WO2011152359A1 - Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same - Google Patents

Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same Download PDF

Info

Publication number
WO2011152359A1
WO2011152359A1 PCT/JP2011/062392 JP2011062392W WO2011152359A1 WO 2011152359 A1 WO2011152359 A1 WO 2011152359A1 JP 2011062392 W JP2011062392 W JP 2011062392W WO 2011152359 A1 WO2011152359 A1 WO 2011152359A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium alloy
powder
titanium
composite powder
tio
Prior art date
Application number
PCT/JP2011/062392
Other languages
French (fr)
Japanese (ja)
Inventor
治 叶野
英男 高取
菅原 智
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to JP2012518385A priority Critical patent/JP5855565B2/en
Priority to US13/701,182 priority patent/US20130071283A1/en
Publication of WO2011152359A1 publication Critical patent/WO2011152359A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F8/00Manufacture of articles from scrap or waste metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a titanium alloy composite powder and a method for producing the same, a titanium alloy material using the same, and a method for producing the same, and more particularly to a titanium alloy material using titanium alloy scrap or a titanium alloy ingot as a raw material and a method for producing the same.
  • Titanium alloys especially Ti-6Al-4V alloys, among others, have long been known for aircraft applications.
  • This titanium alloy is compounded by an appropriate amount of Al-V alloy and then pressed and formed into a briquette, and then the briquettes are mutually joined to form a melting electrode, and the melting electrode is used as a vacuum arc melting furnace. It is manufactured by a vacuum arc melting method which sets and melts in vacuum to produce an alloy ingot.
  • a molten raw material consisting of a titanium material and an Al-V master alloy is supplied to a hearth and irradiated with an electron beam to melt them, and this molten metal is poured into a mold provided downstream to manufacture an alloy ingot. Also manufactured by law.
  • the cost of the molten titanium alloy ingot becomes expensive as a result of the high price of the Al-V master alloy which is the alloy raw material, and for further market expansion, There is a need for a method of producing a titanium alloy material that is less expensive than the current situation.
  • the product after sintering also maintains a state in which the fine particles are uniformly dispersed.
  • the Al-40% V powder or the Al powder and the V powder used in the elemental element mixing method are both very expensive, so the titanium alloy produced by the powder method is also very expensive.
  • a compact titanium alloy material is manufactured by subjecting powder-solidified solid content to vacuum sintering and further performing HIP (Hot Isostatic Press, hot isostatic pressing) treatment.
  • HIP Hot Isostatic Press, hot isostatic pressing
  • Patent Document 1 there is also known a technology that makes the raw powder mixing method an inexpensive titanium powder manufactured by the Hunter method, and known documents that the third component is added to improve strength and toughness. (See, for example, Patent Document 1 and Non-Patent Document 1).
  • Patent Document 1 stipulates that the pore diameter in the titanium alloy after sintering is 50 ⁇ m or less, and a material that is required to have higher strength than the material disclosed in the document is further required. There is a need for titanium alloys with small pore sizes, and improvements in this regard are needed.
  • An object of the present invention is to provide a titanium alloy composite powder excellent in quality, a titanium alloy material and a method for producing the same by using a titanium alloy scrap or a titanium alloy ingot as a raw material and a powder method.
  • the present inventors have diligently studied the above-mentioned problems, and using the titanium alloy scrap or titanium alloy ingot as a raw material, it is hydrogenated to form a hydrogenated titanium alloy, which is then crushed and sieved to obtain hydrogenated titanium alloy powder After adding the third component to this, dehydrogenation is carried out, or after the titanium alloy scrap or titanium alloy ingot is used as a raw material, it is hydrogenated to form a hydrogenated titanium alloy and then crushed.
  • titanium alloy powder is obtained by sieving to obtain hydrogenated titanium alloy powder and dehydrogenated to obtain titanium alloy powder, and by adding the third component to this, titanium alloy composite powder with uniform composition can be manufactured inexpensively.
  • the present invention has been completed.
  • the titanium alloy composite powder of the present invention is characterized in that ceramic powder is added, and further, the ceramic is selected from among SiC, TiC, SiO x , TiO x or Al 2 O 3 . It is a preferable embodiment that at least one or more kinds are selected.
  • the subscript x is a real number in the range of 1 ⁇ x ⁇ 2.
  • each addition amount of the ceramic powder to be added to the titanium alloy powder is 0.01 to 0.15 wt%, and the total amount when two or more kinds are further added in combination is A preferred embodiment is 0.01 to 0.3 wt%.
  • the titanium alloy powder according to the present invention preferably has a particle size of 150 ⁇ m or less.
  • the titanium alloy powder raw material contains aluminum and vanadium, or contains aluminum and vanadium in addition to at least one or more selected from zirconium, tin, molybdenum, iron and chromium. It is characterized by being.
  • a titanium alloy raw material is hydrogenated to be a hydrogenated titanium alloy raw material
  • it is pulverized to form a hydrogenated titanium alloy powder
  • ceramic powder is added and then dehydrogenated; Alternatively, the ceramic powder is added and mixed after dehydrogenation.
  • the above-mentioned titanium alloy composite powder is subjected to CIP processing (Cold Isostatic Press, cold isostatic pressing) and then HIP processing or the above-mentioned titanium alloy composite powder Post-encapsulation HIP treatment is a preferred embodiment.
  • the titanium alloy material according to the present invention is characterized by being manufactured by the method described above.
  • the ratio of the density of the alloy material to the true density of the titanium alloy material according to the present invention is preferably 99% or more.
  • the titanium alloy powder according to the present invention does not undergo dissolution and solidification, so that the distribution of the ceramic component is CIP-treated, followed by HIP treatment, or after encapsulation in capsules after HIP treatment, uniform at the time of addition A fine state is maintained, and as a result, a titanium alloy material in which ceramic particles are uniformly and finely distributed can be manufactured, and a titanium alloy material having high strength and toughness can be provided at low cost.
  • the titanium alloy composite powder according to the present invention is characterized in that a ceramic powder is blended.
  • the ceramic powder according to the present invention is at least one selected from SiC, TiC, SiO x , TiO x , and Al 2 O 3 .
  • TiO x .
  • a proper amount of these ceramic powders is added to titanium alloy powder to form a titanium alloy composite powder, which is then pressure-formed to uniformly diffuse in the titanium alloy in the production process of a titanium sintered alloy, and the result It is effective to be able to obtain a titanium sintered alloy dispersion-strengthened by ceramic powder.
  • whisker-like SiC or TiC can be used as the SiC or TiC.
  • whisker-like SiC or TiC By blending whisker-like SiC or TiC into titanium powder, it is possible to significantly improve the strength of the sintered titanium alloy.
  • the whisker-like SiC or TiC preferably has an aspect ratio in the range of 5 to 50.
  • SiC and TiC can react with the titanium alloy to newly generate TiSi 2 and TiC.
  • TiSi 2 has the effect of being able to improve the toughness of the titanium alloy.
  • TiC produced during forming is excellent in consistency with the titanium alloy matrix, and can exhibit higher strength than in the case where TiC is added as an alloy element, which is an effect unlike the prior art. Play.
  • the titanium alloy raw material according to the present invention can suitably use alloy scrap and alloy ingots such as titanium alloy chips, titanium alloy forgings, or scraps of titanium alloy rods.
  • These titanium alloy materials are preferably sized to a predetermined length or size.
  • a predetermined length or size For example, in the case of alloy chips, it is preferable to cut to a length of 100 mm or less. By cutting into the length as described above, it is possible to efficiently advance the hydrogenation step of the next step. Moreover, in the block-like alloy scrap like a forging piece, if it is the magnitude
  • the titanium alloy raw material treated and adjusted as described above is subjected to a hydrotreating step under a hydrogen atmosphere.
  • the hydrogenation treatment is preferably performed in a temperature range of 500 to 650.degree. Since the hydrotreating reaction of the alloy raw material is an exothermic reaction, the temperature raising operation by the heating furnace is unnecessary with the progress of the hydrogenation reaction, and the hydrogenation reaction can be spontaneously promoted.
  • the hydrotreated alloy raw material (hereinafter sometimes simply referred to as “hydrogenated titanium alloy”) may be ground and sieved to a predetermined particle size in an inert atmosphere such as argon gas after cooling to room temperature. It is preferable to do. Subsequently, it is preferable to add an appropriate amount of the ceramic powder according to the present invention.
  • the hydrogenated titanium alloy powder to which the ceramic powder is added is then preferably subjected to dehydrogenation treatment, and the dehydrogenation treatment can be effectively advanced by heat treatment to a high temperature region in an atmosphere maintained in a reduced pressure atmosphere. .
  • the dehydrogenation temperature is preferably in the temperature range of 500 ° C. to 800 ° C. Since the dehydrogenation reaction is an endothermic reaction unlike the above-mentioned hydrotreating reaction, a heating operation is required until the generation of hydrogen from the hydrogenated alloy powder disappears.
  • the hydrogenated titanium alloy powder which has been subjected to the dehydrogenation treatment may be sintered to each other. In this case, it is preferable to carry out the grinding and sieving treatment again.
  • the hydrogenated titanium alloy powder ground and sieved to a predetermined particle size may be dehydrogenated as it is. It is preferable to add and mix the ceramic powder which concerns on this invention with titanium alloy powder which the dehydrogenation processing completed.
  • conventional mixing means such as a V-type mixer can be used for addition and mixing.
  • the addition of the ceramic powder may be performed before or after the dehydrogenation treatment. If ceramic powder is added before the dehydrogenation treatment, aggregation and sintering of the titanium alloy powder during the dehydrogenation treatment can be prevented, and the oxygen content of the titanium alloy powder can be suppressed to a low level.
  • it is necessary to control the dehydrogenation furnace and the types of ceramics to which the pulverizing and sieving equipment after dehydrogenation is added which also has a disadvantage that the process load increases.
  • the dehydrogenation treatment is performed before the ceramic powder is added, the dehydrogenation treatment can be performed more efficiently. In addition, it has the advantage of easy management of the dehydrogenation furnace and the grinding and sieving equipment.
  • the particle size of the titanium hydride alloy powder after grinding and sieving is preferably sized in the range of 10 ⁇ m to 150 ⁇ m.
  • the ceramic powder used in the present invention is preferably in the range of 0.01 to 50 ⁇ m, more preferably 0.1 to 20 ⁇ m.
  • the ceramic powder is a fine powder of less than 0.01 ⁇ m, the powders of the third component may aggregate during mixing with the titanium alloy powder, which is not preferable. On the other hand, if the ceramic powder is more than 50 ⁇ m, the dispersibility is not sufficient, which is not preferable.
  • the content of each of the ceramic powders is 0.01 to 0.15 wt%, and two or more of them are mixed.
  • the total content in the case of composite addition is preferably 0.01 to 0.3 wt%.
  • the densification treatment is preferably carried out by appropriately combining CIP or HIP.
  • the titanium alloy composite powder obtained by the above-mentioned method is packed into a CIP rubber and treated at 100 to 200 MPa, then it is packed into a HIP capsule and a pressure of 50 to 200 MPa at a temperature not exceeding the ⁇ transformation point It is preferable to carry out HIP treatment for 1 to 5 hours. After such a CIP treatment, a densified titanium alloy material can be obtained by performing a subsequent HIP treatment.
  • the titanium alloy composite powder obtained by the above-described method is filled in a HIP capsule without CIP treatment, and subjected to HIP treatment with a pressure of 50 to 200 MPa at a temperature not exceeding the ⁇ transformation point for 1 to 5 hours. Is preferred.
  • a densified titanium alloy material can be obtained by performing such HIP treatment alone.
  • the titanium alloy material based on the addition of various ceramic powders blended in the alloy scrap exhibits its function and effect in the above-described sintering process.
  • the effect of SiC addition As SiC added to hydrogenated alloy powder, the powdery sample marketed can be used. In this embodiment, it is preferable to blend SiC powder in the range of 0.01% to 0.15% with respect to the weight of the titanium alloy powder.
  • the particle size of the added SiC is preferably 0.01 ⁇ m to 50 ⁇ m, and more preferably 0.1 ⁇ m to 20 ⁇ m.
  • the characteristics of the titanium alloy material which is the final product is bad It has the effect that it becomes possible to preferably control the size and frequency of the dispersed phase present in the tissue of the final product without affecting it.
  • the SiC powder blended into the titanium alloy composite powder reacts with titanium in the matrix during HIP processing to form TiC and Si according to the following equation.
  • SiC + Ti ⁇ TiC + Si Since TiC produced by the above reaction is uniformly dispersed in the matrix while maintaining the consistency with the matrix in titanium, as a result, the tensile strength is excellent compared to the case where no SiC is added.
  • TiC titanium carbide
  • metal Si is also generated.
  • the metallic Si produced in the matrix reacts with the titanium in the matrix to form TiSi 2 .
  • 2Si + Ti ⁇ TiSi 2 TiSi 2 formed in the matrix is deposited with keeping consistency with the matrix phase, and has an effect that the toughness of the titanium alloy material can be enhanced.
  • TiC Addition it is preferable to blend TiC with the titanium alloy powder.
  • the compounding ratio of TiC is preferably controlled in the range of 0.01 to 0.15 wt% with respect to the weight of the titanium alloy powder.
  • the particle size of TiC to be added is preferably 0.01 ⁇ m to 50 ⁇ m, and more preferably 0.1 ⁇ m to 20 ⁇ m.
  • Dispersion within the structure of the final product without adversely affecting the properties of the titanium alloy material which is the final product after densifying the titanium alloy powder according to the present invention by controlling to the above-mentioned range An effect is obtained that it is possible to preferably control the size and the frequency of the phase.
  • a titanium alloy composite powder composed of a titanium alloy powder and a TiC powder is subjected to CIP treatment, and then subjected to HIP treatment, or is subjected to HIP treatment after being enclosed in a capsule to form a densified titanium alloy according to the present invention.
  • the material can be obtained.
  • the size of TiC in the titanium alloy material after HIP treatment remains in the particle size of 0.01 to 50 ⁇ m at the time of addition, and the existing frequency is 5 pieces / mm 2 or more.
  • the uniformly and finely dispersed TiC phase in the matrix greatly contributes to the improvement of mechanical properties such as tensile strength and fatigue strength by dispersion strengthening.
  • the effect of SiO X addition By adding 0.01% to 0.15% of SiO 2 powder as an example of SiO X to titanium alloy powder, after CIP treatment and then HIP treatment as in the case of SiC addition
  • the mechanical properties of the titanium alloy material can be improved by heat treatment or by HIP treatment after encapsulation. That is, the TiO 2 phase generated by reacting with the titanium phase, the residual SiO 2 phase during the reaction, and the TiSi 2 phase generated by reacting the Ti phase generated as a result of the reaction exist in the titanium matrix and uniformly exist. It contributes to the increase in mechanical strength and suppresses the decrease in elongation due to the addition.
  • the SiO 2 powder blended into the titanium alloy composite powder reacts with titanium in the matrix during HIP processing to produce TiO 2 , Si, and TiSi 2 according to the following equation.
  • SiO 2 + Ti ⁇ TiO 2 + Si 2Si + Ti ⁇ TiSi 2 The TiO 2 generated by the reaction remains in the titanium alloy, and as a result, the titanium alloy itself is dispersion strengthened. Moreover, TiSi 2 generated by the reaction contributes to the improvement of the toughness of the titanium alloy.
  • TiO X addition By adding an appropriate amount of TiO 2 powder as an example of TiO X to titanium alloy powder, as in the case of Ti C addition, after HIP processing followed by HIP treatment or titanium alloy powder is encapsulated The mechanical properties can be improved by performing HIP treatment enclosed in The amount of TiO 2 powder added and the preferred particle size range are the same as in the case of TiC addition.
  • TiO x such as TiO is added to titanium alloy powder
  • the mechanical properties of the titanium alloy can be similarly improved.
  • the raw material of the ceramic powder is preferably in the range of 0.01 to 0.3 wt%.
  • the particle size of each ceramic to be added is preferably in the range of 0.01 to 50 ⁇ m, more preferably 0.01 to 20 ⁇ m. By controlling the addition amount and the particle size in this range, it is possible to preferably control the size and presence frequency of the ceramic particles in the structure of the titanium alloy material according to the present invention.
  • the titanium alloy composite powder prepared by the method described above can be efficiently densified by performing HIP processing performed after CIP processing and subsequent HIP processing in which the titanium alloy composite powder is enclosed in a capsule. it can.
  • dispersion strengthening in titanium alloy, grain refinement, and the like can be achieved by appropriately blending ceramic powder selected from SiC, TiC, SiO x , TiO x or Al 2 O 3 into titanium alloy powder.
  • ceramic powder selected from SiC, TiC, SiO x , TiO x or Al 2 O 3 into titanium alloy powder.
  • the effect of improving the tensile strength and the toughness is exhibited, and the ductility reduction suppressing effect is remarkable particularly in the addition of SiC and SiO X which form TiSi 2 .
  • the above-mentioned titanium alloy powder is a Ti-6Al-4V alloy, a Ti-3Al-2.5V alloy, a Ti-6Al-2Sn-4Zr-6Mo alloy, a Ti-6Al-6V-2Sn alloy, Ti-10V-2Fe-3Al alloy (10-2-3), Ti-5Al-4V-0.6Mo-0.4Fe alloy (Timetal 54M), Ti-4.5Al-3V-2Fe-2Mo alloy (SP700) , Ti-15V-3Cr-3Al-3Sn alloy (15-3-3-3), Ti-4Al-2.5V-1.5Fe alloy (ATI 425), Ti-5Al-5V-5Mo-3Cr alloy (Ti- 5553) can be used as a raw material.
  • the titanium alloy material containing copper, chromium, and iron densified by the above-described method has an effect that mechanical characteristics can be further controlled by subsequent processing such as rolling, extrusion, and drawing and heat treatment. It plays.
  • Example 1 The preparation of hydrogenated titanium alloy powder is described below. After cutting Ti-6Al-4V alloy scrap chips into chips with a length of 10 mm or less, insert them into a vessel and set them in a furnace, start evacuation after evacuation and start heating, and after the furnace temperature reaches 300 ° C, hydrogen is added It was introduced into the furnace, and heating was continued to 650 ° C. while the furnace was slightly pressurized with hydrogen. During this time, the Ti-6Al-4V alloy scrap and hydrogen reacted with each other and the temperature in the furnace rose, so the heater output was made zero and the reaction was continued until the reaction was stopped.
  • Example 2 0%, 0.05 wt%, 0.1 wt%, 0.15 wt%, 0.5 wt% of titanium hydride alloy powder having the composition of Ti-6% Al-4% V obtained in Example 1
  • Five samples to which TiO 2 powder was added at a ratio of 5 were prepared and mixed in a V-type mixer.
  • the TiO 2 powder used is a powder produced by the oxyfuel combustion method of TiCl 4 and has an average particle size of 0.8 ⁇ m.
  • the hydrogenated titanium alloy powder to which TiO 2 was added was inserted into a container made of Ti, and dehydrogenated in a vacuum heating furnace.
  • a reaction dehydrogenation
  • desorbing hydrogen gas from a temperature around 300 ° C. occurred, and as it was, the temperature was raised to 500 ° C. and 600 ° C. to promote dehydrogenation. Since the dehydrogenation reaction is an endothermic reaction, it is important to keep the temperature in the furnace constant for efficient dehydrogenation.
  • the vacuum degree is recovered by holding at 650 ° C. for 1 hour, 1 ⁇ 10 ⁇ 3 After the vacuum of mbar was obtained, the heater was stopped and cooled. The taken-out powder was partially coagulated, so it was crushed by a crusher to obtain titanium alloy powder of 300 ⁇ m or less.
  • Example 3 The TiO 2 -added titanium alloy powder described in Example 2 was filled in a CIP rubber, CIP treated at 150 MPa, and a CIP molded body was sealed in a mild steel capsule for HIP treatment to obtain a titanium alloy material according to the present invention.
  • HIP conditions are 900 ° C., 100 MPa, and 1 hour.
  • the titanium alloy material was taken out, its apparent density was measured, and the ratio of theoretical density (hereinafter sometimes simply referred to as "density ratio”) was measured, and the results are shown in Table 1.
  • the density ratio of the titanium alloy material increased from 99.1% to 99.5%.
  • Example 3-2 The TiO 2 -doped titanium alloy powder described in Example 2 was enclosed in a mild steel capsule and HIP treated. HIP conditions are 900 ° C., 100 MPa, and 1 hour. After HIP processing, the titanium alloy material was taken out and its density was measured and it was 99% or more. The density mentioned here means the ratio of apparent density to true density.
  • Example 4 A tensile test was conducted on the titanium alloy material (TiO 2 -added Ti-6Al-4V alloy material) produced in Example 3. The results are as shown in Table 1. Table 1 also shows the density measurement results. The tensile strength tended to increase from 1050 to 1100 MPa although the elongation decreased from 13% to 10% when the TiO 2 content was increased to 0.05 wt% to 0.15 wt%.
  • Embodiment 4-2 A tensile test was performed on the titanium alloy material (TiO 2 -added Ti-6Al-4V alloy material) manufactured in Example 3-2. The results are as shown in Table 1. Table 1 also shows the density measurement results. No difference was observed in the density ratio, the tensile strength and the elongation between the case where the TiO 2 -added Ti-6Al-4V alloy powder was subjected to HIP treatment after encapsulation and the case where the HIP treatment was performed after CIP treatment.
  • Example 5 When the structures of the samples of Example 4 and Comparative Example 1 were confirmed, it was confirmed that the TiO 2 phase was uniformly dispersed and present in the matrix.
  • the dimensions and the frequency of existence of the TiO 2 phase are as shown in Table 2.
  • the size of the TiO 2 phase indicates the maximum diameter of the TiO 2 phase dispersed in the matrix.
  • the TiO 2 phase presence frequency means the number of TiO 2 particles confirmed per matrix unit area.
  • the addition amount of TiO 2 added to titanium alloy powder increases from 0.05 to 0.15%, the maximum diameter of the TiO 2 phase in the matrix of the titanium alloy sintered body also tends to increase from 5 ⁇ m to 15 ⁇ m.
  • Example 6 instead of the TiO 2 powder of Example 2, 2 ⁇ m of SiO 2 powder is compounded so as to be 0.05 wt%, 0.1 wt%, 0.15 wt%, 0.5 wt% with respect to the titanium alloy powder. After CIP treatment in the same manner as in Example 3 and Example 4, then HIP treatment was performed to obtain a titanium alloy material according to the present invention. Next, density ratio measurement and tensile test of the obtained titanium alloy material were performed.
  • Example 6-2 The SiO 2 -added titanium alloy powder described in Example 2 was enclosed in a mild steel capsule and subjected to HIP treatment. HIP conditions are 900 ° C., 100 MPa, and 1 hour. After the HIP treatment, the titanium alloy material was taken out, and the density ratio measurement and the tensile test of the obtained titanium alloy material were performed.
  • the tensile strength tended to increase from 1050 MPa to 1100 MPa as the amount of SiO 2 powder added to the titanium alloy powder increased from 0.05 to 0.15 wt%. In contrast, the growth dropped from 15% to 13%.
  • the density ratio increased to the range of 99.2-99.5%. Also in Example 6-2 in which the SiO 2 -added Ti-6Al-4V alloy powder was encapsulated and then HIPed, no difference was observed in the density ratio, the tensile strength and the elongation.
  • Example 1-A A sample in which ceramic powder was not added to the titanium alloy hydrogenated powder of Example 1 was prepared, subjected to CIP treatment and HIP treatment, density measurement and tensile test in the same manner as in Examples 3 and 4. The results are as shown in Table 1.
  • Example 1-B a powder obtained by adding 0.5 wt% of TiO 2 to titanium alloy hydrogenated powder of Example 1 is prepared, subjected to CIP treatment and HIP treatment by the same method as Example 3 and Example 4, density measurement, tensile test went. The results are as shown in Table 1. In addition, when 0.5 wt% of TiO 2 was added, the elongation decreased to 2%.
  • Comparative Example 2 The structure of the sample to which 0.5 wt% of TiO 2 of Comparative Example 1 was added was observed. The results are shown in Table 2.
  • Comparative Example 3-A a powder was prepared by adding no SiO 2 powder to the titanium alloy hydrogenated powder of Example 1, CIP-treated in the same manner as in Examples 3 and 4, and then HIP-treated to obtain a titanium alloy material. The As a result, the density ratio of the obtained titanium alloy material decreased to 98%.
  • Comparative Example 3-B A powder obtained by adding 0.5 wt% of SiO 2 powder to titanium alloy hydrogenated powder of Example 1 is prepared, subjected to CIP treatment in the same manner as in Examples 3 and 4, and then subjected to HIP treatment to obtain a titanium alloy material Obtained. The density measurement, tensile strength measurement, and crystal structure observation of the obtained titanium alloy material were performed. As a result, as shown in Table 3, the elongation of the titanium alloy material was sharply reduced to around 4%.
  • the present invention is to obtain titanium alloy powder and titanium alloy material excellent in mechanical properties by powder metallurgy using titanium alloy scrap and titanium alloy ingot as raw materials, and provide titanium alloy powder, titanium alloy material and manufacturing method thereof It is

Abstract

Disclosed are a high-quality titanium alloy powder and titanium alloy material formed by means of the powder method with titanium alloy scrap and titanium alloy ingots as a raw material; also disclosed is a method of manufacturing the same. A raw titanium alloy material is hydrogenated to form hydrogenated titanium alloy, which is crushed and sieved to obtain a hydrogenated titanium alloy powder. A ceramic powder selected from SiC, TiC, SiOX, TiOX (here, the subscript x is a real number in the range of 1 ≦ x ≦ 2) and Al2O3 is added, and a mixture of the hydrogenated titanium alloy powder and the ceramic material powder undergoes dehydrogenation treatment, resulting in the titanium alloy composite powder. Further disclosed are a dense titanium alloy material obtained by HIP treatment subsequent to CIP treatment of the titanium alloy composite powder, and a manufacturing method thereof; and a dense titanium alloy material obtained by HIP treatment after encapsulating said titanium alloy composite powder, and a manufacturing method thereof.

Description

セラミックスを含有したチタン合金複合粉およびその製造方法、これを用いた緻密化されたチタン合金材およびその製造方法Title: Ceramic-containing titanium alloy composite powder, method for producing the same, compacted titanium alloy material using the same, and method for producing the same
 本願発明は、チタン合金複合粉およびその製造方法、これを用いたチタン合金材およびその製造方法に係り、特に、チタン合金スクラップまたはチタン合金インゴットを原料としたチタン合金材料およびその製造方法に関する。 The present invention relates to a titanium alloy composite powder and a method for producing the same, a titanium alloy material using the same, and a method for producing the same, and more particularly to a titanium alloy material using titanium alloy scrap or a titanium alloy ingot as a raw material and a method for producing the same.
 チタン合金は、中でも特にTi-6Al-4V合金は、航空機用として古くから知られている。このチタン合金は、Al-V合金を適切な量だけ配合した後、プレス成形してブリケットとし、次いで前記ブリケットを相互に接合することで溶解用電極とし、この溶解用電極を真空アーク溶解炉にセットして真空中で溶解して、合金インゴットを製造する真空アーク溶解法で製造される。または、チタン材およびAl-V母合金からなる溶解原料をハースに供給して電子ビームを照射してこれらを溶解させ、この溶湯を下流に設けた鋳型に流し込んで合金インゴットを製造する電子ビーム溶解法によっても製造される。 Titanium alloys, especially Ti-6Al-4V alloys, among others, have long been known for aircraft applications. This titanium alloy is compounded by an appropriate amount of Al-V alloy and then pressed and formed into a briquette, and then the briquettes are mutually joined to form a melting electrode, and the melting electrode is used as a vacuum arc melting furnace. It is manufactured by a vacuum arc melting method which sets and melts in vacuum to produce an alloy ingot. Alternatively, a molten raw material consisting of a titanium material and an Al-V master alloy is supplied to a hearth and irradiated with an electron beam to melt them, and this molten metal is poured into a mold provided downstream to manufacture an alloy ingot. Also manufactured by law.
 しかしながら、溶解法においては、合金原料である微細な顆粒状原料を溶湯に分散させようとしても、顆粒状原料同士が溶解時に溶湯内で凝集し、均一に分散させることが難しい、という課題を有する。 However, in the melting method, even if it is intended to disperse a fine granular raw material which is an alloy raw material in a molten metal, it is difficult for granular raw materials to coagulate in the molten metal at the time of melting and to be uniformly dispersed. .
 さらに、Ti-6Al-4V合金では、合金原料であるAl-V母合金が高価なために、結果的に溶製されたチタン合金インゴットのコストが高価になり、更なる市場拡大のためには、現状に比べて安価なチタン合金材の製造方法が求められている。 Furthermore, in the Ti-6Al-4V alloy, the cost of the molten titanium alloy ingot becomes expensive as a result of the high price of the Al-V master alloy which is the alloy raw material, and for further market expansion, There is a need for a method of producing a titanium alloy material that is less expensive than the current situation.
 上述の溶解法に対して、粉末法においては、原料粉末と微細粒子の混合が均一であれば、焼結後の製品も微細粒子が均一に分散した状態が維持される。 In contrast to the above-described dissolution method, in the powder method, if the mixture of the raw material powder and the fine particles is uniform, the product after sintering also maintains a state in which the fine particles are uniformly dispersed.
 しかしながら、チタン合金粉は、純チタン粉に比べて、加工性あるいは成形性が悪く、その結果、焼結密度が上がりにくいという別の課題があることが知られている。特に、Ti-6Al-4V合金に対しては、塑性変形能が小さく、よって、粉末法による通常の方法では、焼結密度が上がり難いという課題がある(例えば、特許文献1参照)。 However, it is known that titanium alloy powder has poorer workability or formability than pure titanium powder, and as a result, there is another problem that the sintering density is difficult to increase. In particular, for a Ti-6Al-4V alloy, there is a problem that the plastic deformability is small, and hence the sintering density is difficult to increase in the usual method by the powder method (see, for example, Patent Document 1).
 そのために、6Al-4V合金の粉末法では、チタン合金粉末ではなく、純チタン粉末とAl-40%V金粉末を原料とする素元素混合法(以降、BE法「Blended Elemental Powder Metallurgy Process」と呼ぶ場合がある。)が用いられている。 Therefore, in the powder method of 6Al-4V alloy, not elemental titanium powder but elemental element mixed method (hereinafter referred to as BE method “Blended Elemental Powder Metallurgy Process”) using pure titanium powder and Al-40% V gold powder as raw materials May be called) is used.
 しかしながら、素元素混合法の場合に用いるAl-40%V粉末またはAl粉末およびV粉末は、いずれも非常に高価であるために、粉末法で製造したチタン合金も非常に高価なものとなる。 However, the Al-40% V powder or the Al powder and the V powder used in the elemental element mixing method are both very expensive, so the titanium alloy produced by the powder method is also very expensive.
 また、通常は、粉末成形された固形分を真空焼結後、更に、HIP(Hot Isostatic Press、熱間等方圧圧縮)処理することにより緻密なチタン合金材が製造されている。しかし、一般にHIP処理は、プロセス費用が高く、製品も非常に高額となってしまうために、特殊な用途に限定されているのが現状である。 In addition, usually, a compact titanium alloy material is manufactured by subjecting powder-solidified solid content to vacuum sintering and further performing HIP (Hot Isostatic Press, hot isostatic pressing) treatment. However, in general, HIP treatment is currently limited to special applications because the process cost is high and the product is very expensive.
 このような点については、例えば、素粉末混合法をハンター法で製造された安価なチタン粉末とする技術、第三成分を添加して強度や靭性が改善されることを記した公知文献も知られている(例えば、特許文献1および非特許文献1参照)。 With regard to this point, for example, there is also known a technology that makes the raw powder mixing method an inexpensive titanium powder manufactured by the Hunter method, and known documents that the third component is added to improve strength and toughness. (See, for example, Patent Document 1 and Non-Patent Document 1).
 しかしながら、特許文献1には、焼結後のチタン合金中の気孔径が、50μm以下と規定されており、同文献に開示されている材料よりも、更に高い強度が求められる材料には、更に気孔径の小さいチタン合金が求められ、この点についての改善が求められている。 However, Patent Document 1 stipulates that the pore diameter in the titanium alloy after sintering is 50 μm or less, and a material that is required to have higher strength than the material disclosed in the document is further required. There is a need for titanium alloys with small pore sizes, and improvements in this regard are needed.
 このように、チタン合金粉を真空焼結後、更にHIP処理した場合であっても、残留空孔が生じて、製造されたチタン合金材の焼結密度が上がらないという課題が残されている。 As described above, even when the titanium alloy powder is vacuum-sintered and then subjected to HIP processing, residual pores are generated, and the problem remains that the sintered density of the manufactured titanium alloy material can not be increased. .
特開平5-009630号公報Japanese Patent Application Laid-Open No. 5-009630
 本願発明は、チタン合金スクラップまたはチタン合金インゴットを原料として、粉末法により、品質の優れたチタン合金複合粉、チタン合金材およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a titanium alloy composite powder excellent in quality, a titanium alloy material and a method for producing the same by using a titanium alloy scrap or a titanium alloy ingot as a raw material and a powder method.
 かかる実情に鑑み前記課題について鋭意検討を進めたところ、前記チタン合金スクラップまたはチタン合金インゴットを原料として、これを、水素化して、水素化チタン合金とした後、粉砕・篩別して水素化チタン合金粉とし、これに、第三の成分を添加した後、脱水素することにより、または、前記チタン合金スクラップまたはチタン合金インゴットを原料として、これを、水素化して、水素化チタン合金とした後、粉砕・篩別して水素化チタン合金粉とし、脱水素することにより、チタン合金粉を得、これに、第三の成分を添加することにより、組成の均一なチタン合金複合粉を安価に製造できることを知見し、本願発明を完成するに至った。 In view of such circumstances, the present inventors have diligently studied the above-mentioned problems, and using the titanium alloy scrap or titanium alloy ingot as a raw material, it is hydrogenated to form a hydrogenated titanium alloy, which is then crushed and sieved to obtain hydrogenated titanium alloy powder After adding the third component to this, dehydrogenation is carried out, or after the titanium alloy scrap or titanium alloy ingot is used as a raw material, it is hydrogenated to form a hydrogenated titanium alloy and then crushed.・ We find that titanium alloy powder is obtained by sieving to obtain hydrogenated titanium alloy powder and dehydrogenated to obtain titanium alloy powder, and by adding the third component to this, titanium alloy composite powder with uniform composition can be manufactured inexpensively. Thus, the present invention has been completed.
 すなわち、本願発明のチタン合金複合粉は、セラミックス粉が添加されていることを特徴とするもので、さらに、前記セラミックスが、SiC、TiC、SiO、TiOまたは、Alの中から少なくとも1種以上選択されたものであることを好ましい態様とするものである。ここで、添字xは、1≦x≦2の範囲をとる実数である。 That is, the titanium alloy composite powder of the present invention is characterized in that ceramic powder is added, and further, the ceramic is selected from among SiC, TiC, SiO x , TiO x or Al 2 O 3 . It is a preferable embodiment that at least one or more kinds are selected. Here, the subscript x is a real number in the range of 1 ≦ x ≦ 2.
 本願発明にかかるチタン合金粉は、チタン合金粉に添加するセラミックス粉のそれぞれの添加量が、0.01~0.15wt%であって、更に、2種以上複合添加した場合の合計量が、0.01~0.3wt%であることを好ましい態様とするものである。 In the titanium alloy powder according to the present invention, each addition amount of the ceramic powder to be added to the titanium alloy powder is 0.01 to 0.15 wt%, and the total amount when two or more kinds are further added in combination is A preferred embodiment is 0.01 to 0.3 wt%.
 本願発明にかかるチタン合金粉は、チタン合金粉の粒度が、150μm以下であることを好ましい態様とするものである。 The titanium alloy powder according to the present invention preferably has a particle size of 150 μm or less.
 本願発明にかかるチタン合金粉は、前記チタン合金粉原料が、アルミニウムおよびバナジウムを含有、または、アルミニウムおよびバナジウムに加えてジルコニウム、スズ、モリブデン、鉄、クロムの中から少なくとも1種または2種以上含有されていることを特徴とするものである。 In the titanium alloy powder according to the present invention, the titanium alloy powder raw material contains aluminum and vanadium, or contains aluminum and vanadium in addition to at least one or more selected from zirconium, tin, molybdenum, iron and chromium. It is characterized by being.
 本願発明にかかるチタン合金粉の製造方法は、チタン合金原料を水素化して水素化チタン合金原料とした後、粉砕して水素化チタン合金粉とし、セラミックス粉を添加してから脱水素するか、または、脱水素してからセラミックス粉を添加混合することを特徴とするものである。 In the method for producing a titanium alloy powder according to the present invention, after a titanium alloy raw material is hydrogenated to be a hydrogenated titanium alloy raw material, it is pulverized to form a hydrogenated titanium alloy powder, and ceramic powder is added and then dehydrogenated; Alternatively, the ceramic powder is added and mixed after dehydrogenation.
 本願発明に係るチタン合金材の製造方法は、上述のチタン合金複合粉を、CIP処理(Cold Isostatic Press、冷間等方圧圧縮)後、次いでHIP処理する、または、上述のチタン合金複合粉をカプセル封入後HIP処理することを好ましい態様とするものである。 In the method for producing a titanium alloy material according to the present invention, the above-mentioned titanium alloy composite powder is subjected to CIP processing (Cold Isostatic Press, cold isostatic pressing) and then HIP processing or the above-mentioned titanium alloy composite powder Post-encapsulation HIP treatment is a preferred embodiment.
 本願発明に係るチタン合金材は、上述の方法で製造されたものであることを特徴とするものである。 The titanium alloy material according to the present invention is characterized by being manufactured by the method described above.
 更に、本願発明に係るチタン合金材の真密度に対する合金材の密度の比が、99%以上であることを好ましい態様とするものである。 Furthermore, the ratio of the density of the alloy material to the true density of the titanium alloy material according to the present invention is preferably 99% or more.
 以上本願発明に係るチタン合金粉は、溶解および凝固を経ないため、セラミックス成分の分布がCIP処理後、次いでHIP処理することにより、または、カプセルに封入後HIP処理することにより、添加時の均一微細な状態が維持され、その結果、セラミックス粒子が均一微細に分布したチタン合金材が製造でき、強度、靭性の高いチタン合金材を安価に提供することができるという効果を奏するものである。 As described above, the titanium alloy powder according to the present invention does not undergo dissolution and solidification, so that the distribution of the ceramic component is CIP-treated, followed by HIP treatment, or after encapsulation in capsules after HIP treatment, uniform at the time of addition A fine state is maintained, and as a result, a titanium alloy material in which ceramic particles are uniformly and finely distributed can be manufactured, and a titanium alloy material having high strength and toughness can be provided at low cost.
本願発明に係るチタン合金粉およびチタン合金材の製造に係る好ましい態様を表すチャート図である(セラミックスを脱水素化前に添加)。It is a chart showing the preferable aspect which concerns on manufacture of the titanium alloy powder and titanium alloy material which concern on this invention (ceramics are added before dehydrogenation). 本願発明に係るチタン合金粉およびチタン合金材の製造に係る好ましい態様を表すチャート図である(セラミックスを脱水素化後に添加)。It is a chart showing the preferable aspect which concerns on manufacture of the titanium alloy powder and titanium alloy material which concern on this invention (adding ceramics after dehydrogenation).
 本願発明の最良の実施形態について図面を参照しながら以下に説明する。
 本願発明に係るチタン合金複合粉は、セラミックス粉が配合されていることを特徴とするものである。本願発明に係るセラミックス粉は、SiC、TiC、SiO、TiOまたは、Alの中から少なくとも1種以上選択されたものであることを好ましい態様とするものである。ここで、添字xは、1≦x≦2の範囲をとる実数であり、x=1の場合は、SiOを意味し、x=2の場合には、SiOを意味する。TiOについても同様である。
The preferred embodiments of the present invention will be described below with reference to the drawings.
The titanium alloy composite powder according to the present invention is characterized in that a ceramic powder is blended. In a preferred embodiment, the ceramic powder according to the present invention is at least one selected from SiC, TiC, SiO x , TiO x , and Al 2 O 3 . Here, the subscript x is a real number in the range of 1 ≦ x ≦ 2, where x = 1 means SiO, and x = 2 means SiO 2 . The same applies to TiO x .
 これらのセラミックス粉をチタン合金粉に適量添加してチタン合金複合粉とした後、これを加圧成形して生成されるチタン焼結合金の製造過程において、チタン合金中に均一に拡散し、結果的にセラミックス粉による分散強化されたチタン焼結合金を得ることができるという効果を奏するものである。 A proper amount of these ceramic powders is added to titanium alloy powder to form a titanium alloy composite powder, which is then pressure-formed to uniformly diffuse in the titanium alloy in the production process of a titanium sintered alloy, and the result It is effective to be able to obtain a titanium sintered alloy dispersion-strengthened by ceramic powder.
 また、前記SiCやTiCは、粉末状のみならず、ウィスカー状のSiCやTiCを使用することもできる。ウィスカー状のSiCやTiCをチタン粉に配合することにより、焼結生成されたチタン合金の強度も格段に改善することができるという効果を奏するものである。前記したウィスカー状のSiCやTiCは、アスペクト比が5~50の範囲の中にあるものを使用することが好ましい。 Further, not only powdery SiC but also whisker-like SiC or TiC can be used as the SiC or TiC. By blending whisker-like SiC or TiC into titanium powder, it is possible to significantly improve the strength of the sintered titanium alloy. The whisker-like SiC or TiC preferably has an aspect ratio in the range of 5 to 50.
 また、上述のセラミックス粉のうち、SiCやTiCは、チタン合金と反応して、新たに、TiSiやTiCを生成させることができる。 Further, among the above-mentioned ceramic powders, SiC and TiC can react with the titanium alloy to newly generate TiSi 2 and TiC.
 その結果、TiSiは、チタン合金の靭性を改善することができるという効果を奏するものである。また、成形加工中に生成したTiCは、チタン合金マトリックスとの整合性が良好であり、合金元素としてTiCを添加した場合に比べてより高い強度を発揮させることができるという、従来にはない効果を奏するものである。 As a result, TiSi 2 has the effect of being able to improve the toughness of the titanium alloy. In addition, TiC produced during forming is excellent in consistency with the titanium alloy matrix, and can exhibit higher strength than in the case where TiC is added as an alloy element, which is an effect unlike the prior art. Play.
 本願発明係るチタン合金原料は、チタン合金切粉、チタン合金鍛造片、あるいは、チタン合金棒の端材等の合金スクラップ及び合金インゴットを好適に使用することができる。 The titanium alloy raw material according to the present invention can suitably use alloy scrap and alloy ingots such as titanium alloy chips, titanium alloy forgings, or scraps of titanium alloy rods.
 これらのチタン合金原料は、所定の長さ、あるいは、大きさにサイジングすることが好ましい。例えば、合金切粉の場合には、100mm以下の長さに、切断することが好ましい。前記のような長さに切断することにより、次工程の水素化工程を効率よく進めることができるという効果を奏するものである。また、鍛造片のようなブロック状の合金スクラップでは、水素化炉に入る程度の大きさであれば特に支障がない。チタン合金インゴットでは、切削加工で切粉とし、所定のサイズに調整することが好ましい。 These titanium alloy materials are preferably sized to a predetermined length or size. For example, in the case of alloy chips, it is preferable to cut to a length of 100 mm or less. By cutting into the length as described above, it is possible to efficiently advance the hydrogenation step of the next step. Moreover, in the block-like alloy scrap like a forging piece, if it is the magnitude | size of the grade which enters a hydrogenation furnace, there will be no trouble in particular. In the case of a titanium alloy ingot, it is preferable to cut into chips and adjust to a predetermined size.
 前記のように処理して調整されたチタン合金原料は、水素雰囲気下での水素化処理工程に供される。水素化処理は、500~650℃の温度域で行なうことが好ましい。合金原料の水素化処理反応は、発熱反応であるため、水素化反応の進行に伴い、加熱炉による昇温操作は不要であり自発的に水素化反応を進めることができる。 The titanium alloy raw material treated and adjusted as described above is subjected to a hydrotreating step under a hydrogen atmosphere. The hydrogenation treatment is preferably performed in a temperature range of 500 to 650.degree. Since the hydrotreating reaction of the alloy raw material is an exothermic reaction, the temperature raising operation by the heating furnace is unnecessary with the progress of the hydrogenation reaction, and the hydrogenation reaction can be spontaneously promoted.
 水素化処理された合金原料(以降、単に「水素化チタン合金」と略称する場合がある。)は、室温まで冷却後、アルゴンガス等の不活性雰囲気で所定の粒度になるまで粉砕・篩別することが好ましい。続いて、本願発明に係るセラミックス粉を適量添加することが好ましい。 The hydrotreated alloy raw material (hereinafter sometimes simply referred to as “hydrogenated titanium alloy”) may be ground and sieved to a predetermined particle size in an inert atmosphere such as argon gas after cooling to room temperature. It is preferable to do. Subsequently, it is preferable to add an appropriate amount of the ceramic powder according to the present invention.
 セラミックス粉を添加した水素化チタン合金粉は、次いで、脱水素処理することが好ましく、減圧雰囲気に保持された雰囲気中で高温域まで加熱処理することで効果的に脱水素処理を進めることができる。 The hydrogenated titanium alloy powder to which the ceramic powder is added is then preferably subjected to dehydrogenation treatment, and the dehydrogenation treatment can be effectively advanced by heat treatment to a high temperature region in an atmosphere maintained in a reduced pressure atmosphere. .
 脱水素処理温度は、500℃~800℃の温度域で行うことが好ましい。脱水素反応は、前記の水素化処理反応と異なり吸熱反応であるために、水素化合金粉からの水素の発生がなくなるまで、加熱操作が必要とされる。 The dehydrogenation temperature is preferably in the temperature range of 500 ° C. to 800 ° C. Since the dehydrogenation reaction is an endothermic reaction unlike the above-mentioned hydrotreating reaction, a heating operation is required until the generation of hydrogen from the hydrogenated alloy powder disappears.
 前記脱水素処理が完了した水素化チタン合金粉は、相互に焼結している場合があり、この場合には、再度、粉砕および篩別処理を行なうことが好ましい。 The hydrogenated titanium alloy powder which has been subjected to the dehydrogenation treatment may be sintered to each other. In this case, it is preferable to carry out the grinding and sieving treatment again.
 所定の粒度になるまで粉砕・篩別された水素化チタン合金粉末は、そのまま脱水素処理されても良い。脱水素処理が完了したチタン合金粉に、本願発明に係るセラミックス粉をチタン合金粉に添加混合することが好ましい。この場合の添加・混合はV型混合機等、通常の混合手段を用いることができる。 The hydrogenated titanium alloy powder ground and sieved to a predetermined particle size may be dehydrogenated as it is. It is preferable to add and mix the ceramic powder which concerns on this invention with titanium alloy powder which the dehydrogenation processing completed. In this case, conventional mixing means such as a V-type mixer can be used for addition and mixing.
 前述のようにセラミックス粉の添加は、脱水素処理前でも、脱水素処理後でも良い。脱水素処理前にセラミックス粉を添加すると、脱水素処理時のチタン合金粉末の凝集・焼結を防止することができ、また、チタン合金粉末の酸素含有量を低く抑える事が出来る。しかし、脱水素処理炉や、脱水素処理後の粉砕・篩別の設備を添加するセラミックスの品種別管理する必要があり、工程負荷が増えるという欠点も有する。 As described above, the addition of the ceramic powder may be performed before or after the dehydrogenation treatment. If ceramic powder is added before the dehydrogenation treatment, aggregation and sintering of the titanium alloy powder during the dehydrogenation treatment can be prevented, and the oxygen content of the titanium alloy powder can be suppressed to a low level. However, it is necessary to control the dehydrogenation furnace and the types of ceramics to which the pulverizing and sieving equipment after dehydrogenation is added, which also has a disadvantage that the process load increases.
 セラミックス粉を添加する前に脱水素処理を行なうと、脱水素処理をより効率よく行なう事が出来る。また、脱水素炉、粉砕・篩別設備の管理が容易という長所を有する。 If the dehydrogenation treatment is performed before the ceramic powder is added, the dehydrogenation treatment can be performed more efficiently. In addition, it has the advantage of easy management of the dehydrogenation furnace and the grinding and sieving equipment.
 本願発明においては、粉砕・篩別後の水素化チタン合金粉の粒度は、10μm~150μmの範囲に整粒しておくことが好ましい。前記のような粒度範囲に整粒しておくことにより、緻密化工程での緻密化が促進される。 In the present invention, the particle size of the titanium hydride alloy powder after grinding and sieving is preferably sized in the range of 10 μm to 150 μm. By subjecting the particles to the above-described particle size range, densification in the densification step is promoted.
 本願発明に用いるセラミックス粉は、SiC、SiO、TiO、TiC、またはAlの粒度から、少なくとも1種以上用いることが好ましい。セラミックス粉の粒度は、0.01~50μm、より好ましくは0.1~20μmの範囲が好ましい。 From the particle size of SiC, SiO x , TiO x , TiC, or Al 2 O 3 , it is preferable to use at least one or more of the ceramic powder used in the present invention. The particle size of the ceramic powder is preferably in the range of 0.01 to 50 μm, more preferably 0.1 to 20 μm.
 セラミックス粉が、0.01μm未満の微細粉では、チタン合金粉との混合時に第三成分の粉末同士が凝集する場合が有り、好ましくない。一方、セラミックス粉が、50μm超では、分散性が十分でなく好ましくない。 If the ceramic powder is a fine powder of less than 0.01 μm, the powders of the third component may aggregate during mixing with the titanium alloy powder, which is not preferable. On the other hand, if the ceramic powder is more than 50 μm, the dispersibility is not sufficient, which is not preferable.
 本願発明においては、前記セラミックス粉の配合比率は、TiC、TiO、SiC、SiO、Alの単独添加の場合、それぞれの含有量が0.01~0.15wt%、2種以上複合添加した場合の合計含有量が0.01~0.3wt%が好ましい範囲とされる。前記のような範囲に配合することにより、本願発明に係るチタン合金材粉を原料として加工成形処理されたチタン合金材の機械的特性を最大限に引き出すことができる。 In the present invention, in the case of the single addition of TiC, TiO x , SiC, SiO x , or Al 2 O 3 , the content of each of the ceramic powders is 0.01 to 0.15 wt%, and two or more of them are mixed. The total content in the case of composite addition is preferably 0.01 to 0.3 wt%. By blending in the range as described above, it is possible to maximize the mechanical properties of the titanium alloy material processed and processed using the titanium alloy material powder according to the present invention as a raw material.
 本願発明においては、前記緻密化処理は、CIPまたはHIPを適宜、組み合わせて処理することが好ましい。 In the present invention, the densification treatment is preferably carried out by appropriately combining CIP or HIP.
 例えば、上述の方法で得られたチタン合金複合粉をCIPラバーに充填して、100~200MPaで処理した後、次いで、HIPカプセルに充填し、β変態点を越えない温度において50~200MPaの圧力で1~5Hr、HIP処理することが好ましい。このようなCIP処理後、次いで行うHIP処理を行なうことにより緻密化されたチタン合金材料を得ることができる。 For example, after the titanium alloy composite powder obtained by the above-mentioned method is packed into a CIP rubber and treated at 100 to 200 MPa, then it is packed into a HIP capsule and a pressure of 50 to 200 MPa at a temperature not exceeding the β transformation point It is preferable to carry out HIP treatment for 1 to 5 hours. After such a CIP treatment, a densified titanium alloy material can be obtained by performing a subsequent HIP treatment.
 また、前記した上述の方法で得られたチタン合金複合粉を、CIP処理しないで、HIPカプセルに充填し、β変態点を越えない温度において50~200MPaの圧力で1~5Hr、HIP処理することが好ましい。このようなHIP処理単独でも行なうことにより緻密化されたチタン合金材料を得ることができる。 In addition, the titanium alloy composite powder obtained by the above-described method is filled in a HIP capsule without CIP treatment, and subjected to HIP treatment with a pressure of 50 to 200 MPa at a temperature not exceeding the β transformation point for 1 to 5 hours. Is preferred. A densified titanium alloy material can be obtained by performing such HIP treatment alone.
 次に、合金スクラップに配合した各種セラミックス粉の添加によるチタン合金材には、前記した焼結過程でその作用効果を奏するものである。 Next, the titanium alloy material based on the addition of various ceramic powders blended in the alloy scrap exhibits its function and effect in the above-described sintering process.
 そこで、本願発明に係るセラミックス粉の個別の効果について以下に述べる。
SiC添加の作用効果
 水素化合金粉に添加するSiCは、市販されている粉末状の試料を用いることができる。 当該実施態様においては、前記チタン合金粉の重量に対して、SiC粉を0.01%~0.15%の範囲に配合することが好ましい。また、添加するSiCの粒度は0.01μm~50μmが好ましく、更には0.1μm~20μmがより好ましい。
Therefore, individual effects of the ceramic powder according to the present invention will be described below.
The effect of SiC addition As SiC added to hydrogenated alloy powder, the powdery sample marketed can be used. In this embodiment, it is preferable to blend SiC powder in the range of 0.01% to 0.15% with respect to the weight of the titanium alloy powder. The particle size of the added SiC is preferably 0.01 μm to 50 μm, and more preferably 0.1 μm to 20 μm.
 前記した範囲に制御することにより、本願発明に係るチタン合金粉をCIP処理後、次いでHIP処理することにより、または、カプセルに封入後HIP処理することにより最終製品であるチタン合金材の特性に悪い影響を与えることなく、最終製品の組織中に存在する分散相の寸法と存在頻度を好ましく制御することが可能になるという効果を奏するものである。 By controlling the titanium alloy powder according to the present invention by CIP followed by HIP treatment by controlling to the above-mentioned range, or after HIP treatment after encapsulating in a capsule, the characteristics of the titanium alloy material which is the final product is bad It has the effect that it becomes possible to preferably control the size and frequency of the dispersed phase present in the tissue of the final product without affecting it.
 チタン合金複合粉に配合されたSiC粉は、HIP処理時に、マトリックス中のチタンと反応して、次式によりTiC、Siが生成される。
    SiC + Ti → TiC + Si
 上記反応で生成されたTiCは、チタン中のマトリックスと整合性を保ったままマトリクスに均一に分散されるため、結果的には、SiCを添加しない場合に比べて、引っ張り強度の点でも優れているという効果を奏するものである。勿論、HIP処理時間中に上記反応が全量終了せずに、SiCのままマトリクスに残存する粒子もある。これらの残存粒子も分散強化に寄与するのは言うまでもない。
The SiC powder blended into the titanium alloy composite powder reacts with titanium in the matrix during HIP processing to form TiC and Si according to the following equation.
SiC + Ti → TiC + Si
Since TiC produced by the above reaction is uniformly dispersed in the matrix while maintaining the consistency with the matrix in titanium, as a result, the tensile strength is excellent compared to the case where no SiC is added. The effect of Of course, there are also particles which remain as SiC as they are in the matrix without the entire reaction being completed during the HIP processing time. It goes without saying that these residual particles also contribute to the dispersion strengthening.
 また、SiCを添加した場合には、マトリックス中にTiCを生成するのみならず、金属Siも生成する。マトリックス中に生成された金属Siは、マトリックス中のチタンと反応してTiSiを生成する。
    2Si+Ti → TiSi
 マトリックス中に生成したTiSiは、マトリックス相と整合性を保って析出し、チタン合金材料の靭性を高めることができるという効果を奏するものである。
In addition, when SiC is added, not only TiC is generated in the matrix, but metal Si is also generated. The metallic Si produced in the matrix reacts with the titanium in the matrix to form TiSi 2 .
2Si + Ti → TiSi 2
TiSi 2 formed in the matrix is deposited with keeping consistency with the matrix phase, and has an effect that the toughness of the titanium alloy material can be enhanced.
TiC添加の作用効果
 当該実施態様においては、前記チタン合金粉に対して、TiCを配合することが好ましい。TiCの配合比率は、チタン合金粉の重量に対して、0.01~0.15wt%の範囲にて制御することが好ましい。添加するTiCの粒度は0.01μm~50μmが好ましく、更には0.1μm~20μmがより好ましい。
Effect of TiC Addition In the embodiment, it is preferable to blend TiC with the titanium alloy powder. The compounding ratio of TiC is preferably controlled in the range of 0.01 to 0.15 wt% with respect to the weight of the titanium alloy powder. The particle size of TiC to be added is preferably 0.01 μm to 50 μm, and more preferably 0.1 μm to 20 μm.
 前記した範囲に制御することにより、本願発明に係るチタン合金粉を緻密化処理された後の最終製品であるチタン合金材料の特性に悪い影響を与えることなく、最終製品の組織中に存在する分散相の寸法と存在頻度を好ましく制御することが可能になるという効果を奏するものである。 Dispersion within the structure of the final product without adversely affecting the properties of the titanium alloy material which is the final product after densifying the titanium alloy powder according to the present invention by controlling to the above-mentioned range An effect is obtained that it is possible to preferably control the size and the frequency of the phase.
 チタン合金粉とTiC粉とで構成されたチタン合金複合粉は、CIP処理後、次いでHIP処理することにより、または、カプセルに封入後HIP処理することにより、本願発明に係る緻密化されたチタン合金材を得ることができる。 A titanium alloy composite powder composed of a titanium alloy powder and a TiC powder is subjected to CIP treatment, and then subjected to HIP treatment, or is subjected to HIP treatment after being enclosed in a capsule to form a densified titanium alloy according to the present invention. The material can be obtained.
 HIP処理後のチタン合金材中のTiCの寸法は、添加時の粒度0.01~50μmのままで、その存在頻度は5個/mm以上である。マトリックスに均一、微細に分散したTiC相は、分散強化によって、引っ張り強さ、疲労強度などの機械的特性の改善に大きく寄与する。 The size of TiC in the titanium alloy material after HIP treatment remains in the particle size of 0.01 to 50 μm at the time of addition, and the existing frequency is 5 pieces / mm 2 or more. The uniformly and finely dispersed TiC phase in the matrix greatly contributes to the improvement of mechanical properties such as tensile strength and fatigue strength by dispersion strengthening.
SiO 添加の作用効果
 チタン合金粉に、SiOの一例としてSiO粉を0.01%~0.15%を添加することにより、SiC添加の場合と同様に、CIP処理後、次いでHIP処理することにより、または、カプセルに封入後HIP処理することにより、チタン合金材の機械的特性を改善することが出来る。すなわちチタン相と反応して生成したTiO相、反応途中の残存SiO相、反応の結果生成したSi相がTiと反応して生成したTiSi相がチタンマトリクスに存在し、均一微細に存在し機械的強度アップに寄与し、添加による延び低下が抑制される。
The effect of SiO X addition By adding 0.01% to 0.15% of SiO 2 powder as an example of SiO X to titanium alloy powder, after CIP treatment and then HIP treatment as in the case of SiC addition The mechanical properties of the titanium alloy material can be improved by heat treatment or by HIP treatment after encapsulation. That is, the TiO 2 phase generated by reacting with the titanium phase, the residual SiO 2 phase during the reaction, and the TiSi 2 phase generated by reacting the Ti phase generated as a result of the reaction exist in the titanium matrix and uniformly exist. It contributes to the increase in mechanical strength and suppresses the decrease in elongation due to the addition.
 チタン合金複合粉に配合されたSiO粉は、HIP処理時に、マトリックス中のチタンと反応して、次式によりTiO、Si、およびTiSiが生成される。
   SiO + Ti → TiO + Si
   2Si+Ti → TiSi
 前記反応で生成したTiOは、チタン合金中に残留し、結果として、チタン合金自身が分散強化される。また、前記反応で生成したTiSiは、チタン合金の靭性の改善に寄与するものである。
The SiO 2 powder blended into the titanium alloy composite powder reacts with titanium in the matrix during HIP processing to produce TiO 2 , Si, and TiSi 2 according to the following equation.
SiO 2 + Ti → TiO 2 + Si
2Si + Ti → TiSi 2
The TiO 2 generated by the reaction remains in the titanium alloy, and as a result, the titanium alloy itself is dispersion strengthened. Moreover, TiSi 2 generated by the reaction contributes to the improvement of the toughness of the titanium alloy.
 なお、SiO粉に替えて、SiO等のSiOを使用した場合にも上記の反応式と同様にTiOとSiが生成され、これがTiと反応してTiSiを生成し、チタン合金の靭性改善に寄与するものである。 Instead of the SiO 2 powder, when using SiO X of SiO or the like is also generated TiO X and Si as in the above reaction scheme, which generates a TiSi 2 reacts with Ti, a titanium alloy It contributes to the improvement of toughness.
TiO 添加の作用効果
 チタン合金粉に、TiOの一例としてTiO粉を適量添加することにより、TiC添加の場合と同様に、CIP処理後、次いで行うHIP処理、または、チタン合金粉をカプセルに封入してのHIP処理を行うことにより機械的特性を改善することが出来る。TiO粉の添加量、好ましい粒度範囲はTiC添加の場合と同じである。
The effect of TiO X addition By adding an appropriate amount of TiO 2 powder as an example of TiO X to titanium alloy powder, as in the case of Ti C addition, after HIP processing followed by HIP treatment or titanium alloy powder is encapsulated The mechanical properties can be improved by performing HIP treatment enclosed in The amount of TiO 2 powder added and the preferred particle size range are the same as in the case of TiC addition.
 また、チタン合金粉にTiO等のTiOを添加した場合にも同様にチタン合金の機械的特性を改善することができるという効果を奏するものである。 Also, when TiO x such as TiO is added to titanium alloy powder, the mechanical properties of the titanium alloy can be similarly improved.
Al 添加の作用効果
 チタン合金粉にAl粉を適量添加することによっても、TiC添加、TiO添加の場合と同様に、CIP処理後、次いで行うHIP処理、または、チタン合金粉をカプセルに封入してのHIP処理を行うことにより、チタン合金材の機械的特性を改善することが出来る。この場合、Al粒子が安定で、Tiとの反応が全くないために、添加時点の粒子の粒度、存在頻度がそのまま維持されるので、チタン合金材の組織制御はHIP処理条件に殆ど影響を受けない。そのために、材料の設計がより容易になる、という効果を有する。Al相が強度改善に寄与するのは、分散効果による。
By adding an appropriate amount of Al 2 O 3 powder to the effects of titanium alloy powder of Al 2 O 3 also added, TiC added, as in the case of TiO 2 added, after CIP treatment and then performing HIP treatment or a titanium alloy The mechanical properties of the titanium alloy material can be improved by subjecting the powder to an HIP treatment in which the powder is encapsulated. In this case, Al 2 O 3 particles are stable, for reaction with the Ti is no, the particle size of the particles of the point of addition, since the occurrence frequency is maintained as it is, the tissue control of a titanium alloy material almost HIP treatment conditions Not affected Therefore, it has the effect that the design of the material is easier. It is due to the dispersion effect that the Al 2 O 3 phase contributes to strength improvement.
セラミックス系粉末の複合添加(TiC、TiO 、SiC、SiO 、Al
 本願発明に用いるセラミックス粉末は、1種類のみならず、2種類以上を適宜処方して添加することもできる。その場合には、セラミックス粉末の原料が、0.01~0.3wt%の範囲が好ましい。添加するそれぞれのセラミックスの粒度は0.01~50μm、より好ましくは、0.01~20μmの範囲が好ましい。この範囲に添加量、粒度を制御することにより、本願発明に係るチタン合金材の組織におけるセラミックス粒子の寸法、存在頻度を好ましく制御できる。
Combined addition of ceramic-based powder (TiC, TiO 2, SiC, SiO 2, Al 2 O 3)
Not only one type but also two or more types of the ceramic powder used in the present invention can be appropriately formulated and added. In that case, the raw material of the ceramic powder is preferably in the range of 0.01 to 0.3 wt%. The particle size of each ceramic to be added is preferably in the range of 0.01 to 50 μm, more preferably 0.01 to 20 μm. By controlling the addition amount and the particle size in this range, it is possible to preferably control the size and presence frequency of the ceramic particles in the structure of the titanium alloy material according to the present invention.
 以上述べた方法により調整されたチタン合金複合粉は、CIP処理後、次いで行うHIP処理、または、チタン合金複合粉をカプセルに封入してのHIP処理を行うことにより、効率よく緻密化することができる。 The titanium alloy composite powder prepared by the method described above can be efficiently densified by performing HIP processing performed after CIP processing and subsequent HIP processing in which the titanium alloy composite powder is enclosed in a capsule. it can.
 特に、本発明では、SiC、TiC、SiO、TiOまたはAlから選択されたセラミックス粉をチタン合金粉に適宜配合することにより、チタン合金中での分散強化、結晶粒微細化、引張強度向上、靭性向上の効果を奏するものであり、特にTiSiを生成するSiCおよびSiOの添加においては延性低下抑制効果が顕著である。 In particular, in the present invention, dispersion strengthening in titanium alloy, grain refinement, and the like can be achieved by appropriately blending ceramic powder selected from SiC, TiC, SiO x , TiO x or Al 2 O 3 into titanium alloy powder. The effect of improving the tensile strength and the toughness is exhibited, and the ductility reduction suppressing effect is remarkable particularly in the addition of SiC and SiO X which form TiSi 2 .
 また、本願発明においては、前記のチタン合金粉は、Ti-6Al-4V合金、Ti-3Al-2.5V合金、Ti-6Al-2Sn-4Zr-6Mo合金,Ti-6Al-6V-2Sn合金、Ti-10V-2Fe-3Al合金(10-2-3)、Ti-5Al-4V-0.6Mo-0.4Fe合金(Timetal 54M)、Ti-4.5Al-3V-2Fe-2Mo合金(SP700)、Ti-15V-3Cr-3Al-3Sn合金(15-3-3-3)、Ti-4Al-2.5V-1.5Fe合金(ATI425)、Ti-5Al-5V-5Mo-3Cr合金(Ti-5553)から構成されるチタン合金を原料として使用することができる。 In the present invention, the above-mentioned titanium alloy powder is a Ti-6Al-4V alloy, a Ti-3Al-2.5V alloy, a Ti-6Al-2Sn-4Zr-6Mo alloy, a Ti-6Al-6V-2Sn alloy, Ti-10V-2Fe-3Al alloy (10-2-3), Ti-5Al-4V-0.6Mo-0.4Fe alloy (Timetal 54M), Ti-4.5Al-3V-2Fe-2Mo alloy (SP700) , Ti-15V-3Cr-3Al-3Sn alloy (15-3-3-3), Ti-4Al-2.5V-1.5Fe alloy (ATI 425), Ti-5Al-5V-5Mo-3Cr alloy (Ti- 5553) can be used as a raw material.
 以上述べた方法により緻密化された銅、クロム、鉄を含有するチタン合金材料は、その後の例えば圧延、押出、引抜き等の加工と熱処理により、一層機械的特性を制御することができるという効果を奏するものである。 The titanium alloy material containing copper, chromium, and iron densified by the above-described method has an effect that mechanical characteristics can be further controlled by subsequent processing such as rolling, extrusion, and drawing and heat treatment. It plays.
[実施例1]
 水素化チタン合金粉の作製について、以下に説明する。
 Ti-6Al-4V合金スクラップ切粉を、長さ10mm以下のチップに切断した後、容器に挿入し炉にセット、真空排気後加熱を開始し、炉内温度が300℃になってから水素を炉内に導入、炉内を水素でやや加圧常態にしながら650℃まで加熱を続けた。この間Ti―6Al-4V合金スクラップ切粉と水素が反応、炉内温度が上昇したので、ヒーター出力をゼロとし、反応が収まるまで持続させた。
Example 1
The preparation of hydrogenated titanium alloy powder is described below.
After cutting Ti-6Al-4V alloy scrap chips into chips with a length of 10 mm or less, insert them into a vessel and set them in a furnace, start evacuation after evacuation and start heating, and after the furnace temperature reaches 300 ° C, hydrogen is added It was introduced into the furnace, and heating was continued to 650 ° C. while the furnace was slightly pressurized with hydrogen. During this time, the Ti-6Al-4V alloy scrap and hydrogen reacted with each other and the temperature in the furnace rose, so the heater output was made zero and the reaction was continued until the reaction was stopped.
 反応が完全に終了したら、炉を冷却し材料を取り出した。X線回折で確認したところ、水素化チタンのピークのみが検出され、材料は全て水素化物になったことが確認された。この水素化物をアルゴンガス雰囲気で粉砕、300メッシュの篩で篩い分け48μm以下の粒度の水素化チタン合金粉を得た。 When the reaction was complete, the furnace was cooled and the material removed. As confirmed by X-ray diffraction, it was confirmed that only the peak of titanium hydride was detected, and all the material became hydride. The hydride was crushed in an argon gas atmosphere and sieved with a 300 mesh sieve to obtain a hydrogenated titanium alloy powder having a particle size of 48 μm or less.
[実施例2]
 実施例1で得られたTi-6%Al-4%Vの組成を有する水素化チタン合金粉に対して0%、0.05wt%、0.1wt%、0.15wt%、0.5wt%の比率でTiO粉を添加した5種の試料を準備して、V型混合機で混合した。使用したTiO粉はTiClの酸素燃焼法で作製した粉末で、平均粒度は0.8μmである。
Example 2
0%, 0.05 wt%, 0.1 wt%, 0.15 wt%, 0.5 wt% of titanium hydride alloy powder having the composition of Ti-6% Al-4% V obtained in Example 1 Five samples to which TiO 2 powder was added at a ratio of 5 were prepared and mixed in a V-type mixer. The TiO 2 powder used is a powder produced by the oxyfuel combustion method of TiCl 4 and has an average particle size of 0.8 μm.
 TiOを添加した水素化チタン合金粉をTi製の容器に挿入し、真空加熱炉で脱水素処理した。真空排気後加熱を開始すると、300℃前後の温度から水素ガスを乖離する反応(脱水素)が起こり、そのまま、500℃、600℃と温度を上昇させ、脱水素化を促した。脱水素化反応は吸熱反応であるため、脱水素化を効率よく行うためには、炉内温度を一定に維持することが重要で、650℃に1Hr保持すると、真空度が回復、1x10-3mbarの真空度が得られたので、ヒーターを停止、冷却した。取り出した粉末は、一部凝集していたので、塊砕機により塊砕し、300μm以下のチタン合金粉を得た。 The hydrogenated titanium alloy powder to which TiO 2 was added was inserted into a container made of Ti, and dehydrogenated in a vacuum heating furnace. When heating after evacuation was started, a reaction (dehydrogenation) of desorbing hydrogen gas from a temperature around 300 ° C. occurred, and as it was, the temperature was raised to 500 ° C. and 600 ° C. to promote dehydrogenation. Since the dehydrogenation reaction is an endothermic reaction, it is important to keep the temperature in the furnace constant for efficient dehydrogenation. The vacuum degree is recovered by holding at 650 ° C. for 1 hour, 1 × 10 −3 After the vacuum of mbar was obtained, the heater was stopped and cooled. The taken-out powder was partially coagulated, so it was crushed by a crusher to obtain titanium alloy powder of 300 μm or less.
[実施例3]
 実施例2に記載のTiO添加チタン合金粉を、CIPラバーに充填、150MPaでCIP処理、CIP成形体を軟鋼カプセルに封入してHIP処理し、本願発明に係るチタン合金材を得た。HIP条件は900℃、100MPa、1Hrである。HIP処理後、チタン合金材を取り出し、その見掛け密度を測定し理論密度の比(以降、単に「密度比」と呼ぶ場合がある。)を測定し、表1にその結果を示した。
[Example 3]
The TiO 2 -added titanium alloy powder described in Example 2 was filled in a CIP rubber, CIP treated at 150 MPa, and a CIP molded body was sealed in a mild steel capsule for HIP treatment to obtain a titanium alloy material according to the present invention. HIP conditions are 900 ° C., 100 MPa, and 1 hour. After HIP processing, the titanium alloy material was taken out, its apparent density was measured, and the ratio of theoretical density (hereinafter sometimes simply referred to as "density ratio") was measured, and the results are shown in Table 1.
 TiO添加量が0.05wt%から0.15wt%まで増加すると、チタン合金材の密度比は、99.1%から99.5%の範囲に増加した。 As the TiO 2 content increased from 0.05 wt% to 0.15 wt%, the density ratio of the titanium alloy material increased from 99.1% to 99.5%.
[実施例3-2]
 実施例2に記載のTiO添加チタン合金粉を、軟鋼カプセルに封入してHIP処理した。HIP条件は900℃、100MPa、1Hrである。HIP処理後、チタン合金材を取り出しその密度を測定したところ99%以上であったなお、ここでいう密度とは、真密度に対する見掛け密度の比を意味する。
Example 3-2
The TiO 2 -doped titanium alloy powder described in Example 2 was enclosed in a mild steel capsule and HIP treated. HIP conditions are 900 ° C., 100 MPa, and 1 hour. After HIP processing, the titanium alloy material was taken out and its density was measured and it was 99% or more. The density mentioned here means the ratio of apparent density to true density.
[実施例4]
 実施例3で製造されたチタン合金材料(TiO2添加Ti-6Al-4V合金材)の引張り試験を行った。結果は表1に示す通りである。表1には、密度測定結果も合わせて示す。TiO添加量が、0.05wt%~0.15wt%まで増加すると、伸びは、13%から10%まで低下するものの、引っ張り強さは、1050から1100MPaまで上昇する傾向を示した。
Example 4
A tensile test was conducted on the titanium alloy material (TiO 2 -added Ti-6Al-4V alloy material) produced in Example 3. The results are as shown in Table 1. Table 1 also shows the density measurement results. The tensile strength tended to increase from 1050 to 1100 MPa although the elongation decreased from 13% to 10% when the TiO 2 content was increased to 0.05 wt% to 0.15 wt%.
[実施例4-2]
 実施例3-2で製造されたチタン合金材料(TiO添加Ti-6Al-4V合金材)の引張り試験を行った。結果は表1に示す通りである。表1には、密度測定結果も合わせて示す。TiO添加Ti-6Al-4V合金粉末をカプセル封入後HIP処理した場合と、CIP処理後HIP処理した場合とで、密度比、引張り強さ、伸びに違いは認められなかった。
Embodiment 4-2
A tensile test was performed on the titanium alloy material (TiO 2 -added Ti-6Al-4V alloy material) manufactured in Example 3-2. The results are as shown in Table 1. Table 1 also shows the density measurement results. No difference was observed in the density ratio, the tensile strength and the elongation between the case where the TiO 2 -added Ti-6Al-4V alloy powder was subjected to HIP treatment after encapsulation and the case where the HIP treatment was performed after CIP treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例5]
 実施例4、比較例1の試料の組織を確認したところ、TiO相が、マトリクス内に均一に分散して存在していることが確認された。TiO相の寸法と存在頻度は表2に示す通りである。ここで、TiO相の寸法とは、マトリックス内に分散しているTiO相の最大径を現している。また、TiO相存在頻度とは、マトリックス単位面積あたりに確認されたTiO粒子の個数を意味する。
[Example 5]
When the structures of the samples of Example 4 and Comparative Example 1 were confirmed, it was confirmed that the TiO 2 phase was uniformly dispersed and present in the matrix. The dimensions and the frequency of existence of the TiO 2 phase are as shown in Table 2. Here, the size of the TiO 2 phase indicates the maximum diameter of the TiO 2 phase dispersed in the matrix. Moreover, the TiO 2 phase presence frequency means the number of TiO 2 particles confirmed per matrix unit area.
 チタン合金粉に添加するTiOの添加量が0.05から0.15%まで増えると、チタン合金焼結体のマトリックス中のTiO相の最大径も、5μmから15μmまで増加する傾向を示した。また、マトリックス単位面積当たりのTiO粒子の個数も15個/mmから40個/mmまで増加する傾向を示した。 When the addition amount of TiO 2 added to titanium alloy powder increases from 0.05 to 0.15%, the maximum diameter of the TiO 2 phase in the matrix of the titanium alloy sintered body also tends to increase from 5 μm to 15 μm. The Also showed a tendency to increase the number of the TiO 2 particles per matrix unit area from 15 / mm 2 up to 40 / mm 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例6]
 実施例2のTiO粉の代わりに、2μmのSiO粉をチタン合金粉に対して0.05wt%、0.1wt%、0.15wt%、0.5wt%になるよう配合して、実施例3、実施例4と同様にCIP処理後、次いでHIP処理して本願発明に係るチタン合金材を得た。次いで、得られたチタン合金材の密度比測定と引張り試験を行った。
[Example 6]
Instead of the TiO 2 powder of Example 2, 2 μm of SiO 2 powder is compounded so as to be 0.05 wt%, 0.1 wt%, 0.15 wt%, 0.5 wt% with respect to the titanium alloy powder. After CIP treatment in the same manner as in Example 3 and Example 4, then HIP treatment was performed to obtain a titanium alloy material according to the present invention. Next, density ratio measurement and tensile test of the obtained titanium alloy material were performed.
[実施例6-2]
 実施例2に記載のSiO添加チタン合金粉を、軟鋼カプセルに封入してHIP処理した。HIP条件は900℃、100MPa、1Hrである。HIP処理後、チタン合金材を取り出し得られたチタン合金材の密度比測定と引張り試験を行った。
Example 6-2
The SiO 2 -added titanium alloy powder described in Example 2 was enclosed in a mild steel capsule and subjected to HIP treatment. HIP conditions are 900 ° C., 100 MPa, and 1 hour. After the HIP treatment, the titanium alloy material was taken out, and the density ratio measurement and the tensile test of the obtained titanium alloy material were performed.
 その結果、チタン合金粉に対するSiO粉の添加量が、0.05から0.15wt%まで増加すると、引っ張り強さは、1050MPaから1100MPaまで増加する傾向を示した。これに対して、伸びは、15%から13%まで低下した。一方、密度比は、99.2~99.5%の範囲まで増加した。SiO添加Ti-6Al-4V合金粉末をカプセル封入後HIP処理した実施例6-2についても、密度比、引張り強さ、伸びに違いは認められなかった。 As a result, the tensile strength tended to increase from 1050 MPa to 1100 MPa as the amount of SiO 2 powder added to the titanium alloy powder increased from 0.05 to 0.15 wt%. In contrast, the growth dropped from 15% to 13%. On the other hand, the density ratio increased to the range of 99.2-99.5%. Also in Example 6-2 in which the SiO 2 -added Ti-6Al-4V alloy powder was encapsulated and then HIPed, no difference was observed in the density ratio, the tensile strength and the elongation.
 次いで、得られたチタン合金材の結晶組織観察を行い、分散相の定性分析を行った。
 その結果、TiSi相およびTiO相が検出された。これに対してSiO相は定性分析の検出感度以下にあった。それぞれの結果を表3に示す。
Subsequently, crystal structure observation of the obtained titanium alloy material was performed, and qualitative analysis of the dispersed phase was performed.
As a result, TiSi 2 phase and TiO 2 phase were detected. In contrast, the SiO 2 phase was below the detection sensitivity of qualitative analysis. The respective results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[比較例1-A]
 実施例1のチタン合金水素化粉にセラミックス粉を添加しない試料を準備し、実施例3、実施例4と同じ方法でCIP処理、HIP処理し、密度測定、引張り試験を行った。結果は表1に示した通りである。
[Comparative Example 1-A]
A sample in which ceramic powder was not added to the titanium alloy hydrogenated powder of Example 1 was prepared, subjected to CIP treatment and HIP treatment, density measurement and tensile test in the same manner as in Examples 3 and 4. The results are as shown in Table 1.
 TiOを全く添加しない場合には、伸びは15%程度示したものの、引っ張り強さは、900MPaまで低下した。 When no TiO 2 was added, although the elongation was about 15%, the tensile strength decreased to 900 MPa.
[比較例1-B]
 また、実施例1のチタン合金水素化粉にTiOを0.5wt%添加した粉を準備し、実施例3、実施例4と同じ方法でCIP処理、HIP処理し、密度測定、引張り試験を行った。結果は表1に示した通りである。また、TiOを0.5wt%添加した場合には伸びは2%まで低下してまった。
[Comparative Example 1-B]
In addition, a powder obtained by adding 0.5 wt% of TiO 2 to titanium alloy hydrogenated powder of Example 1 is prepared, subjected to CIP treatment and HIP treatment by the same method as Example 3 and Example 4, density measurement, tensile test went. The results are as shown in Table 1. In addition, when 0.5 wt% of TiO 2 was added, the elongation decreased to 2%.
[比較例2]
 比較例1のTiOを0.5wt%添加した試料の組織を観察した。その結果を表2に示す。
Comparative Example 2
The structure of the sample to which 0.5 wt% of TiO 2 of Comparative Example 1 was added was observed. The results are shown in Table 2.
[比較例3-A]
 また、実施例1のチタン合金水素化粉にSiO粉を全く添加しない粉を準備し、実施例3、実施例4と同じ方法でCIP処理後、次いでHIP処理して、チタン合金材を得た。その結果、得られたチタン合金材の密度比が98%まで低下してしまった。
Comparative Example 3-A
In addition, a powder was prepared by adding no SiO 2 powder to the titanium alloy hydrogenated powder of Example 1, CIP-treated in the same manner as in Examples 3 and 4, and then HIP-treated to obtain a titanium alloy material. The As a result, the density ratio of the obtained titanium alloy material decreased to 98%.
[比較例3-B]
 実施例1のチタン合金水素化粉にSiO粉を0.5wt%添加した粉を準備し、実施例3、実施例4と同じ方法でCIP処理後、次いでHIP処理して、チタン合金材を得た。得られたチタン合金材の密度測定、引張り強度測定および結晶組織観察を行った。その結果表3に示すように、チタン合金材の伸びは4%近傍まで急激な低下が見られた。
Comparative Example 3-B
A powder obtained by adding 0.5 wt% of SiO 2 powder to titanium alloy hydrogenated powder of Example 1 is prepared, subjected to CIP treatment in the same manner as in Examples 3 and 4, and then subjected to HIP treatment to obtain a titanium alloy material Obtained. The density measurement, tensile strength measurement, and crystal structure observation of the obtained titanium alloy material were performed. As a result, as shown in Table 3, the elongation of the titanium alloy material was sharply reduced to around 4%.
 本願発明は、チタン合金スクラップ及びチタン合金インゴットを原料として、粉末冶金法により、機械的特性に優れるチタン合金粉、チタン合金材を得るもので、チタン合金粉、チタン合金材及びその製造方法を提供するものである。 The present invention is to obtain titanium alloy powder and titanium alloy material excellent in mechanical properties by powder metallurgy using titanium alloy scrap and titanium alloy ingot as raw materials, and provide titanium alloy powder, titanium alloy material and manufacturing method thereof It is

Claims (11)

  1.  チタン合金粉に、セラミックス粉が配合されていることを特徴とするチタン合金複合粉。 Titanium alloy composite powder, wherein ceramic powder is blended with titanium alloy powder.
  2.  前記セラミックスが、SiC、TiC、SiO、TiO(ここで、添字xは、1≦x≦2の範囲をとる実数である)または、Alの中から少なくとも1種以上選択されたものであることを特徴とする請求項1に記載のチタン合金複合粉。 The ceramic is at least one selected from SiC, TiC, SiO x , TiO x (here, the subscript x is a real number in the range of 1 ≦ x ≦ 2) or Al 2 O 3 The titanium alloy composite powder according to claim 1, characterized in that
  3.  前記セラミックス粉の添加量は、1種類の混合の場合は0.01~0.15wt%であり、2種類以上複合添加した場合の合計量は0.01~0.3wt%であることを特徴とする請求項1または2に記載のチタン合金複合粉。 The addition amount of the ceramic powder is 0.01 to 0.15 wt% in the case of one kind of mixing, and the total amount in the case of two or more kinds of composite addition is characterized in that it is 0.01 to 0.3 wt%. The titanium alloy composite powder according to claim 1 or 2.
  4.  前記チタン合金粉の粒度が、150μm以下であることを特徴とする請求項1~3のいずれかに記載のチタン合金複合粉。 The titanium alloy composite powder according to any one of claims 1 to 3, wherein the particle size of the titanium alloy powder is 150 μm or less.
  5.  前記チタン合金粉は、アルミニウムおよびバナジウムを含有、または、アルミニウムおよびバナジウムに加えて、ジルコニウム、スズ、モリブデン、鉄、クロムの中から少なくとも1種または2種以上含有されていることを特徴とする請求項1に記載のチタン合金複合粉。 The titanium alloy powder contains aluminum and / or vanadium and, in addition to aluminum and vanadium, contains at least one or more of zirconium, tin, molybdenum, iron and chromium. The titanium alloy composite powder according to Item 1.
  6.  チタン合金原料を水素化して水素化チタン合金原料とし、
     前記水素化チタン合金原料を粉砕して水素化チタン合金粉とした後にセラミックス粉を添加するか、または脱水素してからセラミックス粉を添加することを特徴とするチタン合金複合粉の製造方法。
    The titanium alloy raw material is hydrogenated to make a hydrogenated titanium alloy raw material,
    A method for producing a titanium alloy composite powder, which comprises adding the ceramic powder after decomposing the titanium hydride alloy raw material to form a titanium hydride alloy powder or dehydrogenating the ceramic powder.
  7.  請求項1~5のいずれかに記載のチタン合金複合粉を原料とし、これを加圧成形されて得られたことを特徴とするチタン合金材。 A titanium alloy material obtained by using the titanium alloy composite powder according to any one of claims 1 to 5 as a raw material and pressing it.
  8.  チタン合金材の真密度に対するチタン合金材の密度の比が、99%以上であることを特徴とする請求項7に記載のチタン合金材。 The titanium alloy material according to claim 7, wherein the ratio of the density of the titanium alloy material to the true density of the titanium alloy material is 99% or more.
  9.  前記チタン合金中には、チタン化合物が分散しており、前記チタン化合物が、チタン合金粉に添加されたセラミックス粉がチタン合金粉中に固溶する際に副生したものであることを特徴とする請求項7または8に記載のチタン合金材。 A titanium compound is dispersed in the titanium alloy, and the titanium compound is by-produced when the ceramic powder added to the titanium alloy powder forms a solid solution in the titanium alloy powder. The titanium alloy material according to claim 7 or 8.
  10.  前記チタン化合物が、TiC、TiSiまたはTiOであることを特徴とする請求項7~9のいずれかに記載のチタン合金材。 The titanium compound, TiC, a titanium alloy material according to any one of claims 7-9, characterized in that a TiSi 2 or TiO 2.
  11.  請求項1~5のいずれかに記載のチタン合金複合粉に対してCIP処理後次いでHIP処理を行う方法、または、チタン合金複合粉をカプセル封入後HIP処理する方法のいずれかの方法で緻密化することを特徴とするチタン合金材の製造方法。 The titanium alloy composite powder according to any one of claims 1 to 5 is subjected to CIP treatment and then to HIP treatment, or, the titanium alloy composite powder is densified by any method after encapsulation and HIP treatment. A manufacturing method of a titanium alloy material characterized by doing.
PCT/JP2011/062392 2010-05-31 2011-05-30 Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same WO2011152359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012518385A JP5855565B2 (en) 2010-05-31 2011-05-30 Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
US13/701,182 US20130071283A1 (en) 2010-05-31 2011-05-30 Titanium alloy complex powder containing ceramic and process for production thereof, consolidated titanium alloy material using this powder and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010124567 2010-05-31
JP2010-124567 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152359A1 true WO2011152359A1 (en) 2011-12-08

Family

ID=45066726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062392 WO2011152359A1 (en) 2010-05-31 2011-05-30 Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same

Country Status (3)

Country Link
US (1) US20130071283A1 (en)
JP (1) JP5855565B2 (en)
WO (1) WO2011152359A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105355A (en) * 2012-11-27 2014-06-09 Takefu Tokushu Kozai Kk METHOD FOR PRODUCING Ti-TiC SYNTHETIC MATERIAL
CN104827022A (en) * 2015-04-27 2015-08-12 苏州统明机械有限公司 Nickel-chrome alloy coating for ceramic and preparation method thereof
CN106399752A (en) * 2015-07-31 2017-02-15 复盛应用科技股份有限公司 Manufacturing method of titanium alloy plate for application to golf ball head
JP2017214643A (en) * 2016-03-29 2017-12-07 セイコーエプソン株式会社 Titanium sintered compact, ornament, and heat resistant component
JP2017222899A (en) * 2016-06-15 2017-12-21 国立大学法人 名古屋工業大学 Metal powder for laminate molding and laminate molded body using metal powder
JP2018104778A (en) * 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor
CN113136543A (en) * 2021-04-23 2021-07-20 四川大学 Titanium alloy surface coating and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013008396B4 (en) 2013-05-17 2015-04-02 G. Rau Gmbh & Co. Kg Method and device for remelting and / or remelting of metallic materials, in particular nitinol
US20170067137A1 (en) * 2015-09-07 2017-03-09 Seiko Epson Corporation Titanium sintered body and ornament
JP6861164B2 (en) * 2015-11-02 2021-04-21 勝義 近藤 Oxygen solid solution titanium material sintered body and its manufacturing method
CN107234242B (en) * 2016-03-29 2021-07-30 精工爱普生株式会社 Titanium sintered compact, decorative article, and heat-resistant member
WO2017190246A1 (en) * 2016-05-04 2017-11-09 Lumiant Corporation Titanium silicide matrix composite with in situ formed titanium carbide reinforcement
CN108193064B (en) * 2017-12-26 2020-03-20 天钛隆(天津)金属材料有限公司 Low-cost industrial production method of TiC particle reinforced titanium-based composite material
CN110090949B (en) * 2019-06-12 2020-08-11 广东省材料与加工研究所 Nickel-titanium alloy spherical powder and preparation method and application thereof
US10907239B1 (en) * 2020-03-16 2021-02-02 University Of Utah Research Foundation Methods of producing a titanium alloy product
CN111922349B (en) * 2020-09-21 2021-01-05 西安斯瑞先进铜合金科技有限公司 Preparation method of special metal chromium powder for CuCr alloy electrical contact
EP4217202A1 (en) * 2020-09-24 2023-08-02 BAE SYSTEMS plc Powder hot isostatic pressing cycle
CN115415513B (en) * 2022-09-23 2023-04-28 西北工业大学 Titanium alloy and ceramic reinforced phase ball milling powder mixing process optimization method based on uniformity
CN115821096B (en) * 2022-11-30 2023-08-18 山东硕源工业机械设备有限公司 Preparation method of ceramic high-chromium alloy-based wear-resistant composite material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258948A (en) * 1989-03-30 1990-10-19 Tokyo Yogyo Co Ltd Ceramic grain reinforced titanium composite material
JPH02270931A (en) * 1989-04-10 1990-11-06 Tokyo Yogyo Co Ltd Ceramic grains reinforced titanium composite material
JPH0336230A (en) * 1989-06-30 1991-02-15 Toshiba Corp Erosion-resistant alloy steel and its manufacture
JPH03150331A (en) * 1989-11-08 1991-06-26 Toshiba Corp Erosion-resistant alloy
JPH0754021A (en) * 1993-08-19 1995-02-28 Nippon Steel Corp Method and apparatus for producing titanium powder
JPH0776705A (en) * 1993-09-07 1995-03-20 Nippon Steel Corp Cooling method and device for dehydrogenation of titanium powder production
JPH10310832A (en) * 1997-05-09 1998-11-24 Kubota Corp Wear resistant composite material excellent in sliding characteristic
WO2007139194A1 (en) * 2006-05-31 2007-12-06 Kyocera Corporation Composite material, method for manufacturing the composite material, composition used for the composite material and blade using the composite material
JP2008179860A (en) * 2007-01-25 2008-08-07 Technes Co Ltd Sintered compact and its production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056306B2 (en) * 1990-11-30 2000-06-26 株式会社豊田中央研究所 Titanium-based composite material and method for producing the same
JPH06228677A (en) * 1993-02-05 1994-08-16 Kubota Corp Combined sintered alloy excellent in corrosion and wear resistance and production thereof
US5744254A (en) * 1995-05-24 1998-04-28 Virginia Tech Intellectual Properties, Inc. Composite materials including metallic matrix composite reinforcements
JP3354468B2 (en) * 1997-12-12 2002-12-09 住友チタニウム株式会社 Method for producing particle-dispersed sintered titanium matrix composite
KR100398547B1 (en) * 1998-07-21 2003-09-19 도요타지도샤가부시키가이샤 Titanium-based composite material, method for producing the same and engine valve
JP3945455B2 (en) * 2002-07-17 2007-07-18 株式会社豊田中央研究所 Powder molded body, powder molding method, sintered metal body and method for producing the same
JP2009155702A (en) * 2007-12-27 2009-07-16 Osaka Titanium Technologies Co Ltd Method for manufacturing titanium powder sintered compact
JP2010059456A (en) * 2008-09-02 2010-03-18 Seiko Epson Corp Titanium sintered compact and method of producing the same
JP5709239B2 (en) * 2010-03-18 2015-04-30 勝義 近藤 Method for producing titanium matrix composite material and titanium matrix composite material produced by the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258948A (en) * 1989-03-30 1990-10-19 Tokyo Yogyo Co Ltd Ceramic grain reinforced titanium composite material
JPH02270931A (en) * 1989-04-10 1990-11-06 Tokyo Yogyo Co Ltd Ceramic grains reinforced titanium composite material
JPH0336230A (en) * 1989-06-30 1991-02-15 Toshiba Corp Erosion-resistant alloy steel and its manufacture
JPH03150331A (en) * 1989-11-08 1991-06-26 Toshiba Corp Erosion-resistant alloy
JPH0754021A (en) * 1993-08-19 1995-02-28 Nippon Steel Corp Method and apparatus for producing titanium powder
JPH0776705A (en) * 1993-09-07 1995-03-20 Nippon Steel Corp Cooling method and device for dehydrogenation of titanium powder production
JPH10310832A (en) * 1997-05-09 1998-11-24 Kubota Corp Wear resistant composite material excellent in sliding characteristic
WO2007139194A1 (en) * 2006-05-31 2007-12-06 Kyocera Corporation Composite material, method for manufacturing the composite material, composition used for the composite material and blade using the composite material
JP2008179860A (en) * 2007-01-25 2008-08-07 Technes Co Ltd Sintered compact and its production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105355A (en) * 2012-11-27 2014-06-09 Takefu Tokushu Kozai Kk METHOD FOR PRODUCING Ti-TiC SYNTHETIC MATERIAL
CN104827022A (en) * 2015-04-27 2015-08-12 苏州统明机械有限公司 Nickel-chrome alloy coating for ceramic and preparation method thereof
CN106399752A (en) * 2015-07-31 2017-02-15 复盛应用科技股份有限公司 Manufacturing method of titanium alloy plate for application to golf ball head
CN106399752B (en) * 2015-07-31 2019-01-04 复盛应用科技股份有限公司 The manufacturing method of titanium alloy plate applied to golf club head
JP2017214643A (en) * 2016-03-29 2017-12-07 セイコーエプソン株式会社 Titanium sintered compact, ornament, and heat resistant component
JP2017222899A (en) * 2016-06-15 2017-12-21 国立大学法人 名古屋工業大学 Metal powder for laminate molding and laminate molded body using metal powder
JP2018104778A (en) * 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor
CN113136543A (en) * 2021-04-23 2021-07-20 四川大学 Titanium alloy surface coating and preparation method thereof

Also Published As

Publication number Publication date
US20130071283A1 (en) 2013-03-21
JPWO2011152359A1 (en) 2013-08-01
JP5855565B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JP5889786B2 (en) Titanium alloy mixed powder blended with copper powder, chromium powder or iron powder, method for producing the same, and method for producing titanium alloy material
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
JP5837407B2 (en) Titanium alloy and manufacturing method thereof
US9969004B2 (en) α+β or β titanium alloy and method for producing same
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
Moon et al. A study on the microstructure of D023 Al3Zr and L12 (Al+ 12.5 at.% Cu) 3Zr intermetallic compounds synthesized by PBM and SPS
US20160167129A1 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
US20180105897A1 (en) Alpha + beta or beta TITANIUM ALLOY AND METHOD FOR PRODUCTION THEREOF
JP5837406B2 (en) Titanium alloy and manufacturing method thereof
Yan et al. Microstructure and mechanical properties of Co-containing Ti-48Al alloys prepared from irregular pre-alloyed powder
JP3354468B2 (en) Method for producing particle-dispersed sintered titanium matrix composite
JPH1046269A (en) Manufacture of titanium-molybdenum master alloy, and titanium-molybdenum master alloy
KR20180013077A (en) A method for producing a component of powder injection molding
MXPA04007104A (en) Stabilized grain size refractory metal powder metallurgy mill products.
JPH0688153A (en) Production of sintered titanium alloy
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JPH04371536A (en) Production of tial intermetallic compound powder
JPH06100969A (en) Production of ti-al intermetallic compound sintered body
JP3499142B2 (en) Manufacturing method of iron-based structural materials
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH0633165A (en) Manufacture of sintered titanium alloy
JP3220712B2 (en) Beryllium dispersed magnesium composite
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPH0543775B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518385

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701182

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789762

Country of ref document: EP

Kind code of ref document: A1