JP2008111175A - Composite metal powder, its production method, and electrically conductive paste - Google Patents

Composite metal powder, its production method, and electrically conductive paste Download PDF

Info

Publication number
JP2008111175A
JP2008111175A JP2006296014A JP2006296014A JP2008111175A JP 2008111175 A JP2008111175 A JP 2008111175A JP 2006296014 A JP2006296014 A JP 2006296014A JP 2006296014 A JP2006296014 A JP 2006296014A JP 2008111175 A JP2008111175 A JP 2008111175A
Authority
JP
Japan
Prior art keywords
metal powder
metal
powder
composite metal
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296014A
Other languages
Japanese (ja)
Inventor
Koji Okamoto
航司 岡本
Shigeru Takahashi
茂 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2006296014A priority Critical patent/JP2008111175A/en
Publication of JP2008111175A publication Critical patent/JP2008111175A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrically conductive paste having more excellent conductivity, to provide composite metal powder used for the electrically conductive paste, and to provide its production method. <P>SOLUTION: The composite metal powder is obtained by coating the surface of the first metal powder with the second metal different from the first metal powder, and in which projections are formed on the surface of the second metal. The electrically conductive paste uses the composite metal powder. Regarding the method for producing composite metal powder, the surface of the first metal powder is coated wit the second metal different from the first metal powder, and thereafter, heat treatment is performed at ≥200°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複合金属粉とその製造方法および、複合金属粉を用いた導電性ペーストに関する。   The present invention relates to a composite metal powder, a method for producing the same, and a conductive paste using the composite metal powder.

導電性ペーストは、導電性接着剤、導電性塗料として、各種電子機器、電子部品、電子回路など幅広く使用されている。このような導電性ペーストに含まれる導電性フィラーとしては、銀フレークや銅フレークが代表的なものである。しかし、銀フレークは高価であり、銅フレークは酸化しやすいという問題があった。   Conductive pastes are widely used as conductive adhesives and conductive paints such as various electronic devices, electronic components, and electronic circuits. Typical conductive fillers contained in such a conductive paste are silver flakes and copper flakes. However, silver flakes are expensive and copper flakes are easily oxidized.

このような問題を解決するために、種々の導電性フィラーが検討されている。例えば、導電性フィラーとして、樹脂粒子の表面を銀メッキした銀メッキ樹脂粒子が知られている。しかし、銀メッキ樹脂粒子は、銀メッキが不十分なことがあった。
そこで、金属粉の表面に、該金属とは異なる金属を被覆した金属メッキ粉体が提案されている。例えば、特許文献1には、銅粉の表面に銀を被覆した銀メッキ銅粉が開示されている。銀メッキ銅粉は、銅粉の表面を銀層で覆うことにより銅粉の酸化を防ぐので、このような銀メッキ銅粉を用いた導電性ペーストは、導電性が良好であった。
特公昭57−59283号公報
In order to solve such a problem, various conductive fillers have been studied. For example, silver-plated resin particles obtained by silver-plating the surface of resin particles are known as conductive fillers. However, silver plating resin particles sometimes have insufficient silver plating.
Therefore, a metal plating powder in which the surface of the metal powder is coated with a metal different from the metal has been proposed. For example, Patent Document 1 discloses silver-plated copper powder in which the surface of copper powder is coated with silver. Since the silver-plated copper powder prevents the copper powder from being oxidized by covering the surface of the copper powder with a silver layer, the conductive paste using such a silver-plated copper powder has good conductivity.
Japanese Patent Publication No.57-59283

しかしながら、銀メッキ銅粉などの金属メッキ粉体を用いた導電性ペーストは、より優れた導電性能が求められている。   However, a conductive paste using a metal plating powder such as silver plating copper powder is required to have better conductive performance.

本発明は上記事情を鑑みてなされたもので、導電性により優れた導電性ペーストおよび、該導電性ペーストに用いる複合金属粉とその製造方法の提供を課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the electroconductive paste excellent in electroconductivity, the composite metal powder used for this electroconductive paste, and its manufacturing method.

本発明者らは鋭意検討した結果、例えば、銅粉の表面に銀を被覆した金属メッキ粉体を熱処理した複合金属粉は、銀の表面に***物が形成されることに注目した。そのような複合金属粉を用いた導電性ペーストは、熱処理を施さない金属メッキ粉体を用いた導電性ペーストに比べて、導電性が高くなることを見出し、本発明を完成するに至った。
すなわち、本発明の複合金属粉は、第一の金属粉の表面に、該第一の金属粉とは異なる第二の金属が被覆した複合金属粉であって、前記第二の金属の表面に***物が形成されていることを特徴とする。
また、前記***物の高さが200nm以上であることが好ましい。
さらに、前記第二の金属は、前記第一の金属粉よりも比抵抗が低く、かつ、酸化しにくい金属であることが好ましい。
また、前記第一の金属粉が銅粉であり、前記第二の金属が銀であることが好ましい。
さらに、本発明の導電性ペーストは、前記複合金属粉を含むことを特徴とする。
As a result of intensive studies, the inventors of the present invention, for example, focused on the fact that bumps are formed on the surface of silver in a composite metal powder obtained by heat-treating a metal plating powder in which the surface of copper powder is coated with silver. It has been found that a conductive paste using such a composite metal powder has higher conductivity than a conductive paste using a metal plating powder not subjected to heat treatment, and has completed the present invention.
That is, the composite metal powder of the present invention is a composite metal powder in which the surface of the first metal powder is coated with a second metal different from the first metal powder, and the surface of the second metal is A raised object is formed.
Moreover, it is preferable that the height of the said protrusion is 200 nm or more.
Further, it is preferable that the second metal is a metal having a specific resistance lower than that of the first metal powder and hardly oxidizing.
Moreover, it is preferable that said 1st metal powder is copper powder and said 2nd metal is silver.
Furthermore, the conductive paste of the present invention is characterized by containing the composite metal powder.

また、本発明の複合金属粉の製造方法は、第一の金属粉の表面に、該第一の金属粉とは異なる第二の金属を被覆した後、200℃以上で熱処理を施すことを特徴とする。
ここで、前記熱処理が還元性気体中で行われることが好ましい。
また、前記第二の金属は、前記第一の金属粉よりも比抵抗が低く、かつ、酸化しにくい金属であることが好ましい。
さらに、前記第一の金属粉が銅粉であり、前記第二の金属が銀であることが好ましい。
The method for producing a composite metal powder of the present invention is characterized in that the surface of the first metal powder is coated with a second metal different from the first metal powder, and then subjected to a heat treatment at 200 ° C. or higher. And
Here, the heat treatment is preferably performed in a reducing gas.
The second metal is preferably a metal having a specific resistance lower than that of the first metal powder and hardly oxidizing.
Furthermore, it is preferable that the first metal powder is copper powder and the second metal is silver.

本発明によれば、導電性により優れた導電性ペーストおよび、該導電性ペーストに用いる複合金属粉とその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electroconductive paste excellent in electroconductivity, the composite metal powder used for this electroconductive paste, and its manufacturing method can be provided.

以下、本発明について詳細に説明する。
本発明の複合金属粉は、第一の金属粉の表面に、該第一の金属粉とは異なる第二の金属が被覆しており、かつ、第二の金属の表面に***物が形成されている。
本発明においては、第一の金属粉の表面の少なくとも一部が第二の金属で被覆され、第一の金属粉の表面の全部が第二の金属で被覆されていてもよい。なお、第二の金属による第一の金属粉の表面の被覆率は25%以上が好ましく、より好ましくは50%以上である。被覆率が上記範囲より少なくと、第一の金属粉が酸化されやすくなる。
Hereinafter, the present invention will be described in detail.
In the composite metal powder of the present invention, the surface of the first metal powder is coated with a second metal different from the first metal powder, and a ridge is formed on the surface of the second metal. ing.
In the present invention, at least a part of the surface of the first metal powder may be coated with the second metal, and the entire surface of the first metal powder may be coated with the second metal. The coverage of the surface of the first metal powder with the second metal is preferably 25% or more, and more preferably 50% or more. When the coverage is less than the above range, the first metal powder is easily oxidized.

第一の金属粉としては、例えば、銅粒子、ニッケル粒子、アルミニウム粒子などが挙げられ、中でも、銅粒子が好ましい。また、形状は、略球形であっても、フレーク状であってもよいが、フレーク状が好ましい。第一の金属粉の含有量は、複合金属粉100質量%中70〜99.5質量%が好ましく、80〜99質量%がより好ましい。   Examples of the first metal powder include copper particles, nickel particles, and aluminum particles. Among these, copper particles are preferable. The shape may be a substantially spherical shape or a flake shape, but a flake shape is preferred. 70-99.5 mass% is preferable in 100 mass% of composite metal powder, and, as for content of 1st metal powder, 80-99 mass% is more preferable.

第二の金属は、前記第一の金属粉とは異なる金属であり、また、第一の金属粉よりも比抵抗が低く、かつ、酸化しにくい金属が好ましい。第二の金属としては、第一の金属粉の表面をメッキできるものであればとくに限定されないが、例えば、銀、金などが挙げられ、中でも、銀が好ましい。第二の金属の含有量は、複合金属粉100質量%中0.5〜30質量%が好ましく、1〜20質量%がより好ましい。第二の金属の含有量の下限値が上記値より小さくなると、第二の金属の表面での***物の形成が不十分となる。一方、含有量の上限値が上記値より大きくなると、メッキによる被覆が困難になり、コストアップになる。   The second metal is a metal different from the first metal powder, and is preferably a metal having a lower specific resistance than the first metal powder and hardly oxidizing. The second metal is not particularly limited as long as the surface of the first metal powder can be plated. Examples thereof include silver and gold. Among these, silver is preferable. 0.5-30 mass% is preferable in 100 mass% of composite metal powder, and, as for content of a 2nd metal, 1-20 mass% is more preferable. When the lower limit value of the content of the second metal is smaller than the above value, the formation of the raised matter on the surface of the second metal becomes insufficient. On the other hand, when the upper limit value of the content is larger than the above value, coating by plating becomes difficult and the cost increases.

ここで、本発明の複合金属粉の製造方法について説明する。
まず、第一の金属粉の表面に第二の金属を被覆して、金属メッキ粉体を製造する。被覆の方法としては、特に制限されないが、化学メッキが好ましく、その中でも特に置換メッキが好ましい。
例えば、銅粉に銀を被覆して銀メッキ銅粉を製造する場合は、水、炭酸アンモニウム水溶液、炭酸アンモニウム―エチレンジアミンテトラ酢酸ナトリウム(EDTA)水溶液に銅粉を分散させ銅分散液を調整し、該銅分散液に銀化合物の水溶液を添加しながら置換反応処理を行い、銀メッキ銅粉を製造する。銀化合物の水溶液としては、塩、錯体などの水溶液が用いられ、具体的には、硝酸銀水溶液、硝酸銀―炭酸アンモニウム水溶液、硝酸銀―エチレンジアミン水溶液、硝酸銀と各種水溶性のアミンとを含む水溶液、硝酸銀―炭酸アンモニウム―クエン酸塩水溶液、硝酸銀―炭酸アンモニウム―エチレンジアミンテトラ酢酸ナトリウム(EDTA)水溶液、シアン化銀アルカリ性水溶液などの銀イオンまたは銀錯イオンを含む水溶液が挙げられる。
なお、上述したようなメッキの処理によれば、第一の金属粉の表面の全部が第二の金属で被覆される。
Here, the manufacturing method of the composite metal powder of this invention is demonstrated.
First, the surface of the first metal powder is coated with the second metal to produce a metal plating powder. The coating method is not particularly limited, but chemical plating is preferable, and displacement plating is particularly preferable among them.
For example, when producing silver-plated copper powder by coating silver on copper powder, the copper dispersion is prepared by dispersing the copper powder in water, an aqueous solution of ammonium carbonate, or an aqueous solution of ammonium carbonate-sodium ethylenediaminetetraacetate (EDTA), A substitution reaction treatment is performed while adding an aqueous solution of a silver compound to the copper dispersion to produce silver-plated copper powder. As the aqueous solution of the silver compound, an aqueous solution of a salt, a complex or the like is used. Specifically, an aqueous solution of silver nitrate, an aqueous solution of silver nitrate-ammonium carbonate, an aqueous solution of silver nitrate-ethylenediamine, an aqueous solution containing silver nitrate and various water-soluble amines, silver nitrate— Examples of the aqueous solution include silver ions or silver complex ions such as an aqueous solution of ammonium carbonate-citrate, an aqueous solution of silver nitrate-ammonium carbonate-sodium ethylenediaminetetraacetate (EDTA), and an aqueous alkaline solution of silver cyanide.
In addition, according to the plating process as described above, the entire surface of the first metal powder is covered with the second metal.

次いで、金属メッキ粉体に200℃以上で熱処理を施して、複合金属粉を得る。好ましい熱処理の温度は200〜600℃であり、より好ましくは250〜500℃である。熱処理の温度の下限値が上記値より小さくなると、第二の金属の表面での***物の形成が不十分となる。なお、***物は熱処理の温度が高くなるに連れて大きく成長する傾向にあるが、温度の上限値が上記値を超えると***物の成長は止まるため、温度の上限値は上記値とすることが好ましい。   Next, the metal plating powder is heat-treated at 200 ° C. or higher to obtain a composite metal powder. A preferable heat treatment temperature is 200 to 600 ° C, more preferably 250 to 500 ° C. When the lower limit value of the temperature of the heat treatment is smaller than the above value, the formation of the raised matter on the surface of the second metal becomes insufficient. Note that the protuberance tends to grow greatly as the temperature of the heat treatment increases, but when the upper limit of the temperature exceeds the above value, the growth of the protuberance stops, so the upper limit of the temperature should be the above value. Is preferred.

前記熱処理は還元性気体中で行われるのが好ましい。還元性気体中で熱処理を行うことにより、通常の熱処理に伴う金属の酸化が防げる。また、複合金属粉の表面に金属の酸化膜が生じても、取り除くことができる。
前記還元性気体としては、水素、ホルムアルデヒドなどが挙げられ、中でも、水素が好ましい。
前記熱処理の処理時間は30〜180分が好ましく、熱処理の温度に応じて、適宜変更してよい。
なお、上述したような熱処理を施すと、第一の金属粉が露出する場合もある。
The heat treatment is preferably performed in a reducing gas. By performing the heat treatment in a reducing gas, the oxidation of the metal accompanying the normal heat treatment can be prevented. Even if a metal oxide film is formed on the surface of the composite metal powder, it can be removed.
Examples of the reducing gas include hydrogen and formaldehyde. Among them, hydrogen is preferable.
The treatment time for the heat treatment is preferably 30 to 180 minutes, and may be appropriately changed according to the temperature of the heat treatment.
In addition, when the heat treatment as described above is performed, the first metal powder may be exposed.

このようにして得られる複合金属粉は、第一の金属粉の表面に第二の金属が被覆し、かつ、第二の金属の表面に***物が形成される。***物が形成されることにより、第二の金属の表面積が増え、隣接する複合金属粉同士が接触しやすくなる。なお、***物は、第二の金属の表面の少なくとも一部に形成されてもよく、表面全体に形成されてもよいが、表面積が増えることを考慮した場合、表面全体に形成されるのが望ましい。
前記***物の高さは、200nm以上であることが好ましく、より好ましい高さは 200〜500nmである。高さの下限値が上記値より小さくなると、表面積の増加が不十分で、導電性の向上が得られにくくなる。なお、***物の高さは上記値より高くなりにくい。
In the composite metal powder obtained in this manner, the surface of the first metal powder is coated with the second metal, and a ridge is formed on the surface of the second metal. By forming the protuberance, the surface area of the second metal is increased, and adjacent composite metal powders are easily brought into contact with each other. The raised object may be formed on at least a part of the surface of the second metal, or may be formed on the entire surface. However, when the surface area is increased, it is formed on the entire surface. desirable.
The height of the raised object is preferably 200 nm or more, and more preferably 200 to 500 nm. When the lower limit of the height is smaller than the above value, the surface area is not increased sufficiently, and it becomes difficult to obtain an improvement in conductivity. In addition, the height of the raised object is unlikely to be higher than the above value.

複合金属粉の平均粒子径は、0.5〜50μmが好ましく、より好ましくは1〜30μmである。平均粒子径の下限値が上記値より小さくなると、製造が困難となる。一方、平均粒子径の上限値が上記値より大きくなると、導電性ペーストの塗工が困難となる。   The average particle size of the composite metal powder is preferably 0.5 to 50 μm, more preferably 1 to 30 μm. If the lower limit value of the average particle diameter is smaller than the above value, production becomes difficult. On the other hand, when the upper limit value of the average particle diameter is larger than the above value, it becomes difficult to apply the conductive paste.

上述したように、本発明の複合金属粉は、第二の金属の表面に***物が形成されているため、複合金属粉の表面積が増え、隣接する複合金属粉同士が接触しやすくなる。その結果、複合金属粉を用いた本発明の導電性ペーストは、熱処理を施さない金属メッキ粉体を用いた導電性ペーストに比べて導電性が向上する。   As described above, in the composite metal powder of the present invention, since the raised material is formed on the surface of the second metal, the surface area of the composite metal powder is increased, and adjacent composite metal powders are easily in contact with each other. As a result, the conductive paste of the present invention using the composite metal powder has improved conductivity as compared with the conductive paste using the metal plating powder not subjected to heat treatment.

前記導電性ペーストに含まれる成分としては、公知の成分が適用できるが、例えば、バインダー、硬化剤、溶剤、無機フィラーなどが挙げられる。また、任意の添加剤を含んでもよい。
バインダーとしては、例えば、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、フェノール樹脂、アクリル樹脂、塩化ビニル酢酸ビニル共重合樹脂、ブチラール樹脂などが挙げられる。
硬化剤としては、バインダーを硬化できるものであれば特に限定されないが、例えばイミダゾール化合物、イソシアネート化合物、酸無水物、アミン化合物、アミド化合物などが挙げられる。
As the component contained in the conductive paste, known components can be applied, and examples thereof include a binder, a curing agent, a solvent, and an inorganic filler. Moreover, you may include arbitrary additives.
Examples of the binder include an epoxy resin, a polyester resin, a polyurethane resin, a phenol resin, an acrylic resin, a vinyl chloride vinyl acetate copolymer resin, and a butyral resin.
The curing agent is not particularly limited as long as it can cure the binder, and examples thereof include imidazole compounds, isocyanate compounds, acid anhydrides, amine compounds, and amide compounds.

導電性ペースト中の複合金属粉の含有量は、20〜95質量%が好ましく、30〜90質量%がより好ましい。複合金属粉の含有量の下限値が上記値より小さくなると、十分な導電性が得られにくくなる。一方、含有量の上限値が上記値より大きくなると、ペースト状にすることが困難となる。
なお、導電性ペーストにおける複合金属粉とバインダー固形分比(質量%)は、複合金属粉/バインダー=60/40〜97/3が好ましく、75/25〜90/10が好ましい。
The content of the composite metal powder in the conductive paste is preferably 20 to 95% by mass, and more preferably 30 to 90% by mass. When the lower limit value of the content of the composite metal powder is smaller than the above value, it is difficult to obtain sufficient conductivity. On the other hand, when the upper limit of the content is larger than the above value, it becomes difficult to form a paste.
In addition, composite metal powder / binder solid content ratio (mass%) in the conductive paste is preferably composite metal powder / binder = 60/40 to 97/3, and more preferably 75/25 to 90/10.

導電性ペーストは、以上説明した複合金属粉とバインダーと硬化剤とをプラネタリーミキサーやロールミルなどで混合することにより得られる。
このような導電性ペーストは、種々の用途に使用できるが、特に各種電子部品などへの使用に適している。
The conductive paste can be obtained by mixing the above-described composite metal powder, a binder, and a curing agent with a planetary mixer or a roll mill.
Such a conductive paste can be used for various applications, but is particularly suitable for use in various electronic components.

このように、本発明の複合金属粉の製造方法により得られる複合金属粉は、第一の金属粉の表面を被覆する、第二の金属の表面に***物が形成されるため、本発明の複合金属粉を用いた導電性ペーストは、同じ金属比率の金属メッキ粉体を用いた導電性ペーストに比べて、より高い導電性能を示すことができる。
なお、本発明は、銀メッキ銅粉の導電性を向上させるのに、特に有用である。
As described above, the composite metal powder obtained by the method for producing a composite metal powder of the present invention covers the surface of the first metal powder, and the ridges are formed on the surface of the second metal. The conductive paste using the composite metal powder can exhibit higher conductive performance than the conductive paste using the metal plating powder having the same metal ratio.
The present invention is particularly useful for improving the conductivity of silver-plated copper powder.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these.

<実施例1>
(複合金属粉の製造)
メタノール滑剤洗浄したフレーク銅(三井金属社製、「MA−DF(E)」、粒径10μm)60gを約5%の希硫酸水溶液100mLに添加し、10分間撹拌して酸洗浄した後、中性になるまで洗浄を繰り返し、前処理銅粉とした。実施例1においては、洗浄回数を6回行い、洗浄水を約3L使用した。
先の前処理銅粉を1Lのビーカーに移し、炭酸アンモニウム31.5g、EDTA63g、水250gからなる水溶液を加えて銅分散液を調整した。硝酸銀10.5g、水32.4gからなる水溶液を、前記銅分散液に撹拌しながら添加し、銀置換メッキを行った。その後、ろ過、洗浄、乾燥し、銀含有量が10質量%の銀メッキ銅粉を得た。
次いで、銀メッキ銅粉を水素雰囲気下中、300℃で1時間熱処理し、複合金属粉を製造した。
得られた複合金属粉の表面状態を走査型電子顕微鏡(SEM、3000倍)にて観察した。SEM写真(観察画像)を図1に示す。
<Example 1>
(Manufacture of composite metal powder)
After adding 60 g of flake copper (Mitsui Kinzoku Co., Ltd., “MA-DF (E)”, particle size 10 μm) washed with methanol lubricant to 100 mL of about 5% dilute sulfuric acid aqueous solution, the mixture was stirred for 10 minutes and washed with acid. Washing was repeated until it became a pre-treated copper powder. In Example 1, washing was performed 6 times and about 3 L of washing water was used.
The pretreated copper powder was transferred to a 1 L beaker, and an aqueous solution composed of 31.5 g of ammonium carbonate, 63 g of EDTA, and 250 g of water was added to prepare a copper dispersion. An aqueous solution composed of 10.5 g of silver nitrate and 32.4 g of water was added to the copper dispersion with stirring, and silver substitution plating was performed. Thereafter, filtration, washing and drying were performed to obtain a silver-plated copper powder having a silver content of 10% by mass.
Next, the silver-plated copper powder was heat-treated at 300 ° C. for 1 hour in a hydrogen atmosphere to produce a composite metal powder.
The surface state of the obtained composite metal powder was observed with a scanning electron microscope (SEM, 3000 times). An SEM photograph (observed image) is shown in FIG.

(評価:導電性測定)
得られた複合金属粉を、300MPaの圧力にて圧縮成形し、直径10mm、厚さ1mmのタブレットを作成した。
得られたタブレットの導電性を、Hall測定装置(Bio-Red Microscience社製、「HL5500」)にて測定し、Van der Pauw法により比抵抗値(Ωcm)を求めた。導電性の測定を計4回行い、比抵抗値の平均値を求めた。結果を表1と図4に示す。
(Evaluation: Conductivity measurement)
The obtained composite metal powder was compression molded at a pressure of 300 MPa to produce a tablet having a diameter of 10 mm and a thickness of 1 mm.
The conductivity of the obtained tablet was measured with a Hall measuring device (manufactured by Bio-Red Microscience, “HL5500”), and the specific resistance value (Ωcm) was determined by the Van der Pauw method. Conductivity was measured four times in total, and an average value of specific resistance values was obtained. The results are shown in Table 1 and FIG.

<実施例2>
(複合金属粉の製造と評価)
銀メッキ銅粉を水素雰囲気下中、400℃で1時間熱処理した以外は実施例1と同様にして複合金属粉を製造し、導電性の評価を行った。結果を表1と図4に示す。
また、得られた複合金属粉の表面状態をSEM(3000倍)にて観察した。SEM写真(観察画像)を図2に示す。
<Example 2>
(Production and evaluation of composite metal powder)
A composite metal powder was produced in the same manner as in Example 1 except that the silver-plated copper powder was heat-treated at 400 ° C. for 1 hour in a hydrogen atmosphere, and conductivity was evaluated. The results are shown in Table 1 and FIG.
Moreover, the surface state of the obtained composite metal powder was observed with SEM (3000 times). An SEM photograph (observed image) is shown in FIG.

<比較例>
(銀メッキ銅粉の製造)
実施例1と同様にして、銀メッキ銅粉を製造した。
得られた銀メッキ銅粉の表面状態をSEM(3000倍)にて観察した。SEM写真(観察画像)を図3に示す。
<Comparative example>
(Manufacture of silver-plated copper powder)
In the same manner as in Example 1, silver-plated copper powder was produced.
The surface state of the obtained silver plating copper powder was observed with SEM (3000 times). An SEM photograph (observed image) is shown in FIG.

(評価:導電性測定)
得られた銀メッキ銅粉の導電性を、実施例1と同様にして評価した。結果を表1と図4に示す。
(Evaluation: Conductivity measurement)
The conductivity of the obtained silver-plated copper powder was evaluated in the same manner as in Example 1. The results are shown in Table 1 and FIG.

Figure 2008111175
Figure 2008111175

図1〜3より明らかなように、実施例で得られた複合金属粉の表面には***物が形成されていた。特に400℃で熱処理を行った実施例2の複合金属粉は、300℃で熱処理を行った実施例1の複合金属粉に比べて、***物が大きくなっていた。
一方、比較例で得られた銀メッキ銅粉の表面は鱗片状であり、平滑な表面であった。
As is clear from FIGS. 1 to 3, a ridge was formed on the surface of the composite metal powder obtained in the example. In particular, the composite metal powder of Example 2 that had been heat-treated at 400 ° C. had larger protrusions than the composite metal powder of Example 1 that had been heat-treated at 300 ° C.
On the other hand, the surface of the silver-plated copper powder obtained in the comparative example was scaly and smooth.

また、表1と図4から明らかなように、実施例1および2で得られた複合金属粉より作成した各タブレットは、同じ金属比率である比較例の銀メッキ銅粉より作成したタブレットに比べて平均比抵抗値が低く、導電性能に優れていた。特に実施例2の複合金属粉より作成したタブレットは、実施例1の複合金属粉より作成したタブレットに比べて、さらに平均比抵抗値が低かった。   Moreover, as is clear from Table 1 and FIG. 4, each tablet made from the composite metal powder obtained in Examples 1 and 2 is compared with the tablet made from the silver-plated copper powder of the comparative example having the same metal ratio. The average specific resistance value was low and the conductive performance was excellent. In particular, the tablet prepared from the composite metal powder of Example 2 had a lower average specific resistance value than the tablet prepared from the composite metal powder of Example 1.

実施例1で得られた複合金属粉の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the composite metal powder obtained in Example 1. FIG. 実施例2で得られた複合金属粉の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of the composite metal powder obtained in Example 2. FIG. 比較例で得られた複合金属粉の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the composite metal powder obtained in the comparative example. 導電性測定の結果を示すグラフである。It is a graph which shows the result of electroconductivity measurement.

Claims (9)

第一の金属粉の表面に、該第一の金属粉とは異なる第二の金属が被覆した複合金属粉であって、
前記第二の金属の表面に***物が形成されていることを特徴とする複合金属粉。
The surface of the first metal powder is a composite metal powder coated with a second metal different from the first metal powder,
A composite metal powder, wherein a protuberance is formed on the surface of the second metal.
前記***物の高さが200nm以上であることを特徴とする請求項1に記載の複合金属粉。   2. The composite metal powder according to claim 1, wherein a height of the raised object is 200 nm or more. 前記第二の金属は、前記第一の金属粉よりも比抵抗が低く、かつ、酸化しにくい金属であることを特徴とする請求項1または2に記載の複合金属粉。   3. The composite metal powder according to claim 1, wherein the second metal is a metal having a specific resistance lower than that of the first metal powder and hardly oxidized. 前記第一の金属粉が銅粉であり、前記第二の金属が銀であることを特徴とする請求項3に記載の複合金属粉。   The composite metal powder according to claim 3, wherein the first metal powder is a copper powder and the second metal is silver. 請求項1〜4のいずれかに記載の複合金属粉を含むことを特徴とする導電性ペースト。   A conductive paste comprising the composite metal powder according to claim 1. 第一の金属粉の表面に、該第一の金属粉とは異なる第二の金属を被覆した後、200℃以上で熱処理を施すことを特徴とする複合金属粉の製造方法。   A method for producing a composite metal powder, wherein the surface of the first metal powder is coated with a second metal different from the first metal powder and then subjected to a heat treatment at 200 ° C. or higher. 前記熱処理が還元性気体中で行われることを特徴とする請求項6に記載の複合金属粉の製造方法。   The method for producing a composite metal powder according to claim 6, wherein the heat treatment is performed in a reducing gas. 前記第二の金属は、前記第一の金属粉よりも比抵抗が低く、かつ、酸化しにくい金属であることを特徴とする請求項6または7に記載の複合金属粉の製造方法。   The method for producing a composite metal powder according to claim 6 or 7, wherein the second metal is a metal having a specific resistance lower than that of the first metal powder and hardly oxidized. 前記第一の金属粉が銅粉であり、前記第二の金属が銀であることを特徴とする請求項8に記載の複合金属粉の製造方法。


The method for producing a composite metal powder according to claim 8, wherein the first metal powder is copper powder and the second metal is silver.


JP2006296014A 2006-10-31 2006-10-31 Composite metal powder, its production method, and electrically conductive paste Pending JP2008111175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296014A JP2008111175A (en) 2006-10-31 2006-10-31 Composite metal powder, its production method, and electrically conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296014A JP2008111175A (en) 2006-10-31 2006-10-31 Composite metal powder, its production method, and electrically conductive paste

Publications (1)

Publication Number Publication Date
JP2008111175A true JP2008111175A (en) 2008-05-15

Family

ID=39443852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296014A Pending JP2008111175A (en) 2006-10-31 2006-10-31 Composite metal powder, its production method, and electrically conductive paste

Country Status (1)

Country Link
JP (1) JP2008111175A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044509A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Conductive ink composition, and solar cell module formed using the composition
WO2013141425A1 (en) * 2012-03-23 2013-09-26 (주)창성 Electrode paste composition for solar cell
WO2014156978A1 (en) 2013-03-28 2014-10-02 東洋アルミニウム株式会社 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
WO2015107996A1 (en) 2014-01-14 2015-07-23 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing same and conductive coated article
WO2016080544A1 (en) * 2014-11-20 2016-05-26 国立大学法人山形大学 Method for treating metal surface, silver-coated copper treated by said method, and composite metal body
KR101929750B1 (en) * 2016-12-22 2018-12-18 서울과학기술대학교 산학협력단 Bonding paste for high temperature applications and bonding method using the in situ formation of fine Ag bumps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134759A (en) * 1977-04-28 1978-11-24 Fujikura Kasei Kk Production of copmosite metal powder
JPH11328748A (en) * 1998-05-19 1999-11-30 Tdk Corp Master disk
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2001011502A (en) * 1999-06-24 2001-01-16 Dowa Mining Co Ltd Copper powder, its manufacture, and electrical conductive paste using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134759A (en) * 1977-04-28 1978-11-24 Fujikura Kasei Kk Production of copmosite metal powder
JPH11328748A (en) * 1998-05-19 1999-11-30 Tdk Corp Master disk
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2001011502A (en) * 1999-06-24 2001-01-16 Dowa Mining Co Ltd Copper powder, its manufacture, and electrical conductive paste using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044509A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Conductive ink composition, and solar cell module formed using the composition
WO2013141425A1 (en) * 2012-03-23 2013-09-26 (주)창성 Electrode paste composition for solar cell
KR101315105B1 (en) 2012-03-23 2013-10-07 (주)창성 Electrode paste for solar cell
KR20180132176A (en) 2013-03-28 2018-12-11 도요 알루미늄 가부시키가이샤 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
US10020090B2 (en) 2013-03-28 2018-07-10 Toyo Aluminium Kabushiki Kaisha Conductive particles, method of manufacturing the same, conductive resin composition containing the same, and conductive coated object
WO2014156978A1 (en) 2013-03-28 2014-10-02 東洋アルミニウム株式会社 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
KR20210027541A (en) 2013-03-28 2021-03-10 도요 알루미늄 가부시키가이샤 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
KR20210104167A (en) 2013-03-28 2021-08-24 도요 알루미늄 가부시키가이샤 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
WO2015107996A1 (en) 2014-01-14 2015-07-23 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing same and conductive coated article
KR20160102547A (en) 2014-01-14 2016-08-30 도요 알루미늄 가부시키가이샤 Composite conductive particles, conductive resin composition containing same and conductive coated article
US10227496B2 (en) 2014-01-14 2019-03-12 Toyo Aluminium Kabushiki Kaisha Composite conductive particle, conductive resin composition containing same and conductive coated article
WO2016080544A1 (en) * 2014-11-20 2016-05-26 国立大学法人山形大学 Method for treating metal surface, silver-coated copper treated by said method, and composite metal body
JP2016098398A (en) * 2014-11-20 2016-05-30 国立大学法人山形大学 Metal surface treatment method, and silver clad copper and composite metal body treated by the method
KR101929750B1 (en) * 2016-12-22 2018-12-18 서울과학기술대학교 산학협력단 Bonding paste for high temperature applications and bonding method using the in situ formation of fine Ag bumps

Similar Documents

Publication Publication Date Title
JP5394084B2 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
KR101301634B1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP6166012B2 (en) Conductive powder and conductive paste
TWI510592B (en) Method for manufacturing conductive copper particles
JP5156328B2 (en) Copper alloy powder for conductive material paste
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP2008111175A (en) Composite metal powder, its production method, and electrically conductive paste
JP5631841B2 (en) Silver coated copper powder
JP5778941B2 (en) Method for producing silver-coated flake copper powder
CN108367927A (en) The coating graphite particle of silver, the coating graphite mixed powder of silver and its manufacturing method and electrocondution slurry
JP2013001917A (en) Silver coated copper powder and method for manufacturing the same
WO2017038465A1 (en) Silver-coated copper powder
JP5327582B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP2009046708A (en) Silver powder
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2012140661A (en) Flat copper particle
JP2005240164A (en) Nickel powder and manufacturing method therefor
WO2016063684A1 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
KR101789037B1 (en) Metallic paste composition for formation of an electrode comprisiing graphite and ag-graphite composite electrodes usign the same
JP6332058B2 (en) Copper powder, and copper paste, conductive paint, and conductive sheet using the same
TW201510015A (en) Conductive paste and substrate attached with conductive film
JP2015030869A (en) Copper composite particle, copper paste comprising the same and method of producing circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906