JP2008130726A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2008130726A
JP2008130726A JP2006312657A JP2006312657A JP2008130726A JP 2008130726 A JP2008130726 A JP 2008130726A JP 2006312657 A JP2006312657 A JP 2006312657A JP 2006312657 A JP2006312657 A JP 2006312657A JP 2008130726 A JP2008130726 A JP 2008130726A
Authority
JP
Japan
Prior art keywords
layer
solid phase
phase mixed
forming
mixed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006312657A
Other languages
English (en)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006312657A priority Critical patent/JP2008130726A/ja
Publication of JP2008130726A publication Critical patent/JP2008130726A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】無欠陥で歪みが均一な歪SOI層を形成できるようにした半導体装置の製造方法を提供する。
【解決手段】Si(100)基板1上にGe薄膜を形成し、熱処理を施して、SiとGeとを含有する固相混合層12を形成する。次に、固相混合層12上にSi薄膜13を形成する。そして、Si薄膜13と固相混合層12とを部分的にエッチングして支持体穴を形成し、Si薄膜13を覆って支持する支持体を当該Si薄膜13上から支持体穴にかけて形成する。次に、Si薄膜13と固相混合層12とを部分的にエッチングして、固相混合層12の側面を露出させる溝を形成し、この溝を介して固相混合層12をエッチングすることによって、Si基板1とSi薄膜13との間に空洞部を形成する。その後、空洞部内を絶縁膜31で埋め込む。Si薄膜13は格子緩和した固相混合層12上に形成されるので歪みを持ち、この歪みは支持体によって保持される。
【選択図】図12

Description

本発明は、半導体装置の製造方法に関し、特に、歪SOI構造を構築する技術に関する。
この種の従来技術としては、例えば特許文献1および非特許文献1〜3があり、特に、非特許文献1には、歪SOI構造を有する半導体装置を製造する方法が提案されている。ここで、歪SOI構造とは、SOI構造を構成するSi層(以下、SOI層ともいう。)の結晶構造に歪みを持たせた構造のことである。歪SOI構造では、その歪んだSOI層(以下、歪SOI層ともいう。)中を電子が通り易くなるため、歪SOI層に形成されるトランジスタの駆動電流が増え、トランジスタの高速動作が可能となる。
特開2006−32575号公報 IEDM Tech.Dig.,pp47−52 2003 酒井朗・財満 鎭明 「次世代シリコンULSIに向けたIV族系半導体へテロ界面のひずみと転移の制御技術と評価」応用物理 第75巻 第4号(2006) T.Sakai et al."Separation by BondingSi Islands(SBSI) for LSI Application",Second International SiG Technology and Device Meeting,Meeting Abstract,pp.230−231,May(2004)
しかしながら、非特許文献1に開示された方法では、高額なSOIウエーハを用いており、製造段階で、厚いSiGe層のエピ成長や高温の酸化プロセスを必要としており、製造コストがかかるだけでなく、SOI層の結晶欠陥の制御が厳しいと言う不具合があった。そこで、本発明は、このような事情に鑑みてなされたものであって、廉価なバルクSiウエーハの必要な場所に、無欠陥(あるいは、欠陥が極めて少なく)且つ歪みが均一な歪SOI層を形成できるようにした半導体装置の製造方法の提供を目的とする。
〔発明1〕 上記目的を達成するために、発明1の半導体装置の製造方法は、Si(100)基板上にGe層を形成する工程と、前記Si(100)基板および前記Ge層に熱処理を施して、SiとGeとを含有する固相混合層を形成する工程と、前記固相混合層上に第1Si層を形成する工程と、前記第1Si層と前記固相混合層とを部分的にエッチングして、前記第1Si層と前記固相混合層とを貫く第1溝を形成する工程と、前記第1Si層を覆って支持する支持体を当該第1Si層上から前記第1溝内にかけて形成する工程と、前記第1Si層と前記固相混合層とを部分的にエッチングして、前記固相混合層の側面を露出させる第2溝を形成する工程と、前記第1Si層よりも前記固相混合層の方がエッチングされ易いエッチング条件で、前記第2溝を介して前記固相混合層をエッチングすることによって、前記Si(100)基板と前記第1Si層との間に空洞部を形成する工程と、前記空洞部内を絶縁膜で埋め込む工程と、を含むことを特徴とするものである。
ここで、「Si(100)基板」とは、その主表面の面方位が(100)のバルクSi基板のことである。また、「固相混合層」とは、熱によってGeとSiとが固相状態で混合されて形成される層のことであり、その組成はSiGe(X,Yはそれぞれ整数)である。また、固相混合層におけるGe層と第1Si層との混合は、上記「熱処理」によって促進するだけでなく、Si層を形成する際の熱や、支持体を成膜する際による熱を用いて、GeとSiとのMixing(混合)を促進しても良い。
発明1の半導体装置の製造方法によれば、上記熱処理によって固相混合層は結晶緩和(即ち、リラックス)した状態で形成され、結晶欠陥は固相混合層とSi(100)基板との界面領域にのみ存在する。また、この結晶欠陥は(001)ヘテロ界面内で転移線に垂直なバーガスベクトルを持つ刃状転移である。このような固相混合層上にSi層を形成すると、Si層と固相混合層を貫通する、(111)面にバーガスベクトルを有する欠陥(いわゆる60°転移)がないため、欠陥の無い、固相混合層の格子定数を反映した歪Si層を形成することができる。また、この歪Siでは歪みの(001)平面方向の均一性が良い。従って、結晶欠陥が無く、均一な歪みを持つSi層を形成することができる。
さらに、この均一な歪みを有するSi層はその側面あるいは上方を覆う支持体によって強固に支えられる。支持体にはエピタキシャル成長によるSiあるいはCVD法による絶縁膜が適用できる。それゆえ、Si層に歪みを持たせたまま、その下方に空洞部を形成することができ、この空洞部を絶縁膜あるいは高抵抗半導体膜で埋め込むことができる。また、空洞部を埋め込んだ後は、上方の支持体を除去した場合に於いても、空洞部の埋め込み層により、Si層の歪が保持される。これにより、無欠陥(あるいは、欠陥が極めて少なく)且つ歪みが均一な歪SOI層をバルクSi基板上に形成することができる。
〔発明2〕 発明2の半導体装置の製造方法は、発明1の半導体装置の製造方法において、前記Ge層を形成する工程と前記固相混合層を形成する工程との間に、第2Si層を形成する工程をさらに含み、前記固相混合層を形成する工程では、前記第2Si層および前記Ge層に熱処理を施して、SiとGeとを含有する固相混合層を形成することを特徴とするものである。ここで、発明2において、発明1と同様に、固相混合層におけるGe層と第2Si層との混合は、上記「熱処理」によって促進するだけでなく、第1Si層を形成する際の熱や、支持体を成膜する際による熱を用いて、GeとSiとのMixing(混合)を促進しても良い。
発明2の半導体装置の製造方法によれば、上記熱処理によって固相混合層は結晶緩和し、結晶欠陥はGe層とSi(100)基板との界面領域(即ち、固相混合層下)にのみ存在し、しかも、この結晶欠陥は(001)ヘテロ界面内で転移線に垂直なバーガスベクトルを持つ刃状転移である。このような固相混合層上にSiを形成すると、Siを貫通する(111)面にバーガスベクトルを有する欠陥(いわゆる60°転移)がないため、欠陥の無い、固相混合層の格子定数を反映した第1Si層を形成することができる。さらに、この均一な歪みを有する第1Si層はその側面あるいは上方を覆う支持体によって強固に支えられる。支持体にはエピタキシャル成長によるSiあるいはCVD法による絶縁膜が適用できる。それゆえ、第1Si層に歪みを持たせたまま、その下方に空洞部を形成することができ、この空洞部を絶縁膜あるいは高抵抗半導体層で埋め込むことができる。また、空洞部を埋め込んだ後は、上方の支持体を除去した場合に於いても、空洞部の埋め込み層により、第1Si層の歪が保持される。従って、発明1と同様に、無欠陥で歪みが均一な歪SOI層を形成することができる。
〔発明3〕 発明3の半導体装置の製造方法は、発明1または発明2の半導体装置の製造方法において、前記固相混合層を形成した後で、CMP処理にて当該固相混合層を薄膜化する工程をさらに含むことを特徴とするものである。このような方法によれば、固相混合層を形成した後でその厚さの調整が可能になる。また、固相混合層の深さ方向にGeの濃度分布があることから、必要に応じたGe濃度、かつ、平坦な表面からなる固相混合層を形成できる。
〔発明4〕 発明4の半導体装置の製造方法は、発明1または発明2の半導体装置の製造方法において、前記Ge層を形成する前に前記Si(100)基板上に第3Si層を形成する工程、をさらに含み、前記Ge層を形成する工程では、前記第3Si層上に前記Ge層を形成することを特徴とするものである。このような方法によれば、Si(100)基板上にGe層を直接形成する場合と比べて、Ge層を結晶欠陥少なく形成することができる。
〔発明5、6〕 発明5の半導体装置の製造方法は、発明1または発明2の半導体装置の製造方法において、前記Ge層の形成工程では、当該Ge層を水素還元Geガス雰囲気中でGeをエピタキシャル成長させることによって形成することを特徴とするものである。ここで、「水素還元Geガス」とは、例えばGeHガスまたはGeガスのことである。
また、発明6の半導体装置の製造方法は、発明1または発明2の半導体装置の製造方法において、前記Ge層の形成工程では、当該Ge層を水素含有キャリアガスを用いた雰囲気中でGeをエピタキシャル成長させることによって形成することを特徴とするものである。
発明5、6の半導体装置の製造方法によれば、エピ成長中、水素がGeの凝集を抑制し、30nm以下の膜厚でも均一な膜厚を有するGe薄膜の形成が可能になる。
〔発明7、8〕 発明7の半導体装置の製造方法は、発明1または発明2の半導体装置の製造方法において、前記Si層の形成工程、または、前記第1Si層の形成工程および前記第2Si層の形成工程では、これらの層を水素還元Siガス雰囲気中でSiをエピタキシャル成長させることによって形成することを特徴とするものである。ここで、「水素還元Siガス」とは、例えばSiHガスまたはSiガスのことである。
また、発明8の半導体装置の製造方法は、発明1または発明2の半導体装置の製造方法において、前記Si層の形成工程、または、前記第1Si層の形成工程および前記第2Si層の形成工程では、これらの層を水素含有キャリアガスを用いた雰囲気中でSiをエピタキシャル成長させることによって形成することを特徴とするものである。
発明6、7の半導体装置の製造方法によれば、エピ成長中、水素がSiの凝集を抑制し、30nm以下の膜厚でも均一な膜厚を有するSi薄膜の形成が可能になる。
〔発明9〕 発明9の半導体装置の製造方法は、発明1の半導体装置の製造方法において、前記Ge層の形成工程と、前記熱処理による前記固相混合層の形成工程および前記Si層の形成工程を、真空状態を維持した処理室内で連続して行うことを特徴とするものである。このような方法によれば、各工程を終えるたびに真空状態を解く(即ち、大気に晒す)場合と比べて、Si(100)基板や、Ge層、固相混合層に対する不純物等の付着や表面自然酸化の機会を減らすことができるので、半導体装置の歩留まりと信頼性の向上に寄与することができる。
〔発明10〕 発明10の半導体装置の製造方法は、発明2の半導体装置の製造方法において、前記Ge層の形成工程と、前記第1Si層の形成工程と、前記熱処理による前記固相混合層の形成工程および前記第2Si層の形成工程を、真空状態を維持した処理室内で連続して行うことを特徴とするものである。このような方法によれば、各工程を終えるたびに真空状態を解く(即ち、大気に晒す)場合と比べて、Si(100)基板や、Ge層、第1Si層、固相混合層に対する不純物等の付着や表面自然酸化の機会を減らすことができるので、半導体装置の歩留まりと信頼性の向上に寄与することができる。
〔発明11〕 発明11の半導体装置の製造方法は、発明1から発明10の何れか一の半導体装置の製造方法において、前記支持体を形成する工程では、前記固相混合層を形成する際の前記熱処理よりも低温度で前記支持体を成膜することを特徴とするものである。このような方法によれば、Si層または第2Si層(即ち、SOI層)に支持体の熱膨張に起因する余計なストレスを付加しないで済むので、SOI層における結晶欠陥の発生防止に寄与することができる。
〔発明12〕 発明12の半導体装置の製造方法は、発明1から発明10の何れか一の半導体装置の製造方法において、前記空洞部を形成する工程では、CFまたはXeFガス、あるいは、酢酸過水水溶液またはフッ硝酸溶液を用いて前記固相混合層をエッチングすることを特徴とするものである。ここで、「酢酸過水水溶液」とは、酢酸と過酸化水素水とを混合した溶液のことである。
発明12の半導体装置の製造方法によれば、Si層または第2Si層を残したまま、固相混合層のみを選択的に除去することができる。
〔発明13〕 発明13の半導体装置の製造方法は、発明1から発明12の何れか一の半導体装置の製造方法において、前記熱処理を600℃以上、1100℃以下の温度範囲で行うことを特徴とするものである。このような方法によれば、GeとSiとの固相混合を効率良く進めることができる。
〔発明14〕 発明14の半導体装置の製造方法は、発明1から発明13の何れか一の半導体装置の製造方法において、前記熱処理後の前記固相混合層におけるGe濃度のピークが30%を超えるようにすることを特徴とするものである。このような方法によれば、CFまたはXeFガス、あるいは、酢酸過水水溶液またはフッ硝酸溶液による固相混合層のエッチングレートを特に高めることができるので、空洞部を形成する際の固相混合層の選択的除去が容易となる。
以下、本発明の実施の形態を図面を参照して説明する。
(1)第1実施形態
図1〜図11は、本発明の第1実施形態に係る半導体装置の製造方法を示す図であり、図1(A)〜図11(A)は平面図、図1(B)〜図1(B)は図1(A)〜図11(A)をA1−A´1〜A11−A´11線でそれぞれ切断したときの断面図である。また、図1(C)〜図11(C)は図1(A)〜図11(A)をB1−B´1〜B11−B´11線でそれぞれ切断したときの断面図である。
図1(A)〜(C)において、Si基板1は、その面方位が(100)のバルクSi基板である。このSi基板1上にGe薄膜11を形成する。このGe薄膜11は、例えば、水素還元Geガス(例えば、GeHやG)雰囲気中、または、水素を含むキャリアガス雰囲気中でGeをエピタキシャル成長させることにより形成する。これにより、エピタキシャル成長中に水素がGeの凝集を抑制し、30nm以下の膜厚でも均一な膜厚を有するGe薄膜11の形成が可能になる。ここでは、Ge薄膜11を例えば30nm以下の厚さに形成する。また、Si基板1上へのGeのエピタキシャル成長は、200〜300℃程度の低温で行う。これにより、Ge薄膜11には格子不整合により欠陥が発生するものの、この欠陥が大きく成長することは無く、Ge薄膜11とSi基板1界面に微小欠陥が生じるのみである。
次に、図2では、真空中あるいは水素を含む不活性ガス雰囲気中で、Si基板1に例えば600〜1100℃の熱処理(アニール)を行う。この熱処理により、Ge薄膜11とSi基板1の界面には、(001)面内で転移線に垂直なバーガスベクトルを有する刃状転移が形成される(バーガスベクトルとは、滑った方向と大きさを表すベクトルのことである。)。記号⊥は、たて線は過剰半原子面位置を示し、横線は刃状転移の移動面(すべり面)を示す。
また、この600〜1100℃の熱処理によって、Ge薄膜11は、Si基板1のSiとMixing(固相混合)される。その結果、図2(A)〜(C)に示すように、GeとSiとを含有する固相混合層12がSi基板1上に形成される。なお、固相混合層12は、上記刃状転移の形成により格子緩和されており、歪みの無い状態となっている。ここで、SiとGeとを含有する固相混合層12を形成する工程後、CMP処理にて表面平坦化を行えば、固相混合層12の薄膜化(即ち、膜厚調整)が可能になる。また、固相混合層12の深さ方向にGeの濃度分布があることから、必要に応じたGe濃度、かつ、平坦な表面を有する固相混合層12を形成できる。
次に、図3(A)〜(C)に示すように、エピタキシャル成長法によって、固相混合層12上にSi薄膜13を形成する。ここで、Si薄膜13は、水素還元Siガス(例えば、SiHやSi)雰囲気中、または、水素を含むキャリアガス雰囲気中でSiをエピタキシャル成長させることにより形成する。この処理温度は、固相混合層12のGeがSi薄膜13へ拡散せず、上記刃状転移の成長が無い、800℃以下の温度で処理することが好ましい。
このSi薄膜13は、下地の固相混合層12と(100)平面方向の格子定数が同じになっている。つまり、Si薄膜13の格子定数は、Siの格子定数ではなく、固相混合層12の格子定数(即ち、SiGeの格子定数)に近い値となっている。このため、Si薄膜13には歪みが生じている。以下、この歪みを生じているSi薄膜13を歪Si薄膜13ともいう。
次に、図4(A)〜(C)に示すように、歪Si薄膜13を熱酸化あるいはCVD処理してその表面にSiO膜15を形成する。そして、CVD法により、SiO膜15上の全面にシリコン窒化(SiN)膜17を形成する。このSiN膜17は、歪Si薄膜13の酸化を防止するための酸化防止膜として機能すると共に、後の工程でCMP(化学的機械研磨)を行う際にストッパー層としても機能する。
次に、図5(A)及び(B)に示すように、フォトリソグラフィー技術及びエッチング技術を用いて、SiN膜17、SiO膜15、歪Si薄膜13、固相混合層12を部分的にエッチングする。これにより、素子分離領域(即ち、SOI構造を形成しない領域)と平面視で重なる領域に、歪Si薄膜13およびSiGe層11を貫いてSi基板1を底面とする支持体穴h1を形成する。なお、支持体穴h1を形成するエッチング工程では、Si基板1の表面でエッチングを止めるようにしてもよいし、Si基板1をオーバーエッチングして凹部を形成するようにしてもよい。図6以降については、Si基板1と固相混合層12との界面領域に存在する刃上転移(⊥)の図示を省いている。
次に、図6(A)及び(B)に示すように、支持体穴h1を埋め込むようにしてSi基板1上の全面に支持体膜21を形成する。支持体膜21は例えばシリコン酸化(SiO)膜であり、例えばCVD法によって1000〜5000Å程度の厚さに形成する。また、支持体膜21の形成温度は、例えば800℃以下とする。このように、支持体膜21の形成温度を、固相混合層12を形成する際の熱処理温度(この例では、800℃)よりも低温とすることで、固相混合層12のGeがSi薄膜13へ拡散せず、上記刃状転移の成長が無い。また、Si薄膜13に支持体からの余計な熱ストレスを付加しないで済み、デバイス完成時のSOI層における結晶欠陥の発生を抑制することができる。
次に、図7(A)〜(C)に示すように、フォトリソグラフィー技術及びエッチング技術を用いて支持体膜21、歪Si薄膜13、固相混合層12およびGe薄膜の残りを順次、部分的にエッチングして、支持体膜21から支持体22を形成すると共に、Si基板1の表面を露出させる溝h2を形成する。図7(A)〜(C)に示すように、この支持体22は、支持体穴h1を埋め込み且つ素子領域(即ち、SOI構造を形成する領域)の歪Si薄膜13上を覆う形状を有し、後の工程で歪Si薄膜13下に空洞部を形成する際に、歪Si薄膜13が空洞部内に落ち込まないように支持するためのものである。また、この支持体22によって、歪Si薄膜13の歪みは後の工程まで維持される。なお、溝h2を形成するエッチング工程では、Si基板1の表面でエッチングを止めるようにしてもよいし、Si基板1をオーバーエッチングして凹部を形成するようにしてもよい。
次に、図7(A)〜(C)において、溝h2を介してフッ硝酸溶液を歪Si薄膜13、固相混合層12のそれぞれの側面に接触させて、固相混合層12およびGe薄膜を選択的にエッチングして除去する。これにより、図8(A)〜(C)に示すように、歪Si薄膜13とSi基板1との間に空洞部25を形成する。ここで、フッ硝酸溶液を用いたウェットエッチングでは、Siと比べて固相混合層12のエッチングレートが大きい(即ち、Siに対するエッチングの選択比が大きい)ので、歪Si薄膜13を残しつつ固相混合層12だけをエッチングして除去することが可能である。この空洞部25の形成後、歪Si薄膜13はその上面と側面とが支持体22によって支えられることとなる。歪Si薄膜13は、支持体22・薄膜15,17にて強固に固定されているため、歪が緩和することが無い。なお、この空洞部25を形成する工程では、フッ硝酸溶液の代わりに酢酸過水水溶液やXeFやCFガスを用いて、固相混合層12をエッチングしても良い。
次に、図8(A)〜(C)において、Si基板1を例えば希フッ酸溶液で洗浄処理する。そして、図9(A)〜(C)に示すように、Si基板1を例えば熱酸化して空洞部内に絶縁膜31を形成する。ここでは、空洞部25の上面がSi薄膜13で、下面がSi基板1であるため、熱酸化を行った場合には絶縁膜31としてSiO膜が形成される。
なお、絶縁膜31の形成方法は、酸素(O)雰囲気中での単なる熱酸化に限られることはなく、例えば、ラディカル酸素やオゾン雰囲気中での熱酸化や、ALD(atomic layer depositon)によって絶縁膜31を形成しても良い。また、絶縁膜31は、絶縁膜と高抵抗半導体膜から構成されていても良い。また、絶縁膜31の形成温度は、支持体膜の成膜温度を超えないようにすることが好ましい。この例では、絶縁膜31を(支持体膜の成膜温度である)800℃以下の温度で形成すれば、支持体22が熱流動することはない。従って、Si薄膜13を強固に支持し続けることができ、Si薄膜13の歪を緩和することなく、空洞領域を埋め込むことができる。
このように、絶縁膜31を形成した後は、図10(A)〜(C)に示すように、CVDなどの方法によりSi基板1上の全面に絶縁膜33を成膜して、フッ硝酸溶液の導入用に形成された溝h2を埋め込む。ここで成膜する絶縁膜33は、例えばSiO膜やシリコン窒化(Si)膜である。そして、Si基板1の全面を覆う絶縁膜33とその下の支持体22とを例えばCMPにより平坦化する。このとき、SiN膜17がCMP処理のストッパー層として機能する。次に、SiN膜17を例えば熱リン酸を用いてウェットエッチングし、さらに、SiO膜15を例えば希フッ酸でウェットエッチングする。このようにして、図11(A)〜(C)に示すように、歪Si薄膜13上から絶縁膜33等を完全に取り除き、歪SOI構造を完成させる。この時、歪Si薄膜13は、絶縁膜層33および素子分離を構成する薄膜22、31、33により強固に固定されているため、歪Si薄膜13表面上の絶縁層15、17、22、33を除去した後も、歪が保持されている。
以上説明したように、本発明の第1実施形態によれば、図12(A)に示すように、Ge薄膜を形成した後の熱処理(アニール)によって固相混合層12は結晶緩和(即ち、リラックス)した状態で形成され、結晶欠陥は固相混合層12とSi(100)基板1との界面領域にのみ存在する。また、この結晶欠陥は(001)ヘテロ界面内で転移線に垂直なバーガスベクトルを持つ刃状転移である。このような固相混合層12上にSiをエピタキシャル成長させると、Siを貫通する(111)面にはバーガスベクトルを有する欠陥がないため、欠陥の無い、固相混合層12の格子定数(aSiGe)を反映した歪Siを形成することができる。また、この歪Siでは歪みの(001)平面方向の均一性が良い。
従って、結晶欠陥が無く、均一な歪みを持つSi薄膜13を形成することができる。また、この均一な歪みを有するSi薄膜13はその上面を覆う支持体22によって強固に支えられる。それゆえ、Si薄膜12に歪みを維持させたまま、その下方に空洞部を形成することができ、図12(B)に示すように、この空洞部を絶縁膜31で埋め込むことができる。絶縁膜31を形成後は、この絶縁膜31によりSi薄膜13が強固に支えられ、Si薄膜の歪を保持できる。これにより、無欠陥で歪みが均一な歪SOI層13を形成することができる。
この第1実施形態では、Ge薄膜11が本発明の「Ge層」に対応し、Si薄膜13が本発明の「第1Si層」に対応している。また、支持体穴h1が本発明の「第1溝」に対応し、溝h2が本発明の「第2溝」に対応している。
なお、この第1実施形態では、Ge薄膜11の形成工程(図1)と、熱処理による固相混合層12の形成工程(図2)およびSi薄膜13の形成工程(図3)を、真空状態を維持した処理室(例えば、チャンバ)内で連続して行うことが好ましい。処理室内の真空度は例えば1E−8Torrとする。このような方法によれば、各工程を終えるたびにSi基板1を大気に晒す場合と比べて、Si基板1や、Ge薄膜11および固相混合層12に対する不純物等の付着の機会を減らすことができるので、半導体装置の歩留まりと信頼性の向上に寄与することができる。
(2)第2実施形態
上記の第1実施形態では、バルクのSi(100)基板1上にGe薄膜11を形成した後で、Si基板1に600〜1100℃の熱処理を施し、これにより、Ge薄膜11の少なくとも一部とSi基板1のSiとをMixing(固相混合)して固相混合層12を形成することについて説明した。しかしながら、固相混合層12の形成方法はこれに限られることはない。そこで、この第2実施形態では固相混合層12の他の形成方法について説明する。
図13〜図15は、本発明の第2実施形態に係る半導体装置の製造方法を示す図であり、図13(A)〜図15(A)は平面図、図13(B)〜図15(B)は図13(A)〜図15(A)をA13−A´13〜A15−A´15線でそれぞれ切断したときの断面図である。また、図13(C)〜図15(C)は図13(A)〜図15(A)をB13−B´13〜B15−B´15線でそれぞれ切断したときの断面図である。
図13(A)〜(C)において、バルクのSi(100)基板1上にGe薄膜11を形成する。このGe薄膜11は、例えば第1実施形態と同様、水素還元Geガス(例えば、GeHやG)雰囲気中、または、水素を含むキャリアガス雰囲気中でGeをエピタキシャル成長させることにより形成する。Geのエピタキシャル成長は例えば200〜300℃程度の低温で行い、Ge薄膜11を例えば30nm以下の膜厚に形成する。
次に、エピタキシャル成長法によって、固相混合層12上にSi薄膜51を形成する。ここで、Si薄膜51は、水素還元Siガス(例えば、SiHやSi)雰囲気中、または、水素を含むキャリアガス雰囲気中でSiをエピタキシャル成長させることにより形成する。ここでは、Si薄膜51を例えば20nm以下の厚さに形成する。
次に、真空中あるいは水素を含む不活性ガス雰囲気中で、Si基板1に例えば900℃以上の熱処理(アニール)を行う。この熱処理により、Ge薄膜11とSi基板1の界面には、(001)面内で転移線に垂直なバーガスベクトルを有する刃状転移が形成される。また、この熱処理により、Ge薄膜11はSi薄膜51とMixing(固相混合)され、図14(A)〜(C)に示すように、GeとSiとを含有する固相混合層12がSi基板1上に形成される。第1実施形態と同様に、この固相混合層12は、上記刃状転移の形成により格子緩和されており、歪みの無い状態となっている。なお、この熱処理では、Ge薄膜11とSi薄膜51とが反応して固相混合層12が形成されると共に、Ge薄膜11とSi基板1とが反応して固相混合層12が形成されても良い。つまり、この熱処理では、Ge薄膜11の上下の側でそれぞれSiとのMixingが進んでも良い。
次に、図15(A)〜(C)に示すように、エピタキシャル成長法によって、固相混合層12上にSi薄膜13を形成する。ここで、Si薄膜13は、水素還元Siガス(例えば、SiHやSi)雰囲気中、または、水素を含むキャリアガス雰囲気中でSiをエピタキシャル成長させることにより形成する。第1実施形態と同様に、このSi薄膜13は、下地の固相混合層12と格子定数がほぼ同じになっているので、Si薄膜13には歪みが生じている。
これ以降の工程は、第1実施形態と同様である。即ち、図4に示したように、Si薄膜13上にSiO膜15とSiN膜17を形成し、図5に示したように、支持体穴h1を形成する。次に、支持体22、フッ硝酸導入用の溝h2を順次形成し、この溝h2を介して固相混合層12をエッチングして空洞部25を形成する。さらに、この空洞部25内に絶縁膜31を形成する。
このように、本発明の第2実施形態によれば、Si薄膜51を形成した後の熱処理によって固相混合層12は結晶緩和し、結晶欠陥はGe層とSi(100)基板1との界面領域(即ち、固相混合層12下)にのみ存在し、しかも、この結晶欠陥は(001)ヘテロ界面内で転移線に垂直なバーガスベクトルを持つ刃状転移である。このような固相混合層12上にSiをエピタキシャル成長すると、Siを貫通する(111)面にバーガスベクトルを有する欠陥がないため、欠陥の無い、固相混合層12の格子定数を反映した歪Si薄膜13を形成することができる。従って、発明1と同様に、無欠陥で歪みが均一な歪SOI層13を形成することができる。
この第2実施形態では、Si薄膜51が本発明の「第2Si層」に対応し、Si薄膜13が本発明の「第1Si層」に対応している。また、その他の対応関係は、第1実施形態と同じである。
なお、この第2実施形態では、Ge薄膜11、Si薄膜51の形成工程(図13)と、熱処理による固相混合層12の形成工程(図14)およびSi薄膜13の形成工程(図15)を、真空状態を維持した処理室内で連続して行うことが好ましい。処理室内の真空度は例えば1E−8Torrとする。このような方法によれば、各工程を終えるたびにSi基板1を大気に晒す場合と比べて、Si基板1や、Ge薄膜11、Si薄膜51および固相混合層12に対する不純物等の付着の機会を減らすことができるので、半導体装置の歩留まりと信頼性の向上に寄与することができる。
また、上記の第1、第2実施形態では、Si基板1上にシリコンバッファ(Si−buffer)層を形成し、その上にGe薄膜11を形成するようにしても良い。Si−buffer層およびGe薄膜11は、例えばエピタキシャル成長法で連続して形成する。このような方法によれば、Si(100)基板1の(清浄な表面)上にGe薄膜11を直接形成する場合と比べて、Ge薄膜11を結晶欠陥少なく形成することができる。このSi−buffer層は本発明の「第3Si層」に対応している。
また、上記の第1、第2実施形態では、熱処理(アニール)によって固相混合層12を形成した直後の、固相混合層12におけるGe濃度のピークを、30%を超えるようにすることが好ましい。例えば、第2実施形態において、Ge薄膜11の厚さをSi薄膜51の厚さの30%以上に設定することで、固相混合層12におけるGe濃度のピークを30%超とすることが可能である。このような方法によれば、酢酸過水水溶液またはフッ硝酸溶液による固相混合層12のエッチングレートを特に高めることができるので、空洞部25を形成する際の固相混合層12の選択的除去が容易となる。
第1実施形態に係る半導体装置の製造方法を示す図(その1)。 第1実施形態に係る半導体装置の製造方法を示す図(その2)。 第1実施形態に係る半導体装置の製造方法を示す図(その3)。 第1実施形態に係る半導体装置の製造方法を示す図(その4)。 第1実施形態に係る半導体装置の製造方法を示す図(その5)。 第1実施形態に係る半導体装置の製造方法を示す図(その6)。 第1実施形態に係る半導体装置の製造方法を示す図(その7)。 第1実施形態に係る半導体装置の製造方法を示す図(その8)。 第1実施形態に係る半導体装置の製造方法を示す図(その9)。 第1実施形態に係る半導体装置の製造方法を示す図(その10)。 第1実施形態に係る半導体装置の製造方法を示す図(その11)。 各層における歪みの有無を示す概略断面図。 第2実施形態に係る半導体装置の製造方法を示す図(その1)。 第2実施形態に係る半導体装置の製造方法を示す図(その2)。 第2実施形態に係る半導体装置の製造方法を示す図(その3)。
符号の説明
1 Si(100)基板、11 Ge薄膜、12 固相混合層、13 Si層(SOI層)、21 支持体膜、22 支持体、25 空洞部、31 絶縁膜(BOX層)、33 絶縁膜、51 Si薄膜、h1 支持体穴、h2 溝

Claims (14)

  1. Si(100)基板上にGe層を形成する工程と、
    前記Si(100)基板および前記Ge層に熱処理を施して、SiとGeとを含有する固相混合層を形成する工程と、
    前記固相混合層上に第1Si層を形成する工程と、
    前記第1Si層と前記固相混合層とを部分的にエッチングして、前記第1Si層と前記固相混合層とを貫く第1溝を形成する工程と、
    前記第1Si層を覆って支持する支持体を当該第1Si層上から前記第1溝内にかけて形成する工程と、
    前記第1Si層と前記固相混合層とを部分的にエッチングして、前記固相混合層の側面を露出させる第2溝を形成する工程と、
    前記第1Si層よりも前記固相混合層の方がエッチングされ易いエッチング条件で、前記第2溝を介して前記固相混合層をエッチングすることによって、前記Si(100)基板と前記第1Si層との間に空洞部を形成する工程と、
    前記空洞部内を絶縁膜で埋め込む工程と、を含むことを特徴とする半導体装置の製造方法。
  2. 前記Ge層を形成する工程と前記固相混合層を形成する工程との間に、第2Si層を形成する工程をさらに含み、
    前記固相混合層を形成する工程では、
    前記第2Si層および前記Ge層に熱処理を施して、SiとGeとを含有する固相混合層を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記固相混合層を形成した後で、CMP処理にて当該固相混合層を薄膜化する工程をさらに含むことを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
  4. 前記Ge層を形成する前に前記Si(100)基板上に第3Si層を形成する工程、をさらに含み、
    前記Ge層を形成する工程では、前記第3Si層上に前記Ge層を形成することを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
  5. 前記Ge層の形成工程では、当該Ge層を水素還元Geガス雰囲気中でGeをエピタキシャル成長させることによって形成することを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
  6. 前記Ge層の形成工程では、当該Ge層を水素含有キャリアガスを用いた雰囲気中でGeをエピタキシャル成長させることによって形成することを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
  7. 前記第1Si層の形成工程および前記第2Si層の形成工程では、これらの層を水素還元Siガス雰囲気中でSiをエピタキシャル成長させることによって形成することを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
  8. 前記第1Si層の形成工程および前記第2Si層の形成工程では、これらの層を水素含有キャリアガスを用いた雰囲気中でSiをエピタキシャル成長させることによって形成することを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
  9. 前記Ge層の形成工程と、前記熱処理による前記固相混合層の形成工程および前記第1Si層の形成工程を、真空状態を維持した処理室内で連続して行うことを特徴とする請求項1に記載の半導体装置の製造方法。
  10. 前記Ge層の形成工程と、前記第2Si層の形成工程と、前記熱処理による前記固相混合層の形成工程および前記第1Si層の形成工程を、真空状態を維持した処理室内で連続して行うことを特徴とする請求項2に記載の半導体装置の製造方法。
  11. 前記支持体を形成する工程では、前記固相混合層を形成する際の前記熱処理よりも低温度で前記支持体を成膜することを特徴とする請求項1から請求項10の何れか一項に記載の半導体装置の製造方法。
  12. 前記空洞部を形成する工程では、CFまたはXeFガス、あるいは、酢酸過水水溶液またはフッ硝酸溶液を用いて、前記固相混合層をエッチングすることを特徴とする請求項1から請求項10の何れか一項に記載の半導体装置の製造方法。
  13. 前記熱処理を600℃以上、1100℃以下の温度範囲で行うことを特徴とする請求項1から請求項12の何れか一項に記載の半導体装置の製造方法。
  14. 前記熱処理後の前記固相混合層におけるGe濃度のピークが30%を超えるようにすることを特徴とする請求項1から請求項13の何れか一項に記載の半導体装置の製造方法。
JP2006312657A 2006-11-20 2006-11-20 半導体装置の製造方法 Pending JP2008130726A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312657A JP2008130726A (ja) 2006-11-20 2006-11-20 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312657A JP2008130726A (ja) 2006-11-20 2006-11-20 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2008130726A true JP2008130726A (ja) 2008-06-05

Family

ID=39556278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312657A Pending JP2008130726A (ja) 2006-11-20 2006-11-20 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2008130726A (ja)

Similar Documents

Publication Publication Date Title
JP5601595B2 (ja) シリコン−オン−インシュレーター構造及びバルク基板に対するSiGeの堆積
JP6204749B2 (ja) 歪みGeフィン構造の製造方法
US7928436B2 (en) Methods for forming germanium-on-insulator semiconductor structures using a porous layer and semiconductor structures formed by these methods
JP7191886B2 (ja) 高抵抗率半導体・オン・インシュレータウエハおよび製造方法
JP4617820B2 (ja) 半導体ウェーハの製造方法
JP4686480B2 (ja) 高度な緩和及び低い積層欠陥密度を有する薄いSiGeオン・インシュレータ(SGOI)ウェハを形成する方法。
JP7074393B2 (ja) 異なる歪み状態を有するフィン構造を含む半導体構造を作製するための方法及び関連する半導体構造
JP2017538297A (ja) 電荷トラップ層を備えた高抵抗率の半導体・オン・インシュレーターウェハーの製造方法
JP2005516395A (ja) ひずみ緩和されたSiGeオン・インシュレータ及びその製造方法
KR20140125376A (ko) 반도체 장치 및 그 제조 방법
JP2015503215A (ja) 炭化ケイ素エピタキシャル成長法
JP6592534B2 (ja) 多層構造体及びその製造方法
JP6511516B2 (ja) ゲルマニウム・オン・インシュレータ基板の製造方法
JP2019195066A (ja) 多層構造体
JPH10256169A (ja) 半導体装置の製造方法
JP4654710B2 (ja) 半導体ウェーハの製造方法
JP2005210062A (ja) 半導体部材とその製造方法、及び半導体装置
JP2006140187A (ja) 半導体ウェーハの製造方法
JP2007299976A (ja) 半導体装置の製造方法
JP2008205062A (ja) 半導体基板の製造方法および半導体基板
JP4613656B2 (ja) 半導体ウエーハの製造方法
JP4371710B2 (ja) 半導体基体、半導体装置及びこれらの製造方法
JP2008130726A (ja) 半導体装置の製造方法
JP2007250676A (ja) 異種材料の積層基板の製造方法
JP4649918B2 (ja) 貼り合せウェーハの製造方法