JP7207894B2 - Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method - Google Patents

Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method Download PDF

Info

Publication number
JP7207894B2
JP7207894B2 JP2018150114A JP2018150114A JP7207894B2 JP 7207894 B2 JP7207894 B2 JP 7207894B2 JP 2018150114 A JP2018150114 A JP 2018150114A JP 2018150114 A JP2018150114 A JP 2018150114A JP 7207894 B2 JP7207894 B2 JP 7207894B2
Authority
JP
Japan
Prior art keywords
biological treatment
fluidized bed
bed biological
reaction tank
anaerobic fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018150114A
Other languages
Japanese (ja)
Other versions
JP2020025901A (en
Inventor
太一 山本
啓徳 油井
好一 加藤
孝宏 根本
健一 吾郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE MULTIMIX CORPORATION
Organo Corp
Original Assignee
SATAKE MULTIMIX CORPORATION
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKE MULTIMIX CORPORATION, Organo Corp filed Critical SATAKE MULTIMIX CORPORATION
Priority to JP2018150114A priority Critical patent/JP7207894B2/en
Publication of JP2020025901A publication Critical patent/JP2020025901A/en
Application granted granted Critical
Publication of JP7207894B2 publication Critical patent/JP7207894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

本発明は、微生物を付着した担体を用いた嫌気性流動床式生物処理装置および嫌気性流動床式生物処理方法に関する。 TECHNICAL FIELD The present invention relates to an anaerobic fluidized bed biological treatment apparatus and an anaerobic fluidized bed biological treatment method using a carrier to which microorganisms are adhered.

流動床式の嫌気性生物処理は、担体に微生物を固着させ、流動により被処理水との接触効率を高めることで、安定かつ高効率な処理が実現出来る処理方法である。しかし、担体の流動状態を適切に管理しなければ、担体に付着した微生物の剥離や、担体の反応槽外への流出等が発生し、処理が不安定となる。 Fluidized bed anaerobic biological treatment is a treatment method that can realize stable and highly efficient treatment by fixing microorganisms to a carrier and increasing the contact efficiency with the water to be treated by fluidization. However, if the flow state of the carrier is not properly controlled, the microorganisms adhering to the carrier may peel off or the carrier may flow out of the reaction tank, resulting in unstable treatment.

特許文献1には、反応槽内に上下が開口したドラフトチューブを設け、ドラフトチューブの内側に下向流、ドラフトチューブの外側に上向流を形成し、上向流に伴って上昇する担体が存在する領域を実質的にドラフトチューブの上端以下に抑える方法が示されている。微生物の付着した担体は、微生物の付着量や担体内で発生するバイオガス量等によって担体の見掛けの比重が変化するため、特許文献1の方法では、担体の流動性を十分に確保しながら担体の存在領域をドラフトチューブの上端以下に制御するには、界面計測装置を設置して管理する等、装置構成、運転管理が複雑になる場合がある。 In Patent Document 1, a draft tube having top and bottom openings is provided in a reaction tank, a downward flow is formed inside the draft tube and an upward flow is formed outside the draft tube, and the carrier rises with the upward flow. A method is shown to keep the existing area substantially below the top of the draft tube. Since the apparent specific gravity of the carrier to which microorganisms are attached changes depending on the amount of attached microorganisms, the amount of biogas generated in the carrier, etc., the method of Patent Document 1 can be used to secure sufficient fluidity of the carrier. In order to control the existence area of the draft tube below the upper end of the draft tube, the device configuration and operation management may become complicated, such as installing and managing an interface measurement device.

特許文献2には、槽底部に放射状に延びる静翼と槽内の液面下方付近に回転翼を具備する反応槽において、回転翼より下方位置の槽側壁面に開口部を設けるとともに、その槽壁面の外部に開口部に連通する担体分離部を設ける方法が示されている。特許文献2の方法では、担体分離部は背面板や前面板を複雑に組み合わせる必要があり、かつ反応槽と担体分離部との接続部分が液面下となっているため、排水処理に伴って発生するスカムや油分が液面上に蓄積する問題がある。 In Patent Document 2, in a reaction vessel equipped with stationary vanes radially extending at the bottom of the vessel and rotary vanes near the bottom of the liquid surface in the vessel, an opening is provided on the side wall surface of the vessel below the rotary vanes, and the A method of providing a carrier separation section communicating with the opening on the outside of the wall surface is shown. In the method of Patent Document 2, the back plate and front plate of the carrier separation section must be combined in a complicated manner, and the connecting portion between the reaction tank and the carrier separation section is below the liquid level. There is a problem that the generated scum and oil accumulate on the liquid surface.

特開2006-218371号公報JP 2006-218371 A 特開2012-030155号公報JP 2012-030155 A

本発明の目的は、担体を適切な流動状態に維持し、かつ反応槽内におけるスカム等の液面浮遊物の蓄積を抑制しながら反応槽外への担体の流出を抑制し、安定した高効率の嫌気性処理が可能となる、嫌気性流動床式生物処理装置および嫌気性流動床式生物処理方法を提供することにある。 An object of the present invention is to maintain the carrier in an appropriate fluid state and to suppress the outflow of the carrier to the outside of the reaction vessel while suppressing the accumulation of liquid surface floating matter such as scum in the reaction vessel to achieve stable and high efficiency. To provide an anaerobic fluidized bed biological treatment apparatus and an anaerobic fluidized bed biological treatment method that enable anaerobic treatment of

本発明は、担体を用いた流動床式の生物処理を行うための反応槽と、前記反応槽に被処理水を導入したときの液面から所定の深さに設置された回転翼と、前記反応槽の底部に固定された放射状に延びる静翼と、前記反応槽における液面付近に設置された、前記反応槽内の処理水を外部に排出する排出口と、を備え、前記回転翼は、前記液面からの深さの1/4よりも前記反応槽の底部側であって、前記回転翼の上方で前記回転翼の回転の影響を受けない液層部分が形成される深さに設置され、前記反応槽に前記被処理水を導入する導入口は、前記反応槽の側壁に設けられ、前記導入口は、前記回転翼よりも前記反応槽の底部側に配置される、嫌気性流動床式生物処理装置である。 The present invention provides a reaction tank for performing fluidized bed biological treatment using a carrier, a rotor installed at a predetermined depth from the liquid surface when water to be treated is introduced into the reaction tank, and the A radially extending stationary blade fixed to the bottom of a reaction tank, and an outlet installed near the liquid surface in the reaction tank for discharging treated water in the reaction tank to the outside, wherein the rotor is , the bottom side of the reaction vessel more than 1/4 of the depth from the liquid surface, and to a depth at which a liquid layer portion is formed above the rotor blades and is not affected by the rotation of the rotor blades. An inlet for introducing the water to be treated into the reaction vessel is provided on a side wall of the reaction vessel, and the introduction port is arranged closer to the bottom of the reaction vessel than the rotor blade. It is a fluidized bed biological treatment system.

前記嫌気性流動床式生物処理装置において、前記回転翼は、長方形状の平板であることが好ましい。 In the anaerobic fluidized bed biological treatment apparatus, the rotor is preferably a rectangular flat plate.

前記嫌気性流動床式生物処理装置において、前記回転翼の上端部に板体が固定されていることが好ましい。 In the anaerobic fluidized bed biological treatment apparatus, it is preferable that a plate is fixed to the upper end of the rotor blade.

前記嫌気性流動床式生物処理装置において、前記液面より下で、前記回転翼の上方の前記反応槽の側壁の内周面に、円周方向に、邪魔板が固定されていることが好ましい。 In the anaerobic fluidized bed biological treatment apparatus, baffle plates are preferably fixed in the circumferential direction below the liquid surface and on the inner peripheral surface of the side wall of the reaction vessel above the rotor blades. .

また、本発明は、担体を用いた流動床式の生物処理を行うための反応槽と、前記反応槽に被処理水を導入したときの液面から所定の深さに設置された回転翼と、前記反応槽の底部に固定された放射状に延びる静翼と、前記反応槽における液面付近に設置された、前記反応槽内の処理水を外部に排出する排出口と、を備え、前記回転翼は、前記液面からの深さの1/4よりも前記反応槽の底部側であって、前記回転翼の上方で前記回転翼の回転の影響を受けない液層部分が形成される深さに設置され、前記反応槽に前記被処理水を導入する導入口は、前記反応槽の側壁に設けられ、前記導入口は、前記回転翼よりも前記反応槽の底部側に配置される生物処理装置を用いて嫌気性流動床式生物処理を行う、嫌気性流動床式生物処理方法である。 In addition, the present invention provides a reaction tank for performing fluidized bed biological treatment using a carrier, and a rotor installed at a predetermined depth from the liquid surface when water to be treated is introduced into the reaction tank. , a radially extending stationary blade fixed to the bottom of the reaction vessel, and a discharge port installed near the liquid surface in the reaction vessel for discharging the treated water in the reaction vessel to the outside; The impeller is located on the bottom side of the reaction vessel more than 1/4 of the depth from the liquid surface, and the depth is such that a liquid layer portion is formed above the rotor blade that is not affected by the rotation of the rotor blade. An inlet for introducing the water to be treated into the reaction tank is provided on a side wall of the reaction tank, and the inlet is arranged on the bottom side of the reaction tank relative to the rotor blade. An anaerobic fluidized bed biological treatment method using a treatment apparatus for anaerobic fluidized bed biological treatment.

前記嫌気性流動床式生物処理方法において、前記回転翼は、長方形状の平板であることが好ましい。 In the anaerobic fluidized bed biological treatment method, the rotor is preferably a rectangular flat plate.

前記嫌気性流動床式生物処理方法において、前記回転翼の上端部に板体が固定されていることが好ましい。 In the anaerobic fluidized bed biological treatment method, it is preferable that a plate is fixed to the upper end of the rotor blade.

前記嫌気性流動床式生物処理方法において、前記液面より下で、前記回転翼の上方の前記反応槽の側壁の内周面に、円周方向に、邪魔板が固定されていることが好ましい。 In the anaerobic fluidized bed biological treatment method, it is preferable that a baffle plate is fixed in the circumferential direction below the liquid surface and on the inner peripheral surface of the side wall of the reaction vessel above the rotor blades. .

本発明により、担体を適切な流動状態に維持し、かつ反応槽内におけるスカム等の液面浮遊物の蓄積を抑制しながら反応槽外への担体の流出を抑制し、安定した高効率の嫌気性処理が可能となる。 According to the present invention, the carrier is maintained in an appropriate fluid state, and the outflow of the carrier to the outside of the reaction vessel is suppressed while suppressing the accumulation of liquid surface suspended matter such as scum in the reaction vessel. Sexual processing becomes possible.

本発明の実施形態に係る生物処理装置の第1の例を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the 1st example of the biological treatment apparatus which concerns on embodiment of this invention. 図1におけるA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1; 本発明の実施形態に係る生物処理装置の第2の例を示す概略構成図である。It is a schematic block diagram which shows the 2nd example of the biological treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る生物処理装置の第2の例を示す概略構成図である。It is a schematic block diagram which shows the 2nd example of the biological treatment apparatus which concerns on embodiment of this invention. 図4におけるB-B線断面図である。FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4; 本発明の実施形態に係る生物処理装置の第3の例を示す概略構成図である。It is a schematic block diagram which shows the 3rd example of the biological treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る生物処理装置の第3の例を示す概略構成図である。It is a schematic block diagram which shows the 3rd example of the biological treatment apparatus which concerns on embodiment of this invention. 図7におけるC-C線断面図である。FIG. 8 is a sectional view taken along line CC in FIG. 7; 比較例1における、CODCr負荷、除去速度の経日変化を示すグラフである。4 is a graph showing changes over time in COD Cr load and removal rate in Comparative Example 1. FIG. 比較例1における、処理水の有機酸濃度の経日変化を示すグラフである。4 is a graph showing changes over time in the concentration of organic acids in treated water in Comparative Example 1. FIG. 実施例1における、CODCr負荷、除去速度の経日変化を示すグラフである。4 is a graph showing changes over time in COD Cr load and removal rate in Example 1. FIG. 実施例1における、処理水の有機酸濃度の経日変化を示すグラフである。4 is a graph showing changes over time in organic acid concentration in treated water in Example 1. FIG.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 An embodiment of the present invention will be described below. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る生物処理装置の第1の概略を図1に示し、その構成について説明する。 A first outline of a biological treatment apparatus according to an embodiment of the present invention is shown in FIG. 1, and its configuration will be described.

[嫌気性流動床式生物処理の反応槽、撹拌装置]
生物処理装置8は、担体を用いた流動床式の生物処理を行うための反応槽2と、反応槽2に液体を導入したときの液面から所定の深さに設置された回転翼3と、反応槽2の底部に固定された放射状に延びる静翼4と、反応槽2における液面付近に設置された、反応槽2内の液体を外部に排出する排出口9と、を備える。生物処理装置8は、反応槽2の例えば底部付近の側壁部分に形成された、反応槽2内に被処理水を導入する流入管6を備える。反応槽2内には、嫌気性微生物が生物膜状となって付着している担体13が投入されている。
[Anaerobic fluidized bed biological treatment reaction tank and stirring device]
The biological treatment apparatus 8 includes a reaction tank 2 for performing fluidized bed biological treatment using a carrier, and a rotor 3 installed at a predetermined depth from the liquid surface when the liquid is introduced into the reaction tank 2. , a radially extending stationary blade 4 fixed to the bottom of the reaction tank 2, and a discharge port 9 installed near the liquid surface in the reaction tank 2 for discharging the liquid in the reaction tank 2 to the outside. The biological treatment apparatus 8 is provided with an inflow pipe 6 for introducing the water to be treated into the reaction tank 2, which is formed, for example, in a side wall portion near the bottom of the reaction tank 2. As shown in FIG. Into the reaction tank 2, a carrier 13 to which anaerobic microorganisms adhere in the form of a biofilm is put.

本実施形態に係る生物処理装置8においては、撹拌装置の回転軸3aを反応槽2内の液面から下方に伸ばし、回転軸3aの下端に固定された回転翼3を、反応槽2内に収容された被処理水の液面から所定の深さにおいて回転するように設けるとともに、回転翼3の上方の液面付近における反応槽2の側壁に排出口9を設ける。 In the biological treatment apparatus 8 according to this embodiment, the rotating shaft 3a of the stirring device extends downward from the liquid surface in the reaction vessel 2, and the rotating blade 3 fixed to the lower end of the rotating shaft 3a is inserted into the reaction vessel 2. It is provided so as to rotate at a predetermined depth from the liquid surface of the contained water to be treated, and a discharge port 9 is provided on the side wall of the reaction vessel 2 near the liquid surface above the rotor blade 3 .

なお、「液面から所定の深さ」とは、反応槽2内に予め定めた(規定)の高さまで被処理水を収容し、回転翼3を回転させたときに、回転翼3の上方で、回転翼3の回転の影響を実質的に受けない液層部分10(以下、「無担体ゾーン10」という)が形成される深さを意味し、この深さは、反応槽2と回転翼3と静翼4の形状や、回転翼3の回転数や、被処理水や担体13の種類等により影響を受けるが、例えば、回転翼3は、液面からの深さの1/4よりも反応槽2の底部側に設置されることが好ましく、液面からの深さの1/3.7以下の反応槽2の底部側に設置されることがより好ましく、液面からの深さの1/3よりも反応槽2の底部側に設置されることがさらに好ましい。 In addition, "predetermined depth from the liquid surface" means that when the water to be treated is stored to a predetermined (regulation) height in the reaction tank 2 and the rotor blade 3 is rotated, the above the rotor blade 3 means the depth at which the liquid layer portion 10 (hereinafter referred to as "carrier-free zone 10") is formed which is substantially unaffected by the rotation of the rotor blade 3, and this depth is defined by the reaction vessel 2 and the rotation. It is affected by the shape of the blade 3 and the stationary blade 4, the number of revolutions of the rotor blade 3, the type of the water to be treated and the carrier 13, etc. It is preferably installed on the bottom side of the reaction vessel 2 than the It is more preferable to install on the bottom side of the reaction vessel 2 rather than 1/3 of the height.

排出口9は、回転翼3の上方の無担体ゾーン10の上部の液面付近における反応槽2の側壁部分に設置される。この「排出口を液面付近に設置」とは、液面に蓄積し易いスカムや油分等を系外へ排出することができるように設置すればよく、例えば反応槽2の水位(底部2aから液面までの高さ)の上部5%以内に排出口の中心がくるよう設置すればよい。 The outlet 9 is located in the side wall portion of the reaction vessel 2 near the liquid surface above the carrier-free zone 10 above the impeller 3 . This "installation of the outlet near the liquid surface" means that it may be installed so that scum, oil, etc., which tend to accumulate on the liquid surface, can be discharged to the outside of the system. It should be installed so that the center of the discharge port is within 5% of the upper part of the height to the liquid surface).

本実施形態に係る生物処理方法および生物処理装置8の動作について説明する。 The operation of the biological treatment method and the biological treatment apparatus 8 according to this embodiment will be described.

被処理水は、流入管6より、反応槽2内に所定の高さまで導入されて、反応槽2内に収容される。回転翼3が回転されることにより、反応槽2内において、担体13および被処理水は、例えば図1に示すように、回転翼3によって反応槽2の半径方向外側に吐出されて反応槽2の側壁内面に接して下方に流れて、反応槽2の側壁内面を旋回しながら緩やかに反応槽2の底部2aに向かう下降流が形成され、その後、反応槽2の底部2aの中心部において、静翼4により、竜巻上昇流が引き起こされ、これにより、回転翼3と静翼4との間において、循環流が形成され、反応槽2内で担体13および被処理水の混合、分散化が行われる。 The water to be treated is introduced into the reaction tank 2 from the inflow pipe 6 to a predetermined height and stored in the reaction tank 2 . By rotating the rotor blade 3, the carrier 13 and the water to be treated are discharged radially outward of the reaction tank 2 by the rotor blade 3 as shown in FIG. and flows downward in contact with the inner surface of the side wall of the reaction vessel 2 to form a downward flow gently toward the bottom 2a of the reaction vessel 2 while swirling on the inner surface of the side wall of the reaction vessel 2. After that, at the center of the bottom 2a of the reaction vessel 2, A tornado ascending flow is caused by the stationary blades 4, whereby a circulation flow is formed between the rotary blades 3 and the stationary blades 4, and the carrier 13 and the water to be treated are mixed and dispersed in the reaction tank 2. done.

回転翼3の上方に回転翼3による吐出流の影響をほとんど受けない無担体ゾーン10が形成され、無担体ゾーン10の処理水が、液面付近の排出口9から排出される。これにより、反応後の処理水が、担体13の流出がほとんどない状態で、処理槽2の外に引き抜き排出される。 A carrier-free zone 10 is formed above the rotor blades 3 and is hardly affected by the flow discharged by the rotor blades 3, and the treated water in the carrier-free zone 10 is discharged from a discharge port 9 near the liquid surface. As a result, the treated water after the reaction is drawn out of the treatment tank 2 and discharged while the carrier 13 hardly flows out.

本実施形態に係る生物処理方法および生物処理装置により、担体13を適切な流動状態に維持し、かつ反応槽2内におけるスカム等の液面浮遊物の蓄積を抑制しながら反応槽2外への担体13の流出を抑制し、安定した高効率の嫌気性処理が可能となる。簡易な構成で、担体13の槽内混合、分散化が得られるとともに、担体13が生物処理系から系外に流出することが抑制される。 By the biological treatment method and the biological treatment apparatus according to the present embodiment, the carrier 13 is maintained in an appropriate fluid state, and the accumulation of liquid surface floating matter such as scum in the reaction tank 2 is suppressed. The outflow of the carrier 13 is suppressed, and stable and highly efficient anaerobic treatment becomes possible. With a simple configuration, the carrier 13 can be mixed and dispersed in the tank, and the carrier 13 can be prevented from flowing out of the biological treatment system.

回転翼3の形状としては、反応槽2内の液体を撹拌できるものであればよく、特に制限はないが、例えば、パドル翼、傾斜パドル翼、プロペラ翼、タービン翼、アンカー翼等が挙げられる。回転翼3の形状は、図1に縦断側面図、および、図2に図1におけるA-A線断面図を示すように、長方形状(正方形状を含む)の平板(フラット状パドル)、すなわちパドル翼が好ましい。図1,2の例では、回転翼3は、傾斜角度90度の長方形状の平板(フラット状パドル)の羽根4枚が等角度で配置されている4枚パドル翼である。この長方形状の平板の回転翼3によって、担体13に付着した微生物の剥離が抑制される。パドル翼の羽根の枚数は、例えば、2~6枚とすればよい。 The shape of the rotor blades 3 is not particularly limited as long as it can stir the liquid in the reaction vessel 2. Examples include paddle blades, inclined paddle blades, propeller blades, turbine blades, and anchor blades. . The shape of the rotor blade 3 is a rectangular (including square) flat plate (flat paddle), as shown in FIG. Paddle wings are preferred. In the example of FIGS. 1 and 2, the rotary blade 3 is a four-paddle blade in which four rectangular flat plate (flat paddle) blades with an inclination angle of 90 degrees are arranged at equal angles. Detachment of microorganisms adhering to the carrier 13 is suppressed by the rotor blade 3 of the rectangular flat plate. The number of blades of the paddle blade may be, for example, 2-6.

反応槽2の内径に対する、回転翼3の反応槽2の径方向の長さ(翼径)の比は、例えば、0.25~0.6の範囲とすればよい。回転翼3の高さは、例えば、回転翼径に対して0.15~0.35の範囲とすればよい。 The ratio of the radial length (blade diameter) of the rotor blades 3 to the inner diameter of the reaction tank 2 may be, for example, in the range of 0.25 to 0.6. The height of the rotor blade 3 may be, for example, in the range of 0.15 to 0.35 with respect to the diameter of the rotor blade.

静翼4の形状は、反応槽2の底部の中心部から放射状に延びる長方形状(正方形状を含む)の平板(フラット状板)である。図1,2の例では、傾斜角度90度の長方形状の平板(フラット状板)4枚が等角度で配置されている。羽根の枚数は、例えば、2~6枚とすればよい。 The shape of the stationary blade 4 is a rectangular (including square) flat plate (flat plate) radially extending from the center of the bottom of the reaction vessel 2 . In the example of FIGS. 1 and 2, four rectangular flat plates (flat plates) with an inclination angle of 90 degrees are arranged at equal angles. The number of blades may be, for example, 2 to 6.

反応槽2の内径に対する、静翼4の反応槽2の径方向の長さ(静翼径)の比は、例えば、0.6~1.0の範囲とすればよい。静翼4の高さは、例えば、回転翼径に対して0.15~0.35の範囲とすればよい。 The ratio of the radial length (stator blade diameter) of the stationary blade 4 to the inner diameter of the reaction vessel 2 may be, for example, in the range of 0.6 to 1.0. The height of the stationary blade 4 may be, for example, in the range of 0.15 to 0.35 with respect to the rotor blade diameter.

図3,4に、本実施形態に係る生物処理装置の第2の例の概略構成を示す。図5には、図4におけるB-B線断面図を示す。図3~5の生物処理装置8では、回転翼3の上端部に円板等の板体11が固定されている。 3 and 4 show a schematic configuration of a second example of the biological treatment apparatus according to this embodiment. FIG. 5 shows a cross-sectional view taken along line BB in FIG. In the biological treatment apparatus 8 shown in FIGS. 3 to 5, a plate 11 such as a disc is fixed to the upper end of the rotor 3. As shown in FIG.

板体11は、例えば、その中心が回転軸3aとほぼ一致した円板であり、回転翼3の径と同じ、それ以下の径、または、それ以上の径の円板で形成されるとともに、板体11の縁部と反応槽2の側壁内面との間に隙間が形成されるような大きさに形成される。 The plate 11 is, for example, a disk whose center is substantially aligned with the rotation axis 3a, and is formed of a disk having a diameter equal to, smaller than, or larger than the diameter of the rotor blade 3, The size is formed such that a gap is formed between the edge of the plate 11 and the inner surface of the side wall of the reaction vessel 2 .

板体11により、回転翼3の上方の無担体ゾーン10への担体13の侵入を図1の装置に比べてより少なくすることができるようになる。また、板体11を設けることにより、回転翼3の上方に無担体ゾーン10が形成されやすくなるため、図1のように板体11を設置しない場合に比べて、回転翼3の位置をより高い位置に設けることができるようになる。すなわち、回転軸3aの長さをより短くすることができる。 The plate 11 allows less penetration of the carrier 13 into the carrier-free zone 10 above the rotor blade 3 compared to the device of FIG. In addition, since the provision of the plate 11 facilitates the formation of the carrier-free zone 10 above the rotor blade 3, the position of the rotor blade 3 can be adjusted more than the case where the plate member 11 is not provided as shown in FIG. It can be placed in a higher position. That is, the length of the rotating shaft 3a can be made shorter.

板体11は、円板の他に、例えば、リング状板、正方形板であってもよい。流動安定性、翼設計等の点から、円板が好ましい。 The plate 11 may be, for example, a ring-shaped plate or a square plate other than a disk. A disk is preferable from the viewpoint of flow stability, blade design, and the like.

反応槽2の内径に対する、板体11の長さの比は、例えば、0.25~0.6の範囲とすればよい。 The ratio of the length of the plate 11 to the inner diameter of the reaction vessel 2 may be, for example, in the range of 0.25-0.6.

図6,7に、本実施形態に係る生物処理装置の第3の例の概略構成を示す。図8には、図7におけるC-C線断面図を示す。図6~8の生物処理装置8では、回転翼3の上方でかつ液面よりも下方の反応槽2の側壁の内周面に、円周方向に、例えば、リング状板等の邪魔板12が固定されている。 6 and 7 show a schematic configuration of a third example of the biological treatment apparatus according to this embodiment. FIG. 8 shows a sectional view taken along line CC in FIG. In the biological treatment apparatus 8 of FIGS. 6 to 8, a baffle plate 12 such as a ring-shaped plate is provided on the inner peripheral surface of the side wall of the reaction vessel 2 above the rotor blade 3 and below the liquid surface in the circumferential direction. is fixed.

邪魔板12は、反応槽2の側壁の内周面に、円周方向に固定されており、回転翼3の上方が開放されているものであればよく、特に制限はない。邪魔板12は、例えば、反応槽2の内径と同じ外径のリング状の板が反応槽2の側壁内の全周にわたって水平に固定された板体であるリング状板であり、板体の中心部には、例えば、円状の開口部12aが形成されている。 The baffle plate 12 is fixed to the inner peripheral surface of the side wall of the reaction vessel 2 in the circumferential direction, and is not particularly limited as long as it is open above the rotor blades 3 . The baffle plate 12 is, for example, a ring-shaped plate in which a ring-shaped plate having the same outer diameter as the inner diameter of the reaction vessel 2 is horizontally fixed over the entire circumference inside the side wall of the reaction vessel 2. For example, a circular opening 12a is formed in the central portion.

邪魔板12は、例えば、リング状板であり、リング状の平板の他に、リング状の傾斜板、リング状の湾曲板であってもよい。製作、施工等の点から、リング状の平板が好ましい。 The baffle plate 12 is, for example, a ring-shaped plate, and may be a ring-shaped inclined plate or a ring-shaped curved plate in addition to a ring-shaped flat plate. A ring-shaped flat plate is preferable from the viewpoint of manufacturing, construction, and the like.

邪魔板12の設置位置は、回転翼3の上方でかつ液面よりも下方であればよいが、例えば、液面からの深さは回転翼径の1/2よりも反応槽2の液面側に設置されることがより好ましい。 The installation position of the baffle plate 12 may be above the rotor blades 3 and below the liquid surface. It is more preferable to be installed on the side.

邪魔板12の開口部12aの大きさは、例えば、回転翼3の径よりも大きく形成すればよい。また、回転翼3の上端に板体11が設置されている場合は、例えば、板体11の径よりも大きく形成すればよい。 The size of the opening 12a of the baffle plate 12 may be formed larger than the diameter of the rotor blade 3, for example. Moreover, when the plate 11 is installed at the upper end of the rotor blade 3, it may be formed to be larger than the diameter of the plate 11, for example.

リング状板等の邪魔板12により、図7に示すように、回転翼3により半径方向外側に吐出され、反応槽2の側壁の内面に接した被処理水が、邪魔板12より上方に向かうのを抑制することができ、図1,4の装置に比べて回転翼3の上方の無担体ゾーン10への担体13の侵入をさらに少なくすることができるようになる。また、リング状板等の邪魔板12を設けることにより、回転翼3の上方に無担体ゾーン10がさらに形成されやすくなるため、図1,4のようにリング状板等の邪魔板12を設置しない場合に比べて、回転翼3の位置をより高い位置に設けることができるようになる。すなわち、回転軸3aの長さをより短くすることができる。 As shown in FIG. 7, the baffle plate 12 such as a ring-shaped plate causes the water to be treated, which is discharged radially outward by the rotor blade 3 and contacts the inner surface of the side wall of the reaction vessel 2, to move upward from the baffle plate 12. 1 and 4, and the intrusion of carriers 13 into the carrier-free zone 10 above the rotor blades 3 can be further reduced. Further, by providing a baffle plate 12 such as a ring-shaped plate, the carrier-free zone 10 is more likely to be formed above the rotor blade 3, so the baffle plate 12 such as a ring-shaped plate is installed as shown in FIGS. The position of the rotor blades 3 can be provided at a higher position compared to the case where they are not provided. That is, the length of the rotating shaft 3a can be made shorter.

[担体]
担体としては、従来、嫌気性生物処理で使用される担体であれば特に制限されるものではなく、例えば、プラスチック製担体、スポンジ状担体、ゲル状担体等が挙げられる。特に、ゲル状担体を用いることで、高分子ポリマを産出しないメタン発酵菌がゲル状担体の3次元の網目構造の孔に入り込む、またはゲル状担体の形状、荷電等の関係で付着しやすく、また、撹拌による担体の流動性も高いため、プラスチック製担体、スポンジ状担体と比較して、高負荷処理が可能となる。ゲル状担体としては、特に限定されるものではないが、ポリビニルアルコール、ポリエチレングリコール、ポリウレタン等を含んでなる吸水性高分子ゲル状担体等が挙げられる。
[Carrier]
The carrier is not particularly limited as long as it is a carrier conventionally used in anaerobic biological treatment, and examples thereof include plastic carriers, sponge-like carriers, gel-like carriers and the like. In particular, by using a gel-like carrier, methane-fermenting bacteria that do not produce high-molecular-weight polymers can enter the pores of the three-dimensional network structure of the gel-like carrier, or easily adhere to the gel-like carrier due to the shape, charge, etc. of the gel-like carrier. In addition, since the fluidity of the carrier by stirring is high, high-load treatment is possible compared to plastic carriers and sponge-like carriers. The gel-like carrier is not particularly limited, but includes water-absorbing polymer gel-like carriers containing polyvinyl alcohol, polyethylene glycol, polyurethane, and the like.

担体の形状は、特に限定されるものではないが、0.5mm~20mm程度の径の球状または立方体状(キューブ状)、長方体、円筒状等のものが好ましい。特に、3~8mm程度の径の球状、または円筒状のゲル状担体が好ましい。 The shape of the carrier is not particularly limited, but preferably spherical, cubic, rectangular, cylindrical, etc., having a diameter of about 0.5 mm to 20 mm. A spherical or cylindrical gel carrier having a diameter of about 3 to 8 mm is particularly preferred.

反応槽2の内部に流動状態を形成するために、担体の比重は少なくとも1.0より大きく、真比重として、1.1以上、あるいは見かけ比重として1.01以上のものが好ましい。 In order to form a fluid state inside the reaction vessel 2, the specific gravity of the carrier is at least greater than 1.0, preferably 1.1 or more as a true specific gravity, or 1.01 or more as an apparent specific gravity.

反応槽2への担体の投入量は、反応槽2の容積に対して10~70%の範囲が好ましい。担体の投入量が反応槽2の容積に対して10%未満であると反応速度が小さくなる場合があり、70%を超えると担体が流動しにくくなり、長期運転において汚泥による閉塞等で被処理水がショートパスして処理水質が悪くなる場合がある。 The amount of the carrier charged into the reaction vessel 2 is preferably in the range of 10 to 70% of the volume of the reaction vessel 2. If the amount of carrier input is less than 10% of the volume of the reaction tank 2, the reaction rate may decrease. Water may short-pass and the quality of treated water may deteriorate.

担体の沈降速度は、100~150m/hrであることが好ましい。担体の沈降速度が10m/hr未満であると、担体が浮上し、反応槽2から流出しやすくなり、150m/hrを超えると、流動状態が悪くなり、被処理水がショートパスしたり、撹拌のエネルギーが大きくなったりする場合がある。 The sedimentation velocity of the carrier is preferably 100-150 m/hr. If the sedimentation velocity of the carrier is less than 10 m/hr, the carrier floats and tends to flow out of the reaction tank 2. If it exceeds 150 m/hr, the flow condition deteriorates, the water to be treated is short-passed, and stirring may occur. energy may increase.

[嫌気性微生物付着担体]
生物膜とは、嫌気性微生物と、嫌気性微生物が産出する菌体外多糖等の生産物等が集合した膜状構造体であって、少なくとも10μm以上の膜厚、好ましくは20μm以上の膜厚を有するものである。上記膜厚は、担体表面上からの厚みであり、10個~20個の担体の平均値である。なお、菌体外多糖等の生産物は、アルカリを用いて生物膜から多糖類を抽出し、抽出液中の糖濃度をAnthrone法により測定することが可能である。菌体外多糖等の生産物は粘着性を有し、生物膜の付着性に影響を与えるものであると考えられ、例えば、生物膜中に20ppm以上存在していることが好ましく、50ppm以上存在していることがより好ましい。
[Anaerobic microorganism-adhering carrier]
A biofilm is a film-like structure in which anaerobic microorganisms and products such as exopolysaccharides produced by the anaerobic microorganisms aggregate, and has a film thickness of at least 10 μm or more, preferably 20 μm or more. It has The film thickness is the thickness from the carrier surface, and is the average value of 10 to 20 carriers. For products such as extracellular polysaccharides, it is possible to extract polysaccharides from biofilms with alkali and measure the sugar concentration in the extract by the Anthrone method. Products such as exopolysaccharides have stickiness and are considered to affect the adhesion of biofilms. It is more preferable to have

[反応槽の運転条件]
本実施形態では、有機物を含有する有機性の被処理水を生物処理するにあたり、被処理水のpHは6.0~8.5の範囲が好ましく、6.5~7.5の範囲がより好ましい。被処理水のpH調整は、例えば、pH調整剤供給ライン(図示せず)から、被処理水を貯留した被処理水槽(図示せず)にpH調整剤を供給することにより行われる。被処理水のpHが上記範囲外であると、生物処理による有機物の分解反応速度が低下する場合がある。
[Operating conditions of reaction tank]
In the present embodiment, in biologically treating organic water to be treated containing organic substances, the pH of the water to be treated is preferably in the range of 6.0 to 8.5, more preferably in the range of 6.5 to 7.5. preferable. The pH adjustment of the water to be treated is performed, for example, by supplying a pH adjusting agent from a pH adjusting agent supply line (not shown) to a water tank (not shown) storing the water to be treated. If the pH of the water to be treated is out of the above range, the decomposition reaction rate of organic matter by biological treatment may decrease.

pH調整剤としては、塩酸等の酸剤、水酸化ナトリウム等のアルカリ剤等が挙げられ、特に制限されるものではない。また、pH調整剤は、例えば、緩衝作用を持つ重炭酸ナトリウム、燐酸緩衝液等であってもよい。 Examples of pH adjusters include acid agents such as hydrochloric acid and alkaline agents such as sodium hydroxide, and are not particularly limited. Also, the pH adjuster may be, for example, sodium bicarbonate, phosphate buffer, or the like, which has a buffering action.

本実施形態では、有機性の被処理水を生物処理するにあたり、嫌気性微生物の分解活性を良好に維持する等の点から、例えば、被処理水に栄養剤を添加することが好ましい。栄養剤としては、特に制限されるものではないが、例えば、炭素源、窒素源、燐源、その他無機塩類(ニッケル、コバルト、鉄等の塩類)等が挙げられる。 In the present embodiment, when organic water to be treated is biologically treated, it is preferable to add, for example, a nutrient to the water to be treated in order to maintain good decomposition activity of anaerobic microorganisms. Nutrients include, but are not limited to, carbon sources, nitrogen sources, phosphorus sources, and other inorganic salts (salts of nickel, cobalt, iron, etc.).

本実施形態では、流動床式の反応槽2の水温を20℃以上となるように温度調整することが好ましい。通常、20℃未満であると、分解反応速度が低下する傾向にある。流動床式の反応槽2内の水温の温度調整方法は、特に制限されるものではないが、例えば、流動床式の反応槽2にヒータ等の加熱装置を設置して、ヒータ等の熱により反応槽2内の水温を調整する方法等が挙げられる。 In this embodiment, it is preferable to adjust the temperature of the water in the fluidized-bed reactor 2 to 20° C. or higher. Generally, when the temperature is lower than 20°C, the decomposition reaction rate tends to decrease. The method of adjusting the temperature of the water in the fluidized bed reaction tank 2 is not particularly limited, but for example, a heating device such as a heater is installed in the fluidized bed reaction tank 2, and the heat of the heater A method of adjusting the temperature of the water in the reaction tank 2 and the like can be mentioned.

[被処理水]
本実施形態に係る生物処理装置および生物処理方法における処理対象である被処理水は、例えば、食品製造工場、電子産業工場、パルプ製造工場、化学工場等から排出される有機物(油脂、懸濁物質、ならびに油脂および懸濁物質以外の有機物)を含有する排水である。
[Water to be treated]
The water to be treated, which is the target of treatment in the biological treatment apparatus and the biological treatment method according to the present embodiment, includes, for example, organic matter (oil, suspended matter, , and organic matter other than oils and suspended solids).

本実施形態に係る生物処理装置および生物処理方法は、被処理水のCODCr濃度が比較的低く、流動担体ゾーン(無担体ゾーン10の下方)から排出口9への液の流れ、すなわち上昇LV(m/h:被処理水流入量m/hを反応槽2の断面積で除した値)が高い条件ほど、高い効果を示す。例えば、被処理水CODCr濃度5000mg/L以下、上昇LVが2m/h以上の条件にて効果が高い。 In the biological treatment apparatus and the biological treatment method according to this embodiment, the COD Cr concentration of the water to be treated is relatively low, and the liquid flow from the fluidized carrier zone (below the carrier-free zone 10) to the discharge port 9, that is, the rising LV The higher the condition of (m/h: the value obtained by dividing the inflow of water to be treated m 3 /h by the cross-sectional area of the reaction tank 2), the higher the effect. For example, the effect is high under the condition that the COD Cr concentration of the water to be treated is 5000 mg/L or less and the increase LV is 2 m/h or more.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

<比較例1>
試験は従来のドラフトチューブ型の嫌気性生物処理装置を用いて行った。排出口を液面付近に設置し、反応槽の容積は2.7Lとした。球状のポリビニルアルコール製ゲル状担体(細孔径4~20μm、直径4mm、比重1.025、沈降速度4cm/sec)を反応槽の容積に対して30%投入し、嫌気性汚泥を反応構の容積に対して10%投入した。プロペラ状の回転翼を用いて、撹拌速度220~260rpmでドラフトチューブ内に下降流を発生させ、担体および嫌気性汚泥を流動させた。被処理水はスクロース、カツオエキスを主成分とした食品工場模擬排水(CODCr濃度1000~2000mg/L)とした。
<Comparative Example 1>
The test was conducted using a conventional draft tube type anaerobic biological treatment apparatus. The discharge port was installed near the liquid surface, and the volume of the reactor was 2.7L. A spherical polyvinyl alcohol gel-like carrier (pore diameter 4-20 μm, diameter 4 mm, specific gravity 1.025, sedimentation rate 4 cm/sec) was added to 30% of the volume of the reaction tank, and anaerobic sludge was added to the volume of the reaction system. 10% was added to the A propeller-shaped rotating blade was used to generate a downward flow in the draft tube at an agitation speed of 220 to 260 rpm to flow the carrier and the anaerobic sludge. The water to be treated was simulated wastewater from a food factory containing sucrose and bonito extract as main components (COD Cr concentration: 1000-2000mg/L).

図9にCODCr負荷、除去速度の経日変化、図10に処理水の有機酸濃度の経日変化を示す。処理状況を確認しながら、段階的にCODCr負荷を上昇させたが、CODCr負荷約3.3kg/m/dayにおいて処理水の有機酸濃度が200mg/Lを超え、除去速度は2.4kg/m/day程度に留まった。 FIG. 9 shows changes over time in COD Cr load and removal rate, and FIG. 10 shows changes over time in organic acid concentration in treated water. While checking the treatment status , the COD Cr load was increased step by step . It remained at about 4 kg/m 3 /day.

これは、担体がドラフトチューブ内に進入することで、担体上の生物膜がプロペラ状の回転翼に接触し、剥離したことが要因の一つと考えられる。ドラフトチューブ内に担体が進入しないように撹拌速度を低下させた場合、一部の担体が反応槽の底部に蓄積する傾向を確認した。 One of the reasons for this is thought to be that the biofilm on the carrier came into contact with the propeller-like rotating blades and was peeled off when the carrier entered the draft tube. When the stirring speed was lowered so that the carrier did not enter the draft tube, it was confirmed that some of the carrier tended to accumulate at the bottom of the reactor.

<実施例1>
試験は図3,4に示す嫌気性生物処理装置を用いて行った。放射状に延びる静翼を槽底部、排出口を液面付近(反応槽の水位(底部から液面までの高さ)の上部5%以内)に設置し、反応槽の容積は1.3Lとした。球状のポリビニルアルコール製ゲル状担体(細孔径4~20μm、直径4mm、比重1.025、沈降速度4cm/sec)を反応槽の容積に対して30%投入し、嫌気性汚泥を反応槽の容積に対して10%投入した。フラット状の回転翼を用いて、撹拌速度80~90rpmで反応槽壁付近に下降流の旋回流と反応槽中心付近に竜巻状の上昇流を発生させ、担体および嫌気性汚泥を流動させた。回転翼には上端部に円盤状の板(回転翼の径と同じ大きさ)を設置し、かつ回転翼は液面からの深さの1/3.7の位置に設置した。被処理水はスクロース、カツオエキスを主成分とした食品工場模擬排水(CODCr濃度3000mg/L)とした。
<Example 1>
The test was conducted using the anaerobic biological treatment apparatus shown in FIGS. A radially extending stationary blade was installed at the bottom of the tank, and an outlet was installed near the liquid surface (within 5% of the upper part of the water level of the reaction tank (height from the bottom to the liquid surface)), and the volume of the reaction tank was 1.3 L. . Spherical polyvinyl alcohol gel carrier (pore diameter 4-20 μm, diameter 4 mm, specific gravity 1.025, sedimentation rate 4 cm / sec) was added to 30% of the volume of the reaction tank, and anaerobic sludge was added to the volume of the reaction tank. 10% was added to the Using a flat rotary blade, a downward swirling flow was generated near the reactor wall and a tornado-like upward flow near the center of the reactor at an agitation speed of 80 to 90 rpm to flow the carrier and anaerobic sludge. A disc-shaped plate (having the same size as the diameter of the rotor blade) was installed on the upper end of the rotor blade, and the rotor blade was installed at a position 1/3.7 of the depth from the liquid surface. The water to be treated was simulated waste water from a food factory containing sucrose and bonito extract as main components (COD Cr concentration: 3000 mg/L).

図11にCODCr負荷、除去速度の経日変化、図12に処理水の有機酸濃度の経日変化を示す。処理状況を確認しながら、段階的にCODCr負荷を上昇させたところ、CODCr負荷約21kg/m/dayにおいても処理水の有機酸濃度が200mg/L以下を維持し、除去速度は16kg/m/dayに到達した。フラット状回転翼と底部の静翼の効果により、担体上の微生物の剥離を抑えながら良好な担体流動状態を維持でき、かつ回転翼上端に円盤状板を設置し、回転翼の設置位置を液面からの深さの1/4より底部側とし、さらに排出口を液面付近に設置することで、担体の流出を抑制することができたため、処理効率を高くすることが可能であった。また、排出口からスカム等の液面浮遊物が排出されることで、ガス配管の目詰まり等が発生せず、安定した処理が可能であった。 FIG. 11 shows changes in COD Cr load and removal rate over time, and FIG. 12 shows changes over time in organic acid concentration in treated water. When the COD Cr load was increased in stages while checking the treatment status, the organic acid concentration in the treated water was maintained at 200 mg/L or less even at a COD Cr load of about 21 kg/m 3 /day, and the removal rate was 16 kg. /m 3 /day has been reached. Due to the effect of the flat rotor blades and the stationary blades at the bottom, it is possible to maintain a good carrier flow state while suppressing the separation of microorganisms on the carrier. By making the bottom side more than 1/4 of the depth from the surface and installing the discharge port near the liquid surface, it was possible to suppress the outflow of the carrier, and it was possible to improve the treatment efficiency. In addition, since scum and other substances floating on the surface of the liquid are discharged from the discharge port, clogging of the gas pipe does not occur, and stable processing is possible.

このように、実施例の生物処理装置および生物処理方法によって、担体を適切な流動状態に維持し、かつ反応槽内におけるスカム等の液面浮遊物の蓄積を抑制しながら反応槽外への担体の流出を抑制し、安定した高効率の嫌気性処理が可能となった。 As described above, the biological treatment apparatus and the biological treatment method of the embodiment maintain the carrier in an appropriate fluid state and suppress the accumulation of liquid surface floating matter such as scum in the reaction vessel while the carrier is discharged out of the reaction vessel. Stable and highly efficient anaerobic treatment is now possible.

2 反応槽、2a 底部、3 回転翼、3a 回転軸、4 静翼、6 流入管、8 生物処理装置、9 排出口、10 無担体ゾーン、11 板体、12 邪魔板、12a 開口部、13 担体。 2 Reaction tank 2a Bottom 3 Rotating blade 3a Rotating shaft 4 Static blade 6 Inflow pipe 8 Biological treatment device 9 Outlet 10 Carrier-free zone 11 Plate 12 Baffle plate 12a Opening 13 carrier.

Claims (8)

担体を用いた流動床式の生物処理を行うための反応槽と、
前記反応槽に被処理水を導入したときの液面から所定の深さに設置された回転翼と、
前記反応槽の底部に固定された放射状に延びる静翼と、
前記反応槽における液面付近に設置された、前記反応槽内の処理水を外部に排出する排出口と、
を備え、
前記回転翼は、前記液面からの深さの1/4よりも前記反応槽の底部側であって、前記回転翼の上方で前記回転翼の回転の影響を受けない液層部分が形成される深さに設置され、
前記反応槽に前記被処理水を導入する導入口は、前記反応槽の側壁に設けられ、
前記導入口は、前記回転翼よりも前記反応槽の底部側に配置されることを特徴とする嫌気性流動床式生物処理装置。
a reactor for fluidized-bed biological treatment using a carrier;
A rotor installed at a predetermined depth from the liquid surface when the water to be treated is introduced into the reaction tank;
radially extending vanes fixed to the bottom of the reaction vessel;
a discharge port installed near the liquid surface in the reaction tank for discharging the treated water in the reaction tank to the outside;
with
The rotor blade is located on the bottom side of the reaction vessel more than 1/4 of the depth from the liquid surface, and a liquid layer portion is formed above the rotor blade that is not affected by the rotation of the rotor blade. installed at a depth
An inlet for introducing the water to be treated into the reaction tank is provided on a side wall of the reaction tank,
The anaerobic fluidized bed biological treatment apparatus, wherein the inlet is arranged closer to the bottom of the reaction tank than the rotor blade.
請求項1に記載の嫌気性流動床式生物処理装置であって、
前記回転翼は、長方形状の平板であることを特徴とする嫌気性流動床式生物処理装置。
The anaerobic fluidized bed biological treatment apparatus according to claim 1 ,
The anaerobic fluidized bed biological treatment apparatus, wherein the rotor is a rectangular flat plate.
請求項1または2に記載の嫌気性流動床式生物処理装置であって、
前記回転翼の上端部に板体が固定されていることを特徴とする嫌気性流動床式生物処理装置。
The anaerobic fluidized bed biological treatment apparatus according to claim 1 or 2 ,
An anaerobic fluidized bed biological treatment apparatus, wherein a plate is fixed to the upper end of the rotor blade.
請求項1~のいずれか1項に記載の嫌気性流動床式生物処理装置であって、
前記液面より下で、前記回転翼の上方の前記反応槽の側壁の内周面に、円周方向に、邪魔板が固定されていることを特徴とする嫌気性流動床式生物処理装置。
The anaerobic fluidized bed biological treatment apparatus according to any one of claims 1 to 3 ,
An anaerobic fluidized bed biological treatment apparatus characterized in that a baffle plate is fixed in the circumferential direction to the inner peripheral surface of the side wall of the reaction vessel above the rotor blades below the liquid surface.
担体を用いた流動床式の生物処理を行うための反応槽と、
前記反応槽に被処理水を導入したときの液面から所定の深さに設置された回転翼と、
前記反応槽の底部に固定された放射状に延びる静翼と、
前記反応槽における液面付近に設置された、前記反応槽内の処理水を外部に排出する排出口と、
を備え、
前記回転翼は、前記液面からの深さの1/4よりも前記反応槽の底部側であって、前記回転翼の上方で前記回転翼の回転の影響を受けない液層部分が形成される深さに設置され、
前記反応槽に前記被処理水を導入する導入口は、前記反応槽の側壁に設けられ、
前記導入口は、前記回転翼よりも前記反応槽の底部側に配置される生物処理装置を用いて嫌気性流動床式生物処理を行うことを特徴とする嫌気性流動床式生物処理方法。
a reactor for fluidized-bed biological treatment using a carrier;
A rotor installed at a predetermined depth from the liquid surface when the water to be treated is introduced into the reaction tank;
radially extending vanes fixed to the bottom of the reaction vessel;
a discharge port installed near the liquid surface in the reaction tank for discharging the treated water in the reaction tank to the outside;
with
The rotor blade is located on the bottom side of the reaction vessel more than 1/4 of the depth from the liquid surface, and a liquid layer portion is formed above the rotor blade that is not affected by the rotation of the rotor blade. installed at a depth
An inlet for introducing the water to be treated into the reaction tank is provided on a side wall of the reaction tank,
An anaerobic fluidized bed biological treatment method, wherein the introduction port performs anaerobic fluidized bed biological treatment using a biological treatment apparatus arranged closer to the bottom of the reaction vessel than the rotor blade.
請求項に記載の嫌気性流動床式生物処理方法であって、
前記回転翼は、長方形状の平板であることを特徴とする嫌気性流動床式生物処理方法。
The anaerobic fluidized bed biological treatment method according to claim 5 ,
The anaerobic fluidized bed biological treatment method, wherein the rotor is a rectangular flat plate.
請求項5または6に記載の嫌気性流動床式生物処理方法であって、
前記回転翼の上端部に板体が固定されていることを特徴とする嫌気性流動床式生物処理方法。
The anaerobic fluidized bed biological treatment method according to claim 5 or 6 ,
An anaerobic fluidized bed biological treatment method, wherein a plate is fixed to the upper end of the rotor blade.
請求項のいずれか1項に記載の嫌気性流動床式生物処理方法であって、
前記液面より下で、前記回転翼の上方の前記反応槽の側壁の内周面に、円周方向に、邪魔板が固定されていることを特徴とする嫌気性流動床式生物処理方法。
The anaerobic fluidized bed biological treatment method according to any one of claims 5 to 7 ,
An anaerobic fluidized bed biological treatment method, wherein a baffle plate is fixed in the circumferential direction on the inner peripheral surface of the side wall of the reaction vessel above the rotor blades below the liquid surface.
JP2018150114A 2018-08-09 2018-08-09 Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method Active JP7207894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018150114A JP7207894B2 (en) 2018-08-09 2018-08-09 Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150114A JP7207894B2 (en) 2018-08-09 2018-08-09 Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method

Publications (2)

Publication Number Publication Date
JP2020025901A JP2020025901A (en) 2020-02-20
JP7207894B2 true JP7207894B2 (en) 2023-01-18

Family

ID=69620817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150114A Active JP7207894B2 (en) 2018-08-09 2018-08-09 Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method

Country Status (1)

Country Link
JP (1) JP7207894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133031B (en) * 2021-12-30 2023-09-19 河北万生环保工程有限公司 High-efficiency upflow anaerobic reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188413A (en) 2002-11-25 2004-07-08 Taiho Ind Co Ltd Denitrification method and denitrification apparatus of waste water and stirring apparatus therefor
JP2008221181A (en) 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
JP2011072936A (en) 2009-09-30 2011-04-14 Kurita Water Ind Ltd Fluidized bed type biological treatment apparatus
JP2017176958A (en) 2016-03-29 2017-10-05 株式会社クラレ Method of treating waste water using carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188413A (en) 2002-11-25 2004-07-08 Taiho Ind Co Ltd Denitrification method and denitrification apparatus of waste water and stirring apparatus therefor
JP2008221181A (en) 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
JP2011072936A (en) 2009-09-30 2011-04-14 Kurita Water Ind Ltd Fluidized bed type biological treatment apparatus
JP2017176958A (en) 2016-03-29 2017-10-05 株式会社クラレ Method of treating waste water using carrier

Also Published As

Publication number Publication date
JP2020025901A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
EP1594600A1 (en) Tickler for slurry reactors and tanks
JP6825144B1 (en) Anaerobic treatment equipment and anaerobic treatment method
JP7207894B2 (en) Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method
JP5415330B2 (en) Biological cell culture apparatus and culture method
TWI414490B (en) Fluid bed type biologically treating apparatus
US6632657B1 (en) Apparatus for cultivating tissue cells and microorganisms in suspension
JP2010264422A (en) Denitrification treatment apparatus
KR101453730B1 (en) Water circulation apparatus for circulating lower water and upper water
US10864486B2 (en) Rotary gas bubble ejector
EP2542333B1 (en) Waste water treatment system
CN109516550B (en) Operation method of membrane bioreactor
KR20180095204A (en) Aerator for water purification
US3951758A (en) Method of operating a purifying plant and tank for practicing said method
CN111218385B (en) Large mixing stirring type facultative hydrolysis reactor and material mixing method
JP5978558B2 (en) Stirring tank
JP2000254682A (en) Biological reactor
KR20190002893A (en) Apparatus for agitating of microbe carrier applying to wastewater treatment process
CN214990836U (en) Double-vortex air floatation device and sewage treatment device
Furukawa et al. Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed
CN212799822U (en) Turbulent flow mixed biological membrane anaerobic reactor
JP6594462B2 (en) Incubator
JP7468984B2 (en) Mixing Equipment
JP2020040053A (en) Fluidized bed type biological treatment apparatus
JPH0457393B2 (en)
CN115105870A (en) A high-efficient vertical flow sedimentation tank for sewage treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7207894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150