JP2002219486A - Anaerobic treatment equipment with upward flow - Google Patents

Anaerobic treatment equipment with upward flow

Info

Publication number
JP2002219486A
JP2002219486A JP2001016488A JP2001016488A JP2002219486A JP 2002219486 A JP2002219486 A JP 2002219486A JP 2001016488 A JP2001016488 A JP 2001016488A JP 2001016488 A JP2001016488 A JP 2001016488A JP 2002219486 A JP2002219486 A JP 2002219486A
Authority
JP
Japan
Prior art keywords
gas
gas collector
collector
anaerobic treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001016488A
Other languages
Japanese (ja)
Inventor
Shigeo Nakahata
繁夫 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2001016488A priority Critical patent/JP2002219486A/en
Publication of JP2002219486A publication Critical patent/JP2002219486A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide anaerobic treatment equipment with upward flow which can securely and effectively carry out the separation of a generated gas and the precipitation of a granule, and enables high-efficiency treatment of organic wastewater. SOLUTION: This anaerobic treatment equipment with upward flow is provided with an upper gas collector in which a gas collector for collecting a gas is formed in a double structure of lower gas collecting hoods and upper gas collecting hoods located at a certain interval above opening portions each serving as an upward circulation flow path of a lower gas collecting hood, and a lower gas collector haing substantially the same structure as the upper gas collector, therebelow. Current plates with a predetermined height are protrusively provided at least along a longitudinal direction of the top parts of lower gas collecting hoods of the lower gas collector, respectively, to make the space between the lower gas collector and the upper gas collector a rectifying zone.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排水を、嫌
気性処理槽内に形成された微生物の自己造粒汚泥床(以
下単に汚泥床という。)を上向流通させて、排水中の有
機物を微生物の生物学的作用で分解処理する上向流嫌気
性処理装置(以下単に処理装置という。)に関する。
TECHNICAL FIELD The present invention relates to an organic effluent, which is circulated upward through a self-granulated sludge bed (hereinafter simply referred to as sludge bed) of microorganisms formed in an anaerobic treatment tank. The present invention relates to an upflow anaerobic treatment device (hereinafter simply referred to as a treatment device) that decomposes organic matter by the biological action of microorganisms.

【0002】[0002]

【従来の技術】従来、食品加工排水、醗酵工場排水、化
学工場排水及び紙パルプ工場排水などの有機性産業排水
や下水を処理する装置として、下部に被処理水供給手
段、上部に処理水及びガス排出手段を設け、内部の下方
にメタン菌を主体として微生物が粒子化した汚泥(以下
グラニュールという。)で汚泥床を形成し、汚泥床の下
部に被処理水供給手段から有機性排水を上向流通させる
ことにより、排水中の有機物を嫌気性で生物学的に分解
し、発生したメタンガスなどの生成ガスと処理水を上部
で分離し、処理水は処理水排出手段から排出し、また、
生成ガスはガス排出手段から排出する処理装置が用いら
れている。
2. Description of the Related Art Conventionally, as an apparatus for treating organic industrial wastewater or sewage such as food processing wastewater, fermentation factory wastewater, chemical factory wastewater, and pulp and paper factory wastewater, means for supplying treated water at the lower part, treated water and water at the upper part. A gas discharge means is provided, and a sludge bed is formed below the inside of the sludge bed by sludge (hereinafter, referred to as granules) in which microorganisms are mainly composed of methane bacteria. By circulating upward, organic matter in the wastewater is anaerobic and biologically decomposed, the generated gas such as methane gas generated and the treated water are separated at the top, and the treated water is discharged from the treated water discharge means. ,
A processing device for discharging the generated gas from a gas discharging means is used.

【0003】前記処理装置は、排水中の有機物を生物学
的に分解する嫌気性微生物が、微生物自体又は微細粒子
を核として粒子化するため、微生物が高密度で保持で
き、高濃度の有機性排水を効率的に処理することができ
ることにより、装置の設置面積の縮小化が図れ、また、
生成するメタンガスを燃料や化学製品製造用原料などと
して利用できる利点があり、多数設置されている。
[0003] In the above-mentioned treatment apparatus, anaerobic microorganisms that biologically decompose organic matter in wastewater are converted into particles using the microorganisms themselves or fine particles as nuclei. By being able to treat wastewater efficiently, the installation area of the device can be reduced,
There is an advantage that the generated methane gas can be used as a fuel or a raw material for producing chemical products, and a large number of them are installed.

【0004】従来の一般的な処理装置では、生成したメ
タンガスによって処理槽内の液に乱流が生じるため、被
処理水の上向流速を速めるとグラニュールが処理水に伴
われて処理水排出手段から流出する恐れがある。また、
被処理水の上向流速を速めると、局部的に汚泥負荷が過
負荷状態になり、グラニュール表面に酸生成菌が密集増
殖し、グラニュールの構造がガスの透過しにくい構造と
なり、グラニュールの比重が軽くなって流出しやすくな
る。従って、被処理水の上向流速を遅くしてグラニュー
ルを膨張流動させず、ブランケット状態に維持して処理
をしている。
In a conventional general treatment apparatus, turbulence occurs in the liquid in the treatment tank due to the generated methane gas. Therefore, when the upward flow velocity of the water to be treated is increased, the granules accompany the treated water and the treated water is discharged. There is a risk of spillage from the means. Also,
When the upward flow velocity of the water to be treated is increased, the sludge load is locally overloaded, acid-generating bacteria grow densely on the granule surface, and the structure of the granule becomes a structure that makes it difficult for gas to permeate. Specific gravity becomes lighter and it becomes easier to flow out. Accordingly, the upward flow velocity of the water to be treated is reduced so that the granules do not expand and flow, and the treatment is performed while maintaining the blanket state.

【0005】前記の通り従来の処理装置は、上向流速が
遅く膨張流動展開していないため、被処理水とグラニュ
ールとの接触効率が低く、また、被処理水に含まれる無
機性固形物がグラニュールに捕捉されやすく、汚泥の生
物活性を高く維持することができない。また、上向流速
を速くするとグラニュールが流出する恐れがあるためな
どから、高速、高負荷条件で処理効率を上げることが困
難であった。
As described above, the conventional treatment apparatus has a low upward flow velocity and does not expand and flow, so that the contact efficiency between the water to be treated and the granules is low, and the inorganic solid matter contained in the water to be treated is low. Are easily captured by the granules, and the biological activity of the sludge cannot be maintained at a high level. In addition, it is difficult to increase the processing efficiency under high-speed and high-load conditions because granules may flow out when the upward flow velocity is increased.

【0006】前記問題点に鑑みて、処理槽の高さを2〜
3倍に高くし、また、生成ガスやグラニュールの分離を
効率よく行うことでグラニュールの流出を抑え、被処理
水の供給量を多くすることができるため、有機物負荷を
従来の2〜3倍も高くできる改良された装置(以下高効
率処理装置という。)として、高さ方向に複数のガス回
収フ−ドを設けたガス分離部を上下2段に設け、回収ガ
スを液の内部循環流発生用に使用した高効率処理装置が
特開昭61−71896号公報に記載されており、ま
た、特開昭61−204093号公報には、高さ方向の
千鳥状位置に3段のガス回収フ−ドによるガス分離部を
設けた高効率処理装置が記載されている。
[0006] In view of the above problems, the height of the processing tank is set to 2 to
Since the flow rate of the water to be treated can be increased by increasing the volume of the water to be treated by three times and efficiently separating the generated gas and the granules, the outflow of the granules can be suppressed. As an improved device that can be twice as high (hereinafter referred to as a high-efficiency processing device), a gas separation section provided with a plurality of gas recovery hoods in the height direction is provided in upper and lower stages, and the recovered gas is internally circulated in the liquid. A high-efficiency processing apparatus used for generating a flow is described in Japanese Patent Application Laid-Open No. 61-71896, and Japanese Patent Application Laid-Open No. 61-204093 discloses a three-stage gas staggered position in the height direction. A high-efficiency treatment apparatus provided with a gas separation unit using a recovery hood is described.

【0007】前記特開昭61−71896号公報及び特
開昭61−204093号公報に、それぞれ記載された
高効率処理装置の構成では、処理槽内に多数のパイプや
ガス回収用フ−ドが配置されるため、装置が必要以上に
複雑となり、また設備費も嵩む問題があるため、それら
の問題を解決する装置として、本願出願人が先に出願
し、特開2000−117284号公報で開示されてい
る装置がある。
In the configurations of the high-efficiency processing apparatuses described in the above-mentioned JP-A-61-71896 and JP-A-61-204093, a large number of pipes and gas recovery hoods are provided in the processing tank. Since the devices are arranged, the devices become unnecessarily complicated, and there is a problem that the equipment cost increases. Therefore, as a device for solving those problems, the applicant of the present invention applied for the above and disclosed in Japanese Patent Application Laid-Open No. 2000-117284. There are devices that are.

【0008】[0008]

【発明が解決しようとする課題】前記特開2000−1
17284号公報で開示された装置においては、従来の
高効率処理装置の複雑な構成をより簡略化すると共に、
生成ガスの分離及びグラニュールの沈降分離をより効率
よく行うことができ、有機性排水の高効率処理が可能と
なったが、下段三相分離部材の下列ガスコレクタのガス
回収フ−ドを経過して上昇する左右の被処理水が合成し
て強力な短絡流を起こしてグラニュールを微細化すると
共に上昇させ、また、上段三相分離部材の下列ガスコレ
クタのガス回収フ−ド開口部において渦流が形成され、
ガス回収フ−ドを経過して上昇する被処理水も短絡流を
起こし、グラニュールを処理液に同伴して流出させる問
題が生じる可能性があることが判明した。本発明は前記
の知見に基づいて改良したものであり、より確実に、生
成ガスの分離及びグラニュールの沈降分離をより効率よ
く行うことができ、有機性排水の高効率処理が可能な上
向流嫌気性処理装置を提供する目的で成されたものであ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the apparatus disclosed in Japanese Patent No. 17284, the complicated configuration of the conventional high-efficiency processing apparatus is simplified,
Separation of generated gas and sedimentation of granules could be performed more efficiently, and high-efficiency treatment of organic wastewater became possible.However, the gas recovery hood of the lower gas collector in the lower three-phase separation member passed. The rising left and right water to be treated combine to generate a strong short-circuit flow, which makes the granules finer and rises. Also, at the gas recovery hood opening of the lower row gas collector of the upper three-phase separating member. A vortex is formed,
It has been found that the water to be treated, which rises after passing through the gas recovery hood, also causes a short-circuit flow, which may cause a problem of causing the granules to flow out along with the treatment liquid. The present invention has been improved based on the above findings, and can more reliably perform the separation of product gas and the sedimentation and separation of granules more efficiently, and can perform highly efficient treatment of organic wastewater. The purpose of the present invention is to provide a flow anaerobic treatment device.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
の本発明の要旨は、請求項1に記載の発明においては、
底部に被処理水供給手段、上部に処理水排出手段及び中
間部にガス排出管を具備した複数のガス回収フ−ドが水
平方向に所定間隔で配置されたガスコレクタを設け、下
方に自己造粒汚泥による汚泥床を形成した嫌気性処理槽
に有機性排水を上向流通させて処理する上向流嫌気性処
理装置において、前記ガスコレクタを、下列ガス回収フ
−ド及び下列ガス回収フ−ドの上向流通流路である開口
部上方に一定の間隙を持って位置する上列ガス回収フ−
ドとの2列に構成した上段ガスコレクタと、上段ガスコ
レクタよりも下方の位置に、上段ガスコレクタと略同一
構成の下段ガスコレクタとを設け、少なくとも下段ガス
コレクタの下列ガス回収フ−ド頂上部の長手方向に沿っ
て所定高さの整流板を突設し、下段ガスコレクタと上段
ガスコレクタとの間を整流ゾ−ンとしたことを特徴とす
る上向流嫌気性処理装置である。なお、前記整流板は、
平板或いは波板などで形成され、突設される高さは、
0.5〜1.0mが好ましい。0.5m未満では整流効
果が少なく、1.0m以上では、被処理水が分散するこ
となく整流板に沿って上昇し、流速が減衰しないで上段
ガスコレクタに至る恐れがある。
The gist of the present invention for achieving the above object is as follows.
A gas collector having a plurality of gas recovery hoods provided with a treated water supply means at a bottom, a treated water discharge means at an upper part, and a gas discharge pipe at an intermediate part arranged at predetermined intervals in a horizontal direction is provided. In an upflow anaerobic treatment apparatus for treating organic wastewater by circulating it upward in an anaerobic treatment tank having a sludge bed formed by granular sludge, the gas collector is provided with a lower row gas recovery hood and a lower row gas recovery hood. Upper row gas recovery hood located at a certain gap above the opening,
And a lower gas collector having substantially the same configuration as the upper gas collector is provided below the upper gas collector at least at the top of the lower gas recovery hood of the lower gas collector. An upward anaerobic treatment apparatus characterized in that a straightening plate of a predetermined height is protruded along the longitudinal direction of the section and a rectifying zone is provided between the lower gas collector and the upper gas collector. In addition, the said straightening plate,
The height that is formed of a flat plate or corrugated plate, and that is protruded,
0.5 to 1.0 m is preferred. If it is less than 0.5 m, the rectifying effect is small, and if it is 1.0 m or more, the water to be treated rises along the rectifying plate without being dispersed, and the flow velocity may not be attenuated and may reach the upper gas collector.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1は本発明の一実施の形態の上向流嫌
気性処理装置の説明図、図2は本発明の要部の部分図、
図3は本発明の一実施の形態の上向流嫌気性処理装置の
流動解析図、図4は従来の上向流嫌気性処理装置の流動
解析図、図5は本発明の一実施の形態の上向流嫌気性処
理装置における処理槽内の汚泥粒子粒径分布図、図6は
従来の上向流嫌気性処理装置における処理槽内の汚泥粒
子粒径分布図である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of an upflow anaerobic treatment device according to an embodiment of the present invention, FIG. 2 is a partial view of a main part of the present invention,
3 is a flow analysis diagram of an upflow anaerobic treatment device according to an embodiment of the present invention, FIG. 4 is a flow analysis diagram of a conventional upflow anaerobic treatment device, and FIG. 5 is an embodiment of the present invention. FIG. 6 is a particle size distribution diagram of a sludge particle in a processing tank in a conventional upward anaerobic treatment device, and FIG. 6 is a particle size distribution diagram of a sludge particle in a processing tank in a conventional upward anaerobic treatment device.

【0011】図1において、1は密閉構造で円筒形状の
嫌気性処理槽(以下単に処理槽という。)であり、処理
槽1の下部には、被処理水供給流路11が接続した被処
理水供給手段8が設けられ、上部には、前段に処理水が
オ−バ−フロ−で排出される処理水オ−バ−フロ−部材
15を具備し、処理水排出流路12が接続した処理水排
出手段9が設けられ、また、頂部には、生成ガス排出流
路13が接続し、図示しないガス吸引装置が具備された
ガス排出手段10が設けられている。なお、処理槽1の
形状は、矩形体形状であってもよい。
In FIG. 1, reference numeral 1 denotes a cylindrically shaped anaerobic treatment tank (hereinafter simply referred to as a treatment tank) having a closed structure. A water supply means 8 is provided, and a treated water overflow member 15 for discharging treated water by overflow is provided at a preceding stage at an upper part thereof, and a treated water discharge flow path 12 is connected to the treated water overflow member 15. A treated water discharge means 9 is provided, and a gas discharge means 10 connected to a generated gas discharge passage 13 and provided with a gas suction device (not shown) is provided at the top. Note that the shape of the processing tank 1 may be a rectangular shape.

【0012】前記処理槽1内の中間位置に、ガス、液及
び汚泥の三相に分離する三相分離部材である下段ガスコ
レクタ2及び上段ガスコレクタ3の二段のガスコレクタ
が設けられ、夫々のガスコレクタ2,3は、水平方向に
所定間隔で配置された下列ガス回収フ−ド4、6及び下
列ガス回収フ−ドの上向流通流路である開口部上方に一
定の間隙を持って位置する上列ガス回収フ−ド5、7と
の夫々2列に構成されている。
At a middle position in the processing tank 1, there are provided two-stage gas collectors, a lower-stage gas collector 2 and an upper-stage gas collector 3, which are three-phase separating members for separating into three phases of gas, liquid and sludge. The gas collectors 2, 3 have a certain gap above the lower row gas recovery hoods 4, 6 arranged at predetermined intervals in the horizontal direction and the opening which is the upward flow channel of the lower row gas recovery hood. The upper row gas recovery hoods 5 and 7 are arranged in two rows.

【0013】従って、前記下段ガスコレクタ2及び上段
ガスコレクタ3により、処理槽1内が区画され、下段ガ
スコレクタ2の下方に、グラニュールが流動化した汚泥
床Aが形成された反応部、下段ガスコレクタ2と上段ガ
スコレクタ3との間は、上向流に同伴されたグラニュー
ルの沈降を促進する整流ゾ−ンB及び上段ガスコレクタ
3上方は、清澄処理水分離部Cが形成される。
Therefore, the inside of the processing tank 1 is partitioned by the lower gas collector 2 and the upper gas collector 3, and a sludge bed A in which granules are fluidized is formed below the lower gas collector 2. Between the gas collector 2 and the upper gas collector 3, a rectifying zone B for promoting the sedimentation of the granules entrained in the upward flow and a clarified treated water separation section C above the upper gas collector 3 are formed. .

【0014】また、ガスコレクタのガス回収フ−ドは、
図2に示すように、横断面が5角形状の下面が開放され
た水平方向に長尺のフードであるが、横断面が三角形状
や半円形状であってもよく、また、ガス回収フ−ドを、
水平方向に所定間隔で複数配置するには、処理槽1が円
筒形状の場合には、円形にして同心円状に配置された構
成が好ましく、矩形体形状では、直線状に配置された構
成が好ましい。しかし、本発明はそれらの構成には限定
されない。
The gas recovery hood of the gas collector is
As shown in FIG. 2, the hood is a horizontally long hood having a pentagonal cross section and an open lower surface, but may have a triangular or semicircular cross section. −
In order to arrange a plurality of processing tanks 1 at predetermined intervals in the horizontal direction, a configuration in which the processing tanks 1 are circular and are arranged concentrically when the processing tank 1 is cylindrical is preferable, and a configuration in which the processing tanks 1 are linearly arranged when the processing tank 1 is rectangular. . However, the present invention is not limited to those configurations.

【0015】また、下段ガスコレクタ2の下列ガス回収
フ−ド4は、頂上部の長手方向に沿って所定高さの整流
板14が突設されており、整流板14は、平板或いは波
板などで形成され、突設される高さは、0.5〜1.0
mが好ましく、0.5m未満では整流効果が少なく、
1.0m以上では被処理水が分散することなく整流板に
沿って上昇し、流速が減衰しないで上段ガスコレクタに
至る恐れがある。また、ガス回収フ−ドの夫々にはガス
排出管16が接続され、生成ガスを処理槽1外に導出又
は処理槽1内のガス溜り部Dに導入する構成となってい
る。なお、整流板14は、下段ガスコレクタ2の上列ガ
ス回収フ−ド5にも突設することもできる。
The gas collecting hood 4 in the lower row of the lower gas collector 2 has a straightening plate 14 of a predetermined height protruding along the longitudinal direction of the top, and the straightening plate 14 is a flat plate or a corrugated plate. And the height to be protruded is 0.5 to 1.0.
m is preferable, and if it is less than 0.5 m, the rectifying effect is small,
If it is 1.0 m or more, the water to be treated rises along the straightening plate without being dispersed, and may reach the upper gas collector without decreasing the flow velocity. Further, a gas discharge pipe 16 is connected to each of the gas recovery hoods, and the generated gas is led out of the processing tank 1 or introduced into the gas reservoir D in the processing tank 1. Note that the rectifying plate 14 can also protrude from the upper row gas recovery hood 5 of the lower gas collector 2.

【0016】被処理水供給手段8は、被処理水を処理槽
1の水平断面全体を均一に上向流通させるのが好ましい
ため、処理槽1の底面に多数の供給口を設けた格子状部
材を底面の略全面にわたって配置するの好ましく、ま
た、被処理水を処理槽1内の接線方向に供給する部材で
あってもよいが、これらには限定されない。また、処理
水排出手段9の処理水オ−バ−フロ−部材15は、処理
水が流入する側面が、ノッチ、スリット状、格子状、又
は金網などで形成された部材であるが、処理水に同伴さ
れて浮上してきた微生物粒子が流出しない構造が好まし
い。
The water-to-be-treated supply means 8 preferably has a grid-like member provided with a large number of supply ports on the bottom surface of the treatment tank 1 because the water to be treated is preferably distributed uniformly upward in the entire horizontal section of the treatment tank 1. Is preferably disposed over substantially the entire bottom surface, and may be a member that supplies the water to be treated in the tangential direction in the treatment tank 1, but is not limited thereto. The treated water overflow member 15 of the treated water discharge means 9 is a member whose side surface into which treated water flows is formed by a notch, a slit, a lattice, a wire mesh, or the like. It is preferable to use a structure in which the microbial particles that have floated along with the water do not flow out.

【0017】以下に本発明の作用を図に基づいて説明す
る。食品加工排水などの有機性排水の被処理水を、被処
理水供給流路11から被処理水供給手段8を介して処理
槽1内の下部に供給し、処理槽1内を均一な上向流とし
て流通させることにより、初期に充填された下水汚泥な
どを種菌として自己造粒したメタン菌などの微生物によ
るグラニュールの汚泥床Aが形成されるが、初期に他の
装置からのグラニュールを充填してもよい。
The operation of the present invention will be described below with reference to the drawings. Water to be treated as organic wastewater such as food processing wastewater is supplied from the treated water supply flow path 11 to the lower part of the treatment tank 1 via the treated water supply means 8, and the inside of the treatment tank 1 is uniformly turned upward. By distributing as a stream, a sludge bed A of granules is formed by microorganisms such as methane bacteria that self-granulate as seed bacteria by using the initially filled sewage sludge as seeds, but granules from other devices are initially formed. It may be filled.

【0018】処理槽1内に供給された被処理水は、汚泥
床Aを上向流通する間に被処理水中の有機物が微生物の
生物学的作用で分解処理され、メタンガスなどのガスが
生成する。なお、被処理水の上向流速は、従来の処理装
置にあっては、汚泥床Aの膨張展開に伴うグラニュール
の流出を防止するため、1〜2m/hr程度であり、被
処理水に含まれる無機性固形物がグラニュールに捕捉さ
れやすく、汚泥の生物活性を高く維持することができな
いと共に、被処理水供給量も少ないため、高速、高負荷
条件で処理効率を上げることが困難であったが、本発明
の処理装置では、三相分離が効率よく行われるため、4
〜30m/hrと極めて速い流速とすることができ、汚
泥床Aの膨張展開を積極的に図り、被処理水とグラニュ
ールとの接触効率を高めることができる。また、被処理
水供給量も多くでき、高速、高負荷条件で処理効率を上
げることができる。
In the water to be treated supplied into the treatment tank 1, organic matter in the water to be treated is decomposed by the biological action of microorganisms while flowing upward through the sludge bed A, and gas such as methane gas is generated. . In addition, in the conventional treatment apparatus, the upward flow velocity of the water to be treated is about 1 to 2 m / hr in order to prevent the granules from flowing out due to the expansion and development of the sludge bed A. The contained inorganic solids are easily captured by the granules, and the biological activity of the sludge cannot be maintained at a high level, and the amount of water to be treated is small, so it is difficult to increase the treatment efficiency under high-speed, high-load conditions. However, in the processing apparatus of the present invention, since three-phase separation is performed efficiently,
An extremely high flow velocity of about 30 m / hr can be obtained, and the expansion and expansion of the sludge bed A can be positively achieved, and the contact efficiency between the water to be treated and the granules can be increased. Further, the supply amount of the water to be treated can be increased, and the treatment efficiency can be increased under high-speed and high-load conditions.

【0019】汚泥床Aの微生物で有機物が分解された被
処理水は、更に上昇して下段ガスコレクタ2部に至り、
下列の隣接するガス回収フ−ド4間の上向流通流路及び
上列の隣接するガス回収フ−ド5間を上向流通する間
に、ガス、液及び汚泥が分離され、ガスは下列及び上列
ガス回収フ−ド4、5で集められてガス排出管16から
回収され、汚泥は汚泥床Aに沈降される。なお、下列の
隣接するガス回収フ−ド4間の上向流通流路を上向流通
する被処理水は、整流板14の作用により、液流速が分
散され、処理槽1内壁の沿って下向流が形成されるた
め、短絡流が抑制され、微細な汚泥でも汚泥床Aに沈降
される。また、下段ガスコレクタ2部で分離された被処
理水は、整流ゾ−ンBを上昇する間に、更に汚泥が沈降
分離され、分離汚泥は下段ガスコレクタ2の上向流通流
路である開口部から汚泥床Aに沈降される。なお、汚泥
床Aに沈降した微細な汚泥は種汚泥となり、グラニュ−
ルを形成する。
The water to be treated, in which the organic matter is decomposed by the microorganisms of the sludge bed A, further rises and reaches the lower gas collector 2,
Gas, liquid, and sludge are separated during upward flow between the adjacent gas recovery hoods 4 in the lower row and between the adjacent gas recovery hoods 5 in the upper row. The sludge is collected by the upper gas recovery hoods 4 and 5 and collected from the gas discharge pipe 16, and the sludge is settled on the sludge bed A. The water to be treated flowing upward in the upward flow passage between the adjacent gas recovery hoods 4 in the lower row is dispersed by the action of the flow straightening plate 14 so that the flow velocity of the water to be treated is reduced. Since the countercurrent is formed, the short-circuit flow is suppressed, and even fine sludge is settled on the sludge bed A. Further, the sludge is further settled and separated from the water to be treated separated in the lower gas collector 2 while rising in the rectifying zone B, and the separated sludge is an opening which is an upward flow passage of the lower gas collector 2. Is settled on the sludge bed A from the part. Note that the fine sludge settled on the sludge bed A becomes seed sludge, which is granulated.
To form

【0020】被処理水は上段ガスコレクタ3部に至り、
上段ガスコレクタ3の上向流通流路である開口部を上向
流通する間に、残存のガス、液及び汚泥が分離され、ガ
スは下列及び上列ガス回収フ−ド6、7で集められてガ
ス排出管16から回収され、汚泥は下段ガスコレクタ2
部を経て汚泥床Aに沈降される。
The water to be treated reaches the upper gas collector 3 parts,
During the upward flow through the opening, which is the upward flow path of the upper gas collector 3, the remaining gas, liquid and sludge are separated, and the gas is collected by the lower and upper gas recovery hoods 6 and 7. Collected from the gas discharge pipe 16 and the sludge is collected in the lower gas collector 2.
The sediment is settled on the sludge bed A through the section.

【0021】前記により清浄化処理された被処理水は、
清澄処理水分離部Cにおいて残存するガスを分離し、処
理水排出手段9の処理水オ−バ−フロ−部材15を介し
て、処理水排出流路12から系外に排出され、またガス
溜り部Dに分離された、ガスは、図示しないガス吸引装
置を介してガス排出手段10の生成ガス排出流路13か
ら図示しないガスタンクなどに回収される。
The water to be treated, which has been purified by the above, is
The remaining gas is separated in the clarified treated water separation section C, and discharged from the treated water discharge flow path 12 through the treated water overflow member 15 of the treated water discharge means 9 to the outside of the system. The gas separated into the section D is recovered from the generated gas discharge channel 13 of the gas discharging means 10 to a gas tank (not shown) via a gas suction device (not shown).

【0022】[0022]

【実施例】(実施例1)整流板を設けない場合と整流板
を設けた場合の流動解析を行った結果では、整流板を設
けない場合(図4)では、図内に記載された丸付数字部
における液流速は以下の通りであった。:1.94m
/hr、:9.46m/hr、:11.43m/h
r、:9.46m/hr、:9.29m/hr、
:3.53m/hr。また、本発明の整流板を設けた
場合(図3)では、図内に記載された丸付数字部におけ
る液流速は以下の通りであった。:1.94m/h
r、:5.24m/hr、:7.14m/hr、
:5.24m/hr、:5.71m/hr、:
5.71m/hr。前記により、整流板を設けない場合
においては、局部的に液流速の変動が極めて大きくな
り、乱流を生起しているが、整流板を設けた場合では、
各部における液流速の変動が極めて少なくなっているの
が明確である。
EXAMPLES (Example 1) The results of flow analysis in the case where a current plate is not provided and in the case where a current plate is provided show that when no current plate is provided (FIG. 4), circles shown in the figure are provided. The liquid flow rates in the numbered parts were as follows. : 1.94m
/ Hr, 9.46 m / hr, 11.43 m / h
r, 9.46 m / hr, 9.29 m / hr,
: 3.53 m / hr. When the current plate of the present invention was provided (FIG. 3), the liquid flow rates in the circled numbers shown in the figure were as follows. : 1.94m / h
r, 5.24 m / hr, 7.14 m / hr,
: 5.24 m / hr,: 5.71 m / hr,:
5.71 m / hr. According to the above, in the case where the rectifying plate is not provided, the fluctuation of the liquid flow velocity locally becomes extremely large, and turbulence is caused.In the case where the rectifying plate is provided,
It is clear that the fluctuation of the liquid flow velocity in each part is extremely small.

【0023】(実施例2)整流板を設けない場合と整流
板を設けた場合の処理槽内に形成された汚泥床のグラニ
ュールの粒度分布を測定した結果では、整流板を設けな
い場合(図6)には、粒径1mm以下のグラニュールは
極めて少なく、短絡流が生起したことにより、処理水に
伴なわれて流出したものと考えられ、整流板を設けた場
合(図5)には、粒径1mm以下のグラニュールも多
く、液流速が低く安定しているため、処理槽内に保持さ
れたものと考えられる。
(Example 2) The results of measuring the particle size distribution of the granules of the sludge bed formed in the treatment tank in the case where the current plate is not provided and in the case where the current plate is provided indicate that the current plate is not provided ( FIG. 6) shows that the amount of granules having a particle size of 1 mm or less was extremely small, and it was considered that the short-circuit flow occurred and the granules flowed out along with the treated water. It is considered that granules having a particle size of 1 mm or less are often held in the processing tank because the liquid flow rate is low and stable.

【0024】[0024]

【発明の効果】本発明は、従来の被処理水の供給量を多
くすることができる高効率処理装置の複雑な構成をより
簡単とすると共に、上向流の短絡流が防止されることに
より、生成ガスの分離及びグラニュールの沈降分離をよ
り確実に効率よく行うことができ、グラニュールや微細
な汚泥の流出が防止され、有機性排水の高効率処理が可
能な上向流嫌気性処理装置である。
According to the present invention, the complicated structure of the conventional high-efficiency treatment apparatus capable of increasing the supply amount of the water to be treated is simplified, and the upward short-circuit flow is prevented. Upstream anaerobic treatment that can more reliably and efficiently separate generated gas and sedimentation and separation of granules, prevent outflow of granules and fine sludge, and enable highly efficient treatment of organic wastewater Device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の上向流嫌気性処理装置
の説明図
FIG. 1 is an explanatory view of an upward anaerobic treatment device according to an embodiment of the present invention.

【図2】本発明の要部の部分図FIG. 2 is a partial view of a main part of the present invention.

【図3】本発明の一実施の形態の上向流嫌気性処理装置
の流動解析図
FIG. 3 is a flow analysis diagram of an upflow anaerobic treatment device according to an embodiment of the present invention.

【図4】従来の上向流嫌気性処理装置の流動解析図FIG. 4 is a flow analysis diagram of a conventional upward flow anaerobic treatment device.

【図5】本発明の一実施の形態の上向流嫌気性処理装置
における処理槽内の汚泥粒子粒径分布図
FIG. 5 is a diagram showing a particle size distribution of sludge particles in a treatment tank in an upflow anaerobic treatment apparatus according to an embodiment of the present invention.

【図6】従来の上向流嫌気性処理装置における処理槽内
の汚泥粒子粒径分布図
FIG. 6 is a diagram showing a particle size distribution of sludge particles in a treatment tank in a conventional upward flow anaerobic treatment device.

【符号の説明】[Explanation of symbols]

1:嫌気性処理槽 2:上段ガスコレクタ 3:下段ガスコレクタ 4、6:下列ガス回収フ−ド 5、7:上列ガス回収フ−ド 8:被処理水供給手段 9:処理水排出手段 10:ガス排出手段 11:被処理水供給流路 12:処理水排出流路 13:生成ガス排出流路 14:整流板 15:オ−バ−フロ−部材 16:ガス排出管 1: Anaerobic treatment tank 2: Upper gas collector 3: Lower gas collector 4, 6: Lower row gas recovery hood 5, 7: Upper row gas recovery hood 8: Treatment water supply means 9: Treated water discharge means 10: Gas discharging means 11: Processed water supply flow path 12: Treated water discharge flow path 13: Generated gas discharge flow path 14: Rectifying plate 15: Overflow member 16: Gas discharge pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】底部に被処理水供給手段、上部に処理水排
出手段及び中間部にガス排出管を具備した複数のガス回
収フ−ドが水平方向に所定間隔で配置されたガスコレク
タを設け、下方に自己造粒汚泥による汚泥床を形成した
嫌気性処理槽に有機性排水を上向流通させて処理する上
向流嫌気性処理装置において、前記ガスコレクタを、下
列ガス回収フ−ド及び下列ガス回収フ−ドの上向流通流
路である開口部上方に一定の間隙を持って位置する上列
ガス回収フ−ドとの2列に構成した上段ガスコレクタ
と、上段ガスコレクタよりも下方の位置に、上段ガスコ
レクタと略同一構成の下段ガスコレクタとを設け、少な
くとも下段ガスコレクタの下列ガス回収フ−ド頂上部の
長手方向に沿って所定高さの整流板を突設し、下段ガス
コレクタと上段ガスコレクタとの間を整流ゾ−ンとした
ことを特徴とする上向流嫌気性処理装置。
1. A gas collector having a plurality of gas recovery hoods having a plurality of gas recovery hoods provided with a treated water supply means at a bottom, a treated water discharge means at an upper part, and a gas discharge pipe at an intermediate part. An upflow anaerobic treatment apparatus in which organic wastewater is circulated upward in an anaerobic treatment tank having a sludge bed formed by self-agglomerated sludge below, wherein the gas collector is provided with a lower row gas recovery hood and An upper gas collector formed in two rows: an upper gas collector hood located at a fixed gap above the opening, which is the upward flow passage of the lower gas collector hood; At the lower position, a lower gas collector having substantially the same configuration as the upper gas collector is provided, and a straightening plate of a predetermined height is protruded at least along the longitudinal direction of the top of the lower gas recovery hood of the lower gas collector, Lower gas collector and upper gas Rectifying zone between the collector - ting with upflow anaerobic treatment apparatus, characterized in that the.
JP2001016488A 2001-01-25 2001-01-25 Anaerobic treatment equipment with upward flow Pending JP2002219486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001016488A JP2002219486A (en) 2001-01-25 2001-01-25 Anaerobic treatment equipment with upward flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001016488A JP2002219486A (en) 2001-01-25 2001-01-25 Anaerobic treatment equipment with upward flow

Publications (1)

Publication Number Publication Date
JP2002219486A true JP2002219486A (en) 2002-08-06

Family

ID=18882853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016488A Pending JP2002219486A (en) 2001-01-25 2001-01-25 Anaerobic treatment equipment with upward flow

Country Status (1)

Country Link
JP (1) JP2002219486A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051490A (en) * 2004-01-15 2006-02-23 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
WO2009014346A3 (en) * 2007-07-20 2009-03-19 Ecodays Co Ltd Plant for aerobic and anaerobic digestion treatment by pfr
JP2016174981A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
WO2023123992A1 (en) * 2021-12-31 2023-07-06 南京万德斯环保科技股份有限公司 High-efficiency skid-mounted three-phase separator in high-load anaerobic system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051490A (en) * 2004-01-15 2006-02-23 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP4687600B2 (en) * 2006-07-31 2011-05-25 株式会社Ihi Methane fermentation equipment
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
WO2009014346A3 (en) * 2007-07-20 2009-03-19 Ecodays Co Ltd Plant for aerobic and anaerobic digestion treatment by pfr
AU2008279963B2 (en) * 2007-07-20 2011-07-21 Ecodays Co., Ltd. Plant for aerobic and anaerobic digestion treatment by PFR
US8372284B2 (en) 2007-07-20 2013-02-12 Ecodays Co., Ltd. Plant for aerobic and anaerobic digestion treatment by PFR
JP2016174981A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
WO2023123992A1 (en) * 2021-12-31 2023-07-06 南京万德斯环保科技股份有限公司 High-efficiency skid-mounted three-phase separator in high-load anaerobic system

Similar Documents

Publication Publication Date Title
KR101397780B1 (en) Process and reactor for anaerobic waste water purification
CA1084182A (en) Method for separating pollutants from liquid
KR101330339B1 (en) Process and reactor for anaerobic waste water purification
US5954963A (en) Process for biologically treating water
US5049266A (en) Device and method for microbiological water treatment
US6030529A (en) Biological reactor including settler assembly
JP4312858B2 (en) Upstream anaerobic treatment apparatus and treatment method
LT5160B (en) Method of separating suspension, in particular for waste water treatment, and an apparatus for performing the same
CN102471109B (en) Reactor for anaerobically purifying waste water comprising multi-phase separator devices
JP2002219486A (en) Anaerobic treatment equipment with upward flow
JP2002159990A (en) Anaerobic treating vessel
JP2001269694A (en) Upflow anaerobic treating device
US4568458A (en) Fluidized bed reactor
JP4162234B2 (en) Anaerobic treatment equipment
KR101988179B1 (en) advanced anaerobic digestion system
KR102276708B1 (en) Sewage treatment facility that can separate and treat struvite stones
JP2003340487A (en) Method for supplying water to be treated of upflow anaerobic treatment apparatus
JP2002263683A (en) Upward stream anaerobic processor
JP2001259681A (en) Upward flow anaerobic treating device
JP2831498B2 (en) Upflow sludge blanket type wastewater treatment equipment
JP5771037B2 (en) Sewage treatment equipment
CN206642582U (en) Coking waste gas, waste water combined purifying system
JP6505545B2 (en) Reactor for biological treatment, operation method of biological reactor, and water treatment equipment
JP2006095421A (en) Up flow anaerobic treatment method
WO1987005593A1 (en) System for biological purification of water