JP2008214558A - Inorganic-reinforced polyester-based resin composition and method for improving surface appearance of molded product using the same - Google Patents

Inorganic-reinforced polyester-based resin composition and method for improving surface appearance of molded product using the same Download PDF

Info

Publication number
JP2008214558A
JP2008214558A JP2007056772A JP2007056772A JP2008214558A JP 2008214558 A JP2008214558 A JP 2008214558A JP 2007056772 A JP2007056772 A JP 2007056772A JP 2007056772 A JP2007056772 A JP 2007056772A JP 2008214558 A JP2008214558 A JP 2008214558A
Authority
JP
Japan
Prior art keywords
polyester resin
resin composition
inorganic
temperature
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007056772A
Other languages
Japanese (ja)
Other versions
JP5396690B2 (en
Inventor
Yasuhito Fujii
泰人 藤井
Satoshi Sakai
智 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007056772A priority Critical patent/JP5396690B2/en
Publication of JP2008214558A publication Critical patent/JP2008214558A/en
Application granted granted Critical
Publication of JP5396690B2 publication Critical patent/JP5396690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded product having good surface gloss by molding at ≤100°C mold temperature during molding satisfying both high strength, high rigidity and good surface appearance, low bending properties of the molded product at the same time. <P>SOLUTION: An inorganic-reinforced polyester-based resin composition comprising a polyester resin (A), at least one species polyester resin (B) except the polyester resin (A) and an inorganic reinforcing material is provided. The resin composition satisfies the relation: Tc2N(°C)-Tc2M(°C)≥10(°C), wherein Tc2M(°C) expresses a descending crystallization temperature of the polyester resin composition measured by differential scanning calorimeter (DSC) and Tc2N(°C) expresses a descending crystallization temperature when the polyester-based resin composition does not contain solely the polyester resin (B). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱可塑性ポリエステル樹脂とガラス繊維等の無機強化材を含有する無機強化ポリエステル系樹脂組成物に関する。詳しくは、高剛性・高強度でありながら成形品のガラス繊維や無機強化材の浮き等が少ない、表面光沢があるなどの成形品外観に優れ、かつソリ変形も少ない優れた成形品を提供できる無機強化ポリエステル樹脂系組成物に関する。   The present invention relates to an inorganic reinforced polyester resin composition containing a thermoplastic polyester resin and an inorganic reinforcing material such as glass fiber. Specifically, it is possible to provide an excellent molded product with excellent appearance of the molded product such as high rigidity and high strength, with little glass fiber and inorganic reinforcement floating, etc. The present invention relates to an inorganic reinforced polyester resin composition.

一般にポリエステル樹脂は、機械的特性、耐熱性、耐薬品性等に優れ、自動車部品、電気・電子部品、家庭雑貨品等に幅広く使用されている。なかでもガラス繊維等の無機強化材で強化されたポリエステル樹脂組成物は、剛性、強度および耐熱性が飛躍的に向上し、特に剛性に関しては無機強化材の添加量に比例して向上することが知られている。
しかしながら ガラス繊維等の無機強化材の添加量が多くなると、ガラス繊維等の無機が成形品の表面に浮き出し、成形品の外観、特に表面光沢が低下し、商品価値が著しく損なわれる場合がある。
そこで成形品外観を向上させる方法として金型温度を極端に高く、例えば120℃以上に設定して成形することが提案されている。
しかし、これらの方法では金型温度を高くするために特別な装置が必要となり、汎用的にどこの成形機でも成形することが出来ないばかりか、金型温度を高温に上げた場合でも金型内でゲートから遠く離れている成形品の末端部分等で、ガラス繊維等の浮きが発生し、良好な成形品外観が得られない場合があったり、成形品のそりが大きくなり、組み付け出来ないなどの不具合を発生する場合があった。
また、近年種々のガラス繊維等の無機強化樹脂材料において高光沢性の成形品が得られるように、金型を改良することが提案されている(特許文献1、2)。この金型改良は金型のキャビテー部分に断熱性の高いセラミックス、例えばジルコニヤセラミックス等を入れ子として装入し、溶融樹脂がキャビテーに充填された直後に急冷されるのを制御し、キャビテー内の樹脂を高温で保持して、表面性の優れた成形品を得ることを目的としている。
しかしながら、これらの方法は金型製造が高価になると共に平板等の単純な製品形状では有効であるが、複雑な形状の製品ではセラミックスの加工が困難で、精度の高い金型製造が出来にくいという問題点がある。
特許第3421188公報 特許第33549341公報
In general, polyester resins are excellent in mechanical properties, heat resistance, chemical resistance, and the like, and are widely used in automobile parts, electrical / electronic parts, household goods, and the like. Among them, the polyester resin composition reinforced with an inorganic reinforcing material such as glass fiber has drastically improved rigidity, strength and heat resistance, and in particular, rigidity can be improved in proportion to the amount of inorganic reinforcing material added. Are known.
However, when the amount of the inorganic reinforcing material such as glass fiber is increased, the inorganic material such as glass fiber is raised on the surface of the molded product, the appearance of the molded product, particularly the surface gloss, is lowered, and the commercial value may be significantly impaired.
Therefore, as a method for improving the appearance of the molded product, it has been proposed to mold the mold at an extremely high temperature, for example, set to 120 ° C. or higher.
However, these methods require special equipment to raise the mold temperature, and it is not only possible to mold with any molding machine for general purposes, but even when the mold temperature is raised to a high temperature In the end part of the molded product that is far away from the gate inside, glass fiber floats, etc., and it may not be possible to obtain a good molded product appearance. There was a case where a malfunction such as this occurred.
In recent years, it has been proposed to improve the mold so that a highly glossy molded product can be obtained from various inorganic reinforced resin materials such as glass fibers (Patent Documents 1 and 2). This mold improvement inserts ceramics with high heat insulation properties, such as zirconia ceramics, into the cavitation part of the mold as a nesting, and controls the rapid cooling immediately after the molten resin is filled in the cavitation. The object is to obtain a molded article having excellent surface properties by holding the resin at a high temperature.
However, these methods are expensive for mold manufacture and effective for simple product shapes such as flat plates. However, it is difficult to process ceramics for products with complex shapes, making it difficult to manufacture highly accurate molds. There is a problem.
Japanese Patent No. 3421188 Japanese Patent No. 33549341

そこで、本発明は、金型の特別な改良を必要とせず、樹脂組成物の特性を改良するだけで良好な成形品を提供しようとするものであり、ガラス繊維等の無機強化材を配合したポリエステル系樹脂組成物であっても、成形品の表面外観の不良やソリ変形が少なく、高強度・高剛性と成形品外観の改善とを両立させ、かつ成形時の金型温度が100℃以下であっても表面光沢の良好な成形品の提供を可能とすることを課題とするものである。   Therefore, the present invention does not require any special improvement of the mold, and is intended to provide a good molded article simply by improving the properties of the resin composition, and contains an inorganic reinforcing material such as glass fiber. Even if it is a polyester resin composition, there are few defects in the surface appearance and warp deformation of the molded product, high strength, high rigidity and improvement of the molded product appearance are compatible, and the mold temperature during molding is 100 ° C or less Even so, it is an object to make it possible to provide a molded article having a good surface gloss.

本発明者等は、上記課題を解決するためにポリエステル系樹脂組成物の構成と特性について鋭意研究した結果、無機が大量に配合された樹脂組成物においては、成形品の外観は、金型内の樹脂組成物の流動性を向上させることよりも、金型内での樹脂組成物の固化(結晶化)速度の影響の方が大きいことを見出し、本発明を完成するに至ったのである。   As a result of intensive studies on the composition and properties of the polyester-based resin composition in order to solve the above problems, the present inventors have found that the appearance of the molded product in the resin composition containing a large amount of inorganic material is within the mold. The present inventors have found that the influence of the solidification (crystallization) rate of the resin composition in the mold is greater than the improvement of the fluidity of the resin composition, and the present invention has been completed.

すなわち、本発明は、以下の構成を採用するものである。
(1)ポリエステル樹脂(A)、ポリエステル樹脂(A)以外の少なくとも1種のポリエステル樹脂(B)及び無機強化材を含有するポリエステル系樹脂組成物において、該ポリエステル系樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度をTc2M(℃)、前記ポリエステル系樹脂組成物の中で前記ポリエステル樹脂(B)のみを含有しない場合の降温結晶化温度をTc2N(℃)としたとき、下記関係を満足することを特徴とする無機強化ポリエステル系樹脂組成物。
Tc2N(℃)−Tc2M(℃) ≧ 10(℃)
(2)ポリエステル樹脂(A)が、ポリブチレンテレフタレート樹脂であり、かつポリエステル系樹脂組成物のTc2Mが185℃以下である前記(1)に記載の無機強化ポリエステル系樹脂組成物。
(3)ポリエステル樹脂(A)以外のポリエステル樹脂(B)が、共重合ポリエステル樹脂である前記(1)に記載の無機強化ポリエステル系樹脂組成物。
(4)ポリエステル樹脂(A)以外のポリエステル樹脂(B)が、共重合ポリエステル樹脂及びポリエチレンテレフタレート樹脂である前記(1)に記載の無機強化ポリエステル系樹脂組成物。
(5)共重合ポリエステル樹脂が、テレフタル酸、イソフタル酸、セバシン酸、アジピン酸、2,6−ナフタレンジカルボン酸、トリメリット酸およびエチレングリコール、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、1,4−ブタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオールからなる群より選ばれる少なくとも1種以上を共重合したポリエステル樹脂である前記(3)又は(4)に記載の無機強化ポリエステル系樹脂組成物。
(6)全ポリエステル樹脂中でポリエステル樹脂(A)を最も多く含有し、かつ全組成物中で無機を最も多く含有する無機強化ポリエステル系樹脂組成物から成形品を得るに際し、ポリエステル系樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度Tc2M(℃)が10℃以上低下するように、組成物中に降温結晶化温度低下剤を含有せしめて成形することを特徴とする無機強化ポリエステル系樹脂組成物成形品の表面外観改良方法。
That is, the present invention employs the following configuration.
(1) In the polyester resin composition containing the polyester resin (A), at least one polyester resin (B) other than the polyester resin (A), and an inorganic reinforcing material, the differential scanning calorific value of the polyester resin composition When the temperature-falling crystallization temperature obtained by a total meter (DSC) is Tc2M (° C), and the temperature-falling crystallization temperature when not containing only the polyester resin (B) in the polyester-based resin composition is Tc2N (° C) An inorganic reinforced polyester resin composition satisfying the following relationship:
Tc2N (° C.) − Tc 2 M (° C.) ≧ 10 (° C.)
(2) The inorganic reinforced polyester resin composition according to (1), wherein the polyester resin (A) is a polybutylene terephthalate resin, and Tc2M of the polyester resin composition is 185 ° C. or lower.
(3) The inorganic reinforced polyester resin composition according to (1), wherein the polyester resin (B) other than the polyester resin (A) is a copolyester resin.
(4) The inorganic reinforced polyester resin composition according to (1), wherein the polyester resin (B) other than the polyester resin (A) is a copolyester resin and a polyethylene terephthalate resin.
(5) Copolyester resin is terephthalic acid, isophthalic acid, sebacic acid, adipic acid, 2,6-naphthalenedicarboxylic acid, trimellitic acid and ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, The polyester resin obtained by copolymerizing at least one selected from the group consisting of 1,4-butanediol, 1,2-propanediol, 1,3-propanediol, and 2-methyl-1,3-propanediol. The inorganic reinforced polyester resin composition according to (3) or (4).
(6) When obtaining a molded product from an inorganic reinforced polyester resin composition containing the most polyester resin (A) in all polyester resins and containing the most inorganic substances in all compositions, a polyester resin composition is obtained. The composition is molded by containing a temperature-falling crystallization temperature lowering agent in the composition so that the temperature-falling crystallization temperature Tc2M (° C.) determined by a differential scanning calorimeter (DSC) is reduced by 10 ° C. or more. A method for improving the surface appearance of an inorganic reinforced polyester resin composition molded article.

本発明によれば、無機が大量に配合された樹脂組成物においても、金型内での樹脂組成物の固化(結晶化)速度を低下させることにより、成形品表面のガラス繊維等の浮きが防止できるため、成形品の外観は大きく改善され、高強度、高剛性でありながら良好な外観特性で低ソリ性の成形品を得ることができる。また、共重合ポリエステル樹脂などの降温結晶化温度低下剤を樹脂組成物中に含有させて降温結晶化温度を低下させることにより、成形品の表面外観を向上させることができ、剛性と光沢性に優れた無機強化ポリエステル系樹脂組成物成形品を提供することができる。   According to the present invention, even in a resin composition containing a large amount of inorganic material, by reducing the solidification (crystallization) rate of the resin composition in the mold, the glass fiber or the like floats on the surface of the molded product. Therefore, the appearance of the molded product is greatly improved, and a molded product with low warpage can be obtained with good appearance characteristics while having high strength and high rigidity. Moreover, the surface appearance of the molded product can be improved by including a temperature-falling crystallization temperature reducing agent such as a copolyester resin in the resin composition to lower the temperature-falling crystallization temperature, thereby improving rigidity and gloss. An excellent inorganic reinforced polyester resin composition molded article can be provided.

以下に本発明を具体的に説明する。
本発明におけるポリエステル樹脂(A)とは、本発明の組成物中の全ポリエステル樹脂中で最も含有量が多い主要成分の樹脂であり、無機を強化材として配合して成形品に成形されることが可能な樹脂である。
例えば、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート、ポリブチレンナフタレート、ポリエチレンナフタレート、ポリテトラメチレンテレフタレート、ポリテトラメチレンナフタレートなどのホモポリエステルやこれらのホモポリエステルをハードセグメントとし、ポリテトラメチレングリコールなどのポリアルキレングルコールやポリカプロラクトンなどの脂肪族ポリエステルをソフトセグメントとするポリエステルエラストマーなどの結晶性ポリエステル樹脂である。これらの樹脂は、それ単独でエンジニアリングプラスチックとして使用可能な程度に高い分子量で高い物性、タフネスを有するものが好ましい。
例えば、PBTの場合、還元粘度(0.1gのサンプルをフェノール/テトラクロロエタン(質量比6/4)の混合溶媒25mLに溶解し、ウベローデ粘度管を用いて30℃で測定:dL/g)は、0.4〜1.2dL/gの範囲が好ましく、より好ましくは、0.5〜0.8dL/gの範囲である。還元粘度が0.4dL/g以下ではタフネスが低下するため好ましくなく、1.2dL/gを越えると流動性が低下して、目的とする良好な成形品外観が得られないので好ましくない
The present invention will be specifically described below.
The polyester resin (A) in the present invention is the main component resin having the highest content in all the polyester resins in the composition of the present invention, and is molded into a molded product by blending inorganic as a reinforcing material. This is a resin that can be used.
For example, homopolyesters such as polybutylene terephthalate (PBT), polyethylene terephthalate, polybutylene naphthalate, polyethylene naphthalate, polytetramethylene terephthalate, polytetramethylene naphthalate, etc., and these homopolyesters as hard segments, polytetramethylene glycol, etc. A crystalline polyester resin such as a polyester elastomer having an aliphatic polyester such as polyalkylene glycol or polycaprolactone as a soft segment. These resins are preferably those having a high molecular weight and high physical properties and toughness so that they can be used alone as engineering plastics.
For example, in the case of PBT, the reduced viscosity (0.1 g of sample is dissolved in 25 mL of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4) and measured at 30 ° C. using an Ubbelohde viscosity tube: dL / g) is The range of 0.4 to 1.2 dL / g is preferable, and the range of 0.5 to 0.8 dL / g is more preferable. If the reduced viscosity is 0.4 dL / g or less, it is not preferable because the toughness decreases, and if it exceeds 1.2 dL / g, the fluidity decreases and the desired good molded article appearance cannot be obtained.

本発明のポリエステル系樹脂組成物におけるポリエステル樹脂(A)の配合量は20〜55質量%であり、好ましくは20〜50質量%である。   The compounding quantity of the polyester resin (A) in the polyester-type resin composition of this invention is 20-55 mass%, Preferably it is 20-50 mass%.

本発明のポリエステル系樹脂組成物におけるポリエステル樹脂(A)以外のポリエステル樹脂(B)としては、次のような共重合ポリエステル樹脂(B)や該共重合ポリエステル樹脂(B)と併用する少量の上記のポリエステル樹脂(A)である。
共重合ポリエステル樹脂(B)の酸成分としては、テレフタル酸(TPA)、イソフタル酸(IPA)、セバシン酸(SA)、アジピン酸(AA)、2,6−ナフタレンジカルボン酸(NPA)、トリメリット酸(TMA)などが挙げられ、グリコール成分としては、エチレングリコール(EG)、ジエチレングリコール(DEG)、ネオペンチルグリコール(NPG)、1,4−シクロヘキサンジメタノール(CHDM)、1,4−ブタンジオール(BD)、1,2−プロパンジオール(1,2PG)、1,3−プロパンジオール(1,3PG)、2−メチル−1,3−プロパンジオール(2MG)およびポリテトラメチレングリコール(PTMG)、ε−カプロラクトン、ポリカーボネートジオール等が挙げられる。これらの酸成分とグリコール成分との重縮合によって得られるポリエステル共重合体である。
The polyester resin (B) other than the polyester resin (A) in the polyester resin composition of the present invention is a small amount used in combination with the following copolyester resin (B 1 ) or the copolyester resin (B 1 ). It is said polyester resin (A).
As an acid component of the copolymerized polyester resin (B 1 ), terephthalic acid (TPA), isophthalic acid (IPA), sebacic acid (SA), adipic acid (AA), 2,6-naphthalenedicarboxylic acid (NPA), tri Mellitic acid (TMA) and the like can be mentioned, and glycol components include ethylene glycol (EG), diethylene glycol (DEG), neopentyl glycol (NPG), 1,4-cyclohexanedimethanol (CHDM), 1,4-butanediol. (BD), 1,2-propanediol (1,2PG), 1,3-propanediol (1,3PG), 2-methyl-1,3-propanediol (2MG) and polytetramethylene glycol (PTMG), ε-caprolactone, polycarbonate diol and the like can be mentioned. It is a polyester copolymer obtained by polycondensation of these acid components and glycol components.

具体的には TPA//EG/NPG共重合体、TPA/IPA//EG共重合体、TPA//EG/1,2PG共重合体、TPA/IPA//EG/NPG共重合体、TPA//EG/CHDM共重合体、TPA/IPA/TMA//2MG/1,2PG共重合体、TPE/IPA/TMA//2MG/CHDM共重合体、TPA/IPA/SA//EG/NPG/CHDM共重合体、TPA/IPA//EG/1,3PG共重合体、NPA//BD/PTMG共重合体 等の共重合ポリエステル樹脂を挙げることができるが、これらに限定されるものではない。   Specifically, TPA // EG / NPG copolymer, TPA / IPA // EG copolymer, TPA // EG / 1,2PG copolymer, TPA / IPA // EG / NPG copolymer, TPA / / EG / CHDM copolymer, TPA / IPA / TMA // 2MG / 1,2PG copolymer, TPE / IPA / TMA // 2MG / CHDM copolymer, TPA / IPA / SA // EG / NPG / CHDM Examples of the copolymer polyester resin include, but are not limited to, a copolymer, a TPA / IPA // EG / 1,3PG copolymer, and an NPA // BD / PTMG copolymer.

本発明に用いられる共重合ポリエステル樹脂の還元粘度(0.1gのサンプルをフェノール/テトラクロロエタン(質量比6/4)の混合溶媒25mLに溶解し、ウベローデ粘度管を用いて30℃で測定:dL/g)は、具体的な共重合ポリエステル樹脂によって異なるが、0.4〜1.5dL/g、より好ましくは0.4〜1.3dL/gである。還元粘度が0.4dL/g未満であると、タフネスが低下して好ましくない。一方1.5dL/gを越えると流動性が低下して好ましくない。   Reduced viscosity of copolymerized polyester resin used in the present invention (0.1 g of sample was dissolved in 25 mL of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4) and measured at 30 ° C. using an Ubbelohde viscosity tube: dL / G) varies depending on the specific copolyester resin, but is 0.4 to 1.5 dL / g, more preferably 0.4 to 1.3 dL / g. When the reduced viscosity is less than 0.4 dL / g, the toughness is lowered, which is not preferable. On the other hand, if it exceeds 1.5 dL / g, the fluidity is lowered, which is not preferable.

本発明のポリエステル系樹脂組成物における共重合ポリエステル樹脂の配合量は3〜30質量%であり、好ましくは3〜25質量%である。   The compounding quantity of the copolyester resin in the polyester-type resin composition of this invention is 3-30 mass%, Preferably it is 3-25 mass%.

共重合ポリエステル樹脂(B)と併用する少量の上記のポリエステル樹脂(A)(以下、ポリエステル樹脂(B)と表記することがある)としては、共重合ポリエステル樹脂(B)と併用し、かつ上記のポリエステル樹脂(A)より少ない量であれば、上記の結晶性ポリエステル樹脂を使用することができる。
例えば、テレフタル酸とエチレングリコールから重縮合によって得られる代表的な熱可塑性ポリエステル樹脂であるポリエチレンテレフタレート樹脂(PET)である。PETの還元粘度(0.1gのサンプルをフェノール/テトラクロロエタン(質量比6/4)の混合溶媒25mLに溶解し、ウベローデ粘度管を用いて30℃で測定:dL/g)は、0.4〜1.0dL/gの範囲が好ましく、より好ましくは0.5〜0.9dL/gの範囲である。還元粘度が0.4dL/g以下ではタフネスが低下するため好ましくなく、1.0dL/gを越えると流動性が低下し、目的とする良好な成形品外観が得られないので好ましくない。
As a small amount of the above-mentioned polyester resin (A) used together with the copolymer polyester resin (B 1 ) (hereinafter sometimes referred to as polyester resin (B 2 )), it is used together with the copolymer polyester resin (B 1 ). And if it is a quantity smaller than said polyester resin (A), said crystalline polyester resin can be used.
For example, it is a polyethylene terephthalate resin (PET) which is a typical thermoplastic polyester resin obtained by polycondensation from terephthalic acid and ethylene glycol. The reduced viscosity of PET (0.1 g of sample dissolved in 25 mL of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4) and measured at 30 ° C. using an Ubbelohde viscosity tube: dL / g) is 0.4. The range of -1.0 dL / g is preferable, More preferably, it is the range of 0.5-0.9 dL / g. A reduced viscosity of 0.4 dL / g or less is not preferable because the toughness is lowered, and if it exceeds 1.0 dL / g, the fluidity is lowered and the desired good molded article appearance cannot be obtained.

ポリエステル系樹脂組成物におけるポリエステル樹脂(B)の配合量は0〜30質量%であり、好ましくは0〜25質量%である。 The amount of the polyester resin (B 2) in the polyester resin composition is 0-30 wt%, preferably from 0 to 25% by weight.

本発明における無機強化材とは、板状晶のタルク、マイカ、未焼成クレー類、不特定あるいは球状した炭酸カルシウム、焼成クレー、シリカ、ガラスビーズ、一般的に使用されているワラストナイト及び針状ワラストナイト、ガラス繊維、炭素繊維、ホウ酸アルミニウム、チタン酸カリウム等のウイスカー類、平均粒径4〜20mm程度でカット長は35〜80mm程度のガラス短繊維であるミルドファイバー等を挙げることが出来るが、これらに限定されるものではない。成形品外観の面ではタルクやワラストナイト、強度、剛性向上の面ではガラス繊維が最も優れている。これらの無機強化材は1種類を単独で使用しても良く、2種類以上を併用しても良い。   The inorganic reinforcing material in the present invention includes plate-like talc, mica, unfired clay, unspecified or spherical calcium carbonate, fired clay, silica, glass beads, commonly used wollastonite and needles. Whisters such as glass wollastonite, glass fiber, carbon fiber, aluminum borate and potassium titanate, milled fiber which is an average particle diameter of about 4 to 20 mm and cut length of about 35 to 80 mm However, it is not limited to these. In terms of appearance of the molded product, talc and wollastonite, and glass fiber are the most excellent in terms of improving strength and rigidity. These inorganic reinforcing materials may be used alone or in combination of two or more.

無機強化材の中でガラス繊維としては、平均繊維径が4〜20μm程度、カット長は3〜6mm程度であり、ごく一般的なものを使用することが出来る。ガラス繊維には有機シラン系化合物、有機チタン系化合物、有機ボラン系化合物およびエポキシ系化合物等のカップリング剤で予め処理をしてあるものが好ましい。カップリング剤で処理してあるガラス繊維を配合したポリエステル系樹脂組成物では優れた機械的特性や外観特性の優れた成形品が得られるので好ましい。また、他の無機強化材においても、カップリング剤が未処理の場合は後添加して使用することが出来る。
本発明のポリエステル系樹脂組成物における無機強化材(C)の配合量は30〜60質量%であり、好ましくは35〜55質量%である。
Among the inorganic reinforcing materials, glass fibers having an average fiber diameter of about 4 to 20 μm and a cut length of about 3 to 6 mm can be used. The glass fiber is preferably treated in advance with a coupling agent such as an organic silane compound, an organic titanium compound, an organic borane compound, and an epoxy compound. A polyester resin composition containing glass fibers treated with a coupling agent is preferable because a molded product having excellent mechanical properties and appearance properties can be obtained. Also, other inorganic reinforcing materials can be used after being added if the coupling agent is untreated.
The compounding quantity of the inorganic reinforcement material (C) in the polyester-type resin composition of this invention is 30-60 mass%, Preferably it is 35-55 mass%.

本発明の無機強化ポリエステル系樹脂組成物は、示差走査型熱量計(DSC)で求められる降温結晶化温度をTc2M(℃)、前記ポリエステル系樹脂組成物の中で前記ポリエステル樹脂(B)のみを含有しない場合の降温結晶化温度をTc2N(℃)としたとき、下記関係を満足することを特徴とする。
Tc2N(℃)−Tc2M(℃) ≧ 10(℃)
Tc2N(℃)−Tc2M(℃)は、好ましくは13(℃)以上、より好ましくは15(℃)以上である。
なお、本発明における降温結晶化温度(Tc2)とは、示差走査型熱量計(DSC)を用い、窒素気流下で20℃/分の昇温速度にて300℃まで昇温し、その温度で5分間保持した後、10℃/分の速度で100℃まで降温させることにより得られるサーモグラムの結晶化ピークのトップ温度である。
本発明の無機強化ポリエステル系樹脂組成物は、示差走査型熱量計(DSC)で求められる降温結晶化温度Tc2M(℃)は、185℃以下が好ましく、180℃以下が好ましい。
The inorganic reinforced polyester-based resin composition of the present invention has a temperature-falling crystallization temperature determined by a differential scanning calorimeter (DSC) of Tc2M (° C.), and only the polyester resin (B) is included in the polyester-based resin composition. When the falling crystallization temperature in the case of not containing is Tc2N (° C.), the following relationship is satisfied.
Tc2N (° C.) − Tc 2 M (° C.) ≧ 10 (° C.)
Tc2N (° C) -Tc2M (° C) is preferably 13 (° C) or higher, more preferably 15 (° C) or higher.
In the present invention, the temperature-falling crystallization temperature (Tc2) is a differential scanning calorimeter (DSC), which is heated to 300 ° C. at a rate of temperature increase of 20 ° C./min under a nitrogen stream. This is the top temperature of the crystallization peak of a thermogram obtained by holding for 5 minutes and then lowering the temperature to 100 ° C. at a rate of 10 ° C./min.
In the inorganic reinforced polyester resin composition of the present invention, the temperature-falling crystallization temperature Tc2M (° C.) determined by a differential scanning calorimeter (DSC) is preferably 185 ° C. or less, and preferably 180 ° C. or less.

Tc2M(℃)が特に190℃を超えるような高い温度の場合は、ポリエステル系樹脂組成物の結晶化速度が速すぎて金型内での結晶化が早く起こるため、射出圧力の伝播速度が低下する傾向にあり、射出物と金型との密着が不充分になることや結晶化収縮の影響により、ガラス繊維等の無機の存在が成形品の表面で目立つ、所謂、ガラス繊維等の無機の浮き等が発生し、成形品の外観性が悪くなってしまうことになる。
また、結晶化速度が速い無機強化樹脂組成物の場合、金型温度を120から130℃と高温にして成形表面の固化を遅延させる方法が考えられるが、この方法では、金型内で射出圧力が高い中心部分では表面光沢が改良されるが、射出圧力が加わりにくい成形品の末端部分では、ガラス繊維等の無機の浮き出しが発生しやすく、成形品全体での良好な外観特性は得られにくい。また、金型から取り出された後の成形品温度が高いため、成形品のそりが大幅に大きくなってしまう欠点がある。
本発明のポリエステル系樹脂組成物では、金型内での結晶化速度が最適となり、金型温度100℃以下の温度で射出成形しても、表面光沢に優れた成形品が得られる。
When the temperature of Tc2M (° C) is particularly higher than 190 ° C, the crystallization speed of the polyester resin composition is too high and the crystallization in the mold occurs quickly, so the propagation speed of the injection pressure decreases. The presence of inorganic substances such as glass fibers is conspicuous on the surface of the molded product due to insufficient adhesion between the injection product and the mold and the effect of crystallization shrinkage, so-called inorganic fibers such as glass fibers. A float etc. generate | occur | produces and the external appearance property of a molded article will worsen.
Further, in the case of an inorganic reinforced resin composition having a high crystallization speed, a method of delaying solidification of the molding surface by setting the mold temperature as high as 120 to 130 ° C. can be considered. In the center part where the surface is high, the surface gloss is improved, but at the end part of the molded product where the injection pressure is difficult to be applied, inorganic embossing such as glass fiber is likely to occur, and it is difficult to obtain good appearance characteristics in the entire molded product . In addition, since the temperature of the molded product after being taken out from the mold is high, there is a disadvantage that warpage of the molded product is greatly increased.
In the polyester-based resin composition of the present invention, the crystallization speed in the mold becomes optimum, and a molded product having excellent surface gloss can be obtained even by injection molding at a mold temperature of 100 ° C. or lower.

無機強化ポリエステル系樹脂組成物におけるTc2M(℃)の温度に関与する最も重要な因子は、共重合ポリエステル樹脂(B)である。共重合ポリエステル樹脂(B)成分はPETやPBTと分子分散に近い相容性があり、かつ樹脂組成によって非晶性から結晶性まで幅広い物性を付与できる。そのため特定の共重合ポリエステル樹脂を最適な添加量を配合する事によって、無機強化ポリエステル系樹脂組成物のTc2M温度のコントロールが可能となり、良好な成形品外観が得られる。また、成形品のソリ変形を低減することも可能となり、共重合ポリエステル樹脂(B)は、良好な外観や低ソリ化には極めて重要である。 The most important factor related to the temperature of Tc2M (° C.) in the inorganic reinforced polyester resin composition is a copolymer polyester resin (B 1 ). The copolymerized polyester resin (B 1 ) component has compatibility close to molecular dispersion with PET and PBT, and can impart a wide range of physical properties from amorphous to crystalline depending on the resin composition. Therefore, by blending the specific addition amount of the specific copolyester resin, the Tc2M temperature of the inorganic reinforced polyester resin composition can be controlled, and a good molded article appearance can be obtained. In addition, it is possible to reduce warping deformation of the molded product, and the copolyester resin (B 1 ) is extremely important for good appearance and low warpage.

つまり、本発明者らは、高濃度の強化材を含有する無機強化ポリエステル系樹脂組成物においては、金型内の樹脂充填速度に関係するメルトフローインデックス(MFI)は成形品の外観特性(ガラス繊維等の無機強化材の浮き出し等)にはあまり関連がなく、外観特性は、組成物の溶融状態から冷却過程での結晶化速度と密接に関連しており、組成物の冷却過程の結晶化特性をコントロールすることが重要なことを見出したのである。   In other words, the present inventors have found that in an inorganic reinforced polyester resin composition containing a high concentration of reinforcing material, the melt flow index (MFI) related to the resin filling speed in the mold is the appearance characteristic of the molded product (glass The appearance characteristics are closely related to the crystallization speed in the cooling process from the molten state of the composition, and the crystallization in the cooling process of the composition. They found it important to control the properties.

すなわち、他の発明は、全ポリエステル樹脂中でポリエステル樹脂(A)を最も多く含有し、かつ全組成物中で無機を最も多く含有する無機強化ポリエステル系樹脂組成物から成形品を得るに際し、ポリエステル系樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度Tc2M(℃)が10℃以上低下するように、組成物中に降温結晶化温度低下剤を含有せしめて成形することを特徴とする無機強化ポリエステル系樹脂組成物成形品の表面外観改良方法である。   That is, in another invention, when obtaining a molded article from an inorganic reinforced polyester-based resin composition containing the most polyester resin (A) in all polyester resins and containing the most inorganic substances in all compositions, A composition containing a cooling crystallization temperature lowering agent in the composition so that the cooling crystallization temperature Tc2M (° C.) obtained by a differential scanning calorimeter (DSC) of the resin resin composition is reduced by 10 ° C. or more. This is a method for improving the surface appearance of an inorganic reinforced polyester-based resin composition molded article.

特に、ポリエステル樹脂(A)が、通常のポリエステル樹脂に比べて結晶化速度が速いポリエステル樹脂や結晶核剤を含有した射出成形ハイサイクル性ポリエステル樹脂の場合、さらには、組成物中にポリエステル樹脂の結晶化を促進する物質が配合される場合に表面外観改良効果が大きい。   In particular, in the case where the polyester resin (A) is an injection-molded high-cycle polyester resin containing a polyester resin or a crystal nucleating agent having a faster crystallization speed than a normal polyester resin, the polyester resin (A) is further contained in the composition. When a substance that promotes crystallization is blended, the effect of improving the surface appearance is great.

降温結晶化温度低下剤としては、前記の共重合ポリエステル樹脂(B)が好適であるが、無機強化ポリエステル系樹脂組成物の降温結晶化温度を低下させることができるものであれば特に限定されない。
降温結晶化温度Tc2M(℃)のポリエステル樹脂(A)の降温結晶化温度Tc2N(℃)からの低下温度幅は、好ましくは13℃以上、より好ましくは15℃以上、さらに好ましくは17℃以上である。
The above-described copolymer polyester resin (B 1 ) is suitable as the temperature-falling crystallization temperature reducing agent, but is not particularly limited as long as it can lower the temperature-falling crystallization temperature of the inorganic reinforced polyester-based resin composition. .
The temperature drop range from the temperature decrease crystallization temperature Tc2N (° C.) of the polyester resin (A) at the temperature decrease crystallization temperature Tc2M (° C.) is preferably 13 ° C. or more, more preferably 15 ° C. or more, and further preferably 17 ° C. or more. is there.

また、本発明の無機強化ポリエステル系樹脂組成物には、必要に応じて公知の範囲で耐熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、滑剤、結晶核剤、離型剤、変性剤、帯電防止剤、難燃剤、顔料、染料等を添加することが出来る。また、本発明の目的を損なわない範囲で他の樹脂や充填剤等を配合することが出来る。   In addition, the inorganic reinforced polyester resin composition of the present invention has a heat resistance stabilizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a plasticizer, a lubricant, a crystal nucleating agent, a release agent within a known range as necessary. Agents, modifiers, antistatic agents, flame retardants, pigments, dyes, and the like can be added. Moreover, other resin, a filler, etc. can be mix | blended in the range which does not impair the objective of this invention.

本発明の無機強化ポリエステル系樹脂組成物を製造する方法としては、上述した各成分、例えば、PBT(A)、共重合ポリエステル樹脂(B)、PET(B)、無機強化材(C)の各成分および必要に応じて各種安定剤、離型剤や顔料を混合し、溶融混錬することによって製造出きる。溶融混錬方法は、当業者に周知のいずれかの方法も可能であり、単軸押出機、2軸押出機、加圧ニーダー、バンバリーミキサー等が使用することが出来る。なかでも2軸押出機を使用することが好ましい。一般的な溶融混練り条件としては、2軸押出機ではシリンダー温度は240〜290℃、混錬時間は2〜15分である。 As a method for producing the inorganic reinforced polyester-based resin composition of the present invention, the above-described components, for example, PBT (A), copolymer polyester resin (B 1 ), PET (B 2 ), inorganic reinforcing material (C). It can be produced by mixing, melting, and kneading each of the components and, if necessary, various stabilizers, mold release agents and pigments. The melt kneading method may be any method known to those skilled in the art, and a single screw extruder, a twin screw extruder, a pressure kneader, a Banbury mixer, or the like can be used. Among these, it is preferable to use a twin screw extruder. As general melt-kneading conditions, in a twin-screw extruder, the cylinder temperature is 240 to 290 ° C., and the kneading time is 2 to 15 minutes.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
また、以下の実施例、比較例において示した各特性、物性値は、下記の試験方法で測定した。
・ ポリエステル樹脂の還元粘度(dL/g):
0.1gのサンプルをフェノール/テトラクロロエタン(質量比6/4)の混合溶媒25mLに溶解し、ウベローデ粘度管を用いて30℃で測定した。
・ 曲げ強度:ISO−178に準じて測定した。
・ 曲げ弾性率:ISO−178に準じて測定した。
・ シャルピー衝撃強度:JIS K7111に準じて測定した。
(5)降温結晶化温度(Tc2)の測定は示差走査型熱量計(DSC)を用い、各サンプルは水分率0.03以下の乾燥状態でDSC装置に封入し、水分による変動を防止して測定した。すなわち、窒素気流下で20℃/分の昇温速度にて300℃まで昇温し、その温度で5分間保持した後、10℃/分の速度で100℃まで降温させることにより得られるサーモグラムの結晶化ピークのトップ温度を求めた。
(6)メルトフローインデックス(MFI):
JIS K−7210に準じて、275℃の温度において荷重2160grをかけ、10分間で流動した樹脂量(gr)である。なお、各サンプルは水分率0.03%以下の乾燥状態で装置に装入し、水分によるMFIの変動を防止して測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited at all by these Examples.
Moreover, each characteristic and physical-property value which were shown in the following example and the comparative example were measured with the following test method.
-Reduced viscosity (dL / g) of the polyester resin:
A 0.1 g sample was dissolved in 25 mL of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4) and measured at 30 ° C. using an Ubbelohde viscometer.
-Bending strength: It measured according to ISO-178.
-Flexural modulus: measured according to ISO-178.
-Charpy impact strength: measured according to JIS K7111.
(5) The temperature-falling crystallization temperature (Tc2) is measured using a differential scanning calorimeter (DSC), and each sample is sealed in a DSC apparatus in a dry state with a moisture content of 0.03 or less to prevent fluctuation due to moisture. It was measured. That is, a thermogram obtained by raising the temperature to 300 ° C. at a rate of temperature increase of 20 ° C./min under a nitrogen stream, holding the temperature for 5 minutes, and then lowering the temperature to 100 ° C. at a rate of 10 ° C./min. The top temperature of the crystallization peak of was determined.
(6) Melt flow index (MFI):
According to JIS K-7210, the load is 2160 gr at a temperature of 275 [deg.] C., and the amount of resin that flows in 10 minutes (gr). In addition, each sample was charged in the apparatus in a dry state with a moisture content of 0.03% or less, and measurement was performed while preventing fluctuations in MFI due to moisture.

(7)成形品外観:
100×100×2mmtのシボプレート金型を用い、射出成形機で樹脂温度275〜280℃、金型温度80℃、100℃および120℃で射出成形し、得られた成形品について、目視で次のような評価を行った。
○ :平板全面でのガラス繊維の浮きがなく、表面光沢が優れている。
△ :ゲートから離れた端面でガラス繊維の浮きが観測される。
× :成形品の全面にガラス繊維の浮きが見られ、表面光沢が悪い。
(8)ソリ変形:
片側リブ付きの100×100×2mmtのフィルムゲートの金型を用い、(7)項の成形品と同様な成形条件(金型温度:80℃、100℃、120℃)で、樹脂の流れ方向に対して垂直方向に長さ100mm、高さ1mmで厚み1mmのリブを5本有する成形品を成形し、そのソリ変形量を測定した(図1でAの値、3枚の成形品の平均値)
× : ソリ変形量>3mm
△ : 3≧ソリ変形量≧2mm
○ : ソリ変形量<2mm
(7) Molded product appearance:
Using a 100 × 100 × 2 mmt embossed plate mold, injection molding was carried out with an injection molding machine at a resin temperature of 275 to 280 ° C., a mold temperature of 80 ° C., 100 ° C., and 120 ° C. Evaluation like this was performed.
○: The glass fiber does not float on the entire surface of the flat plate, and the surface gloss is excellent.
Δ: Floating of glass fiber is observed at the end face away from the gate.
X: The float of glass fiber is seen on the whole surface of a molded article, and surface gloss is bad.
(8) Warp deformation:
Using a 100 × 100 × 2 mmt film gate mold with a rib on one side, under the same molding conditions as the molded article (7) (mold temperature: 80 ° C., 100 ° C., 120 ° C.), the resin flow direction A molded product having five ribs having a length of 100 mm, a height of 1 mm and a thickness of 1 mm in the vertical direction was molded, and the amount of warpage was measured (value A in FIG. 1 and average of three molded products). value)
×: Warp deformation amount> 3 mm
Δ: 3 ≧ warping deformation ≧ 2 mm
○: Warp deformation <2mm

また、実施例、比較例において使用した原料は次のようである。
(イ)ポリエステル樹脂(A):
・PBT :還元粘度0.70dL/g
(ロ)共重合ポリエステル樹脂(B成分):
・CoPE−1:TPA//EG/NPG=100//70/30モル%の組成比の共重合体、還元粘度0.83dL/g
・CoPE−2:TPA/IPA//EG/NPG=50/50//50/50モル%の組成比の共重合体、還元粘度0.56dL/g
・CoPE−3:TPA//EG/1,2PG=100//30/70モル%の組成比の共重合体、還元粘度0.56dL/g
・CoPE−7:TPA/IPA//EG=90/10//100モル%の組成比の共重合体、還元粘度1.12dL/g
The raw materials used in the examples and comparative examples are as follows.
(A) Polyester resin (A):
・ PBT: Reduced viscosity 0.70 dL / g
(B) Copolyester resin (B 1 component):
CoPE-1: Copolymer with a composition ratio of TPA // EG / NPG = 100 // 70/30 mol%, reduced viscosity 0.83 dL / g
CoPE-2: TPA / IPA // EG / NPG = copolymer with a composition ratio of 50/50 // 50/50 mol%, reduced viscosity 0.56 dL / g
CoPE-3: TPA // EG / 1,2PG = 100 // 30/70 mol% copolymer, reduced viscosity 0.56 dL / g
CoPE-7: copolymer having a composition ratio of TPA / IPA // EG = 90/10 // 100 mol%, reduced viscosity of 1.12 dL / g

(ハ)ポリエステル樹脂(B成分):
・PET :東洋紡PET、RE−530A(還元粘度0.72dL/g)
(ニ)無機強化材(C成分)
・ガラス繊維:T−120H(日本電気硝子社製)
・タルク:ミクロン406(林化成株式会社製)
(C) Polyester resin (B 2 component):
PET: Toyobo PET, RE-530A (reduced viscosity 0.72 dL / g)
(D) Inorganic reinforcement (C component)
・ Glass fiber: T-120H (Nippon Electric Glass Co., Ltd.)
・ Talc: Micron 406 (manufactured by Hayashi Kasei Co., Ltd.)

(ホ)その他の添加剤:
・酸化防止剤:イルガノックス1010(チバスペシャリティケミカルズ社製)およびシーノックス412S(シプロ化成社製)
・離型剤:WE40(クラリアントジャパン社製)
・黒顔料:PAB8K470(住化カラー社製)
(E) Other additives:
Antioxidants: Irganox 1010 (manufactured by Ciba Specialty Chemicals) and Cynox 412S (manufactured by Sipro Kasei)
-Mold release agent: WE40 (manufactured by Clariant Japan)
Black pigment: PAB8K470 (manufactured by Sumika Color)

[CoPE−1(B成分):TPA//EG/NPG共重合体の重合例]
攪拌機及び留出コンデンサーを有する、容積10Lのエステル化反応槽に、テレフタル酸(TPA)2414質量部、エチレングリコール(EG)1497質量部、ネオペンチルグリコール(NPG)515質量部を投入し、触媒として、二酸化ゲルマニウムを8g/Lの水溶液として生成ポリエステルに対してゲルマニウム原子として30ppm、酢酸コバルト4水和物を50g/Lのエチレングリコール溶液として生成ポリマーに対してコバルト原子として35ppm含有するように添加した。
その後、反応系内を最終的に240℃となるまで除々に昇温し、圧力0.25MPaでエステル化反応を180分間行った。反応系内からの留出水が出なくなるのを確認した後、反応系内を常圧に戻し、リン酸トリメチルを130g/Lのエチレングリコール溶液として生成ポリマーに対してリン原子として52ppm含有するように添加した。
得られたオリゴマーを重縮合反応槽に移送し、除々に昇温しながら減圧し最終的に温度が280℃で、圧力が0.2hPaになるようにした。固有粘度に対応する攪拌翼のトルク値が所望の数値となるまで反応させ、重縮合反応を終了した。反応時間は100分であった。得られた溶融ポリエステル樹脂を重合槽下部の抜き出し口からストランド状に抜き出し、水槽で冷却した後チップ状に切断した。
以上のようにして得られた共重合ポリエステルはNMR分析の結果、ジカルボン酸成分はテレフタル酸100モル%、ジオール成分はエチレングリコール70モル%、ネオペンチルグリコール30モル%の組成を有していた。
[CoPE-1 (B 1 component): polymerization example of TPA // EG / NPG copolymer]
As a catalyst, an esterification reactor having a volume of 10 L having a stirrer and a distillation condenser was charged with 2414 parts by mass of terephthalic acid (TPA), 1497 parts by mass of ethylene glycol (EG), and 515 parts by mass of neopentyl glycol (NPG). Germanium dioxide as an 8 g / L aqueous solution was added to the resulting polyester as 30 ppm as germanium atoms, and cobalt acetate tetrahydrate was added as a 50 g / L ethylene glycol solution so as to contain 35 ppm as cobalt atoms relative to the resulting polymer. .
Thereafter, the temperature in the reaction system was gradually raised to finally reach 240 ° C., and the esterification reaction was carried out for 180 minutes at a pressure of 0.25 MPa. After confirming that distillate from the reaction system stops, the reaction system is returned to normal pressure, and trimethyl phosphate is contained as a 130 g / L ethylene glycol solution so that it contains 52 ppm as phosphorus atoms with respect to the resulting polymer. Added to.
The obtained oligomer was transferred to a polycondensation reaction tank, and the pressure was gradually reduced while raising the temperature so that the final temperature was 280 ° C. and the pressure was 0.2 hPa. The reaction was continued until the torque value of the stirring blade corresponding to the intrinsic viscosity reached a desired value, and the polycondensation reaction was completed. The reaction time was 100 minutes. The obtained molten polyester resin was extracted in the form of a strand from the outlet at the bottom of the polymerization tank, cooled in a water tank, and then cut into chips.
As a result of NMR analysis, the copolyester obtained as described above had a composition of 100 mol% of terephthalic acid as a dicarboxylic acid component, 70 mol% of ethylene glycol and 30 mol% of neopentyl glycol as a diol component.

その他の実施例に記載の共重合ポリエステル樹脂は、使用する原料・組成比以外は、すべてTPA//EG//NPG共重合体と同様にして重合した。   The copolymerized polyester resins described in the other examples were all polymerized in the same manner as the TPA // EG // NPG copolymer except for the raw materials and composition ratios used.

実施例、比較例の無機強化ポリエステル系組成物の製造法は、上記原料を表1および表2に示した配合比率(質量%、および質量部)に従い計量して、35φ二軸押出機(東芝機械社製)でシリンダー温度270℃、スクリュー回転数100rpmにて溶融混錬した。ガラス繊維以外の原料はホッパーから二軸押出機に投入し、ガラス繊維はベント口からサイドフィードで投入した。
得られた無機強化ポリエステル系樹脂組成物のペレットは射出成形機でそれぞれの評価サンプルを成形した。
成形条件は強化材が40%以下の場合はシリンダー温度275℃、40%以上の場合は280℃、金型温度は80℃、100℃および120℃である。
評価結果を表1、表2に示した。
The manufacturing method of the inorganic reinforcement | strengthening polyester type composition of an Example and a comparative example measured the said raw material according to the compounding ratio (mass% and mass part) shown in Table 1 and Table 2, and 35-phi twin screw extruder (Toshiba) Made by Kikai Co., Ltd.) at a cylinder temperature of 270 ° C. and a screw rotation speed of 100 rpm. Raw materials other than glass fibers were charged into the twin screw extruder from the hopper, and glass fibers were charged by side feed from the vent port.
The pellets of the obtained inorganic reinforced polyester resin composition were molded into respective evaluation samples with an injection molding machine.
The molding conditions are a cylinder temperature of 275 ° C. when the reinforcing material is 40% or less, 280 ° C. when the reinforcing material is 40% or more, and mold temperatures of 80 ° C., 100 ° C. and 120 ° C.
The evaluation results are shown in Tables 1 and 2.

Figure 2008214558
Figure 2008214558

Figure 2008214558
Figure 2008214558

表1では、無機強化材(C)としてガラス繊維を40質量%使用して、共重合ポリエステル樹脂の種類および有無についての評価を行った。実施例1〜4ではいずれも種々の共重合ポリエステル樹脂(B)を6〜10質量%配合した組成物であるが、Tc2Mが185℃以下であり、成形品の外観およびソリ変形量が優れている。
一方、比較例1および2では共重合ポリエステル樹脂(B)を配合しない組成であり、Tc2Mがいずれも190℃以上あり、成形品外観が良くない。特に比較例2では金型温度を120℃まで高めたが、成形品のガラス繊維の浮きを防止することが出来なかった。
表2の実施例5および比較例3ではPET(B)成分を含まない組成の場合である。この組成でも共重合ポリエステル樹脂(B)を含有する実施例5ではTc2Mが低く、成形品の外観やソリ変形が良好である。また比較例3ではTc2Mが198℃と異常に高く、成形品の外観やソリ変形が極めて悪い。特に金型温度を120℃まで上げても成形品の外観は悪く、成形品表面にガラス繊維の浮きが観察される。
In Table 1, 40% by mass of glass fiber was used as the inorganic reinforcing material (C), and the type and presence of the copolymer polyester resin were evaluated. In Examples 1 to 4, each is a composition containing 6 to 10% by mass of various copolyester resins (B 1 ), but Tc2M is 185 ° C. or less, and the appearance of the molded product and the amount of warping deformation are excellent. ing.
On the other hand, Comparative Examples 1 and 2 have a composition in which the copolymerized polyester resin (B 1 ) is not blended, and Tc2M is 190 ° C. or higher, and the appearance of the molded product is not good. In particular, in Comparative Example 2, the mold temperature was increased to 120 ° C., but the glass fiber of the molded product could not be prevented from floating.
In Example 5 and Comparative Example 3 in Table 2, the composition does not include a PET (B 2 ) component. Even in this composition, Tc2M is low in Example 5 containing the copolyester resin (B 1 ), and the appearance and warp deformation of the molded product are good. In Comparative Example 3, Tc2M is abnormally high at 198 ° C., and the appearance and warp deformation of the molded product are extremely poor. In particular, even when the mold temperature is increased to 120 ° C., the appearance of the molded product is poor, and glass fiber floating is observed on the surface of the molded product.

表2の実施例6、7および比較例4、5では、無機強化材(C)が55質量%と無機高充填の組成である。また実施例7および比較例5ではガラス繊維とタルクの併用系を示している。無機強化材の高充填組成に於いても、共重合ポリエステル樹脂(B)を配合した実施例6および7では、極めて優れた成形品外観を示し、ソリ変形も少ない成形品が得られる。比較例5ではタルクを配合しているため、成形品のソリ変形は改良されるが成形品の外観は良くない。
一方、表1及び2から、金型内の樹脂充填速度に関係するメルトフローインデックス(MFI)は、各実施例、比較例においても、成形品の外観特性、特にガラス繊維等の無機強化材の浮き出し等にはあまり関連がないことが明らかである。
以上より、無機強化材含有ポリエステル系成形品におけるガラス繊維等の無機強化材の浮き出しなどによる外観不良やソリ変形の問題は、共重合ポリエステル樹脂などを配合して組成物の降温結晶化温度(Tc2M)を低下させ、100℃以下の金型温度での成形によって改良可能なことが明らかである。
In Examples 6 and 7 and Comparative Examples 4 and 5 in Table 2, the inorganic reinforcing material (C) is 55% by mass and has a highly inorganic composition. In Example 7 and Comparative Example 5, a combined system of glass fiber and talc is shown. Even in the high filling composition of the inorganic reinforcing material, in Examples 6 and 7 in which the copolymer polyester resin (B 1 ) was blended, a molded product showing a very excellent molded product appearance and less warping deformation can be obtained. In Comparative Example 5, since talc is blended, the warpage deformation of the molded product is improved, but the appearance of the molded product is not good.
On the other hand, from Tables 1 and 2, the melt flow index (MFI) related to the resin filling speed in the mold is the appearance characteristics of the molded product, particularly the inorganic reinforcing material such as glass fiber, in each of the examples and comparative examples. It is clear that there is not much relation to relief.
From the above, the problem of appearance defects and warping deformation due to the embossing of inorganic reinforcing materials such as glass fibers in polyester-based molded articles containing inorganic reinforcing materials has been found to be caused by blending a copolyester resin or the like with the temperature drop crystallization temperature (Tc2M). It is clear that it can be improved by molding at a mold temperature of 100 ° C. or lower.

本発明は熱可塑性ポリエステル樹脂系のガラス繊維等の無機強化材含有樹脂組成物において、高強度、高剛性でありながら良好な外観特性で低ソリ性の成形品が得られるので、自動車の内装部品や外装部品をはじめ、各種機構部品を納める高剛性が要求されるハウジング部品や筐体等の幅広い分野で使用することが出来る。したがって産業界に寄与すること大である。
INDUSTRIAL APPLICABILITY In the present invention, a resin composition containing an inorganic reinforcing material such as a thermoplastic polyester resin-based glass fiber can be used to obtain a molded product having high strength and high rigidity while having good appearance characteristics and low warpage. It can be used in a wide range of fields such as housing parts and housings that require high rigidity to house various mechanical parts, including exterior parts. Therefore, it is important to contribute to the industry.

ソリ変形を評価するために成形した成形品の例を模式的に示す(a)概略上面図及び(b)概略側面図である。It is (a) schematic top view and (b) schematic side view which show typically the example of the molded product shape | molded in order to evaluate a warp deformation | transformation.

符号の説明Explanation of symbols

L:樹脂組成物の流れ方向
W:樹脂組成物の流れの直角方向
1:成形品
2:フィルムゲート
3:リブ
A:ソリ変形量
L: Flow direction of resin composition W: Right angle direction of flow of resin composition 1: Molded product
2: Film gate 3: Rib A: Warp deformation

Claims (6)

ポリエステル樹脂(A)、ポリエステル樹脂(A)以外の少なくとも1種のポリエステル樹脂(B)及び無機強化材を含有するポリエステル系樹脂組成物において、該ポリエステル系樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度をTc2M(℃)、前記ポリエステル系樹脂組成物の中で前記ポリエステル樹脂(B)のみを含有しない場合の降温結晶化温度をTc2N(℃)としたとき、下記関係を満足することを特徴とする無機強化ポリエステル系樹脂組成物。
Tc2N(℃)−Tc2M(℃) ≧ 10(℃)
In the polyester resin composition containing the polyester resin (A), at least one polyester resin (B) other than the polyester resin (A), and an inorganic reinforcing material, a differential scanning calorimeter (DSC) of the polyester resin composition ), When the temperature-falling crystallization temperature in the case of not containing only the polyester resin (B) in the polyester resin composition is Tc2N (° C.) An inorganic reinforced polyester resin composition characterized by satisfying
Tc2N (° C.) − Tc 2 M (° C.) ≧ 10 (° C.)
ポリエステル樹脂(A)が、ポリブチレンテレフタレート樹脂であり、かつポリエステル系樹脂組成物のTc2Mが185℃以下である請求項1に記載の無機強化ポリエステル系樹脂組成物。   The inorganic reinforced polyester resin composition according to claim 1, wherein the polyester resin (A) is a polybutylene terephthalate resin, and Tc2M of the polyester resin composition is 185 ° C or lower. ポリエステル樹脂(A)以外のポリエステル樹脂(B)が、共重合ポリエステル樹脂である請求項1に記載の無機強化ポリエステル系樹脂組成物。   The inorganic reinforced polyester resin composition according to claim 1, wherein the polyester resin (B) other than the polyester resin (A) is a copolyester resin. ポリエステル樹脂(A)以外のポリエステル樹脂(B)が、共重合ポリエステル樹脂及びポリエチレンテレフタレート樹脂である請求項1に記載の無機強化ポリエステル系樹脂組成物。   The inorganic reinforced polyester resin composition according to claim 1, wherein the polyester resin (B) other than the polyester resin (A) is a copolymer polyester resin and a polyethylene terephthalate resin. 共重合ポリエステル樹脂が、テレフタル酸、イソフタル酸、セバシン酸、アジピン酸、2,6−ナフタレンジカルボン酸、トリメリット酸およびエチレングリコール、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、1,4−ブタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオールからなる群より選ばれる少なくとも1種以上を共重合したポリエステル樹脂である請求項3又は4に記載の無機強化ポリエステル系樹脂組成物。   Copolyester resin is terephthalic acid, isophthalic acid, sebacic acid, adipic acid, 2,6-naphthalenedicarboxylic acid, trimellitic acid and ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,4 A polyester resin obtained by copolymerizing at least one selected from the group consisting of -butanediol, 1,2-propanediol, 1,3-propanediol, and 2-methyl-1,3-propanediol. 4. The inorganic reinforced polyester resin composition according to 4. 全ポリエステル樹脂中でポリエステル樹脂(A)を最も多く含有し、かつ全組成物中で無機を最も多く含有する無機強化ポリエステル系樹脂組成物から成形品を得るに際し、ポリエステル系樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度Tc2M(℃)が10℃以上低下するように、組成物中に降温結晶化温度低下剤を含有せしめて成形することを特徴とする無機強化ポリエステル系樹脂組成物成形品の表面外観改良方法。
When obtaining a molded article from an inorganic reinforced polyester resin composition containing the most polyester resin (A) in all polyester resins and containing the most inorganic substances in all compositions, differential scanning of the polyester resin composition is performed. Inorganic reinforced polyester characterized by containing a temperature-falling crystallization temperature reducing agent in the composition so that the temperature-falling crystallization temperature Tc2M (° C) required by a mold calorimeter (DSC) is lowered by 10 ° C or more. For improving surface appearance of molded resin composition molded article.
JP2007056772A 2007-03-07 2007-03-07 An inorganic reinforced polyester resin composition and a method for improving the surface appearance of a molded article using the same. Active JP5396690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056772A JP5396690B2 (en) 2007-03-07 2007-03-07 An inorganic reinforced polyester resin composition and a method for improving the surface appearance of a molded article using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056772A JP5396690B2 (en) 2007-03-07 2007-03-07 An inorganic reinforced polyester resin composition and a method for improving the surface appearance of a molded article using the same.

Publications (2)

Publication Number Publication Date
JP2008214558A true JP2008214558A (en) 2008-09-18
JP5396690B2 JP5396690B2 (en) 2014-01-22

Family

ID=39834988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056772A Active JP5396690B2 (en) 2007-03-07 2007-03-07 An inorganic reinforced polyester resin composition and a method for improving the surface appearance of a molded article using the same.

Country Status (1)

Country Link
JP (1) JP5396690B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081574A1 (en) * 2007-12-26 2009-07-02 Wintech Polymer Ltd. Mobile terminal part
JP2010100724A (en) * 2008-10-23 2010-05-06 Hitachi Cable Ltd Polybutylene naphthalate-based resin composition and electric wire using polybutylene naphthalate-based resin composition
JP2013159732A (en) * 2012-02-07 2013-08-19 Toyobo Co Ltd Inorganic-reinforced thermoplastic polyester resin composition
JP2015047860A (en) * 2013-09-05 2015-03-16 三菱エンジニアリングプラスチックス株式会社 Automotive door mirror stay, inner mirror stay or wave louver for on-vehicle air conditioner
JPWO2015008831A1 (en) * 2013-07-19 2017-03-02 東洋紡株式会社 Inorganic reinforced thermoplastic polyester resin composition
JP2019094441A (en) * 2017-11-24 2019-06-20 東洋紡株式会社 Polybutylene terephthalate resin composition for molded body welding polyester elastomer, and composite molding
JPWO2019059125A1 (en) * 2017-09-19 2020-09-03 東洋紡株式会社 Inorganic reinforced thermoplastic polyester resin composition
WO2022034845A1 (en) * 2020-08-11 2022-02-17 東洋紡株式会社 Inorganic material-reinforced thermoplastic polyester resin composition and method for producing same
CN114196170A (en) * 2021-12-16 2022-03-18 上海珐工材料科技有限公司 Rapid prototyping's fine reinforcing PET combined material of glass
WO2022202830A1 (en) * 2021-03-26 2022-09-29 東洋紡株式会社 Polyester resin composition and molded article decorated with hot-stamping foil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108717A4 (en) 2020-02-19 2024-02-21 Toyobo Mc Corp Flame retardant polyester resin composition and molded article comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612746A (en) * 1984-06-15 1986-01-08 Mitsubishi Chem Ind Ltd Polyester resin composition
JPH04353556A (en) * 1991-05-31 1992-12-08 Teijin Ltd Polyester resin composition
JPH08217966A (en) * 1995-02-17 1996-08-27 Toray Ind Inc Polyester resin composition and molded article
JP2002088235A (en) * 2000-09-19 2002-03-27 Toyobo Co Ltd Thermoplastic polyester resin composition
JP2004307794A (en) * 2003-02-18 2004-11-04 Mitsubishi Chemicals Corp Polybutylene terephthalate and its composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612746A (en) * 1984-06-15 1986-01-08 Mitsubishi Chem Ind Ltd Polyester resin composition
JPH04353556A (en) * 1991-05-31 1992-12-08 Teijin Ltd Polyester resin composition
JPH08217966A (en) * 1995-02-17 1996-08-27 Toray Ind Inc Polyester resin composition and molded article
JP2002088235A (en) * 2000-09-19 2002-03-27 Toyobo Co Ltd Thermoplastic polyester resin composition
JP2004307794A (en) * 2003-02-18 2004-11-04 Mitsubishi Chemicals Corp Polybutylene terephthalate and its composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081574A1 (en) * 2007-12-26 2009-07-02 Wintech Polymer Ltd. Mobile terminal part
JP2010100724A (en) * 2008-10-23 2010-05-06 Hitachi Cable Ltd Polybutylene naphthalate-based resin composition and electric wire using polybutylene naphthalate-based resin composition
US8410208B2 (en) 2008-10-23 2013-04-02 Hitachi Cable, Ltd. Polybutylene naphthalate-based resin composition and electric cable using polybutylene naphthalate-based resin composition
CN104530659A (en) * 2008-10-23 2015-04-22 日立金属株式会社 Polybutylene naphthalate-based resin composition and electric cable using polybutylene naphthalate-based resin composition
JP2013159732A (en) * 2012-02-07 2013-08-19 Toyobo Co Ltd Inorganic-reinforced thermoplastic polyester resin composition
JPWO2015008831A1 (en) * 2013-07-19 2017-03-02 東洋紡株式会社 Inorganic reinforced thermoplastic polyester resin composition
JP2015047860A (en) * 2013-09-05 2015-03-16 三菱エンジニアリングプラスチックス株式会社 Automotive door mirror stay, inner mirror stay or wave louver for on-vehicle air conditioner
JPWO2019059125A1 (en) * 2017-09-19 2020-09-03 東洋紡株式会社 Inorganic reinforced thermoplastic polyester resin composition
JP2019094441A (en) * 2017-11-24 2019-06-20 東洋紡株式会社 Polybutylene terephthalate resin composition for molded body welding polyester elastomer, and composite molding
JP7183536B2 (en) 2017-11-24 2022-12-06 東洋紡株式会社 Polybutylene terephthalate resin composition for molded article for welding polyester elastomer and composite molded article
WO2022034845A1 (en) * 2020-08-11 2022-02-17 東洋紡株式会社 Inorganic material-reinforced thermoplastic polyester resin composition and method for producing same
JPWO2022034845A1 (en) * 2020-08-11 2022-02-17
JP7364838B2 (en) 2020-08-11 2023-10-19 東洋紡エムシー株式会社 Inorganic reinforced thermoplastic polyester resin composition and method for producing the same
WO2022202830A1 (en) * 2021-03-26 2022-09-29 東洋紡株式会社 Polyester resin composition and molded article decorated with hot-stamping foil
JP7397418B2 (en) 2021-03-26 2023-12-13 東洋紡エムシー株式会社 Molded product decorated with polyester resin composition and hot stamp foil
CN114196170A (en) * 2021-12-16 2022-03-18 上海珐工材料科技有限公司 Rapid prototyping's fine reinforcing PET combined material of glass

Also Published As

Publication number Publication date
JP5396690B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5396690B2 (en) An inorganic reinforced polyester resin composition and a method for improving the surface appearance of a molded article using the same.
US11485851B2 (en) Liquid crystal polyester resin composition and molded body
JP6414467B2 (en) Inorganic reinforced thermoplastic polyester resin composition
WO2021230132A1 (en) Composition, pellet, molded product and composition production method
JP2010106171A (en) Aromatic polycarbonate resin composition
KR102169415B1 (en) Polycyclohexylenedimethylene terephthalate resin composition
KR20200088910A (en) Processing aids for dispersing fillers and uses thereof
JP6806244B2 (en) Inorganic reinforced thermoplastic polyester resin composition
JP7288752B2 (en) Thermoplastic resin composition and molded article
JP2004143210A (en) Polybutylene terephthalate resin composition and molded product
JPH06240114A (en) Glass fiber-reinforced liquid crystalline resin composition
JP6806596B2 (en) Thermoplastic Polyester Elastomer Resin Composition and Resin Belt Mold for Resin Belt Material
CN113646375B (en) Reinforced thermoplastic polyester resin composition
CN111094451B (en) Inorganic reinforced thermoplastic polyester resin composition
JP7262282B2 (en) Thermoplastic resin composition and molded article
JPH10152606A (en) Polyester resin composition and molded product thereof
KR101405869B1 (en) Method for Preparing Polyester/Polycarbonate Blend with Advanced Color Stability
KR20160105666A (en) Polyester carbonate resin, method for preparing the same and article comprising the same
JP2005154690A (en) Aromatic polyester composition
EP4198081A1 (en) Inorganic material-reinforced thermoplastic polyester resin composition and method for producing same
JP2006219611A (en) Polybutylene terephthalate resin composition and molded article made thereof
JP7288751B2 (en) Thermoplastic resin composition and molded article
EP3135728B1 (en) Thermoplastic resin composition and molded article comprising the same
KR101334347B1 (en) Multiwall sheet and its composition by copolyester/polycarbonate alloy, and preparing method for them
TW202336150A (en) Resin composition, molded article, and pellet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5396690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350