JP2008218078A - Manufacturing method of electrode catalyst for fuel cell - Google Patents

Manufacturing method of electrode catalyst for fuel cell Download PDF

Info

Publication number
JP2008218078A
JP2008218078A JP2007051264A JP2007051264A JP2008218078A JP 2008218078 A JP2008218078 A JP 2008218078A JP 2007051264 A JP2007051264 A JP 2007051264A JP 2007051264 A JP2007051264 A JP 2007051264A JP 2008218078 A JP2008218078 A JP 2008218078A
Authority
JP
Japan
Prior art keywords
metal
ptru
fuel cell
catalyst
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007051264A
Other languages
Japanese (ja)
Other versions
JP5168450B2 (en
Inventor
Shigeru Konishi
繁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007051264A priority Critical patent/JP5168450B2/en
Priority to PCT/JP2008/053466 priority patent/WO2008105484A1/en
Publication of JP2008218078A publication Critical patent/JP2008218078A/en
Application granted granted Critical
Publication of JP5168450B2 publication Critical patent/JP5168450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode catalyst for a fuel cell which has a high methanol oxidation activity per active surface area (specific surface area activity) and, especially, is effective for a direct methanol type fuel cell. <P>SOLUTION: The manufacturing method of an electrode catalyst for fuel cell comprises a first carrying process in which metal particulates of average particle size 0.1 nm-1.5 nm which are controlled in particle spacing are formed on conductive carbon carrier, a second carrying process in which other metal is grown with the metal particulates as a nucleus, and a process to treat it in an atmosphere containing hydrogen after completing the second carrying process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池、特にダイレクトメタノール型燃料電池用の電極触媒の製造方法に関する。   The present invention relates to a method for producing an electrode catalyst for a fuel cell, particularly a direct methanol fuel cell.

携帯電話では、電池の高容量化が望まれているが、二次電池の高容量化は困難である。そのためメタノール燃料を用いたダイレクトメタノール型燃料電池(DMFC)が注目されている。   In mobile phones, it is desired to increase the capacity of batteries, but it is difficult to increase the capacity of secondary batteries. For this reason, direct methanol fuel cells (DMFC) using methanol fuel have attracted attention.

DMFCは液体燃料を水素等に改質することなくそのまま利用できるため、コンパクト化が可能等の長所があり、現在実用化に向けて鋭意研究されている。しかし、電解質膜のメタノール透過性が大きいこと、及びアノード触媒のメタノール酸化活性が小さいことが実用化に向けて課題となっている。   Since DMFC can be used as it is without reforming liquid fuel to hydrogen or the like, it has advantages such as being able to be made compact, and is currently being intensively studied for practical application. However, the fact that the methanol permeability of the electrolyte membrane is large and the methanol oxidation activity of the anode catalyst is small is a problem for practical use.

アノード触媒には主にPtRu系触媒が使用されており、PtRu以外の高活性触媒の探索がなされているが、PtRuを凌ぐレベルには達していない。PtRu系での高活性化では、粒径が小さく表面積の大きいPtRu微粒子をカーボン担体上に分散させた担持触媒を用いることが挙げられる。但し、市販の担持触媒、例えばTEC61E54(54wt%PtRu/C、田中貴金属製、PtRuサイズ4nm)でも活性は不十分であり、更なる高活性化が必要である。そのためにはPtRu粒径を更に小さく(4nm以下)し、カーボン担体上にできるだけ多く(高担持)、かつ均一に(高分散)に担持することが望ましい。   PtRu-based catalysts are mainly used as anode catalysts, and high-activity catalysts other than PtRu are being searched for, but have not reached a level that exceeds PtRu. For high activation in the PtRu system, a supported catalyst in which PtRu fine particles having a small particle size and a large surface area are dispersed on a carbon support can be used. However, even a commercially available supported catalyst such as TEC61E54 (54 wt% PtRu / C, manufactured by Tanaka Kikinzoku, PtRu size 4 nm) is insufficient in activity, and further high activation is required. For that purpose, it is desirable to further reduce the PtRu particle size (4 nm or less) and to support the carbon carrier as much as possible (high loading) and uniformly (high dispersion).

この場合、貴金属塩をカーボン上に含浸した後、水素等で還元することにより触媒を作製する方法が知られているが、貴金属塩の還元には200〜450℃の温度が必要である。そのため貴金属粒子系は3〜4nmであり、また高担持・高分散化が困難である(Y. Takasu et al., Journal of Electrochemical Society 147(12),4421−4427,2000:非特許文献1)。   In this case, a method is known in which a catalyst is prepared by impregnating a noble metal salt on carbon and then reducing with hydrogen or the like, but a temperature of 200 to 450 ° C. is required for the reduction of the noble metal salt. Therefore, the noble metal particle system is 3 to 4 nm, and it is difficult to achieve high loading and high dispersion (Y. Takasu et al., Journal of Electrochemical Society 147 (12), 4421-4427, 2000: Non-Patent Document 1). .

また、特開2005−158484号公報(特許文献1)には、担体カーボンと陽イオン交換樹脂との混合物中に白金族陽イオンを吸着し、水素を含む雰囲気中100〜130℃で還元することが記載されているが、この場合も貴金属塩を還元することから、高い温度を必要としており、メタノール酸化活性の向上については記載されていないものである。   JP-A-2005-158484 (Patent Document 1) adsorbs platinum group cations in a mixture of carrier carbon and a cation exchange resin and reduces them at 100 to 130 ° C. in an atmosphere containing hydrogen. However, in this case as well, noble metal salt is reduced, so that a high temperature is required, and improvement of methanol oxidation activity is not described.

Y. Takasu et al., Journal of Electrochemical Society 147(12),4421−4427,2000Y. Takasu et al. , Journal of Electrochemical Society 147 (12), 4421-4427, 2000. 特開2005−158484号公報JP 2005-158484 A

本発明は、上記事情に鑑みなされたもので、活性表面積当りのメタノール酸化活性(比表面積活性)が高く、特にダイレクトメタノール型燃料電池用として有効な燃料電池用電極触媒の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for producing an electrode catalyst for a fuel cell that has a high methanol oxidation activity (specific surface area activity) per active surface area and is particularly effective for direct methanol fuel cells. With the goal.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、例えば高担持・高分散のPtRu担持触媒を得る手段として、担体カーボン上にPt等の金属核を形成後、該金属核上にPtRuを成長させる方法(以下、2段担持法と呼ぶ)により、平均粒径4nm以下のPtRu粒子をカーボン上に50質量%以上の担持率でも分散性良く担持した触媒を得ることができることを見出した。しかし、この2段担持法により、市販触媒TEC61E54に比べ、メタノール酸化活性が2.5倍の触媒を得ることができたが、実際に燃料電池として使用するには、更なる触媒活性の向上が高出力化のために望ましい。そこで、更に検討を進めた結果、2段担持法で作製した高担持・高分散PtRu/C触媒を、更に水素を含む雰囲気で処理することによって、活性表面積当りのメタノール酸化活性(比表面積活性)が向上すること、この場合、特に水素を含む雰囲気の処理を100℃未満の温度で行うことによって、PtRu質量当りのメタノール酸化活性(質量活性)も向上することを見出し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have, for example, as a means of obtaining a highly supported and highly dispersed PtRu supported catalyst, after forming a metal nucleus such as Pt on a carrier carbon, the metal nucleus A catalyst in which PtRu particles having an average particle size of 4 nm or less are supported on carbon with a good dispersibility can be obtained by a method of growing PtRu on the carbon (hereinafter referred to as a two-stage loading method). I found. However, by this two-stage loading method, a catalyst having a methanol oxidation activity of 2.5 times that of the commercially available catalyst TEC61E54 could be obtained. However, in order to actually use it as a fuel cell, the catalytic activity was further improved. Desirable for higher output. Therefore, as a result of further investigation, methanol oxidation activity per specific surface area (specific surface area activity) was obtained by treating a highly supported and highly dispersed PtRu / C catalyst prepared by the two-stage support method in an atmosphere containing hydrogen. In this case, it is found that the methanol oxidation activity (mass activity) per mass of PtRu is also improved by performing the treatment of the atmosphere containing hydrogen at a temperature of less than 100 ° C., and the present invention has been made. It is a thing.

従って、本発明は、下記の燃料電池用電極触媒の製造方法を提供する。
[1]導電性カーボン担体に粒子間隔を制御した平均粒径0.1nm〜1.5nmの金属微粒子を生成する第一担持工程と、該金属微粒子を核に他の金属を成長させる第二担持工程と、第二担持工程終了後に水素を含む雰囲気で処理する工程とを含むことを特徴とする燃料電池用電極触媒の製造方法。
[2]導電性カーボン担体上に担持させる金属微粒子がPt微粒子であり、このPt微粒子を核として成長させる他の金属がPtRuである[1]記載の燃料電池用電極触媒の製造方法。
[3]前記水素を含む雰囲気の処理温度が300℃以下であることを特徴とする[1]又は[2]記載の燃料電池用電極触媒の製造方法。
[4]前記水素を含む雰囲気の処理温度が100℃未満であることを特徴とする[1]又は[2]記載の燃料電池用電極触媒の製造方法。
[5]水素を含む雰囲気で処理する際のカーボン担体に対する金属担持率が50質量%以上であることを特徴とする[1]〜[4]のいずれか1項記載の燃料電池用電極触媒の製造方法。
Accordingly, the present invention provides the following method for producing a fuel cell electrode catalyst.
[1] A first supporting step for generating metal fine particles having an average particle diameter of 0.1 nm to 1.5 nm with a controlled particle interval on a conductive carbon support, and a second supporting for growing other metals using the metal fine particles as nuclei. A method for producing an electrode catalyst for a fuel cell, comprising: a step and a step of treating in an atmosphere containing hydrogen after completion of the second supporting step.
[2] The method for producing an electrode catalyst for a fuel cell according to [1], wherein the metal fine particles supported on the conductive carbon support are Pt fine particles, and the other metal grown using the Pt fine particles as a nucleus is PtRu.
[3] The method for producing an electrode catalyst for a fuel cell according to [1] or [2], wherein a treatment temperature of the atmosphere containing hydrogen is 300 ° C. or lower.
[4] The method for producing a fuel cell electrode catalyst according to [1] or [2], wherein the treatment temperature of the atmosphere containing hydrogen is less than 100 ° C.
[5] The electrode catalyst for a fuel cell according to any one of [1] to [4], wherein the metal loading on the carbon support when treated in an atmosphere containing hydrogen is 50% by mass or more. Production method.

本発明によれば、活性表面積当りのメタノール酸化活性が向上した燃料電池用電極触媒を得ることができ、この場合、特に上記第二担持工程後の水素を含む雰囲気での処理を100℃未満の低温で行うことにより、質量当りのメタノール酸化活性を向上させることができる。   According to the present invention, a fuel cell electrode catalyst having improved methanol oxidation activity per active surface area can be obtained. In this case, the treatment in an atmosphere containing hydrogen, particularly after the second supporting step, is performed at less than 100 ° C. By carrying out at low temperature, the methanol oxidation activity per mass can be improved.

本発明の燃料電池用電極触媒の製造方法は、
i.導電性カーボン担体に粒子間隔を制御した粒径0.1〜1.5nmの金属微粒子を生成する第一担持工程
ii.該金属微粒子を核に他の金属微粒子を成長させる第二担持工程
iii.第二担持工程終了後に成長した他の金属微粒子を水素を含む雰囲気で処理する水素処理工程
を備えたものである。
ここで、第一担持工程で用いられる導電性カーボン担体としては、アセチレンブラック、ファーネスブラック、チャネルブラック、活性炭、HOPG等が使用できる。この場合、この導電性カーボン担体の平均粒径は10〜200nm、特に10〜50nmが好ましい。平均粒径が10nmより小さいと、カーボンを均一に分散させて平均粒径1.5nm以下の金属微粒子を担持することが困難な場合が生じ、平均粒径が、200nmより大きいと、単位体積当りの金属量が減少するため、燃料電池作製時、所定の触媒量を載せるためには、触媒層が厚くなり、燃料が供給されにくくなるおそれがある。
The method for producing the fuel cell electrode catalyst of the present invention comprises:
i. A first supporting step of generating metal fine particles having a particle size of 0.1 to 1.5 nm with a controlled particle spacing on a conductive carbon carrier; ii. A second supporting step of growing other metal fine particles using the metal fine particles as nuclei; iii. It comprises a hydrogen treatment step of treating other metal fine particles grown after the end of the second supporting step in an atmosphere containing hydrogen.
Here, as the conductive carbon carrier used in the first supporting step, acetylene black, furnace black, channel black, activated carbon, HOPG and the like can be used. In this case, the average particle diameter of the conductive carbon carrier is preferably 10 to 200 nm, particularly preferably 10 to 50 nm. If the average particle size is less than 10 nm, it may be difficult to uniformly disperse carbon and support metal fine particles having an average particle size of 1.5 nm or less. If the average particle size is greater than 200 nm, Therefore, when the fuel cell is manufactured, in order to put a predetermined amount of catalyst, the catalyst layer becomes thick and it may be difficult to supply fuel.

また、上記カーボン担体に担持させる金属としては、Pt(白金)、Au,Ag,Ir,Os,Pd,Rh,Ru,Cu,Ni,Co,Fe,Mn,Cr,V,Ti,Mo,W,Ta,Bi,Sn等が挙げられるが、容易に還元でき、微小な粒子の形成が容易である点からPtが好ましい。この場合、これら金属を上記カーボン担体上に粒子間隔を制御した平均粒径0.1〜1.5nmの微粒子として生成、担持させる。ここで、「粒子間隔を制御する」とは、微粒子を凝集することなくカーボン表面上に(均一に)分散させるということを意味し、またこのように粒子間隔を制御する方法としては、低い担持率でカーボン存在下で金属原料を還元する、又は金属原料をカーボンに含浸させ気相中で還元する際、金属原料の担持率を低くする、又は金属コロイドを担持率を低くしてカーボン上に担持する等の方法が採用し得る。   Further, as the metal supported on the carbon carrier, Pt (platinum), Au, Ag, Ir, Os, Pd, Rh, Ru, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Mo, W , Ta, Bi, Sn, etc., Pt is preferred because it can be easily reduced and fine particles can be easily formed. In this case, these metals are produced and supported as fine particles having an average particle diameter of 0.1 to 1.5 nm with controlled particle spacing on the carbon support. Here, “controlling the particle spacing” means that the fine particles are dispersed (uniformly) on the carbon surface without agglomerating, and as a method for controlling the particle spacing in this way, low loading When reducing the metal raw material in the presence of carbon at a low rate, or impregnating the metal raw material with carbon and reducing it in the gas phase, reduce the loading rate of the metal raw material, or lower the loading rate of the metal colloid on the carbon. The method of carrying | supporting etc. can be employ | adopted.

また、上述したように、第一担持工程における金属微粒子による核形成は、粒径1.5nm以下とする。1.5nmより大きくなると、最終的に得られる触媒粒子の粒径が大きくかつ凝集し易くなり、高分散な触媒は得られない。1.5nm以下に形成すると、担体との結合が強く、カーボン上均一に分散し易い。   Further, as described above, the nucleation by the metal fine particles in the first supporting step is set to a particle size of 1.5 nm or less. When it is larger than 1.5 nm, the particle diameter of the finally obtained catalyst particles is large and easily aggregated, and a highly dispersed catalyst cannot be obtained. When it is formed to be 1.5 nm or less, the bond with the carrier is strong and it is easy to uniformly disperse on the carbon.

この第一担持工程における金属微粒子の生成、担持方法としては、特に白金微粒子を生成、担持させる場合は、カーボン担体を0.01〜2質量%、特に0.1〜1質量%の割合で水に分散させた水分散液に、塩化白金酸塩、塩化白金(II)、塩化白金(IV)、ジニトロジアミン白金(II)、ビスアセチルアセトナト白金、ジクロロテトラミン白金、テトラミン硫酸白金、塩化白金(II)アンモニウム、塩化白金(IV)アンモニウム、ジクロロジアミン白金等の白金化合物とエチレングリコール、エタノール、メタノール、n−プロパノール、i−プロパノール、ブタノール等の還元剤を添加する。この場合、白金化合物量は、白金金属としてカーボン担体に対して0.1〜30質量%、特に1〜15質量%であることが好ましい。白金化合物量が少なすぎると、カーボン表面上の成長核が少なくなり、白金化合物量が多すぎると、粗大粒子が発生し、高担持率で分散性の良い触媒が得られないおそれが生じる。また、エチレングリコール等の還元剤の使用量は、1〜80質量%、特に5〜50質量%が好ましい。また、上記水分散液のpHは4〜12、特に5〜10であることが好ましく、このためpH調整剤として水酸化ナトリウム、アンモニア水、テトラヒドロキシメチルアンモニウム等を使用し、上記pH範囲内に調整することが好ましい。   As a method for generating and supporting the metal fine particles in the first supporting step, particularly when generating and supporting platinum fine particles, the carbon carrier is water in an amount of 0.01 to 2% by mass, particularly 0.1 to 1% by mass. In an aqueous dispersion dispersed in chloroplatinate, platinum (II) chloride, platinum chloride (IV), dinitrodiamine platinum (II), bisacetylacetonatoplatinum, dichlorotetramineplatinum, platinum tetraminesulfate, platinum chloride ( II) A reducing agent such as ethylene glycol, ethanol, methanol, n-propanol, i-propanol, or butanol is added with a platinum compound such as ammonium, platinum (IV) ammonium chloride, or dichlorodiamine platinum. In this case, the amount of the platinum compound is preferably 0.1 to 30% by mass, particularly 1 to 15% by mass with respect to the carbon support as platinum metal. If the amount of the platinum compound is too small, the number of growth nuclei on the carbon surface is reduced. If the amount of the platinum compound is too large, coarse particles are generated, and a catalyst with high loading and good dispersibility may not be obtained. Moreover, the usage-amount of reducing agents, such as ethylene glycol, is 1-80 mass%, Especially 5-50 mass% is preferable. Further, the pH of the aqueous dispersion is preferably 4 to 12, particularly 5 to 10. For this reason, sodium hydroxide, aqueous ammonia, tetrahydroxymethylammonium or the like is used as a pH adjuster, and the pH is within the above range. It is preferable to adjust.

次いで、このようにして得られた混合液を50〜120℃、特に70〜100℃で1〜10時間、特に3〜6時間撹拌処理した後、濾過、洗浄後、40〜50℃、特に60〜120℃で3〜24時間、特に8〜16時間乾燥することが好ましい。また、上記金属粒子の導電性カーボン担体に対する担持率は1〜30質量%、特に5〜15質量%であることが好ましい。担持率が小さすぎると、カーボン表面上の成長核が小さくなり、担持率が大きすぎると、粒子サイズが大きくなり高担持率で分散性のよい触媒が得られない。なお、ここで担持率は、下記の式から求めた値である。
担持率(質量%)=[A/(A+C)]×100
A:金属微粒子質量
C:カーボン担体質量
Subsequently, the mixed solution thus obtained is stirred at 50 to 120 ° C., particularly 70 to 100 ° C. for 1 to 10 hours, particularly 3 to 6 hours, and after filtration and washing, 40 to 50 ° C., particularly 60 It is preferable to dry at ˜120 ° C. for 3 to 24 hours, particularly for 8 to 16 hours. Moreover, it is preferable that the loading rate with respect to the electroconductive carbon support | carrier of the said metal particle is 1-30 mass%, especially 5-15 mass%. If the loading rate is too small, the growth nuclei on the carbon surface will be small, and if the loading rate is too large, the particle size will increase and a catalyst with high loading rate and good dispersibility cannot be obtained. Here, the carrying rate is a value obtained from the following equation.
Loading rate (mass%) = [A / (A + C)] × 100
A: Metal fine particle mass C: Carbon carrier mass

次に、上記のようにして金属微粒子をカーボン担体に担持させた後、この金属微粒子を核として他の金属(触媒金属)を成長させる。この場合、触媒金属としは、PtRu(白金・ルテニウム)、PtSn,PtMo,PtW,PtRh,PtPd,PtRuSn,PtRuRh,PtRuPd,PtRuIr,PtRuMo,PtRuW等が挙げられるが、メタノール酸化活性の高さの点でPtRuが好ましい。   Next, after supporting the metal fine particles on the carbon support as described above, another metal (catalyst metal) is grown using the metal fine particles as nuclei. In this case, examples of the catalytic metal include PtRu (platinum / ruthenium), PtSn, PtMo, PtW, PtRh, PtPd, PtRuSn, PtRuRh, PtRuPd, PtRuIr, PtRuMo, PtRuW, and the like. PtRu is preferred.

ここで、本発明の燃料電池用電極触媒は、特にアノード触媒(メタノール酸化触媒)として有効に用いられるが、このアノード触媒(メタノール酸化触媒)は、メタノール酸化反応により電流を取り出すもので、従来から主にPtRuが用いられ、PtRu粒子表面で反応が起こる。そのため、PtRu粒径が小さい方が、PtRu質量当りの表面積が大きくなり、活性が高くなる。カーボンに担持した触媒では、カーボンの体積が大きいため、触媒層形成時の厚さは使用するカーボン量に依存する。燃料・反応生成物の拡散をし易くするには、触媒層の厚さが薄いことが好ましい。そのためカーボン粒子にできるだけ多くのPtRuを担持(高担持)することが望ましい。その際、PtRu粒子が凝集して担持していると、凝集体内部が反応に利用できないため、PtRu粒子が凝集せず、高分散に担持することが望ましい。   Here, the electrode catalyst for a fuel cell of the present invention is effectively used as an anode catalyst (methanol oxidation catalyst), and this anode catalyst (methanol oxidation catalyst) extracts current by methanol oxidation reaction. PtRu is mainly used, and a reaction occurs on the surface of the PtRu particle. Therefore, the smaller the PtRu particle size, the larger the surface area per mass of PtRu and the higher the activity. In the catalyst supported on carbon, since the volume of carbon is large, the thickness when forming the catalyst layer depends on the amount of carbon used. In order to facilitate the diffusion of the fuel / reaction product, the catalyst layer is preferably thin. For this reason, it is desirable to support (highly support) as much PtRu as possible on the carbon particles. At this time, if the PtRu particles are aggregated and supported, the inside of the aggregate cannot be used for the reaction, so it is desirable that the PtRu particles do not aggregate and be supported in a highly dispersed state.

本発明によれば、カーボン上に平均粒径0.1〜1.5nm程度の金属粒子(例えばPt)を形成し、その後Pt核上にPtRu等の触媒金属を担持又は成長させることで、担持率が高く、高分散な触媒を得ることができる。   According to the present invention, metal particles (for example, Pt) having an average particle diameter of about 0.1 to 1.5 nm are formed on carbon, and then a catalyst metal such as PtRu is supported or grown on the Pt nucleus, A highly dispersed catalyst with a high rate can be obtained.

このように、1段目で生成したPt等の金属微粒子核上に、PtRu等の触媒金属を担持又は成長させることで高担持で高分散の触媒を得ることが可能であるが、最終的に形成されるPtRu等の触媒金属の平均粒径は4nm以下、好ましくは3nm以下、より好ましくは2nm以下である。なお、下限は限定されないが、通常1.0nm以上である。4nmより大きいと、市販触媒TEC61E54と同レベルかそれより粒径が大きくなり、活性向上の効果が見られない場合が生じる。   Thus, it is possible to obtain a highly supported and highly dispersed catalyst by supporting or growing a catalytic metal such as PtRu on the metal fine particle nucleus such as Pt produced in the first stage. The average particle diameter of the formed catalyst metal such as PtRu is 4 nm or less, preferably 3 nm or less, more preferably 2 nm or less. In addition, although a minimum is not limited, Usually, it is 1.0 nm or more. If it is larger than 4 nm, the particle size becomes the same level as or larger than that of the commercially available catalyst TEC61E54, and the effect of improving the activity may not be observed.

担持率は50質量%以上、好ましくは60質量%以上が望ましい。担持率が50質量%より小さいと、微小なPtRu粒子の分散は容易であるが、MEA作製時の触媒層が担持率の高い触媒を用いたときより厚くなる。そのためメタノール燃料の供給が律速となり、担持率の高い触媒を使用したときに比べて出力は小さくなる場合が生じる。
なお、ここでの担持率は、下記式から求められる。
担持率(質量%)=[B/(A+B+C)]×100
A:金属微粒子質量
B:触媒金属(例えばPtRu)質量
C:カーボン担体質量
The loading rate is 50% by mass or more, preferably 60% by mass or more. When the loading rate is less than 50% by mass, the dispersion of fine PtRu particles is easy, but the catalyst layer at the time of MEA production becomes thicker when a catalyst with a high loading rate is used. For this reason, the supply of methanol fuel becomes rate limiting, and the output may be smaller than when a catalyst with a high loading rate is used.
In addition, the supporting rate here is calculated | required from a following formula.
Loading rate (mass%) = [B / (A + B + C)] × 100
A: Metal fine particle mass B: Catalyst metal (for example, PtRu) mass C: Carbon support mass

ここで、上記金属微粒子核に金属触媒を成長させる方法としては、例えばPtRuを成長させる場合であれば、ジニトロジアミン白金(II)、塩化白金酸、塩化白金(II)、塩化白金(IV)、ビスアセチルアセトナト白金、ジクロロテトラミン白金、テトラミン硫酸白金、塩化白金(II)アンモニウム、塩化白金(IV)アンモニウム、ジクロロジアンミン白金等の白金化合物、塩化ルテニウム、硝酸ニトロシルルテニウム、硝酸ルテニウム、塩化ルテニウムカリウム、塩化ルテニウムナトリウム、トリス−アセチルアセトナトルテニウム、トリルテニウムドデカカルボニル、ニトロソ塩化ルテニウムカリウム等のルテニウム化合物をエタノール、メタノール、n−プロパノール、i−プロパノール、ブタノール、エチレングリコール等の溶剤に溶解した溶液中に上記金属微粒子核を担持したカーボン担体を投入し、50〜120℃、特に70〜100℃、とりわけ上記溶剤の還流温度で、1〜10時間、特に3〜6時間反応を行い、上記金属微粒子核上にPtRu微粒子を生成、成長させる方法が採用される。   Here, as a method of growing a metal catalyst on the metal fine particle nucleus, for example, when growing PtRu, dinitrodiamine platinum (II), chloroplatinic acid, platinum (II) chloride, platinum (IV) chloride, Platinum compounds such as bisacetylacetonatoplatinum, dichlorotetramineplatinum, platinumtetraminesulfate, platinum (II) ammonium chloride, platinum (IV) ammonium chloride, dichlorodiammineplatinum, ruthenium chloride, nitrosylruthenium nitrate, ruthenium nitrate, ruthenium potassium, Ruthenium compounds such as sodium ruthenium chloride, tris-acetylacetonatoruthenium, triruthenium dodecacarbonyl, potassium nitroso ruthenium chloride, ethanol, methanol, n-propanol, i-propanol, butanol, ethylene glycol The carbon carrier carrying the metal fine particle nuclei is put into a solution dissolved in a solvent such as 50 to 120 ° C., particularly 70 to 100 ° C., especially at the reflux temperature of the solvent for 1 to 10 hours, particularly 3 to 6 A method is employed in which a time reaction is performed to generate and grow PtRu fine particles on the metal fine particle nucleus.

この場合、上記白金化合物及びルテニウム化合物の使用量は、白金金属:ルテニウム金属としてそのモル比が2:8〜9:1、特に5:5〜8:2であることが好ましい。白金化合物量が少なすぎると、メタノールのC−H触離反応が進まないため、メタノール酸化電流値が小さくなり、多すぎると、メタノールの反応中間生成物であるCOの酸化反応が起こり難く、低電位(0.4V(vs RHE)以下の電位)におけるメタノール酸化活性は小さくなる。ルテニウム化合物量が少なすぎると、白金が多い場合と同様、低電位におけるメタノール酸化活性が低く、多すぎると、白金が少ない場合と同様、メタノール酸化電流値が小さくなる。   In this case, the platinum compound and the ruthenium compound are preferably used in a molar ratio of 2: 8 to 9: 1, particularly 5: 5 to 8: 2, as platinum metal: ruthenium metal. If the amount of platinum compound is too small, the C—H separation reaction of methanol does not proceed, so the methanol oxidation current value becomes small. If it is too large, the oxidation reaction of methanol, which is a reaction intermediate product of methanol, hardly occurs. The methanol oxidation activity at a potential (potential of 0.4 V (vs RHE) or less) is small. If the amount of the ruthenium compound is too small, the methanol oxidation activity at a low potential is low as in the case where the amount of platinum is large, and if it is too large, the methanol oxidation current value is small as in the case where the amount of platinum is small.

また、上記金属微粒子核を担持したカーボン担体の量は、溶液中に0.01〜2質量%、特に0.1〜1質量%で分散させて用いることが好ましい。その量が少なすぎると、得られる触媒の量が少なくなり、多すぎると、カーボンの分散性が悪くなり、金属粒子の凝集や粗大粒子の生成等が生じる。   The amount of the carbon support carrying the metal fine particle nuclei is preferably 0.01 to 2% by mass, particularly 0.1 to 1% by mass in the solution. If the amount is too small, the amount of the resulting catalyst will be small, and if it is too large, the dispersibility of carbon will be poor, and metal particles will agglomerate and coarse particles will be produced.

なお、PtRu等の触媒金属の平均粒径を4nm以下にする方法としては、4nm以下のコロイドを作製し、それをカーボン担持する方法もあるが、50質量%以上の担持率ではコロイド粒子の凝集が生じ易く、均一に分散させることが困難である。金属核を低い担持率でカーボン上に設けると、金属核はカーボン表面上に均一に分散し、その上にPtRu等を成長させることにより担持率が50質量%以上でも、4nm以下の金属粒子を均一に分散させることが可能である。金属核がなければ、担持率を50質量%以上としたとき、凝集が生じる。
また、担持量を上記範囲とするには、溶液中に投入する金属原料の量で調整すればよい。
In addition, as a method of making the average particle diameter of a catalyst metal such as PtRu 4 nm or less, there is a method of preparing a colloid of 4 nm or less and loading it with carbon. However, when the loading ratio is 50% by mass or more, agglomeration of colloidal particles Is likely to occur and difficult to disperse uniformly. When the metal nuclei are provided on the carbon with a low loading rate, the metal nuclei are uniformly dispersed on the carbon surface, and PtRu or the like is grown on the metal nuclei, so that metal particles of 4 nm or less can be obtained even when the loading rate is 50% by mass or more. It is possible to disperse uniformly. Without metal nuclei, aggregation occurs when the loading is 50% by mass or more.
Moreover, what is necessary is just to adjust with the quantity of the metal raw material thrown into a solution, in order to make the carrying amount into the said range.

以上のように触媒金属を成長させた後は、この触媒金属と水素を含む雰囲気で処理する。この場合、処理条件としては、水素量と窒素、He,Ar等の不活性ガス量の割合が100:0〜1:99の雰囲気において、300℃以下の温度で1分〜5時間、特に30分〜2時間処理することが好ましい。1分より短いと水素処理の効果が不十分であり、5時間より長い時間では、効果に変化が認められない。   After growing the catalyst metal as described above, the treatment is performed in an atmosphere containing the catalyst metal and hydrogen. In this case, the treatment conditions are as follows: in an atmosphere where the ratio of the amount of hydrogen and the amount of inert gas such as nitrogen, He, Ar, etc. is 100: 0 to 1:99, the temperature is 300 ° C. or lower for 1 minute to 5 hours, particularly 30. It is preferable to perform the treatment for minutes to 2 hours. When the time is shorter than 1 minute, the effect of the hydrogen treatment is insufficient, and when the time is longer than 5 hours, the effect is not changed.

このような水素を含む雰囲気での処理により、PtRu等の触媒金属表面積当りのメタノール酸化活性は向上する。但し、担持率が50質量%以上の2段担持法で作製したPtRu/Cにおいては、処理温度の増加に伴い、PtRu粒子の凝集及び成長が生じる。そのため、PtRu比表面積は減少する。PtRu比表面積当りの活性は向上するものの、比表面積が減少するため、PtRu質量当りの活性は減少する。本発明者らが鋭意検討した結果、処理温度を100℃未満とすることで、処理前と比表面積が変わらず、かつ表面積当りの活性が向上し、PtRu質量当りの活性が向上することを見出したものである。   By such treatment in an atmosphere containing hydrogen, the methanol oxidation activity per catalyst metal surface area such as PtRu is improved. However, in the PtRu / C produced by the two-stage loading method with a loading rate of 50% by mass or more, the aggregation and growth of PtRu particles occur as the processing temperature increases. Therefore, the PtRu specific surface area decreases. Although the activity per specific surface area of PtRu is improved, the specific surface area is decreased, so that the activity per mass of PtRu is decreased. As a result of intensive studies by the present inventors, it has been found that by setting the treatment temperature to less than 100 ° C., the specific surface area does not change from that before the treatment, the activity per surface area is improved, and the activity per mass of PtRu is improved. It is a thing.

従って、かかる処理条件を採用する場合、上述した雰囲気において、100℃未満、特に20〜80℃、とりわけ30〜60℃の温度で0.5〜8時間、特に1〜3時間処理することが好ましい。   Therefore, when adopting such processing conditions, it is preferable to perform the treatment at a temperature of less than 100 ° C., particularly 20 to 80 ° C., especially 30 to 60 ° C. for 0.5 to 8 hours, particularly 1 to 3 hours in the atmosphere described above. .

このようにして得られた燃料電池用電極触媒は、特にダイレクトメタノール型燃料電池のアノード電極触媒として好適に用いられる。   The fuel cell electrode catalyst thus obtained is particularly preferably used as an anode electrode catalyst of a direct methanol fuel cell.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例1]
2段担持法によるPtRu/Cの作製
カーボン担体(ケッチェンブラックEC300J:ライオン社製)5gを含有する500mlの水分散液に、0.6gの白金を含む塩化白金酸を添加し、更にエチレングリコールを500g及びNaOHを50mmol添加した。この混合液を60℃で24時間加熱攪拌処理した。濾過、洗浄後、80℃で24時間乾燥し、Pt核を担持したカーボン5.6gを得た。
得られたPt核を担持したカーボンをTEM観察した結果、平均粒径約0.5nmの微粒子が担体上に均一に分散している様子を確認できた。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[Example 1]
Preparation of PtRu / C by a two-stage loading method Chloroplatinic acid containing 0.6 g of platinum was added to 500 ml of an aqueous dispersion containing 5 g of a carbon carrier (Ketjen Black EC300J: manufactured by Lion), and ethylene glycol was further added. And 50 mmol of NaOH were added. This mixed solution was heated and stirred at 60 ° C. for 24 hours. After filtration and washing, it was dried at 80 ° C. for 24 hours to obtain 5.6 g of carbon carrying Pt nuclei.
As a result of TEM observation of the obtained carbon carrying Pt nuclei, it was confirmed that fine particles having an average particle diameter of about 0.5 nm were uniformly dispersed on the carrier.

上記Pt核を担持したカーボン0.5gを、更にジニトロジアンミン白金(II)1.1g、塩化ルテニウム0.5g、エタノール100gを含有する溶液600g中に投入し、80℃で8時間還流し、PtRuの担持率68質量%の触媒1.4gを得た。TEM観察した結果、平均粒径は2.4nmであり、カーボン上に均一に分散していた。   0.5 g of the carbon carrying the Pt nucleus was added into 600 g of a solution containing 1.1 g of dinitrodiammineplatinum (II), 0.5 g of ruthenium chloride and 100 g of ethanol, and refluxed at 80 ° C. for 8 hours. Thus, 1.4 g of a catalyst having a loading ratio of 68% by mass was obtained. As a result of TEM observation, the average particle diameter was 2.4 nm, and it was uniformly dispersed on the carbon.

得られた触媒を管状炉に入れ、窒素1L/min+水素0.5L/minの雰囲気中60℃で1時間処理した。処理後のTEM像を観察した結果、平均粒径は2.4nmと処理前と変わらず、カーボン上の分散状態にも変化は見られなかった。   The obtained catalyst was put into a tubular furnace and treated at 60 ° C. for 1 hour in an atmosphere of nitrogen 1 L / min + hydrogen 0.5 L / min. As a result of observing the TEM image after the treatment, the average particle size was 2.4 nm, which was the same as that before the treatment, and no change was observed in the dispersion state on the carbon.

活性表面積の評価は、COストリッピング法により行った。触媒を水に超音波分散した後、グラッシーカーボン電極上に滴下し、乾燥後、5%Nafion溶液(DuPont製)を滴下して評価用の電極を作製した。電極をポテンショスタット(北斗電工製HZ5000)に取り付け、0.5M H2SO4の入った電解セルに浸漬した。電解セルの雰囲気をArで置換後、触媒を−0.18V(vs RHE)に保持し、COガスを20minバブリングさせることでCO吸着を行った。同電位に保持した状態で、Arガスで20minバブリングさせ、余剰のCOガスを排出した。その後、スイープレンジ−0.18〜0.5V(vs RHE)、スイープ速度10mV/sで電位操作し、COストリッピングボルタムグラムを測定し、COが脱離した後に再度電位走査し、その面積差をCO酸化電流とし、CO酸化のクーロン電荷を4.2C/m2を仮定して、PtRuの活性表面積を算出した。 The active surface area was evaluated by the CO stripping method. The catalyst was ultrasonically dispersed in water and then dropped on a glassy carbon electrode. After drying, a 5% Nafion solution (manufactured by DuPont) was dropped to prepare an electrode for evaluation. The electrode was attached to a potentiostat (HZ5000 manufactured by Hokuto Denko) and immersed in an electrolytic cell containing 0.5 MH 2 SO 4 . After replacing the atmosphere of the electrolysis cell with Ar, CO was adsorbed by holding the catalyst at −0.18 V (vs RHE) and bubbling CO gas for 20 min. While maintaining the same potential, bubbling was performed with Ar gas for 20 min, and excess CO gas was discharged. Thereafter, the potential was operated at a sweep range of -0.18 to 0.5 V (vs RHE) and a sweep speed of 10 mV / s, the CO stripping voltamgram was measured, and after the CO was desorbed, the potential was scanned again. The active surface area of PtRu was calculated on the assumption that the difference was the CO oxidation current and the Coulomb charge of CO oxidation was 4.2 C / m 2 .

メタノール酸化活性の評価は、電解液を0.5M H2SO4+1M CH3OHとし、スイープレンジ−0.18〜0.5V(vs RHE)、スイープ速度1mV/sで酸化電流を評価した。活性面積評価及びメタノール酸化活性はすべて25℃で行った。 For the evaluation of methanol oxidation activity, the electrolytic solution was 0.5 MH 2 SO 4 + 1M CH 3 OH, the oxidation current was evaluated at a sweep range of −0.18 to 0.5 V (vs RHE), and a sweep rate of 1 mV / s. Active area evaluation and methanol oxidation activity were all performed at 25 ° C.

[実施例2]
実施例1で作製した68質量%PtRu/Cを窒素1L/min+水素0.5L/minの雰囲気中100℃で1時間処理した。処理後のTEM像を観察したところ、PtRuの平均粒径は2.9nmであった。カーボン上PtRu粒子の分散状態は、処理前に比べ凝集している様子が見られた。
[Example 2]
68 mass% PtRu / C produced in Example 1 was treated at 100 ° C. for 1 hour in an atmosphere of nitrogen 1 L / min + hydrogen 0.5 L / min. When the TEM image after processing was observed, the average particle diameter of PtRu was 2.9 nm. The dispersion state of the PtRu particles on the carbon was observed to be agglomerated as compared with that before the treatment.

[実施例3]
実施例1で作製した68質量%PtRu/Cを窒素1L/min+水素0.5L/minの雰囲気中300℃で1時間処理した。処理後のTEM像を観察したところ、PtRuの平均粒径は3.7nmであり、粒成長が見られた。
[Example 3]
68 mass% PtRu / C produced in Example 1 was treated at 300 ° C. for 1 hour in an atmosphere of nitrogen 1 L / min + hydrogen 0.5 L / min. When the TEM image after the treatment was observed, the average particle diameter of PtRu was 3.7 nm, and grain growth was observed.

[比較例1]
実施例1で作製した68質量%PtRu/C(PtRu平均粒径2.4nm)を水素を含む雰囲気での処理を行わず、活性表面積及びメタノール酸化活性を評価した。
実施例1〜3及び比較例1の触媒について、活性表面積及び0.4V,0.5V(vs RHE)メタノール酸化活性の評価結果を表1に示す。
[Comparative Example 1]
68 mass% PtRu / C (PtRu average particle size 2.4 nm) produced in Example 1 was not treated in an atmosphere containing hydrogen, and the active surface area and methanol oxidation activity were evaluated.
Table 1 shows the evaluation results of the active surface area and 0.4 V, 0.5 V (vs RHE) methanol oxidation activity for the catalysts of Examples 1 to 3 and Comparative Example 1.

Figure 2008218078
Figure 2008218078

平均粒径及び活性表面積を比較すると、処理温度60℃においては処理前と変化が無いことがわかる。処理温度が100℃、300℃と高くなるに従い、粒子サイズの増大及び活性表面積の低下が見られる。また、PtRu比表面積当りのメタノール酸化活性は、処理温度の増加に伴い活性が向上している。このことは、水素を含む雰囲気での処理が、原因はわかっていないが、メタノール酸化活性向上に寄与していることを表わしている。しかしながら、処理温度の増大は粒子サイズの増大、活性表面積の減少となるため、100℃及び300℃処理時のPtRu質量当りのメタノール酸化活性は処理前に比べ低下する。
従って、粒子サイズの増大を生じない温度域での水素を含む雰囲気での処理により、高担持・高分散PtRu/C触媒のメタノール酸化活性を更に向上できることがわかる。
Comparing the average particle size and the active surface area, it can be seen that there is no change from that before the treatment at the treatment temperature of 60 ° C. As the processing temperature increases to 100 ° C. and 300 ° C., the particle size increases and the active surface area decreases. Moreover, the methanol oxidation activity per PtRu specific surface area is improved as the treatment temperature is increased. This indicates that the treatment in an atmosphere containing hydrogen contributes to the methanol oxidation activity improvement, although the cause is unknown. However, an increase in the treatment temperature results in an increase in particle size and a decrease in the active surface area, so that the methanol oxidation activity per mass of PtRu at the time of treatment at 100 ° C. and 300 ° C. is lower than before treatment.
Therefore, it can be seen that the methanol oxidation activity of the highly supported and highly dispersed PtRu / C catalyst can be further improved by treatment in an atmosphere containing hydrogen in a temperature range that does not increase the particle size.

Claims (5)

導電性カーボン担体に粒子間隔を制御した平均粒径0.1nm〜1.5nmの金属微粒子を生成する第一担持工程と、該金属微粒子を核に他の金属を成長させる第二担持工程と、第二担持工程終了後に水素を含む雰囲気で処理する工程とを含むことを特徴とする燃料電池用電極触媒の製造方法。   A first supporting step for producing metal fine particles having an average particle size of 0.1 nm to 1.5 nm with a controlled particle spacing on a conductive carbon carrier; a second supporting step for growing other metals using the metal fine particles as nuclei; And a step of treating in an atmosphere containing hydrogen after completion of the second supporting step. 導電性カーボン担体上に担持させる金属微粒子がPt微粒子であり、このPt微粒子を核として成長させる他の金属がPtRuである請求項1記載の燃料電池用電極触媒の製造方法。   2. The method for producing an electrode catalyst for a fuel cell according to claim 1, wherein the metal fine particles supported on the conductive carbon support are Pt fine particles, and the other metal grown using the Pt fine particles as a nucleus is PtRu. 前記水素を含む雰囲気の処理温度が300℃以下であることを特徴とする請求項1又は2記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to claim 1 or 2, wherein a treatment temperature of the atmosphere containing hydrogen is 300 ° C or lower. 前記水素を含む雰囲気の処理温度が100℃未満であることを特徴とする請求項1又は2記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to claim 1 or 2, wherein a treatment temperature of the atmosphere containing hydrogen is less than 100 ° C. 水素を含む雰囲気で処理する際のカーボン担体に対する金属担持率が50質量%以上であることを特徴とする請求項1乃至4のいずれか1項記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to any one of claims 1 to 4, wherein the metal loading on the carbon support when treated in an atmosphere containing hydrogen is 50 mass% or more.
JP2007051264A 2007-03-01 2007-03-01 Method for producing electrode catalyst for fuel cell Expired - Fee Related JP5168450B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007051264A JP5168450B2 (en) 2007-03-01 2007-03-01 Method for producing electrode catalyst for fuel cell
PCT/JP2008/053466 WO2008105484A1 (en) 2007-03-01 2008-02-28 Method for production of electrode catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051264A JP5168450B2 (en) 2007-03-01 2007-03-01 Method for producing electrode catalyst for fuel cell

Publications (2)

Publication Number Publication Date
JP2008218078A true JP2008218078A (en) 2008-09-18
JP5168450B2 JP5168450B2 (en) 2013-03-21

Family

ID=39721308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051264A Expired - Fee Related JP5168450B2 (en) 2007-03-01 2007-03-01 Method for producing electrode catalyst for fuel cell

Country Status (2)

Country Link
JP (1) JP5168450B2 (en)
WO (1) WO2008105484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069208A1 (en) * 2012-10-29 2014-05-08 学校法人同志社 Platinum core shell catalyst, manufacturing method for same, and fuel cell using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118582A (en) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd Electrode of fuel cell and method for manufacturing the same
JP2002100374A (en) * 2000-07-21 2002-04-05 Japan Storage Battery Co Ltd Electrode for fuel cell and its manufacturing method
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method
WO2005088748A1 (en) * 2004-03-12 2005-09-22 National Institute Of Advanced Industrial Science And Technology Anode catalyst for solid polymer fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231257A (en) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd Electrode catalyst for fuel cell and method of manufacturing the same
JP2005235688A (en) * 2004-02-23 2005-09-02 Cataler Corp Carrying catalyst for fuel cell, its manufacturing method and fuel cell
JP2005251455A (en) * 2004-03-02 2005-09-15 Matsushita Electric Ind Co Ltd Catalyst for fuel cell, manufacturing method of the same, electrode, and direct methanol type fuel cell
JP2005246380A (en) * 2005-03-14 2005-09-15 Hitachi Maxell Ltd Platinum based catalyst and methanol fuel cell using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118582A (en) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd Electrode of fuel cell and method for manufacturing the same
JP2002100374A (en) * 2000-07-21 2002-04-05 Japan Storage Battery Co Ltd Electrode for fuel cell and its manufacturing method
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method
WO2005088748A1 (en) * 2004-03-12 2005-09-22 National Institute Of Advanced Industrial Science And Technology Anode catalyst for solid polymer fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012018959; 化学大辞典7 縮刷版, 1964, p.98-99, 共立出版株式会社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069208A1 (en) * 2012-10-29 2014-05-08 学校法人同志社 Platinum core shell catalyst, manufacturing method for same, and fuel cell using same

Also Published As

Publication number Publication date
JP5168450B2 (en) 2013-03-21
WO2008105484A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP5168452B2 (en) Method for producing electrode catalyst for fuel cell
US11201335B2 (en) Noble metal nanoparticles on a support
JP4949255B2 (en) Fuel cell electrode catalyst
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
Qin et al. Pd-Au/C catalysts with different alloying degrees for ethanol oxidation in alkaline media
JP5158334B2 (en) Method for producing electrode catalyst for fuel cell
US10403906B2 (en) Fuel cell electrode catalyst, method of producing the same, and fuel cell
JP2007134295A (en) Electrode catalyst for fuel cell and its manufacturing method
JP2009545114A (en) catalyst
KR20100099160A (en) Process for producing a catalyst and use of the catalyst
KR20080067554A (en) Pt/ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
KR20110044421A (en) Synthesis method of pt alloy/supporter catalysts, catalysts and fuel cell using the same
Afzali et al. Design of PdxIr/g-C3N4 modified FTO to facilitate electricity generation and hydrogen evolution in alkaline media
CN113422080B (en) Preparation method and application of carbon-supported non-platinum palladium-ruthenium-tungsten alloy nanoparticle electrocatalyst for alkaline hydrogen oxidation
KR20220063915A (en) Method for producing a platinum-based alloy catalyst containing cobalt
JP2005196972A (en) Manufacturing method of electrode catalyst
JP5168450B2 (en) Method for producing electrode catalyst for fuel cell
KR102459158B1 (en) Method for producing a platinum-based alloy catalyst for fuel cell containing cobalt
JP2001205086A (en) Method for manufacturing platinum/ruthenium alloy- bearing catalyst
JP2005174755A (en) Electrode catalyst, catalyst carrying electrode using the same catalyst, and mea
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
JP5126512B2 (en) Method for producing electrode catalyst for fuel cell
JP2005270863A (en) Manufacturing method of electrode catalyst
JP2000107606A (en) Production of catalyst
JP2004121983A (en) Method for producing platinum-ruthenium alloy carrying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5168450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees