carbon film
Chattopadhyay et al. Diamond synthesis by capacitively coupled radio frequency plasma with the addition of direct current power
JPH11263610A (en) Production of carbon nanotube
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JPH0492890A (en) Synthesis of diamond
JPH0280395A (en) Formation of diamond film
JPH11310407A (en) Production of functional carbonaceous material
JPH0543792B2 (en)