JP2008179860A - Sintered compact and its production method - Google Patents

Sintered compact and its production method Download PDF

Info

Publication number
JP2008179860A
JP2008179860A JP2007014493A JP2007014493A JP2008179860A JP 2008179860 A JP2008179860 A JP 2008179860A JP 2007014493 A JP2007014493 A JP 2007014493A JP 2007014493 A JP2007014493 A JP 2007014493A JP 2008179860 A JP2008179860 A JP 2008179860A
Authority
JP
Japan
Prior art keywords
sintering
less
powder
temperature
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007014493A
Other languages
Japanese (ja)
Other versions
JP4952912B2 (en
Inventor
Yoshimitsu Sagawa
喜光 寒川
Hiroshi Kito
浩 鬼頭
Megumi Ameyama
恵 飴山
Makoto Nogata
誠 野方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNES CO Ltd
Ritsumeikan Trust
Original Assignee
TECHNES CO Ltd
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNES CO Ltd, Ritsumeikan Trust filed Critical TECHNES CO Ltd
Priority to JP2007014493A priority Critical patent/JP4952912B2/en
Publication of JP2008179860A publication Critical patent/JP2008179860A/en
Application granted granted Critical
Publication of JP4952912B2 publication Critical patent/JP4952912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a component having a thin part with a thickness of ≤1 mm, having low surface roughness and having high sintered density and sintering strength without performing secondary working. <P>SOLUTION: The method includes: a stage where a molding material comprising metal powder and an organic binder is subjected to injection molding, so as to obtain a molded body; and a degreasing-sintering stage where the molded body is degreased and sintered, so as to obtain a sintered compact. The above metal powder has the average grain size of 1 to 6 μm, and is selected from stainless steel alloy powder, titanium alloy powder and/or alloy precursor powder forming a stainless steel alloy or a titanium alloy by sintering, and the ratio of the organic binder in the molding material is 40 to 50 vol.% of the whole quantity of the molding material. In the degreasing-sintering stage, the sintering maximum temperature is 900 to 1,200°C, the temperature rising rate in the temperature zone of 100 to 400°C is ≤100°C/hr, and the temperature rising rate in the temperature zone of 600 to 800°C is ≤200°C/hr. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超小型の焼結体およびその製造方法に関する。より詳しくは、肉厚1mm以下の薄肉部を有する、表面粗度が低く高強度の焼結体、および粉末射出成形を利用して当該焼結体を製造する方法に関する。   The present invention relates to an ultra-small sintered body and a method for manufacturing the same. More specifically, the present invention relates to a sintered body having a thin portion with a wall thickness of 1 mm or less and having a low surface roughness and high strength, and a method for producing the sintered body using powder injection molding.

従来から、機械加工により医療用鉗子等の小型製品が製造されているが、昨今の医療高度化により、複雑な形状が求められており、これらを製造するには多軸加工機若しくは専用加工機が必要になるため、加工コストが高く量産化が困難である。また、これら医療用製品(例えば鉗子)に用いる材料には耐食性が要求されるため、ステンレス合金、チタン合金が用いられるが、これら合金の機械加工は、材料に粘りがあるため、薄肉形状に加工することが困難である。   Conventionally, small products such as medical forceps have been manufactured by machining, but due to the recent advancement of medical treatment, complex shapes are required, and in order to manufacture these, multi-axis processing machines or dedicated processing machines Therefore, processing costs are high and mass production is difficult. In addition, since the materials used for these medical products (for example, forceps) are required to have corrosion resistance, stainless steel alloys and titanium alloys are used. However, the mechanical processing of these alloys is processed into a thin shape because the materials are sticky. Difficult to do.

特に、体内への高度医療において、磁性を有しない材料で、且つ硬度、強度を有する鉗子や、直径3mm以下のカテーテルに挿入可能なマイクロ鉗子への要求が高まっている。このような鉗子は体内での操作上小さいものでなければならず、肉厚1mm程度の薄肉複雑形状が求められる。このような鉗子を機械加工で製造することは困難である。   In particular, in advanced medical treatment in the body, there is an increasing demand for forceps that are non-magnetic material, have hardness and strength, and micro forceps that can be inserted into a catheter having a diameter of 3 mm or less. Such forceps must be small for operation in the body, and a thin complex shape with a thickness of about 1 mm is required. It is difficult to manufacture such forceps by machining.

機械加工以外の方法として、粉末射出成型法がある。特に近年では、医療の高度化、検査費用の削減、2次感染防止のための器具モジュールの使い捨てが進んでおり、機械加工と比べて大量生産でき低コスト化が可能な粉末射出成形技術に注目が集まっている。   As a method other than machining, there is a powder injection molding method. In particular, in recent years, advancement of medical care, reduction of inspection costs, and disposable instrument modules for secondary infection prevention have been advanced, and attention has been focused on powder injection molding technology that can be mass-produced and reduced in cost compared to machining. Gathered.

粉末射出成形法は、金属の場合、平均粒径20μm以下の粉末を用いて成形焼結することにより密度の高い製品を得ることができる技術であり、例として、特許文献1には、射出成形法によりカップ形状の内視鏡で使用される鉗子が開示されており、特許文献2には、射出成形により医療用処置具を製造する方法が開示されている。
実開平6−13807 特開2001−98302
In the case of metal, the powder injection molding method is a technique that can obtain a product with high density by molding and sintering using a powder having an average particle size of 20 μm or less. As an example, Patent Document 1 discloses injection molding. A forceps used in a cup-shaped endoscope is disclosed by the method, and Patent Document 2 discloses a method of manufacturing a medical treatment instrument by injection molding.
6-13807 JP 2001-98302 A

しかしながら、従来の粉末射出成形方法では、平均粒径10μm程度の粉末が用いられているが、直径3mm以下のカテーテルに挿入可能な薄肉の鉗子を製造しようとした場合、成形材料がスムーズに金型に充填されず、成形が困難であるという問題があった。また、焼結後の面粗度も悪く、Raで1.5μm程度のものしか得られず、焼結後にバレル研磨、電解研磨等の2次加工が不可欠であった。
また、医療用鉗子には高強度が求められる。しかし、平均粒径10μm程度の粉末を用いた場合、1300℃以上でないと高密度の焼結体が得られないが、焼結温度を1300℃以上とした場合、結晶粒子径が大きくなり焼結強度が低下するため、所望する設計強度が得られないという問題があった。
However, in the conventional powder injection molding method, a powder having an average particle diameter of about 10 μm is used. However, when a thin forceps that can be inserted into a catheter having a diameter of 3 mm or less is to be manufactured, the molding material is a smooth mold. There was a problem that it was difficult to mold. Moreover, the surface roughness after sintering was poor, and only about 1.5 μm Ra was obtained, and secondary processing such as barrel polishing and electrolytic polishing was indispensable after sintering.
Moreover, high strength is required for the medical forceps. However, when a powder having an average particle size of about 10 μm is used, a high-density sintered body cannot be obtained unless the temperature is 1300 ° C. or higher. However, if the sintering temperature is 1300 ° C. or higher, the crystal particle size is increased and sintering is performed. Since the strength is lowered, there is a problem that a desired design strength cannot be obtained.

本発明は、以上のような従来技術における課題を考慮してなされたものであり、肉厚1mm以下の薄肉部を有する焼結体であって、表面粗度が低く、焼結密度、焼結強度の高い部品を提供すること、及び前記焼結体を2次加工なしで製造することができる粉末射出成形法を提供することを課題とする。   The present invention has been made in consideration of the above-described problems in the prior art, and is a sintered body having a thin wall portion with a thickness of 1 mm or less, having a low surface roughness, a sintered density, and a sintered body. It is an object of the present invention to provide a high-strength part and to provide a powder injection molding method capable of producing the sintered body without secondary processing.

本発明者らはまず、粉末粒径が10μm未満の金属粉末を用いて、金型への充填性の改善と製品の面粗度の向上を目指した。しかし、粉末粒径10μm未満の粉末を用いて成形、脱脂、焼結を行ったところ、次のような問題が生じた。   The inventors of the present invention first aimed to improve the filling property into the mold and the surface roughness of the product by using a metal powder having a powder particle size of less than 10 μm. However, when molding, degreasing, and sintering were performed using a powder having a powder particle size of less than 10 μm, the following problems occurred.

粉末粒径が10μm程度の場合は、バインダ量40体積%未満で流動性が確保できていたが、粉末粒径が小さくなるに従って粉末の表面積が増えるため、バインダの添加量を増やさないと流動性が確保できず、金型に充填することができなかった。
しかし、バインダの量を多くすると、成形は可能となったものの、成形後の脱脂(バインダを除去する工程)時に膨れが発生したり、そり曲がり等の変形が発生しやすくなるという問題が生じた。
When the powder particle size is about 10 μm, the fluidity was secured with a binder amount of less than 40% by volume. However, as the powder particle size becomes smaller, the surface area of the powder increases, so the fluidity must be increased without increasing the amount of binder added. Could not be secured, and the mold could not be filled.
However, when the amount of the binder is increased, molding becomes possible, but there is a problem that swelling occurs during the degreasing after the molding (step of removing the binder) and deformation such as warping is likely to occur. .

また、粉末粒径が10μm程度の場合は、焼結開始温度(粉末と粉末がひっつき始める温度)は1000℃以上であり、残留するバインダは焼結開始温度までに完全に除去されるのに対して、粉末粒径が小さくなるにつれ、焼結の開始温度も低くなり(平均粒径6μm以下では800℃以下)、焼結後の密度が十分向上しない事が分かった。   When the powder particle size is about 10 μm, the sintering start temperature (the temperature at which the powder and the powder start to stick) is 1000 ° C. or higher, whereas the remaining binder is completely removed by the sintering start temperature. Thus, it was found that as the powder particle size was reduced, the sintering start temperature was lowered (800 ° C. or less when the average particle size was 6 μm or less), and the density after sintering was not sufficiently improved.

上記問題を解決するため、変形が生じにくい脱脂条件、および所望の焼結密度と強度、並びに表面粗度を達成できる焼結条件を求めて試行錯誤を繰り返し、様々な製造条件を検討した。その結果、成形材料中の金属粉末の平均粒径と有機バインダの量、脱脂および焼結条件を所定の範囲内に調節することにより、所望の密度と強度並びに表面粗度を備えた超小型の焼結体を高寸法精度で製造することに成功し、本発明を完成した。   In order to solve the above problems, trial and error were repeated for degreasing conditions that hardly cause deformation, and sintering conditions that can achieve a desired sintered density and strength, and surface roughness, and various production conditions were examined. As a result, by adjusting the average particle size of the metal powder in the molding material, the amount of the organic binder, the degreasing and sintering conditions within a predetermined range, the ultra-compact with the desired density and strength and surface roughness can be obtained. The present invention was completed by successfully producing a sintered body with high dimensional accuracy.

すなわち本発明は、肉厚1mm以下の薄肉部を有する焼結体を製造するための方法であって、金属粉末と有機バインダを含有する成形材料を射出成形して成形体を得る工程と、前記成形体を脱脂・焼結して焼結体を得る脱脂・焼結工程とを有し、
前記金属粉末が、平均粒径1〜6μmの粉末であって、ステンレス合金粉末、チタン合金粉末、及び/又は焼結によりステンレス合金もしくはチタン合金を形成する合金前駆体粉末、から選択され、
前記成形材料中の前記有機バインダの割合が、前記成形材料全量の40〜50体積%であり、
前記脱脂・焼結工程において、焼結最高温度が900〜1200℃であり、温度帯100〜400℃における昇温速度が100℃/hr以下であり、温度帯600〜800℃における昇温速度が200℃/hr以下である
ことを特徴とする方法である。
That is, the present invention is a method for producing a sintered body having a thin portion having a thickness of 1 mm or less, the step of obtaining a molded body by injection molding a molding material containing a metal powder and an organic binder, Degreasing and sintering the molded body to obtain a sintered body,
The metal powder is a powder having an average particle diameter of 1 to 6 μm, and is selected from a stainless alloy powder, a titanium alloy powder, and / or an alloy precursor powder that forms a stainless alloy or a titanium alloy by sintering,
The ratio of the organic binder in the molding material is 40 to 50% by volume of the total amount of the molding material,
In the degreasing and sintering step, the maximum sintering temperature is 900 to 1200 ° C., the temperature increase rate in the temperature range 100 to 400 ° C. is 100 ° C./hr or less, and the temperature increase rate in the temperature range 600 to 800 ° C. It is a method characterized by being 200 ° C./hr or less.

平均粒径1μm以上6μm以下の金属粉末(ステンレス合金粉末、チタン合金粉末、前記合金の前駆体粉末)および40体積%以上50体積%以下の有機バインダを含有する成形材料を用いることにより、肉厚1mm以下の薄肉部を有する超小型焼結体用の金型にも、スムーズに成形材料を充填することができる。
また、温度帯100℃以上400℃以下における昇温速度を、100℃/hr以下とすることにより、そりや膨れなどの変形を防ぐことができる。
さらに、平均粒径1μm以上6μm以下の金属粉末を用いることにより、焼結性を著しく向上させることができ、従来1300℃以上の融点近傍で焼結しなければならなかった製品を900℃以上1200℃以下の温度で焼結密度95%以上と緻密化することができる。焼結最高温度を100℃以上低くできることにより、焼結時の変形や結晶粒子径の成長を抑制することができる。
さらにまた、温度帯600℃以上800℃以下における昇温速度を200℃/hr以下とすることにより、焼結体中のカーボン残留値を低減させることができ、焼結体の硬度及び/又は強度を高めることができる。
By using a molding material containing metal powder (stainless alloy powder, titanium alloy powder, precursor powder of the alloy) having an average particle diameter of 1 μm or more and 6 μm or less and an organic binder of 40 volume% or more and 50 volume% or less, A molding material can be filled smoothly even in a die for a micro-sintered body having a thin portion of 1 mm or less.
Moreover, deformations such as warpage and swelling can be prevented by setting the rate of temperature increase in the temperature range of 100 ° C. to 400 ° C. to 100 ° C./hr or less.
Furthermore, by using a metal powder having an average particle size of 1 μm or more and 6 μm or less, the sinterability can be remarkably improved. It can be densified with a sintered density of 95% or more at a temperature of ℃ or less. By making the maximum sintering temperature lower by 100 ° C. or more, deformation during sintering and growth of crystal particle diameter can be suppressed.
Furthermore, the carbon residual value in a sintered compact can be reduced by making the temperature increase rate in a temperature range 600 degreeC or more and 800 degrees C or less into 200 degrees C / hr or less, and the hardness and / or intensity | strength of a sintered compact. Can be increased.

さらに、温度帯600〜800℃における昇温を、水素雰囲気下あるいは真空下で行うことにより、カーボンの残留値をより低くすることができる。   Furthermore, the residual value of carbon can be made lower by raising the temperature in the temperature range of 600 to 800 ° C. in a hydrogen atmosphere or in a vacuum.

上述した方法によれば、焼結密度が95%以上、焼結後の平均面粗さがRaで1μm以下、ビッカース硬度が200〜600HV、引張強度が800MPa以上であり、肉厚1mm以下の薄肉部を有するステンレス合金若しくはチタン合金焼結体を、二次加工なしで製造することができる。   According to the above-mentioned method, the sintered density is 95% or more, the average surface roughness after sintering is 1 μm or less in Ra, the Vickers hardness is 200 to 600 HV, the tensile strength is 800 MPa or more, and the wall thickness is 1 mm or less. A stainless alloy or titanium alloy sintered body having a part can be produced without secondary processing.

上述したように、本発明の方法によれば、肉厚1mm以下の薄肉部を有する製品でも安定して成形が可能であり、焼結温度1200℃以下においても焼結密度95%以上の焼結体を得ることができる。また、従来の焼結温度より100℃以上低い低温焼結が可能となるため、焼結時の変形が小さくなり、結晶粒子径の成長も抑制することができる。さらに、上述した脱脂・焼結工程を採用することにより、脱脂時の変形を防ぎ、焼結体中のカーボン残留値を低減させることができる。そのため、焼結後の平均面粗さがRaで1μm以下、ビッカース硬度200HV以上600HV以下、引張強度800MPa以上である焼結体を寸法精度高く製造することができる。   As described above, according to the method of the present invention, even a product having a thin portion having a thickness of 1 mm or less can be stably molded, and a sintering density of 95% or more can be achieved even at a sintering temperature of 1200 ° C. or less. You can get a body. Further, since low temperature sintering lower by 100 ° C. than the conventional sintering temperature is possible, deformation during sintering is reduced, and growth of crystal particle diameter can be suppressed. Furthermore, by adopting the above-described degreasing / sintering process, deformation during degreasing can be prevented, and the carbon residual value in the sintered body can be reduced. Therefore, a sintered body having an average surface roughness after sintering of Ra of 1 μm or less, a Vickers hardness of 200 HV or more and 600 HV or less, and a tensile strength of 800 MPa or more can be produced with high dimensional accuracy.

従って、プレス加工や切削加工、あるいは従来の粉末射出成型法では製造できなかった、複雑形状かつ高強度の薄肉製品を製造することができ、これにより、掴む・放す・切る・ねじる等の高度な動作を必要とする医療用鉗子のように、複雑な開閉機構を有するものであっても、最大箇所の厚み3mm以下で、寸法精度に優れた信頼性の高いマイクロ鉗子を製造することが可能である。さらに、本発明にかかる焼結品は、チタン合金・ステンレス合金からなるため、耐食性に優れ、医療用器具として用いるのに好適である。また、本発明にかかる製造方法によれば、前記焼結体を機械加工なしで製造することができるため、製造工程が簡易であり、複雑形状の製品の大量生産にも適している。   Therefore, it is possible to manufacture thin products with complex shapes and high strength that could not be manufactured by press processing, cutting processing, or conventional powder injection molding methods. This enables advanced manufacturing such as grasping, releasing, cutting, and twisting. Even if it has a complicated opening and closing mechanism, such as medical forceps that require movement, it is possible to manufacture highly reliable micro forceps with excellent dimensional accuracy with a maximum thickness of 3 mm or less. is there. Furthermore, since the sintered product according to the present invention is made of a titanium alloy / stainless alloy, it has excellent corrosion resistance and is suitable for use as a medical instrument. Moreover, according to the manufacturing method concerning this invention, since the said sintered compact can be manufactured without machining, a manufacturing process is simple and it is suitable also for mass production of the product of a complicated shape.

本発明において金属粉末とは、焼結中の固相反応により、所望する組成のステンレス合金あるいはチタン合金となる金属粉末を指す。すなわち本発明における金属粉末は、ステンレス合金の粉末あるいはチタン合金の粉末でもよく、または焼結後に所望の組成の合金となるように配合された複数の金属粉末(合金前駆体粉末)でもよい。
例えば、ステンレス合金であれば、鉄粉末にニッケル粉末、クロム粉末を所望する焼結合金組成に合わせて配合し、混練、成形、脱脂、焼結することで、ステンレス合金焼結体を得ることができる。同様にチタン合金であれば、例えば純チタン粉末にアルミバナジウム粉末を所望する焼結合金組成に合わせて配合することにより、チタンアルミバナジウム合金焼結体を得ることができる。
In the present invention, the metal powder refers to a metal powder that becomes a stainless alloy or titanium alloy having a desired composition by a solid-phase reaction during sintering. That is, the metal powder in the present invention may be a stainless alloy powder or a titanium alloy powder, or may be a plurality of metal powders (alloy precursor powders) blended so as to become an alloy having a desired composition after sintering.
For example, in the case of a stainless steel alloy, nickel powder and chromium powder are blended with iron powder according to the desired sintered alloy composition, and a stainless steel sintered body can be obtained by kneading, molding, degreasing, and sintering. it can. Similarly, in the case of a titanium alloy, for example, a titanium aluminum vanadium alloy sintered body can be obtained by blending aluminum vanadium powder with pure titanium powder in accordance with a desired sintered alloy composition.

ステンレス合金焼結体を製造するための代表的な合金材料として、SUS304, SUS310, SUS316, SUS317, SUS410, SUS420, SUS440, SUS630, SUS631を挙げることができる。耐食性、硬度、強度の面からSUS630, SUS631, SUS420J2, SUS440が特に望ましい。また、SUS630, SUS420J2, SUS440材料と上記他のステンレス材料を混合して用いてもよい。
チタン合金焼結体を製造するためには、純チタン以外にAl, V, Nb, Sn, Zr, Fe, Mo, Crを適宜添加すればよい。耐食性、硬度、強度の面からTi-Al-V合金、Ti-Nb合金が特に望ましい。
また、上記ステンレス材料、並びにチタン材料に対して他の金属材料、セラミックス材料を添加してさらに硬度を高めることも可能である。
As typical alloy materials for producing a stainless alloy sintered body, SUS304, SUS310, SUS316, SUS317, SUS410, SUS420, SUS440, SUS630, and SUS631 may be mentioned. SUS630, SUS631, SUS420J2, and SUS440 are particularly desirable in terms of corrosion resistance, hardness, and strength. Moreover, you may use SUS630, SUS420J2, SUS440 material, and the said other stainless steel material in mixture.
In order to produce a titanium alloy sintered body, Al, V, Nb, Sn, Zr, Fe, Mo, and Cr may be added as appropriate in addition to pure titanium. Ti-Al-V alloy and Ti-Nb alloy are particularly desirable in terms of corrosion resistance, hardness and strength.
Further, it is possible to further increase the hardness by adding other metal materials and ceramic materials to the stainless steel material and the titanium material.

本発明における金属粉末の粒子径は、平均粒子径で1μm以上6μm以下である。平均粒子径が6μmよりも大きい場合には、1200℃以下で焼結が十分に進行せず、密度が低下し強度が低くなると共に、表面粗さがRaで1μm以上になる。平均粒子径が1μm未満の場合には粉末の酸化量が1%以上と高くなり、1200℃以下での焼結が不十分となって、脆くなる。また、平均粒子径が1μm未満の場合は、比表面積が大きくなるため、添加するバインダ量が増加し、脱脂時に膨れや割れが生じやすくなり、焼結後の残留炭素量も0.1%以上と高くなるため、チタンの場合には脆くなり、ステンレスの場合も、焼結後の焼き入れ工程で硬度がでない。
本発明において、より好ましい金属粉末は、平均粒径2μm以上6μm以下の粉末であり、特に好ましくは平均粒径2μm以上4μm以下の粉末である。
The particle diameter of the metal powder in the present invention is 1 μm or more and 6 μm or less in terms of average particle diameter. When the average particle diameter is larger than 6 μm, sintering does not proceed sufficiently at 1200 ° C. or lower, the density is lowered and the strength is lowered, and the surface roughness Ra is 1 μm or more. When the average particle diameter is less than 1 μm, the amount of oxidation of the powder becomes as high as 1% or more, and sintering at 1200 ° C. or less becomes insufficient and becomes brittle. In addition, when the average particle size is less than 1 μm, the specific surface area becomes large, so the amount of binder to be added increases, and swelling and cracking are likely to occur during degreasing, and the amount of residual carbon after sintering is 0.1% or more. Therefore, in the case of titanium, it becomes brittle, and in the case of stainless steel, hardness is not obtained in the quenching process after sintering.
In the present invention, a more preferable metal powder is a powder having an average particle diameter of 2 μm or more and 6 μm or less, and particularly preferably a powder having an average particle diameter of 2 μm or more and 4 μm or less.

本発明の方法で用いられる成形材料は、成形材料の全量の40体積%以上50体積%以下の有機バインダを含む。バインダ量が40体積%未満の場合には成形時に十分な流動性が得られず、所望する焼結体を製造することができない。他方、バインダ量が50体積%を超えると、バインダの脱脂工程での除去が困難になり、成形体中に割れ、膨れ、変形を生じる。より好ましいバインダ量は、45体積%以上50体積%以下である。   The molding material used in the method of the present invention contains 40% by volume or more and 50% by volume or less of an organic binder based on the total amount of the molding material. When the amount of the binder is less than 40% by volume, sufficient fluidity cannot be obtained at the time of molding, and a desired sintered body cannot be produced. On the other hand, when the amount of the binder exceeds 50% by volume, it becomes difficult to remove the binder in the degreasing step, and the molded body is cracked, swollen, and deformed. A more preferable binder amount is 45% by volume or more and 50% by volume or less.

有機バインダには熱可塑性樹脂、ワックス、可塑剤、潤滑剤等が用いられる。
熱可塑性樹脂は成形後の保形性を高める効果がある。熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリアセタール、エチレン酢酸ビニル、ポリビニルブチラール等を挙げることができる。ワックスには成形時の流動性を高め、脱脂時の熱分解を容易にする効果がある。ワックスの例としては、パラフィンワックス、カルナバワックス、エステルワックス等を挙げることができる。可塑剤には成形時の温度を下げる働きと柔軟性付与の役割がある。可塑剤の例として、ジオクチルフタレート、ジブチルフタレート等のフタル酸系化合物を挙げることができる。潤滑剤には成形時の流動性を促進する働きがある。潤滑剤の例として、ステアリン酸、ミリスチン酸、オレイン酸等の脂肪酸エステル化合物を挙げることができる。
For the organic binder, thermoplastic resin, wax, plasticizer, lubricant and the like are used.
Thermoplastic resins have the effect of increasing shape retention after molding. Examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, acrylic resin, polyacetal, ethylene vinyl acetate, polyvinyl butyral, and the like. Wax has the effect of increasing fluidity during molding and facilitating thermal decomposition during degreasing. Examples of the wax include paraffin wax, carnauba wax, ester wax and the like. The plasticizer has a role of lowering the temperature during molding and a role of imparting flexibility. Examples of the plasticizer include phthalic acid compounds such as dioctyl phthalate and dibutyl phthalate. The lubricant has a function of promoting fluidity during molding. Examples of the lubricant include fatty acid ester compounds such as stearic acid, myristic acid, and oleic acid.

本発明において脱脂温度(脱脂時の最高温度)は400℃以上800℃以下であることが好ましい。脱脂温度が400℃未満の場合は成形体内部にバインダが残留する恐れがあり、800℃を超えると焼結の進行が始まる。より好ましい脱脂温度は500℃以上600℃以下である。   In the present invention, the degreasing temperature (maximum temperature during degreasing) is preferably 400 ° C. or higher and 800 ° C. or lower. When the degreasing temperature is less than 400 ° C., the binder may remain inside the molded body. When the degreasing temperature exceeds 800 ° C., the sintering starts. A more preferable degreasing temperature is 500 ° C. or higher and 600 ° C. or lower.

本発明において、100℃から400℃の温度帯における昇温速度は100℃/hr以下である。この温度帯における昇温速度を100℃/hrよりも速くした場合、そり変形、膨れが発生しやすい。他方、昇温速度が遅すぎる場合は、時間がかかりすぎ、量産工程に対する経済性に適応できない。100℃から400℃の温度帯における昇温速度は、より好ましくは10℃/hr以上100℃/hr以下であり、特に好ましくは15℃/hr以上50℃/hr以下である。   In the present invention, the rate of temperature increase in the temperature range from 100 ° C. to 400 ° C. is 100 ° C./hr or less. When the rate of temperature increase in this temperature range is higher than 100 ° C./hr, warpage and swelling are likely to occur. On the other hand, if the rate of temperature rise is too slow, it takes too much time and cannot be applied to the economy for mass production processes. The rate of temperature rise in the temperature range of 100 ° C. to 400 ° C. is more preferably 10 ° C./hr or more and 100 ° C./hr or less, and particularly preferably 15 ° C./hr or more and 50 ° C./hr or less.

本発明の焼結工程において、焼結最高温度は900℃以上1200℃以下である。焼結最高温度が900℃未満の場合には、平均粒径1μm以上6μm以下の粉末を用いた場合においても、十分に焼結が進行しない。焼結最高温度が1200℃を超えると、結晶粒子径が大きくなり焼結強度が低下する。より好ましい焼結最高温度は、1000℃以上1200℃以下である。焼結密度を高め、結晶粒子径を抑えるためには1000℃以上1150℃以下が特に望ましい。   In the sintering step of the present invention, the maximum sintering temperature is 900 ° C. or higher and 1200 ° C. or lower. When the maximum sintering temperature is less than 900 ° C., even when a powder having an average particle diameter of 1 μm or more and 6 μm or less is used, the sintering does not proceed sufficiently. When the maximum sintering temperature exceeds 1200 ° C., the crystal grain size increases and the sintering strength decreases. The more preferable maximum sintering temperature is 1000 ° C. or higher and 1200 ° C. or lower. In order to increase the sintered density and suppress the crystal grain size, it is particularly desirable that the temperature is 1000 ° C. or higher and 1150 ° C. or lower.

本発明において、温度帯600℃以上800℃以下の昇温速度は200℃/hr以下である。600〜800℃の間を1時間未満(>200℃/hr)で昇温させた場合には、焼結体中のカーボンの残留量が高く(0.15%以上)、強度が低下する。600℃から800℃の温度帯における昇温速度は、より好ましくは100℃/hr以下であり、特に好ましくは10℃/hr以上80℃/hr以下、さらに好ましくは10℃/hr以上65℃/hr以下である。
600〜800℃の間を3時間かけて昇温すれば(約65℃/hr)、カーボン残留値を0.05%以下にすることが可能となる。特にこの工程を水素雰囲気下、真空下で行えば、カーボン残留値を効果的に低減することができる。
In the present invention, the temperature rising rate in the temperature zone of 600 ° C. or higher and 800 ° C. or lower is 200 ° C./hr or lower. When the temperature is raised between 600 and 800 ° C. for less than 1 hour (> 200 ° C./hr), the residual amount of carbon in the sintered body is high (0.15% or more) and the strength is lowered. The rate of temperature rise in the temperature range of 600 ° C. to 800 ° C. is more preferably 100 ° C./hr or less, particularly preferably 10 ° C./hr or more and 80 ° C./hr or less, further preferably 10 ° C./hr or more and 65 ° C./hr. hr or less.
If the temperature is raised between 600 and 800 ° C. over 3 hours (about 65 ° C./hr), the carbon residual value can be made 0.05% or less. In particular, if this step is performed under a hydrogen atmosphere and under vacuum, the carbon residual value can be effectively reduced.

本発明の焼結体の肉厚は最大で2mm以下が望ましく、1mm以下がより好ましい。肉厚が2mmを越えると添加するバインダの脱脂工程での除去が困難になり、割れ、膨れ、変形を生じやすい。本発明の方法によれば、焼結密度が95%以上、平均面粗さがRaで1μm以下、ビッカース硬度が200〜600HV、引張強度が800MPa以上であり、把持部(鋏形状の刃に該当する部分)の平均肉厚0.2mm程度の薄肉の鉗子部品であっても高寸法精度で製造することが可能である。また、肉厚0.05〜0.1mmの薄肉部を有する複雑形状の焼結体を製造することも可能である。   The maximum thickness of the sintered body of the present invention is preferably 2 mm or less, and more preferably 1 mm or less. If the wall thickness exceeds 2 mm, it is difficult to remove the added binder in the degreasing process, and cracking, swelling and deformation are likely to occur. According to the method of the present invention, the sintered density is 95% or more, the average surface roughness Ra is 1 μm or less, the Vickers hardness is 200 to 600 HV, the tensile strength is 800 MPa or more, and the gripping part (corresponds to a bowl-shaped blade) Even a thin forceps component having an average wall thickness of about 0.2 mm can be manufactured with high dimensional accuracy. It is also possible to manufacture a complex-shaped sintered body having a thin portion with a thickness of 0.05 to 0.1 mm.

また、本発明では焼結体の肉厚が非常に薄いために、脱脂焼結工程での分割が困難な場合があるため、脱脂、焼結工程を一工程で行うことが望ましい。好ましくは、脱脂・焼結工程を同一炉内若しくは連続炉内で行う。  Further, in the present invention, since the thickness of the sintered body is very thin, it may be difficult to divide in the degreasing and sintering step. Therefore, it is desirable to perform the degreasing and sintering steps in one step. Preferably, the degreasing and sintering steps are performed in the same furnace or in a continuous furnace.

焼結体の硬度に関しては、熱処理後の硬さがビッカース硬度で200HV以上600HV以下(JIS Z2244で規定される測定において)であることが望ましい。硬度が200HVより低いと荷重がかかる場所においては変形しやすく、硬度が600HVより高くなった場合には、製品が薄いために曲げ方向の衝撃により、欠け割れが発生する可能性が高い。より好ましい硬度は、200HV以上550HV以下、特に好ましくは300HV以上500HV以下である。
焼結体の表面粗度に関しては、焼結後の平均面粗さがRaで1μm以下(JIS B0601で規定される測定において)であることが望ましい。特に好ましくは0.5μm以下である。
Regarding the hardness of the sintered body, it is desirable that the hardness after the heat treatment is 200 HV or more and 600 HV or less (in the measurement defined by JIS Z2244) in terms of Vickers hardness. If the hardness is lower than 200 HV, it is likely to be deformed in a place where a load is applied, and if the hardness is higher than 600 HV, there is a high possibility of chipping due to impact in the bending direction because the product is thin. More preferable hardness is 200 HV or more and 550 HV or less, and particularly preferably 300 HV or more and 500 HV or less.
Regarding the surface roughness of the sintered body, the average surface roughness after sintering is preferably 1 μm or less in Ra (in the measurement specified by JIS B0601). Particularly preferably, it is 0.5 μm or less.

焼結体の焼結密度に関しては、95%以上であることが望ましい。焼結密度が95%未満の場合、強度が低くなると共に、硬度が低下して、割れ、曲がりの原因になる。より好ましい焼結密度は、97%以上である。   The sintered density of the sintered body is desirably 95% or more. When the sintered density is less than 95%, the strength is lowered and the hardness is lowered, which causes cracking and bending. A more preferable sintered density is 97% or more.

本発明の方法で製造するのに適した焼結体の例として、直径3mm以下のカテーテルで使用される医療用マイクロ鉗子を挙げることができる(図1〜4参照:図に示す数値の単位はミリメートルである)。図1に示す鉗子は、最大箇所の厚み1mm、全長約7mmの鉗子であり、各部品の寸法は図2〜4に示すとおりである。本発明によれば、鉗子のように複雑な開閉機構を有する製品であっても、肉厚1mm以下のサイズで製造することが可能である。鉗子を構成する把持部材1および把持部材2はそれぞれ、厚みが0.2mmであり、先端部の幅が0.3mmであり、付け根部分の幅が0.4mmの先細り形状の把持部(ハサミの刃に該当する部分)を有する。また、把持部の先端は丸みを帯びて形成されている(R0.15)。開閉機構部分には、直径0.2mmの貫通孔とこの孔に嵌合する円柱状の凸部が含まれる。貫通孔の管壁の厚みは約0.1mm、管壁の長さは0.15mmと極小サイズであるが、本発明の方法を用いれば、焼結密度が95%以上、平均面粗さがRaで1μm以下、ビッカース硬度が200〜600HV、引張強度が800MPa以上の焼結品を製造することが可能である。
さらに、図1の焼結体はハサミ形状の鉗子であるが、射出成形により所望する形状に変更することが容易であるため、ハサミの先の角度を任意に変えることや、刃先に滑り止めとなる鋸歯形状を設けることも可能である。また、本発明の焼結体は、表面粗さがRaで1μm以下であるため、前記ハサミ後部を金属製ワイヤで操作することにより、図1に示す非常に小さな形状の鉗子であっても容易に操作することができる。
As an example of a sintered body suitable for manufacturing by the method of the present invention, there can be mentioned medical micro forceps used in a catheter having a diameter of 3 mm or less (see FIGS. 1 to 4). Mm). The forceps shown in FIG. 1 is a forceps having a maximum thickness of 1 mm and a total length of about 7 mm, and the dimensions of each component are as shown in FIGS. According to the present invention, even a product having a complicated opening / closing mechanism such as forceps can be manufactured with a thickness of 1 mm or less. Each of the gripping member 1 and the gripping member 2 constituting the forceps has a tapered gripping portion (scissors of scissors) having a thickness of 0.2 mm, a tip portion width of 0.3 mm, and a root portion width of 0.4 mm. Part corresponding to the blade). In addition, the tip of the gripping part is rounded (R0.15). The opening / closing mechanism portion includes a through hole having a diameter of 0.2 mm and a cylindrical convex portion that fits into the hole. The tube wall thickness of the through-hole is about 0.1 mm and the tube wall length is 0.15 mm, which is an extremely small size. However, if the method of the present invention is used, the sintered density is 95% or more and the average surface roughness is It is possible to produce a sintered product having an Ra of 1 μm or less, a Vickers hardness of 200 to 600 HV, and a tensile strength of 800 MPa or more.
Furthermore, although the sintered body of FIG. 1 is a scissors-shaped forceps, it is easy to change to a desired shape by injection molding. Therefore, the angle of the scissors tip can be arbitrarily changed, and the blade edge can be prevented from slipping. It is also possible to provide a sawtooth shape. In addition, since the sintered body of the present invention has a surface roughness Ra of 1 μm or less, the forceps having a very small shape shown in FIG. 1 can be easily obtained by operating the rear portion of the scissors with a metal wire. Can be operated.

その他、本発明の方法で製造するのに適した焼結体の例として、鉗子部品以外に内視鏡部品、人工臓器部品、人工骨部品、歯科矯正部品等が挙げられる。併せて医療以外にも従来の粉末射出成形で製造された部品よりも強度が高くなるため、精密機械部品、自動車部品等にも応用可能である。   In addition to the forceps parts, examples of sintered bodies suitable for manufacturing by the method of the present invention include endoscope parts, artificial organ parts, artificial bone parts, orthodontic parts, and the like. In addition to medical treatment, the strength is higher than that of parts manufactured by conventional powder injection molding, so it can be applied to precision machine parts, automobile parts, and the like.

以下、実施例に基づき、本発明の焼結体を製造する方法をより詳細に説明する。   Hereinafter, based on an Example, the method to manufacture the sintered compact of this invention is demonstrated in detail.

表1に示す粉末材料の組成並びに条件にて焼結体(図1に示す医療用鉗子)を製造した。なお、脱脂に関してはステンレス系材料に関しては窒素雰囲気で室温から500℃までを12時間で昇温した(昇温速度約40℃/hr)。チタン系材料に関してはアルゴン雰囲気で室温から500℃までを12時間で昇温した(昇温速度約40℃/hr)。
焼結条件に関しては最高温度で2時間保持して行った。ステンレス系材料は焼結にアルゴンガスを用いて行った。チタン系材料は焼結を高真空下(1×10-2pa)で行った。また、500℃から焼結最高温度までの昇温速度は100℃/hrで行った。
A sintered body (medical forceps shown in FIG. 1) was manufactured under the composition and conditions of the powder material shown in Table 1. Regarding degreasing, for stainless steel materials, the temperature was raised from room temperature to 500 ° C. in a nitrogen atmosphere in 12 hours (temperature increase rate of about 40 ° C./hr). Regarding the titanium-based material, the temperature was raised from room temperature to 500 ° C. in an argon atmosphere over 12 hours (temperature increase rate of about 40 ° C./hr).
The sintering conditions were maintained at the maximum temperature for 2 hours. Stainless steel materials were sintered using argon gas. The titanium-based material was sintered under high vacuum (1 × 10 −2 pa). Further, the heating rate from 500 ° C. to the maximum sintering temperature was 100 ° C./hr.

Figure 2008179860
Figure 2008179860

得られた焼結体の物性を表2に示す。焼結密度はアルキメデス法(水中置換法)を用いて測定し、引張強度は万能試験機を用いて測定し(引張速度5mm/min)、ビッカース硬度はマイクロビッカース硬度計を用いて測定し(JIS Z2244の規定に基づく)、表面粗さは接触式の表面粗さ測定装置を用いて測定した(JIS B0601の規定に基づく)。   Table 2 shows the physical properties of the obtained sintered body. The sintered density was measured using the Archimedes method (in-water replacement method), the tensile strength was measured using a universal testing machine (tensile speed 5 mm / min), and the Vickers hardness was measured using a micro Vickers hardness meter (JIS). The surface roughness was measured using a contact-type surface roughness measuring device (based on JIS B0601).

Figure 2008179860
Figure 2008179860

脱脂条件の検討
有機バインダを40〜50体積%(特に45〜50体積%)含有する成形材料(金属粉末+有機バインダ)を脱脂した場合、膨れや、そり曲がりの変形が発生しやすかった。そのため、脱脂パターンについて検討を行った結果、100℃〜400℃の昇温速度を調節することにより、脱脂時の変形を防ぐことに成功した。
100℃から400℃の間を1時間あたり10〜200℃の速度で昇温した結果、100℃/hrよりも早い速度で昇温した場合にはそり変形、膨れが発生しやすかった。
Examination of degreasing conditions When a molding material (metal powder + organic binder) containing 40 to 50% by volume (especially 45 to 50% by volume) of an organic binder was degreased, swelling and warping and bending were likely to occur. Therefore, as a result of examining the degreasing pattern, it succeeded in preventing the deformation | transformation at the time of degreasing by adjusting the temperature increase rate of 100 to 400 degreeC.
As a result of increasing the temperature from 100 ° C. to 400 ° C. at a rate of 10 to 200 ° C. per hour, warping and swelling were likely to occur when the temperature was increased at a rate faster than 100 ° C./hr.

焼結条件の検討
上記脱脂工程を経た後も少量のバインダが残存するが、平均粒子径6μm以下の粉末を用いた場合は焼結開始温度が800℃以下となるため、残存するバインダが焼結開始温度までに完全に除去されず、焼結後の密度が十分に向上しなかった。そのため、焼結パターンについて検討を行った結果、600℃〜800℃の昇温速度を調節することにより、焼結密度を向上させることに成功した。
Examination of sintering conditions A small amount of binder remains even after the above degreasing process, but when a powder having an average particle diameter of 6 μm or less is used, the sintering start temperature is 800 ° C. or less, so that the remaining binder is sintered. It was not completely removed by the start temperature, and the density after sintering was not sufficiently improved. Therefore, as a result of examining the sintered pattern, the inventors succeeded in improving the sintered density by adjusting the heating rate of 600 ° C. to 800 ° C.

600〜800℃の間を1時間未満(>200℃/hr)で昇温させた場合には焼結体中のカーボン残留量は約0.15%程度であった。600〜800℃の間を2時間以上(<100℃/hr)かけて昇温することにより、カーボン残留値を0.1%以下に低減することができた。また、600〜800℃の間を3時間かけて昇温すれば(約65℃/hr)、カーボンの残留値は0.05%以下になった。特に600〜800℃間の昇温を水素雰囲気下、真空下で行う事で効果が認められた。カーボン残留量は、燃焼式カーボン測定装置により測定した。   When the temperature was raised between 600 and 800 ° C. for less than 1 hour (> 200 ° C./hr), the carbon residual amount in the sintered body was about 0.15%. By raising the temperature between 600 and 800 ° C. over 2 hours (<100 ° C./hr), the carbon residual value could be reduced to 0.1% or less. Further, when the temperature was raised between 600 and 800 ° C. over 3 hours (about 65 ° C./hr), the residual value of carbon became 0.05% or less. In particular, the effect was recognized by raising the temperature between 600 to 800 ° C. under a hydrogen atmosphere and under vacuum. The carbon residual amount was measured by a combustion type carbon measuring device.

粉末粒子径の検討
平均粒径10μm未満の各サイズの金属粉末を用いて、図1に示す鉗子の成形、脱脂、焼結を試み、最適な粒径を検討した。
粒子径が1μmよりも小さくなった場合には、添加するバインダ量が体積比で50体積%を超えることで、焼結後の残留炭素量が多くなるため、チタンの場合には脆くなり、ステンレスの場合にも残留炭素が多くなるため、焼結後の焼き入れ工程で硬度がでなかった。粉末の粒子径(平均粒子径)1μm以上であれば残留炭素が軽減され、求める特性を得ることが出来た。特に平均粒子径2μm以上の粉末を用いた場合、求める特性が得やすかった。
他方、平均粒子径7μm以上の場合は表面粗さがRaで1μmを超えた。平均粒子径が6μmを上回る場合は、焼結最高温度1200℃以下での焼結密度が95%未満であった。
なお、平均粒子径10μm以上の場合は、金型への充填が困難であった。
Examination of Powder Particle Diameter Using metal powders of various sizes with an average particle diameter of less than 10 μm, attempts were made to mold, degrease and sinter the forceps shown in FIG.
When the particle diameter is smaller than 1 μm, the amount of binder to be added exceeds 50% by volume, and the amount of residual carbon after sintering increases. In this case, since the amount of residual carbon increases, the hardness was not achieved in the quenching process after sintering. If the particle diameter (average particle diameter) of the powder was 1 μm or more, the residual carbon was reduced and the desired characteristics could be obtained. In particular, when a powder having an average particle diameter of 2 μm or more was used, the desired characteristics were easily obtained.
On the other hand, when the average particle diameter was 7 μm or more, the surface roughness Ra exceeded 1 μm. When the average particle diameter exceeded 6 μm, the sintering density at a maximum sintering temperature of 1200 ° C. or less was less than 95%.
When the average particle size was 10 μm or more, it was difficult to fill the mold.

実施例及び比較例の結果から、本発明により、0.1〜0.2mmの薄肉部を有する複雑形状の医療用鉗子部品であっても、寸法精度に優れ、面粗度の低い、密度、強度、硬度の高い部品を製造できることが分かった。   From the results of Examples and Comparative Examples, according to the present invention, even a medical forceps component having a complicated shape having a thin portion of 0.1 to 0.2 mm has excellent dimensional accuracy, low surface roughness, density, It was found that parts with high strength and hardness can be manufactured.

本発明にかかる焼結体(医療用鉗子)を示す図であり、Aは正面図、Bは分解斜視図である。It is a figure which shows the sintered compact (medical forceps) concerning this invention, A is a front view, B is a disassembled perspective view. 把持部材1の図であって、Aは正面図、Bは底面図である。It is a figure of the holding member 1, Comprising: A is a front view, B is a bottom view. 把持部材2の図であって、Aは正面図、Bは底面図である。It is a figure of the holding member 2, Comprising: A is a front view and B is a bottom view. 外装パイプの図であって、Aは正面図、Bは底面図、Cは左側面図である。It is a figure of an exterior pipe, A is a front view, B is a bottom view, and C is a left side view.

符号の説明Explanation of symbols

1 把持部材1
2 把持部材2
3 外装パイプ
1 Holding member 1
2 Gripping member 2
3 Exterior pipe

Claims (7)

肉厚1mm以下の薄肉部を有する焼結体を製造するための方法であって、金属粉末と有機バインダを含有する成形材料を射出成形して成形体を得る工程と、前記成形体を脱脂・焼結して焼結体を得る脱脂・焼結工程とを有し、
前記金属粉末が、平均粒径1〜6μmの粉末であって、ステンレス合金粉末、チタン合金粉末、及び/又は焼結によりステンレス合金もしくはチタン合金を形成する合金前駆体粉末、から選択され、
前記成形材料中の前記有機バインダの割合が、前記成形材料全量の40〜50体積%であり、
前記脱脂・焼結工程において、焼結最高温度が900〜1200℃であり、温度帯100〜400℃における昇温速度が100℃/hr以下であり、温度帯600〜800℃における昇温速度が200℃/hr以下である
ことを特徴とする方法。
A method for producing a sintered body having a thin portion having a thickness of 1 mm or less, a step of obtaining a molded body by injection molding a molding material containing a metal powder and an organic binder, and degreasing the molded body Degreasing and sintering process to obtain a sintered body by sintering,
The metal powder is a powder having an average particle diameter of 1 to 6 μm, and is selected from a stainless alloy powder, a titanium alloy powder, and / or an alloy precursor powder that forms a stainless alloy or a titanium alloy by sintering,
The ratio of the organic binder in the molding material is 40 to 50% by volume of the total amount of the molding material,
In the degreasing and sintering step, the maximum sintering temperature is 900 to 1200 ° C., the temperature increase rate in the temperature range 100 to 400 ° C. is 100 ° C./hr or less, and the temperature increase rate in the temperature range 600 to 800 ° C. 200.degree. C./hr or less.
温度帯600〜800℃における昇温が、水素雰囲気下あるいは真空下で行われることを特徴とする、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the temperature rise in a temperature range of 600 to 800 ° C. is performed in a hydrogen atmosphere or in a vacuum. 前記脱脂・焼結工程を同一炉内若しくは連続炉内で行うことを特徴とする、請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the degreasing and sintering steps are performed in the same furnace or in a continuous furnace. 前記金属粉末の平均粒径が2〜4μmであることを特徴とする、請求項1〜3のいずれか1項に記載の製造方法。   The average particle diameter of the said metal powder is 2-4 micrometers, The manufacturing method of any one of Claims 1-3 characterized by the above-mentioned. 焼結密度が95%以上、焼結後の平均面粗さがRaで1μm以下、ビッカース硬度が200〜600HV、引張強度が800MPa以上の焼結体を製造することを特徴とする、請求項1〜4のいずれか1項に記載の製造方法。   2. A sintered body having a sintered density of 95% or more, an average surface roughness after sintering of Ra of 1 μm or less, a Vickers hardness of 200 to 600 HV, and a tensile strength of 800 MPa or more is manufactured. The manufacturing method of any one of -4. 焼結密度が95%以上、平均面粗さがRaで1μm以下、ビッカース硬度が200〜600HV、引張強度が800MPa以上であり、肉厚1mm以下の薄肉部を有することを特徴とする、ステンレス合金焼結体若しくはチタン合金焼結体。   Stainless steel alloy characterized by having a thin portion with a sintered density of 95% or more, an average surface roughness Ra of 1 μm or less, a Vickers hardness of 200 to 600 HV, a tensile strength of 800 MPa or more, and a wall thickness of 1 mm or less. Sintered body or titanium alloy sintered body. 最大肉厚が3mm以下の医療用鉗子部品であることを特徴とする、請求項6に記載の焼結体。   The sintered body according to claim 6, wherein the sintered body is a medical forceps component having a maximum thickness of 3 mm or less.
JP2007014493A 2007-01-25 2007-01-25 Method for manufacturing sintered body Expired - Fee Related JP4952912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014493A JP4952912B2 (en) 2007-01-25 2007-01-25 Method for manufacturing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014493A JP4952912B2 (en) 2007-01-25 2007-01-25 Method for manufacturing sintered body

Publications (2)

Publication Number Publication Date
JP2008179860A true JP2008179860A (en) 2008-08-07
JP4952912B2 JP4952912B2 (en) 2012-06-13

Family

ID=39723977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014493A Expired - Fee Related JP4952912B2 (en) 2007-01-25 2007-01-25 Method for manufacturing sintered body

Country Status (1)

Country Link
JP (1) JP4952912B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041735A1 (en) * 2008-10-09 2010-04-15 株式会社Ihi Method of manufacturing variable vane
JP2010275570A (en) * 2009-05-26 2010-12-09 Toyota Motor Corp Heat treatment method for sintered component, and heat treatment device for sintered component
WO2011152359A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
CN102335745A (en) * 2011-10-26 2012-02-01 湖南瀚德微创医疗科技有限公司 Method for preparing disposable minimally invasive surgical scissor blades

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892674A (en) * 1994-09-21 1996-04-09 Seiko Instr Inc Ornamental titanium alloy and its ornament
JPH10337294A (en) * 1996-07-25 1998-12-22 Injietsukusu:Kk Buccal tube
JP2004076095A (en) * 2002-08-19 2004-03-11 National Institute Of Advanced Industrial & Technology Sintered titanium alloy and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892674A (en) * 1994-09-21 1996-04-09 Seiko Instr Inc Ornamental titanium alloy and its ornament
JPH10337294A (en) * 1996-07-25 1998-12-22 Injietsukusu:Kk Buccal tube
JP2004076095A (en) * 2002-08-19 2004-03-11 National Institute Of Advanced Industrial & Technology Sintered titanium alloy and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041735A1 (en) * 2008-10-09 2010-04-15 株式会社Ihi Method of manufacturing variable vane
CN102177324A (en) * 2008-10-09 2011-09-07 株式会社Ihi Method of manufacturing variable vane
JP2010275570A (en) * 2009-05-26 2010-12-09 Toyota Motor Corp Heat treatment method for sintered component, and heat treatment device for sintered component
WO2011152359A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JPWO2011152359A1 (en) * 2010-05-31 2013-08-01 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and production method thereof, densified titanium alloy material using the same, and production method thereof
JP5855565B2 (en) * 2010-05-31 2016-02-09 東邦チタニウム株式会社 Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
CN102335745A (en) * 2011-10-26 2012-02-01 湖南瀚德微创医疗科技有限公司 Method for preparing disposable minimally invasive surgical scissor blades
CN102335745B (en) * 2011-10-26 2013-09-11 湖南瀚德微创医疗科技有限公司 Method for preparing disposable minimally invasive surgical scissor blades

Also Published As

Publication number Publication date
JP4952912B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
Dehghan-Manshadi et al. Metal injection moulding of surgical tools, biomaterials and medical devices: A review
JP5311941B2 (en) Metal powder for powder metallurgy, sintered body and method for producing sintered body
JP5617381B2 (en) Titanium sintered body and method for producing titanium sintered body
JP4317906B1 (en) Method for manufacturing variable vanes
JP4240512B1 (en) Turbine wheel manufacturing method
JP4952912B2 (en) Method for manufacturing sintered body
JP2011052289A (en) Method for producing implant made of titanium alloy
JP6342844B2 (en) Turbine wheel manufacturing method
JP2009542905A (en) Manufacturing method of alloy parts by metal injection molding and alloy parts thereof
JP2015165038A (en) Surgical device, metal powder for powder metallurgy, and method of producing surgical device
WO2012124661A1 (en) Titanium-magnesium material having high strength and low elasticity
CN104611673A (en) Manufacture method of molybdenum alloy target material
CN112826616A (en) Titanium alloy orthodontic pliers and preparation method thereof
Suharno et al. Vacuum sintering process in metal injection molding for 17-4 ph stainless steel as material for orthodontic bracket
JP6314886B2 (en) Method for producing metal powder for powder metallurgy, compound, granulated powder and sintered body
JP5470955B2 (en) Metal powder and sintered body
Chen Powder metallurgical titanium alloys (TiNi and Ti-6Al-4V): injection moulding, press-and-sinter, and hot pressing
JP3569967B2 (en) Method for producing Ti sintered body
JP4337754B2 (en) Method for producing degreased body and method for producing sintered body
Leo Kumar et al. Investigations on achievable surface quality in milling of Ti-35Nb-7Zr-5Ta alloy
RU2792335C1 (en) Method for direct laser synthesis of superelastic endodontic instruments from titanium nickelide
Divya et al. Injection moulding of titanium metal and AW-PMMA composite powders
WO2024005673A1 (en) Method for the laser synthesis of endodontic instruments from nickel-titanium
RU2794908C1 (en) Method for manufacturing material with high-temperature shape memory effect based on nitinol
CN115889812B (en) Additive manufacturing high-strength plastic titanium alloy and preparation method and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R151 Written notification of patent or utility model registration

Ref document number: 4952912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees