JP2008109176A - 撮像装置及び撮像方法 - Google Patents

撮像装置及び撮像方法 Download PDF

Info

Publication number
JP2008109176A
JP2008109176A JP2006287170A JP2006287170A JP2008109176A JP 2008109176 A JP2008109176 A JP 2008109176A JP 2006287170 A JP2006287170 A JP 2006287170A JP 2006287170 A JP2006287170 A JP 2006287170A JP 2008109176 A JP2008109176 A JP 2008109176A
Authority
JP
Japan
Prior art keywords
image data
reference image
positional deviation
circuit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006287170A
Other languages
English (en)
Other versions
JP4806329B2 (ja
Inventor
Masahiro Yokohata
正大 横畠
Yasuhachi Hamamoto
安八 浜本
Yukio Mori
幸夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006287170A priority Critical patent/JP4806329B2/ja
Priority to US11/876,078 priority patent/US20080095408A1/en
Publication of JP2008109176A publication Critical patent/JP2008109176A/ja
Application granted granted Critical
Publication of JP4806329B2 publication Critical patent/JP4806329B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/32Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20208High dynamic range [HDR] image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

【課題】本発明は、露光条件の異なる複数の画像を合成してダイナミックレンジの広い画像を生成する際において、合成する複数の画像の座標位置を一致させることのできる撮像装置及び撮像方法を提供することを目的とする。
【解決手段】輝度調整回路31において、基準画像データ及び非基準画像データそれぞれの輝度値が調整されると、位置ズレ検出回路32で基準画像データ及び非基準画像データの位置ズレが検出される。そして、位置ズレ補正回路33において、検出された位置ズレに基づいて非基準画像データの座標位置が補正された後、基準画像データと非基準画像データとによる合成画像データが画像合成回路34で生成される。
【選択図】図2

Description

本発明は、画像を撮像する撮像装置及び撮像方法に関するもので、特に、ダイナミックレンジの大きい画像を取得する撮像装置及び撮像方法に関する。
CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサなどの固体撮像素子において、そのダイナミックレンジが狭く、被写体の輝度範囲が広い場合、ダイナミックレンジを高い輝度値にあわせると、輝度値の低い部分で黒ツブレが発生し、逆に、ダイナミックレンジを低い輝度値にあわせると、輝度値の高い部分で白トビが発生する。このダイナミックレンジの狭い固体撮像装置によって、広い輝度範囲の被写体を撮像するために、露光量の異なる複数の画像を撮像して合成する手法が用いられている(特許文献1〜3参照)。
特許文献1の撮像装置においては、交互に繰り返される長時間露光及び短時間露光それぞれによって得られた信号量に対して、異なるガンマ特性による演算処理がなされた後、短時間露光に対する信号量にオフセット量を与えて、長時間露光に対する信号量に加算する。これにより、長時間露光及び短時間露光それぞれによって得られた信号量を合成して、ダイナミックレンジを拡大した映像信号を生成することができる。
特許文献2及び特許文献3の撮像装置においては、特許文献1のものと同様、長時間露光の撮像による画像と短時間露光の撮像による画像とを合成することで、ダイナミックレンジの広い合成画像を生成する。そして、この合成画像に生じるブレを抑制するために、電子シャッタとメカシャッタとを組み合わせることで、合成する2画像を撮像するためのシャッタ間隔を短くする。
特開2001−16499号公報 特開2003−163831号公報 特開2003−219281号公報
しかしながら、露光条件の2画像を合成することによってダイナミックレンジを広くしたとしても、撮像時における手ブレなどが原因となり、2画像の座標位置の不一致により、合成画像にブレが生じる。そして、特許文献2,3の撮像装置のように、合成する2画像のシャッタ間隔を短くしたとしても、その座標位置のブレを抑制することができるが、座標位置を一致させるものではないため、ブレが解消されるものではない。このようにブレが残ることにより、合成後の画像に対して、画質の劣化が生じる。
このような問題を鑑みて、本発明は、露光条件の異なる複数の画像を合成してダイナミックレンジの広い画像を生成する際において、合成する複数の画像の座標位置を一致させることのできる撮像装置及び撮像方法を提供することを目的とする。
上記目的を達成するために、本発明の撮像装置は、撮影時の露光時間の長い画像による基準画像データと撮影時の露光時間の短い画像による非基準画像データとを合成する合成画像データを生成する画像合成部を備えた撮像装置において、平均輝度値が略等しい2つの画像データを比較することによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出する位置ズレ検出部と、該位置ズレ検出部で検出された位置ズレ量に基づいて前記非基準画像データの位置ズレを補正する位置ズレ補正部と、を備え、前記画像合成部において、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記非基準画像データとを合成することで、前記合成画像データを生成することを特徴とする。
このとき、前記基準画像データ及び前記非基準画像データそれぞれに対して増幅又は減衰処理を施すことにより、前記基準画像データ及び前記非基準画像データそれぞれの平均輝度値を略等しい状態とする輝度調整部を備え、前記位置ズレ検出部が、該輝度調整部で値が調整された前記基準画像データ及び前記非基準画像データによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出するものとしても構わない。
このように構成することで、連続して取得される2フレーム分の画像データである前記基準画像データ及び前記非基準画像データによって、位置ズレを検出して、前記基準画像データの位置ズレを補正することができる。
又、前記非基準画像データが、同一の露光時間となる2画像の第1及び第2非基準画像データであり、前記位置ズレ検出部において、前記第1及び第2非基準画像データの位置ズレ量を検出した後、前記第1非基準画像データと前記基準画像データの撮像タイミングの時間差と、前記第1及び第2非基準画像データの撮像タイミングの時間差とによる比に基づいて、前記第1非基準画像データと前記基準画像データの位置ズレ量を算出し、前記位置ズレ補正部において、前記位置ズレ検出部で算出された位置ズレ量に基づいて前記第1非基準画像データの位置ズレを補正し、前記画像合成部において、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記第1非基準画像データとを合成することで、前記合成画像データを生成するものとしても構わない。
このとき、前記基準画像データの撮影タイミングが、前記第1及び第2非基準画像データの撮影タイミングの間にあるものとしても構わないし、前記第1及び第2非基準画像データの撮影タイミングが連続するものとしても構わない。
このように構成することで、輝度調整を行うことなく、平均輝度値の等しい前記第1及び第2非基準画像データに基づいて位置ズレを検出することができる。そして、前記第1基準画像データの位置ズレを補正することができる。
これらの撮像装置において、光電変換動作を行うことで撮影して得られた電気信号を画像データとして出力する撮像素子と、前記撮像素子からの前記画像データを一時的に記憶する画像メモリと、を備えることで、前記画像メモリに記憶された前記非基準画像データ及び前記基準画像データが、前記位置ズレ検出部、前記位置ズレ補正部、及び前記画像合成部それぞれに与えられ、広ダイナミックレンジの画像を撮影することができる。
本発明の撮像方法は、撮影時の露光時間の長い画像による基準画像データと撮影時の露光時間の短い画像による非基準画像データとを合成する合成画像データを生成する画像合成ステップを有する撮像方法において、平均輝度値が略等しい2つの画像データを比較することによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出する位置ズレ検出ステップと、該位置ズレ検出部で検出された位置ズレ量に基づいて前記非基準画像データの位置ズレを補正する位置ズレ補正ステップと、を備え、前記画像合成ステップにおいて、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記非基準画像データとを合成することで、前記合成画像データを生成することを特徴とする。
このような撮像方法において、前記基準画像データ及び前記非基準画像データそれぞれに対して増幅又は減衰処理を施すことにより、前記基準画像データ及び前記非基準画像データそれぞれの平均輝度値を略等しい状態とする輝度調整ステップを備え、前記位置ズレ検出ステップが、該輝度調整ステップで値が調整された前記基準画像データ及び前記非基準画像データによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出するものとしても構わない。
又、前記非基準画像データが、同一の露光時間となる2画像の第1及び第2非基準画像データであり、前記位置ズレ検出ステップにおいて、前記第1及び第2非基準画像データの位置ズレ量を検出した後、前記第1非基準画像データと前記基準画像データの撮像タイミングの時間差と、前記第1及び第2非基準画像データの撮像タイミングの時間差とによる比に基づいて、前記第1非基準画像データと前記基準画像データの位置ズレ量を算出し、前記位置ズレ補正ステップにおいて、前記位置ズレ検出部で算出された位置ズレ量に基づいて前記第1非基準画像データの位置ズレを補正し、前記画像合成ステップにおいて、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記第1非基準画像データとを合成することで、前記合成画像データを生成するものとしても構わない。
本発明によると、平均輝度値が略等しい2フレームの画像に基づいて非基準画像データの位置ズレを検出するため、位置ズレを正確に検出することができる。そして、検出した位置ズレによって非基準画像データの位置ズレを補正して、基準画像データと合成するため、合成する2フレームの画像データを合成して広ダイナミックレンジの画像データを生成する場合において、位置ズレによるブレを低減させることができる。
<撮像装置の構成>
本発明の各実施形態で共通となる撮像装置の構成について、図面を参照して説明する。図1は、本発明の各実施形態における撮像装置の全体的構成図である。又、この図1の撮像装置は、デジタルスチルカメラ又はデジタルビデオカメラなどであり、少なくとも静止画像を撮影可能となっている。
図1の撮像装置は、被写体からの光が入射されるレンズ1と、レンズ1を通じて入射した光学像を光電変換するCCD又はCMOSセンサ等から成る撮像素子2と、撮像素子2における光電変換処理によって得られた電気信号に対して各演算処理を施すカメラ回路3と、カメラ回路3からの出力信号をデジタル映像信号としての画像データに変換するA/D変換回路4と、A/D変換回路4からの画像データが書き込まれる画像メモリ5と、与えられた画像データをNTSC(National Television Standards Committee)信号に変換するNTSCエンコーダ6と、NTSCエンコーダ6からのNTSC信号に基づいて映像を再生表示する液晶ディスプレイ等から成るモニタ7と、与えられた画像データをJPEG(Joint Photographic Experts Group)などの所定の圧縮データ形式にエンコードする画像圧縮回路8と、画像圧縮回路8でエンコードされた画像データを画像ファイルとして保存するメモリカードなどから成る記録媒体9と、装置全体を制御するマイコン(マイクロコンピュータ)10と、撮像素子2の露光時間を設定する撮影制御回路11と、画像メモリ5を制御するメモリ制御回路12とを備える。
このように構成される撮像装置において、撮像素子2が、レンズ1を通して入射した光学像を光電変換し、光学像をRGB信号となる電気信号として出力する。そして、この撮像素子2からの電気信号がカメラ回路3に与えられると、カメラ回路3内において、まず、CDS(Correlated Double Sampling)回路で相関二重サンプリング処理された後、AGC(Auto Gain Control)回路で最適な振幅にゲイン調整される。このカメラ回路3からの出力信号は、A/D変換回路4によってデジタル映像信号としての画像データに変換された後、画像メモリ5に書き込まれる。
この図1の撮像装置は、更に、撮像するためのシャッタボタン21と、撮像素子2のダイナミックレンジの切換を行うダイナミックレンジ切換スイッチ22と、撮像素子2への光の入射を制御するメカニカルシャッタ23と、ダイナミックレンジ切換スイッチ22により広いダイナミックレンジが要求されたときに動作する広ダイナミックレンジ画像生成回路30と、を備える。
更に、この撮像装置の撮影時の動作モードとして、画像ファイルのダイナミックレンジを撮像素子2のダイナミックレンジによるものとする「通常撮影モード」と、画像ファイルのダイナミックレンジを電子的に撮像素子2のダイナミックレンジよりも広いものとする「広ダイナミックレンジ撮影モード」とが含まれる。そして、ダイナミックレンジ切換スイッチ22に対する操作に応じて、「通常撮影モード」と「広ダイナミックレンジ撮影モード」の切替え設定が行われる。
このように構成されるとき、ダイナミックレンジ切換スイッチ22によってマイコン10に対して「通常撮影モード」が指定されると、「通常撮影モード」に対応した動作を行うように、マイコン10が撮影制御回路11及びメモリ制御回路12の動作制御を行う。又、撮影制御回路11が、メカニカルシャッタ23のシャッタ動作と、撮像素子2における信号処理動作とを、各モードに応じて制御し、メモリ制御回路12が、画像メモリ5に対する画像データの書き込み動作及び読み出し動作を、各モードに応じて制御する。又、撮影制御回路11は、被写体の明るさを測定する測光回路(不図示)から得られた明るさの情報に基づいて、撮像素子2の最適な露光時間を設定する。
まず、ダイナミックレンジ切換スイッチ22によって通常撮影モードが指定された場合における、撮像装置の動作について説明する。シャッタボタン21が押下げられていない場合には、撮影制御回路11によって、撮像素子2に対して、電子シャッタによる露光期間及び信号の読み出し期間が設定され、撮像素子2が一定間隔(例えば1/60秒)の撮影を行う。この撮像素子2の撮影によって得られた画像データが、画像メモリ5に書き込まれた後、NTSCエンコーダ6によりNTSC信号に変換されて、液晶ディスプレイ等から成るモニタ7に送られる。このとき、画像メモリ5は、メモリ制御回路12によって、A/D変換回路4からの画像データが書き込まれるように制御された後、書き込まれた画像データがNTSCエンコーダ6に読み出されるように制御される。そして、各画像データによって表される画像がモニタ7に表示される。このような、画像メモリ5に書き込まれた画像データをそのままNTSCエンコーダ6に送ることによる表示を、「スルー表示」という。
シャッタボタン21が押下げられると、撮影制御回路11によって、撮像素子2における電子シャッタ動作及び信号読出動作と、メカニカルシャッタ23の開閉動作とが、制御される。これによって、撮像素子2において静止画像の撮影を開始し、そのタイミングの撮影によって得られた画像データが画像メモリ5に書き込まれる。その後、該画像データにて表される画像がモニタ7に表示されると共に、該画像データは画像圧縮回路8によってJPEGなどの所定の圧縮データ形式にエンコードされ、画像ファイルとしてメモリカード9に保存される。このとき、画像メモリ5は、メモリ制御回路12によって、A/D変換回路4からの画像データが書き込まれるように制御された後、書き込まれた画像データがNTSCエンコーダ6及び画像圧縮回路8に読み出されるように制御される。
次に、ダイナミックレンジ切換スイッチ22によって広ダイナミックレンジ撮影モードが設定されている場合における、撮像装置の動作について説明する。以下の説明は、特に記述しない限り、広ダイナミックレンジ撮影モードにおける動作の説明である。
シャッタボタン21が押下げられていない場合には、通常撮影モードと同様、スルー表示が成される。即ち、撮像素子2で一定間隔(例えば1/60秒)の撮影によって得られた画像データが、画像メモリ5に書き込まれた後、NTSCエンコーダ6を介してモニタ7に送られる。又、画像メモリ5に書き込まれた画像データは、広ダイナミックレンジ画像生成回路30にも与えられ、フレーム毎に座標位置の位置ズレ量が検出される。そして、この検出された位置ズレ量は、広ダイナミックレンジでの撮影が行われたときに利用されるように、広ダイナミックレンジ画像生成回路30に一時的に記憶される。
又、シャッタボタン21が押下げられると、撮影制御回路11によって、撮像素子2における電子シャッタ動作及び信号読出動作と、メカニカルシャッタ23の開閉動作とが、制御される。そして、撮像素子2において、後述する各実施形態のように、露光量の異なる複数フレームの画像データが連続して撮影されると、撮影された画像データが順番に画像メモリ5に書き込まれる。この書き込まれた複数フレームの画像データが画像メモリ5より広ダイナミックレンジ画像生成回路30に与えられると、露光量の異なる2フレームの画像データにおける座標位置の位置ズレが補正された後、この2フレームの画像データが合成されて、広ダイナミックレンジとなる合成画像データが生成される。
そして、広ダイナミックレンジ画像生成回路30で生成された合成画像データが、NTSCエンコーダ6及び画像圧縮回路8に与えられる。このとき、NTSCエンコーダ6を介してモニタ7に合成画像データが与えられることにより、広ダイナミックレンジとなる合成画像がモニタ7で再生表示される。又、画像圧縮回路8において合成画像データが所定の圧縮データ形式にエンコードされ、画像ファイルとしてメモリカード9に保存される。
このように構成されるとともに動作する撮像装置の詳細について、以下の各実施形態において説明する。尚、以下の各実施形態においては、「通常撮影モード」に関係する構成及び動作については上述のもので共通となるため、「広ダイナミックレンジ撮影モード」に関係する構成及び動作について、詳細に説明する。
<第1の実施形態>
本発明の第1の実施形態について、図面を参照して説明する。図2は、本実施形態の撮像装置における広ダイナミックレンジ画像生成回路30の内部構成を示すブロック図である。
本実施形態の撮像装置における広ダイナミックレンジ画像生成回路30は、図2に示すように、合成画像データを生成するための基準画像データ及び非基準画像データそれぞれの輝度値を調整するための輝度調整回路31と、輝度調整回路31でゲイン調整された基準画像データ及び非基準画像データの座標位置の位置ズレを検出する位置ズレ検出回路32と、位置ズレ検出回路32で検出された位置ズレに基づいて非基準画像データの座標位置を補正する位置ズレ補正回路33と、基準画像データと位置ズレ補正回路33で座標位置が補正された非基準画像データとを合成して合成画像データを生成する画像合成回路34と、画像合成回路34で得られた合成画像データを一時的に記憶する画像メモリ35と、を備える。
上述したように、ダイナミックレンジ切換スイッチ22によって広ダイナミックレンジ撮影モードが設定されているときにおいて、シャッタボタン21が押下げられていない場合、撮像素子2で一定間隔の撮影が行われ、その画像データに基づく画像がモニタ7で再生表示される。このとき、画像メモリ5に書き込まれた画像データは、NTSCエンコーダ6に与えられるだけでなく、広ダイナミックレンジ画像生成回路30にも与えられる。
この広ダイナミクレンジ画像生成回路30では、位置ズレ検出回路32に対して、画像メモリ5に書き込まれた画像データが与えられ、入力された異なる2フレームの画像データに基づいて、2フレーム間の動きベクトルの算出が行われる。即ち、この位置ズレ検出回路32は、前回に入力されたフレームの画像データにて表される画像と今回に入力されたフレームの画像データにて表される画像との間に関する、動きベクトルの算出を行う。そして、今回に入力されたフレームの画像データとともに、算出した動きベクトルを一時的に格納する。尚、シャッタボタン21が押下されていない時において順次算出される動きベクトルは、後に示す図13のステップS48の処理(パン・チルト状態判定処理)などに利用される。
尚、以下においては、説明を簡単とするため、シャッタボタン21が押下されて、基準画像データと非基準画像データが広ダイナミックレンジ画像生成回路30に入力された場合を説明する。しかしながら、後述する図12及び図13に示す各処理は、シャッタボタン21が押下されたか否かに関わらず、広ダイナミックレンジ撮影モードにおいて逐次行われる。そして、シャッタボタン21が押下されていない場合は、前フレームの画像データを基準画像データとして、現フレームの画像データを非基準画像データとして、同様の動作を行う。又、シャッタボタン21が押下されていない場合は、画像データが輝度調整回路31において輝度調整されることなく、位置ズレ検出回路32に与えられて、動きベクトルが算出される。
シャッタボタン21が押下げられた場合、マイコン10は、撮影制御装置11に対して、撮像装置2における電子シャッタ機能とメカニカルシャッタ23の開閉動作とを組み合わせて、露光時間の短いフレームと露光時間の長いフレームとの撮影を行うように指示する。そして、露光時間の長いフレームの画像データを基準画像データとし、又、露光時間の短いフレームの画像データを非基準画像データとし、非基準画像データとなるフレームが撮影された後、基準画像データとなるフレームが撮影される。そして、画像メモリ5に格納された基準画像データ及び非基準画像データが、輝度調整回路31に与えられる。
(輝度調整回路)
輝度調整回路31では、基準画像データ及び非基準画像データそれぞれに対して、それぞれの平均輝度値が等しくなるように、ゲイン調整が行われる。即ち、輝度調整回路31は、図3に示すように、基準画像データ及び非基準画像データそれぞれの平均輝度値を求める平均演算回路311,312と、平均演算回路311,312それぞれで得られた平均輝度値に基づいてゲイン設定を行うゲイン設定回路313,314と、ゲイン設定回路313,314それぞれで設定されたゲインを乗算することで基準画像データ及び非基準画像データそれぞれの輝度値を調整する乗算回路315,316と、を備える。
輝度調整回路31において、平均演算回路311,312での平均輝度値を取得するために、演算に使用する輝度範囲が設定される。そして、平均演算回路311で設定された輝度範囲を、白トビ部分を無視できる範囲となるL1以上L2以下とし、平均演算回路312で設定された輝度範囲を、黒ツブレ部分を無視できる範囲となるL3以上L4以下とする。更に、この平均演算回路311,312それぞれにおける輝度範囲L1〜L2(L1以上L2以下を意味するものとする)、L3〜L4(L3以上L4以下を意味するものとする)とそれぞれは、基準画像データ及び非基準画像データそれぞれを撮影する露光時間の比に基づいて設定される。
即ち、基準画像データを撮影するための露光時間がT1であり、非基準画像データを撮影するための露光時間がT2であるとき、平均値演算回路312における輝度範囲の最大値L4が、平均演算回路311における輝度範囲の最大値L2に対して、(T2/T1)が乗算されて設定される。これにより、基準画像データにおける白トビ部分を排除するために平均演算回路311における輝度範囲の最大値L2に基づいて、平均値演算回路312における輝度範囲の最大値L4が設定されることとなる。
又、平均値演算回路311における輝度範囲の最小値L1が、平均演算回路312における輝度範囲の最小値L3に対して、(T1/T2)が乗算されて設定される。これにより、非基準画像データにおける黒ツブレ部分を排除するために平均演算回路312における輝度範囲の最小値L3に基づいて、平均値演算回路311における輝度範囲の最小値L1が設定されることとなる。
そして、平均値演算回路311では、基準画像データにおいて輝度範囲L1〜L2を満たす輝度値を累積加算して、累積加算した輝度値を選択した画素数で割ることで、基準画像データに対する平均輝度値Lav1を求める。同様に、平均値演算回路312では、非基準画像データにおいて輝度範囲L3〜L4を満たす輝度値を累積加算して、累積加算した輝度値を選択した画素数で割ることで、非基準画像データに対する平均輝度値Lav2を求める。
即ち、図4(a)に示すような輝度分布の被写体を撮影する場合、露光時間T1で撮影されて得られる基準画像データによる輝度範囲が、図4(b)のように、輝度範囲Lr1となり、輝度範囲の高輝度側における画素分布が高くなり白トビが発生する。よって、この白トビ部分を、平均値演算を行うための輝度範囲より除くために、輝度範囲L1〜L2の最大輝度値L2が設定される。そして、この最大輝度値L2に基づいて、非基準画像データに対する輝度範囲L3〜L4の最大輝度値L4が上述のように設定される。
又、露光時間T2で撮影されて得られる非基準画像データによる輝度範囲が、図4(c)のように、輝度範囲Lr2となり、輝度範囲の低輝度側における画素分布が高くなり黒ツブレが発生する。よって、この黒ツブレ部分を、平均値演算を行うための輝度範囲より除くために、輝度範囲L3〜L4の最小輝度値L3が設定される。そして、この最小輝度値L3に基づいて、基準画像データに対する輝度範囲L1〜L2の最小輝度値L1が上述のように設定される。
尚、説明の便宜上、図4(b)の輝度範囲Lr1及び図4(c)の輝度範囲Lr2においては、図4(a)の被写体の輝度分布に合わせたものとし、又、本明細書における輝度値L1〜L4,Lac1,Lav2,Lthについては、撮像素子2への露光量による輝度値とする。即ち、輝度調整回路31で調整される輝度値は、撮像素子2への露光量に比例した撮像素子2からの画像データ値である。
よって、平均値演算回路311で、図4(a)の被写体の輝度分布において図4(b)のような輝度範囲Lr1が撮像されて得られる基準画像データに対して、輝度範囲L1〜L2における輝度分布による平均輝度値Lav1が求められる。即ち、平均値演算回路311において、基準画像データの輝度範囲L1〜L2となる輝度値を累積加算するととともに、輝度範囲L1〜L2となる輝度値を有する画素数を計算すると、累積加算した輝度値を画素数で割ることにより、基準画像データの平均輝度値Lav1を求める。
又、平均値演算回路312で、図4(a)の被写体の輝度分布において図4(c)のような輝度範囲Lr2が撮像されて得られる非基準画像データに対して、輝度範囲L3〜L4における輝度分布による平均輝度値Lav2が求められる。即ち、平均値演算回路312において、非基準画像データの輝度範囲L3〜L4となる輝度値を累積加算するととともに、輝度範囲L3〜L4となる輝度値を有する画素数を計算すると、累積加算した輝度値を画素数で割ることにより、非基準画像データの平均輝度値Lav2を求める。
このようにして求められた基準画像データ及び非基準画像データそれぞれの平均輝度値Lav1,Lav2が、ゲイン設定回路313,314それぞれに与えられる。ゲイン設定回路313では、基準画像データの平均輝度値Lav1と基準輝度値Lthとを比較して、乗算回路315で乗算するゲインG1を設定する。又、ゲイン設定回路314では、非基準画像データの平均輝度値Lav2と基準輝度値Lthとを比較して、乗算回路316で乗算するゲインG2を設定する。
このとき、例えば、ゲイン設定回路313において、ゲインG1を平均輝度値Lav1と基準輝度値Lthとの比(Lth/Lav1)とし、ゲイン設定回路314において、ゲインG2を平均輝度値Lav2と基準輝度値Lthとの比(Lth/Lav2)とする。そして、ゲイン設定回路313,314で設定されたゲインG1,G2それぞれが、乗算回路315,316に与えられる。これにより、乗算回路315では、基準画像データに対してゲインG1が乗算され、乗算回路316では、非基準画像データに対してゲインG2が乗算される。よって、乗算回路315,316で処理された基準画像データ及び非基準画像データの平均輝度値が略等しくなる。
このように、輝度調整回路31を構成する各回路が動作することで、平均輝度値が略等しくなった基準画像データ及び非基準画像データが、位置ズレ検出回路32に与えられる。又、輝度調整回路31内のゲイン設定回路313,314に基準輝度値Lthがマイコン10によって与えられるものとし、この基準輝度値Lthの値を切り換えることで、ゲイン設定回路313,314で設定されるゲインG1,G2の値を調整することができる。これにより、基準輝度値Lthの値をマイコン10により調整することで、基準画像データにおける白トビの割合や、非基準画像データ黒つぶれの割合に基づいて、ゲインG1,G2の値が最適な値とすることができる。よって、位置ズレ検出回路32における演算処理に適した輝度範囲の基準画像データ及び非基準画像データとすることができる。
尚、基準画像データ及び非基準画像データそれぞれの平均輝度値を略等しくするために、上述した輝度調整回路31のように、基準画像データ及び非基準画像データの両方でなく、いずれか一方のみに対して輝度調整が成される場合、S/N比や信号の線形性に起因する誤差が大きくなり、後述する代表点マッチングなどの位置ズレ検出の精度が悪化してしまう。このS/N比や信号の線形性に起因する誤差による影響は、基準画像データ及び非基準画像データそれぞれを取得するための露光時間の差が大きい場合、即ち、ダイナミックレンジ拡大率が大きい場合に、大きくなる。
それに対して、上述した輝度調整回路31では、基準画像データ及び非基準画像データの両方に対して輝度調整を施すため、それぞれの平均輝度値の中間値になるように基準輝度値Lthを設定し、それぞれの輝度調整を行うことができる。よって、基準画像データ及び非基準画像データそれぞれを取得するための露光時間の差が大きい場合でも、S/N比や信号の線形性に起因する誤差が拡大することを防ぎ、位置ズレ検出精度の悪化を防ぐことができる。
(位置ズレ検出回路)
このようにして輝度値が調整された基準画像データ及び非基準画像データが与えられる位置ズレ検出回路32では、基準画像及び非基準画像との間の動きベクトルが算出されるとともに、算出された動きベクトルが有効か無効か判定される。詳細は後述するが、画像間の動きを表すベクトルとしてある程度信頼できると判断された動きベクトルは有効とされ、信頼できないと判断された動きベクトルは無効とされる(詳細は後述)。尚、ここで議論する動きベクトルは、画像の全体の動きベクトル(後述する「全体動きベクトル」)に対応している。また、位置ズレ検出回路32は、マイコン10によって制御され、位置ズレ検出回路32にて算出された各値は必要に応じてマイコン10に送られる。
図5に示すように、位置ズレ検出回路32は、代表点マッチング回路41と、領域動きベクトル算出回路42と、検出領域有効性判定回路43と、全体動きベクトル算出回路44と、を有して構成される。符号42〜44で表される部位の機能については後に示す図12及び図13のフローチャートの説明の中で行うとして、まず、代表点マッチング回路41について詳細に説明する。図6は、代表点マッチング回路41の内部ブロック図である。代表点マッチング回路41は、フィルタ51と、代表点メモリ52と、減算回路53と、累積加算回路54と、演算回路55と、を有して構成される。
1.代表点マッチング法
位置ズレ検出回路32は、周知の代表点マッチング法に基づいて、動きベクトル等を検出する。位置ズレ検出回路32に基準画像データ及び非基準画像データが入力されると、基準画像と非基準画像との間の動きベクトル等を検出する。図7に、位置ズレ検出回路32に与えられる画像データによって表される画像100を示す。画像100は、例えば上述の基準画像又は非基準画像のいずれかを表す。画像100内に、複数の動きベクトル検出領域が設けられる。以下、動きベクトル検出領域を、単に、「検出領域」と略記する。説明の具体化のため、9つの検出領域E1〜E9が設けられている場合を考える。各検出領域E1〜E9の大きさは同じである。
検出領域E1〜E9のそれぞれは、更に、複数の小領域(検出ブロック)eに分割されている。図7に示す例では、各検出領域が、48個の小領域eに分割されている(垂直方向に6分割され且つ水平方向に8分割されている)。各小領域eは、例えば、32×32の画素(垂直方向に32画素且つ水平方向に32画素の二次元配列された画素)で構成される。そして、図8に示すように、各小領域eに、複数のサンプリング点Sと1つの代表点Rが設定される。或る1つの小領域eに関し、複数のサンプリング点Sは、例えば当該小領域eを構成する画素の全てに対応する(但し、代表点Rを除く)。
非基準画像における小領域e内の各サンプリング点Sの輝度値と、基準画像における対応する小領域e内の代表点Rの輝度値との差の絶対値(各サンプリング点Sにおける相関値)が、各検出領域E1〜E9ごとに、全ての小領域eに対して求められる。そして、各検出領域E1 〜E9 ごとに、検出領域内の全ての小領域e間において、代表点Rに対する偏移が同じサンプリング点S同士の相関値が累積加算される(本例では、48個の相関値が累積加算される)。換言すれば、各検出領域E1 〜E9 において、各小領域e内の同じ位置(小領域内座標における同じ位置)の画素について求めた輝度差の絶対値が48個の小領域e分、累積加算される。この累積加算によって得られる値を、「累積相関値」とよぶ。累積相関値は、一般に、マッチング誤差とも呼ばれる。各検出領域E1 〜E9 毎に、1つの小領域e内のサンプリング点Sの個数と同じ個数の累積相関値が求められることになる。
そして、各検出領域E1 〜E9 内において、代表点Rと累積相関値が最小となるサンプリング点Sとの偏移、すなわち相関性が最も高い偏移が検出される(一般的には、その偏移が当該検出領域の動きベクトルとして抽出される)。このように、或る検出領域に関し、代表点マッチング法に基づいて算出される累積相関値は、基準画像に対して非基準画像に所定の偏移(基準画像と非基準画像との相対的な位置のずれ)を加えた時の、基準画像内の検出領域の画像と非基準画像内の検出領域の画像との相関(類似性)を表し、その値は該相関が高くなるに従って小さくなる。
図6を参照して、代表点マッチング回路41の動作をより具体的に説明する。フィルタ51には、図1の画像メモリ5から転送されてきた基準画像データ及び非基準画像データが順次入力され、各画像データはフィルタ51を介して代表点メモリ52と減算回路53に与えられる。フィルタ51は、ローパスフィルタであり、S/N比を改善して少ない代表点で十分な動きベクトル検出精度を確保するために用いられる。代表点メモリ52は、各検出領域E1 〜E9 の小領域eごとに、代表点Rの画像上の位置を特定する位置データと代表点Rの輝度値を特定する輝度データとを記憶する。
尚、代表点メモリ52の記憶内容の更新タイミングは任意である。代表点メモリ52に基準画像データ及び非基準画像データそれぞれが入力される度に記憶内容を更新することもできるし、基準画像データが入力されたときにのみ記憶内容を更新するようにしてもよい。また、或る画素(代表点R又はサンプリング点S)に関し、輝度値は、その画素の輝度を表し、輝度値が増加するに従って輝度は増加するものとする。また、輝度値は、8ビット(0〜255)のデジタル値として表現されるとする。勿論、輝度値を8ビットと異なるビット数で表現しても良い。
減算回路53は、代表点メモリ52から与えられる基準画像の代表点Rの輝度値と非基準画像の各サンプリング点Sの輝度値との減算を行い、その減算結果の絶対値を出力する。減算回路53の出力値は、各サンプリング点Sにおける相関値を表し、この出力値は、順次、累積加算回路54に与えられる。累積加算回路54は、減算回路53から出力される相関値を累積加算することにより上述の累積相関値を算出及び出力する。
演算回路55は、累積加算回路54から与えられる累積相関値を受け、図11に示すようなデータを算出及び出力する。基準画像と非基準画像との対比に関し、各検出領域E1 〜E9 ごとに、1つの小領域e内のサンプリング点Sの個数に応じた複数の累積相関値(以下、この複数の累積相関値を「演算対象累積相関値群」という)が演算回路55に与えられるが、演算回路55は、各検出領域E1 〜E9 ごとに、「演算対象累積相関値群を形成する全ての累積相関値の平均値Vaveと、演算対象累積相関値群を形成する全ての累積相関値の内の最小値(最小の累積相関値)と、その最小値を示す画素の位置PAと、位置PAの画素の近傍画素に対応する累積相関値(以下、近傍累積相関値と呼ぶことがある)」を算出する。
各小領域eに着目し、以下のように画素位置等を定義する。各小領域eにおいて、代表点Rの画素位置を(0,0)にて表す。位置PAは、代表点Rの画素位置(0,0)を基準とした、上記最小値を与えるサンプリング点Sの画素位置であり、これを、(iA,jA)にて表す(図9参照)。位置PAの画素の近傍画素とは、位置PAの画素に隣接する画素を含む位置PAの画素の周辺画素であり、本例では、位置PAの画素を中心とする24個の近傍画素を想定する。
そして、図10に示すように、位置PAの画素と24個の近傍画素は5×5の行列配列された画素群を形成する。形成した画素群の各画素の画素位置を、(iA+p,jA+q)にて表す。この画素群の中心に、位置PAの画素が存在する。又、p及びqは整数であり、−2≦p≦2且つ−2≦q≦2、が成立する。pが−2から2に増加するにつれて画素位置は位置PAを中心として上から下へと向かい、qが−2から2に増加するにつれて画素位置は位置PAを中心として左から右へと向かう。そして、画素位置(iA+p,jA+q)に対応する累積相関値を、V(iA+p,jA+q)にて表すものとする。
一般的には、最小の累積相関値の位置PAが真のマッチング位置に対応するものとして動きベクトルが算出されるが、本例では、最小の累積相関値は、真のマッチング位置に対応する累積相関値の候補として捉えられる。位置PAにて得られる最小の累積相関値をVAにて表し、それを「候補最小相関値VA」とよぶ。従って、V(iA,jA)=VAである。
他の候補を特定すべく、演算回路55は、各検出領域E1 〜E9 ごとに、最小の累積相関値VAに近い累積相関値が演算対象累積相関値群に含まれているかを検索し、検索されたVAに近い累積相関値も候補最小相関値として特定する。「最小の累積相関値VAに近い累積相関値」とは、VAを所定の規則に従って増加させた値以下の累積相関値であり、例えば、VAに所定の候補閾値(例えば2)を加えた値以下の累積相関値、或いは、VAに1より大きい係数を乗じて得られる値以下の累積相関値である。候補最小相関値は、上記の候補最小相関値VAを含めて、例えば最大4つ特定される。
以下、説明の便宜上、検出領域E1 〜E9 のそれぞれについて、候補最小相関値VAの他に候補最小相関値VB、VC及びVDが特定された場合を考えるものとする。尚、最小の累積相関値VAに近い累積相関値を検索することによって他の候補最小相関値を特定すると述べたが、VB、VC及びVDの内のいずれか又は全部が、VAと等しい場合もある。この場合、或る検出領域に関し、演算対象累積相関値群に最小の累積相関値が2以上含まれることになる。
演算回路55は、候補最小相関値VAと同様、各検出領域E1 〜E9 ごとに、「候補最小相関値VBを示す画素の位置PBと位置PBの画素の24個の近傍画素に対応する合計24個の累積相関値(以下、近傍累積相関値と呼ぶことがある)」、「候補最小相関値VCを示す画素の位置PCと位置PCの画素の24個の近傍画素に対応する合計24個の累積相関値(以下、近傍累積相関値と呼ぶことがある)」、及び「候補最小相関値VDを示す画素の位置PDと位置PDの画素の24個の近傍画素に対応する合計24個の累積相関値(以下、近傍累積相関値と呼ぶことがある)」を検出する(図11参照)。
各小領域eに着目し、以下のように画素位置等を定義する。位置PB、PC及びPDは、それぞれ、位置PAと同様、代表点Rの画素位置(0,0)を基準とした、候補最小相関値VB、VC及びVDを与えるサンプリング点Sの画素位置であり、これを、(iB,jB)、(iC,jC)及び(iD,jD)にて表す。このとき、位置PAと同様、位置PBの画素とそれの近傍画素は5×5の行列配列された画素群を形成し、その画素群の各画素の画素位置を(iB+p,jB+q)にて表し、位置PCの画素とそれの近傍画素は5×5の行列配列された画素群を形成し、その画素群の各画素の画素位置を(iC+p,jC+q)にて表し、置PDの画素とそれの近傍画素は5×5の行列配列された画素群を形成し、その画素群の各画素の画素位置を(iD+p,jD+q)にて表す。
ここで、位置PAと同様、p及びqは整数であり、−2≦p≦2且つ−2≦q≦2、が成立する。pが−2から2に増加するにつれて画素位置は位置PB(又はPC又はPD)を中心として上から下へと向かい、qが−2から2に増加するにつれて画素位置は位置PB(又はPC又はPD)を中心として左から右へと向かう。そして、画素位置(iB+p,jB+q)、(iC+p,jC+q)及び(iD+p,jD+q)に対応する累積相関値を、夫々、V(iB+p,jB+q)、V(iC+p,jC+q)及びV(iD+p,jD+q)にて表す。
演算回路55は、更に、各検出領域E1 〜E9 ごとに、候補最小相関値の個数Nfを算出及び出力する。今の例の場合、検出領域E1 〜E9 の夫々について、Nfは4である。以下、各検出領域E1 〜E9 ごとに、演算回路55にて算出され且つ出力される、「候補最小相関値VA、位置PA及び近傍累積相関値V(iA+p,jA+q)」を特定するデータを総称して「第1の候補データ」と呼び、「候補最小相関値VB、位置PB及び近傍累積相関値V(iB+p,jB+q)」を特定するデータを総称して「第2の候補データ」と呼び、「候補最小相関値VC、位置PC及び近傍累積相関値V(iC+p,jC+q)」を特定するデータを総称して「第3の候補データ」と呼び、「候補最小相関値VD、位置PD及び近傍累積相関値V(iD+p,jD+q)」を特定するデータを総称して「第4の候補データ」と呼ぶ。
2.位置ズレ検出回路の動作フロー
次に、図12及び図13のフローチャートを参照して、位置ズレ検出回路32の処理手順を説明する。また、図16に、位置ズレ検出回路32内部の各データの流れをも表した、位置ズレ検出回路32の詳細内部ブロック図を示す。図16に示すように、検出領域有効性判定回路43が、コントラスト判定部61と、複数動き有無判定部62と、類似模様有無判定部63を備え、全体動きベクトル算出回路44が、全体動きベクトル有効性判定部70を備える。更に、全体動きベクトル有効性判定部70が、パン・チルト判定部71、領域動きベクトル類似性判定部72及び検出領域有効数算出部73を備える。
概略的に動作を説明すると、位置ズレ検出回路32は、検出領域ごとに、候補最小相関値の中から真のマッチング位置に対応する相関値を採用最小相関値Pminとして特定し、代表点Rの位置から採用最小相関値Vminを示す位置(PA、PB、PC又はPD)に向かう偏移を当該検出領域の動きベクトル(検出領域の動きベクトルを、以下、「領域動きベクトル」という)とする。そして、各領域動きベクトルの平均を画像全体の動きベクトル(以下、「全体動きベクトル」という)として出力する。
但し、平均化によって全体動きベクトルを算出する際、各検出領域の有効又は無効を評価し、無効な検出領域に対応する領域動きベクトルを無効として除外する。そして、有効な領域動きベクトルの平均ベクトルを(原則として)全体動きベクトルとして算出すると共に、算出した全体動きベクトルが有効であるか或いは無効であるかを評価する。
尚、図12に示されるステップS12〜S18の処理は、図5の代表点マッチング回路41にて実施される。ステップS24の処理は、図5の領域動きベクトル算出回路42によって実施される。ステップS21〜S23並びにS25及びS26の処理は、図5の検出領域有効性判定回路43によって実施される。図13に示されるステップS41〜S49の処理は、図5の全体動きベクトル算出回路44によって実施される。
まず、9つある検出領域E1〜E9の何れか1つを特定するための変数kを1とする(ステップS11)。尚、k=1、2、・・・9の場合、それぞれ、検出領域E1、E2、・・・E9についての処理が行われる。その後、検出領域Ekについての累積相関値が算出され(ステップS12)、更に、検出領域Ekについての累積相関値の平均値Vaveが算出される(ステップS13)。
そして、真のマッチング位置に対応する累積相関値の候補として候補最小相関値が特定される(ステップS14)。このとき、上述したように、候補最小相関値として4つの候補最小相関値VA、VB、VC又はVDが特定されたとする。そして、ステップS14にて特定された各候補最小相関値に対応する「位置と近傍累積相関値」が検出される(ステップS15)。更に、ステップS14にて特定された候補最小相関値の個数Nfが算出される(ステップS16)。このステップS11〜S16の処理により、図11に示す、検出領域Ekについての「平均値Vave、第1〜第4候補データ及び個数Nf」が算出される。
そして、検出領域Ekについての候補最小相関値の中から、真のマッチング位置に対応する相関値が採用最小相関値Vminとして選択される(ステップS17)。このステップS17の処理を、図14及び図15を参照して詳細に説明する。図14(a)〜(e)では、ステップS17の処理にて参照される累積相関値の対応画素を、斜線を用いて表している。図15は、ステップS17の処理を細分化したフローチャートである。ステップS17は、図15に示すフローチャートのように、ステップS101〜S112から形成される。
上述のように、ステップS17に移行すると、まず、第1〜第4の候補データそれぞれについて(即ち、候補最小相関値毎に)、図14(a)のパターンに対応するような「候補最小相関値と4個の近傍累積相関値」の平均値(選択用評価値)を計算する(ステップS101)。即ち、(p,q)=(0,−1)、(−1,0)、(0,1)、(1,0)、(0,0)である場合における、「累積相関値V(iA+p,jA+q)の平均値VA_aveと、累積相関値V(iB+p,jB+q)の平均値VB_aveと、累積相関値V(iC+p,jC+q)の平均値VC_aveと、累積相関値V(iD+p,jD+q)の平均値VD_ave」を算出する。
そして、ステップS101で算出された平均値に基づいて採用最小相関値Vminを選択可能であるかを判定する(ステップS102)。具体的には、ステップS101で算出された4つの平均値の内、最小の平均値と他の平均値との差が全て所定の差分閾値(例えば2)以下の場合は、選択不可(選択の信頼性がない)と判定してステップS103に移行し、そうでない場合はステップS112に移行して、ステップS101で算出された4つの平均値の内、最小の平均値に対応する候補最小相関値を採用最小相関値Vminとして選択する。例えば、VA_ave<VB_ave<VC_ave<VD_ave、が成立する場合、候補最小相関値VAが採用最小相関値Vminとして選択される。その後、採用最小相関値Vminを選択するに当たって参照される累積相関値の位置及び個数を変化させつつ、ステップS101及びS102と同様の処理が実施される。
即ち、ステップS103に移行すると、第1〜第4の候補データそれぞれについて(即ち、候補最小相関値ごとに)、図14(b)のパターンに対応するような「候補最小相関値と8個の近傍累積相関値」の平均値を計算する。即ち、(p,q)=(−1,−1)、(−1,0)、(−1,1)、(0,−1)、(0,0)、(0,1)、(1,−1)、(1,0)、(1,1)である場合における、「累積相関値V(iA+p,jA+q)の平均値VA_aveと、累積相関値V(iB+p,jB+q)の平均値VB_aveと、累積相関値V(iC+p,jC+q)の平均値VC_aveと、累積相関値V(iD+p,jD+q)の平均値VD_ave」を算出する。
そして、ステップS103で算出された平均値に基づいて採用最小相関値Vminを選択可能であるかを判定する(ステップS104)。具体的には、ステップS103で算出された4つの平均値の内、最小の平均値と他の平均値との差が全て所定の差分閾値(例えば2)以下の場合は、選択不可(選択の信頼性がない)と判定してステップS105に移行し、そうでない場合はステップS112に移行して、ステップS103で算出された4つの平均値の内、最小の平均値に対応する候補最小相関値を採用最小相関値Vminとして選択する。
ステップS105では、第1〜第4の候補データそれぞれについて(即ち、候補最小相関値ごとに)、図14(c)のパターンに対応するような「候補最小相関値と12個の近傍累積相関値」の平均値を計算する。即ち、(p,q)=(−1,−1)、(−1,0)、(−1,1)、(0,−1)、(0,0)、(0,1)、(1,−1)、(1,0)、(1,1)、(−2,0)、(2,0)、(0,2)、(0,−2)である場合における、「累積相関値V(iA+p,jA+q)の平均値VA_aveと、累積相関値V(iB+p,jB+q)の平均値VB_aveと、累積相関値V(iC+p,jC+q)の平均値VC_aveと、累積相関値V(iD+p,jD+q)の平均値VD_ave」を算出する。
そして、ステップS105で算出された平均値に基づいて採用最小相関値Vminを選択可能であるかを判定する(ステップS106)。具体的には、ステップS105で算出された4つの平均値の内、最小の平均値と他の平均値との差が全て所定の差分閾値(例えば2)以下の場合は、選択不可(選択の信頼性がない)と判定してステップS107に移行し、そうでない場合はステップS112に移行して、ステップS105で算出された4つの平均値の内、最小の平均値に対応する候補最小相関値を採用最小相関値Vminとして選択する。
ステップS107では、第1〜第4の候補データそれぞれについて(即ち、候補最小相関値ごとに)、図14(d)のパターンに対応するような「候補最小相関値と20個の近傍累積相関値」の平均値を計算する。即ち、(p,q)=(−2,−1)、(−2,0)、(−2,1)、(−1,−2)、(−1,−1)、(−1,0)、(−1,1)、(−1,2)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−2)、(1,−1)、(1,0)、(1,1)、(1,2)、(2,−1)、(2,0)、(2,1)である場合における、累積相関値V(iA+p,jA+q)の平均値VA_aveと、累積相関値V(iB+p,jB+q)の平均値VB_aveと、累積相関値V(iC+p,jC+q)の平均値VC_aveと、累積相関値V(iD+p,jD+q)の平均値VD_ave」を算出する。
そして、ステップS107で算出された平均値に基づいて採用最小相関値Vminを選択可能であるかを判定する(ステップS108)。具体的には、ステップS107で算出された4つの平均値の内、最小の平均値と他の平均値との差が全て所定の差分閾値(例えば2)以下の場合は、選択不可(選択の信頼性がない)と判定してステップS109に移行し、そうでない場合はステップS112に移行して、ステップS107で算出された4つの平均値の内、最小の平均値に対応する候補最小相関値を採用最小相関値Vminとして選択する。
ステップS109では、第1〜第4の候補データのそれぞれについて(即ち、候補最小相関値ごとに)、図14(e)のパターンに対応するような「候補最小相関値と24個の近傍累積相関値」の平均値を計算する。即ち、(p,q)=(−2,−2)、(−2,−1)、(−2,0)、(−2,1)、(−2,2)、(−1,−2)、(−1,−1)、(−1,0)、(−1,1)、(−1,2)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−2)、(1,−1)、(1,0)、(1,1)、(1,2)、(2,−2)、(2,−1)、(2,0)、(2,1)、(2,2)である場合における、累積相関値V(iA+p,jA+q)の平均値VA_aveと、累積相関値V(iB+p,jB+q)の平均値VB_aveと、累積相関値V(iC+p,jC+q)の平均値VC_aveと、累積相関値V(iD+p,jD+q)の平均値VD_ave」を算出する。
そして、ステップS109で算出された平均値に基づいて採用最小相関値Vminを選択可能であるかを判定する(ステップS110)。具体的には、ステップS109で算出された4つの平均値の内、最小の平均値と他の平均値との差が全て所定の差分閾値(例えば2)以下の場合は、選択不可(選択の信頼性がない)と判定してステップS111に移行し、そうでない場合はステップS112に移行して、ステップS109で算出された4つの平均値の内、最小の平均値に対応する候補最小相関値を採用最小相関値Vminとして選択する。
ステップS111に移行した場合は、最終的に、採用最小相関値Vminを選択不可と判断する。即ち、マッチング位置を検出不可と判断する。尚、候補最小相関値が複数ある場合の処理について説明したが、候補最小相関値が1つしかない場合は、その1つの候補最小相関値がそのまま採用最小相関値Vminとされる。
上述の図15に示すフローチャートに従って動作することで、ステップS17にて採用最小相関値Vminが選択されると、採用最小相関値Vminを示す画素の位置Pminが特定される(ステップS18)。例えば、採用最小相関値Vminとして候補最小相関値VAが選択された場合は、位置PAが位置Pminとなる。このステップS17及びS18で採用最小相関値Vmin及び位置Pminが特定されると、ステップS21に移行する。そして、ステップS21〜S26では、検出領域Ekの有効又は無効が判定されると共に検出領域Ekの領域動きベクトルMkが算出される。各ステップの処理内容を詳細に説明する。
まず、類似模様有無判定部63(図16参照)が、検出領域Ek内に類似した模様が存在していないかを判定する(ステップS21)。このとき、類似模様が存在している場合は、当該検出領域Ekについて算出される領域動きベクトルの信頼性は低い(即ち、領域動きベクトルMkは検出領域Ek内の画像の動きを精度良く表していない)。従って、この場合は、検出領域Ekを無効とする(ステップS26)。このステップS21の判定は、ステップS17の処理結果に基づいて実施される。
即ち、図15のステップS112に至って採用最小相関値Vminが選択された場合は、類似模様は存在していないと判断してステップS21からステップS22に移行する。一方、図15のステップS111に至って採用最小相関値Vminが選択されなかった場合は、類似模様が存在していると判断してステップS21からステップS26に移行し、検出領域Ekを無効とする。
ステップS22に移行すると、コントラスト判定部61(図16参照)が、検出領域Ek内の画像のコントラストが低いか否かを判定する。コントラストが低い場合は、正確な領域動きベクトルの検出は困難であるため、検出領域Ekを無効とする。具体的には、累積相関値の平均値Vaveが所定の閾値TH1以下であるかを判断する。そして、不等式「Vave≦TH1」が成立する場合は、コントラストが低いと判断してステップS26に移行し、検出領域Ekを無効とする。
この判断は、画像のコントラストが低い場合(例えば、画像全体が白い場合)には、輝度差が小さいので累積相関値が全体的に小さくなるという原理に基づいている。一方、不等式「Vave≦TH1」が成立しない場合は、コントラストは低くないと判断してステップS23に移行する。尚、閾値TH1は、実験を介して適切な値に設定される。
ステップS23に移行すると、複数動き有無判定部62(図16参照)が、検出領域Ek内に複数の動きがあるか否かを判定する。検出領域Ek内に手ぶれとは関係のない動く物体等が存在する場合は、検出領域Ek内に複数の動きがあると判断されることになる。複数の動きがある場合は、正確な領域動きベクトルの検出は困難であるため、検出領域Ekを無効とする。
具体的には、不等式「Vave/Vmin≦TH2」が成立するか否かを判断し、該不等式が成立する場合は複数の動きがあると判断してステップS26に移行し検出領域Ekを無効とする。この判断は、複数の動きがある場合には完全なマッチング位置がないため、累積相関値の最小値が大きくなるという原理に基づいている。又、平均値Vaveを除算することによって、この判断が被写体のコントラストに依存しないようにしている。一方、不等式「Vave/Vmin≦TH2」が成立しない場合は、複数の動きがないと判断してステップS24に移行する。尚、閾値TH2は、実験を介して適切な値に設定される。
ステップS24に移行すると、図5(図16)に示す領域動きベクトル算出回路42が、真のマッチング位置を表す位置Pminに基づいて、領域動きベクトルMkを算出する。例えば、位置PAが位置Pminである場合は、画像上の位置PAを特定する位置情報(画素位置(iA,jA)を特定する情報)に基づいて領域動きベクトルMkを算出する。より具体的には、検出領域Ekの任意の小領域eにおいて、代表点Rの位置から採用最小相関値Vminを示す位置Pmin(PA、PB、PC又はPD)に向かう偏移の向き及び大きさを、領域動きベクトルMkの向き及び大きさとする。
そして、検出領域Ekを有効とし(ステップS25)、ステップS31に移行する。他方、ステップS21〜S23から移行しうるステップS26では、上述のように、検出領域Ekを無効として、ステップS31に移行する。このステップS31で、変数kに1が加算され、1が加算されて得られた変数kが9より大きくなっているかが判断される(ステップS32)。このとき、「k>9」が成立しない場合はステップS12に移行し、他の検出領域に関してステップS12等の処理が繰り返される。又、「k>9」が成立する場合は、検出領域E1〜E9の全てに関してステップS12等の処理が実施されたことになるため、図13のステップS41に移行する。
図13のステップS41〜S49では、領域動きベクトルMk(1≦k≦9)に基づく全体動きベクトルMを算出処理及び全体動きベクトルMの有効性判定処理が行われる。
まず、図12のステップS25及びS26の処理結果に基づき、有効とされた検出領域(以下、「有効領域」という)の数が0であるか否かを判定する(ステップS41)。有効領域が1以上存在する場合には、有効領域の領域動きベクトルMkを抽出し(ステップS42)、更に、有効領域の領域動きベクトルMkを平均化することにより、それらの平均ベクトルMaveを算出する(ステップS43)。
そして、領域動きベクトル類似性判定部72(図16参照)が、有効領域の領域動きベクトルMkの類似性を判定する(ステップS44)。即ち、有効領域間での領域動きベクトルMkのばらつきAを評価することにより、有効領域間で動きの異なる物体が存在していないかを判定する。具体的には、下式(1)に基づいて、ばらつきAを算出する。そして、ばらつきAが閾値TH3以上であるか否かを判定する。尚、式(1)において、[{|Mk−Mave|/(Maveのノルム)}の総和]は、有効領域ごとに算出された{|Mk−Mave|/(Maveのノルム)}を、全ての有効領域について合算した値に相当する。又、図16に示す検出領域有効数算出部73は、有効領域の数を算出する。
A=[{|Mk−Mave|/(Maveのノルム)}の総和]/(有効領域の数)
・・・(1)
ステップS44の判定結果より、ばらつきAが閾値TH3未満であれば、画像全体の動きベクトル(全体動きベクトル)MをステップS43で算出された平均ベクトルMaveとして(ステップS45)、ステップS47に移行する。逆に、ばらつきAが閾値TH3以上の場合は、有効領域の領域動きベクトルMkの類似性が低く、それに基づいて算出される全体動きベクトルの信頼性は低いと考えられる。このため、ばらつきAが閾値TH3以上の場合は、全体動きベクトルMを0として(ステップS46)、ステップS47に移行する。又、ステップS41において有効領域の数が0であると判定された場合も、ステップS46にて全体動きベクトルMが0とされ、ステップS47に移行する。
ステップS47に移行すると、全体動きベクトルの履歴データMnに今回得られた全体動きベクトルMを追加する。上述したように、図12及び図13に示す各処理は、シャッタボタン21が押下されたか否かに関わらず、広ダイナミックレンジ撮影モードにおいて逐次行われており、ステップS45又はS46にて得られた全体動きベクトルMは、順次、全体動きベクトルの履歴データMnに格納されていく。尚、シャッタボタン21の1回の押下に対して、基準画像データと非基準画像データの全体動きベクトルMが得られると、後述のパン・チルト判定処理において、履歴データMnに追加されることとなる。
そして、パン・チルト判定部73(図16参照)が、履歴データMnに基づいて撮像装置がパン・チルト状態にあるかを判定する(ステップS48)。「パン・チルト状態」とは、撮像装置がパン又はチルトしている状態、を意味する。パン(パンニング)とは、撮像装置の筐体(不図示)を左右方向に振ることを意味し、チルト(チルティング)とは、撮像装置の筐体を上下方向に振ることを意味する。撮像装置がパン又はチルトしている状態にあるかを判定する手法としては、例えば、本出願人が提案する特願2006−91285号に記載の手法を用いればよい。
例えば、次の第1条件又は第2条件を満たした場合に、「手ぶれ状態」から「パン・チルト状態」へ遷移したと判断する(「手ぶれ状態」は、「パン・チルト状態」に含まれない)。尚、第1条件は、「全体動きベクトルMが垂直方向(上下方向)又は水平方向(左右方向)の同一方向に連続している回数が所定回数以上である」という条件であり、又、第2条件は、「上記同一方向に連続している全体動きベクトルMの大きさの積分値が撮像装置の画角の一定割合以上である」という条件である。
そして、例えば、次の第3条件又は第4条件を満たした場合に、「パン・チルト状態」から「手ぶれ状態」へ遷移したと判断する。尚、第3条件は、「全体動きベクトルの大きさが0.5画素以下である状態が連続して所定回数(例えば10回)以上継続した」という条件であり、又、第4条件は、「「手ぶれ状態」から「パン・チルト状態」へ遷移したときの全体動きベクトルMに対して方向が反対の全体動きベクトルMが所定回数(例えば10回)以上連続して得られた」という条件である。
第1〜第4条件の成立/不成立は、履歴データMnに含まれる今回得られた全体動きベクトルMと過去の全体動きベクトルMと、に基づいて判断される。「パン・チルト状態」にあるか否かの判定結果が、マイコン10に伝達される。その後、全体動きベクトル有効性判定部70(図13参照)が、ステップS41〜S48の処理結果に基づいて、今回得られた全体動きベクトルMが有効であるか否かを判定する(ステップS49)。
具体的には、「ステップS41で有効領域の数が0であると判定されてステップS46に至った場合」、或いは、「ステップS44で有効領域の領域動きベクトルMkの類似性が低いと判定されてステップS46に至った場合」、或いは、「ステップS48でパン・チルト状態にあると判定された場合」は、今回得られた全体動きベクトルMは無効とされ、そうでない場合は、今回得られた全体動きベクトルMは有効とされる。又、パン又はチルト操作時には、手ぶれ量が大きく対比する画像間の偏移が小領域eのサイズに応じた動き検出範囲を超えてしまうため、正確な動きベクトルを検出することができない。このため、パン・チルト状態にあると判定された場合には全体動きベクトルMを無効とする。
このように、広ダイナミックレンジ撮影モードにおいてシャッタボタン21が押下げられると、上述のようにして求められた全体動きベクトルM及び全体動きベクトルMが有効であるか或いは無効であるかを特定する情報が、図1の位置ズレ補正回路33に与えられる。
(位置ズレ補正回路)
シャッタボタン21が押下げられたとき、位置ズレ検出回路32で求められた全体動きベクトルM及び全体動きベクトルMの有効性を特定する情報が、位置ズレ補正回路33に与えられる。そして、位置ズレ補正回路33において、与えられた有効性を特定する情報より、全体動きベクトルMの有効又は無効を確認し、非基準画像データに対する位置ズレ補正を行う。
位置ズレ検出回路32において、シャッタボタン21が押下げられて得られた基準画像データ及び非基準画像データの間の全体動きベクトルMが有効と判定された場合、位置ズレ補正回路33では、位置ズレ検出回路32より与えられた全体動きベクトルMに基づいて、画像メモリ5より読み出された非基準画像データの座標位置が変更されて、基準画像データと座標位置が一致するように位置ズレ補正が成される。そして、位置ズレ補正がなされた非基準画像データが、画像合成回路34に与えられる。
一方、位置ズレ検出回路32からの全体動きベクトルMが無効と判定された場合、画像メモリ5より読み出された非基準画像データに対して、位置ズレ補正回路33での位置ズレ補正は行われずに、そのまま、画像合成回路34に与えられる。即ち、位置ズレ検出回路32において、基準画像データ及び非基準画像データの間の全体動きベクトルMをゼロとして、非基準画像データに対する位置ズレ補正処理を行った後、画像合成回路34に与えることとなる。
この位置ズレ補正回路33では、例えば、基準画像データと非基準画像データとの間の
全体動きベクトルMが有効であり、図17に示すように、全体動きベクトルMが(xm,ym)となるとき、非基準画像P2の画素位置(x,y)が、基準画素P1の画素位置(x−xm,y−ym)に一致させる。即ち、非基準画像データの画素位置(x,y)の輝度値を、画素位置(x−xm,y−ym)における輝度値となるように、非基準画像データを変換することで、位置ズレ補正が行われる。このようにして、位置ズレ補正が成された非基準画像データが、画像合成回路34に与えられる。
(画像合成回路)
画像合成回路34には、シャッタボタン21が押下げられたとき、画像メモリ5より読み出された基準画像データと、位置ズレ補正回路33において位置ズレ補正が成された非基準画像データとが与えられる。そして、各画素位置毎に、基準画像データ及び非基準画像データの輝度値が合成されて、合成後の輝度値によって合成画像となる画像データ(合成画像データ)を生成する。
まず、画像メモリ5より与えられる基準画像データが、輝度値に対するデータ量の関係が図18(a)のようになり、輝度値LTHより低い輝度値において、データ量が輝度値と比例関係を備え、輝度値LTHより高い輝度値において、データ量が飽和レベルTmaxとなる。そして、位置ズレ補正回路33より与えられる非基準画像データが、輝度値に対するデータ量の関係が図18(b)のようになり、データ量が輝度値と比例関係を備えるとともに、その比例する傾きα2が基準画像データにおける傾きα1よりも小さい。
このとき、図18(b)のような関係の非基準画像データにおける、輝度値に対するデータ量の傾きα2が、図18(a)のような関係の基準画像データにおける傾きα1となるように、非基準画像データの各画素位置のデータ量をα1/α2で増幅する。これにより、図19(a)に示すように、図18(b)のような非基準画像データにおける輝度値に対するデータ量の傾きα2が傾きα1となり、非基準画像データのダイナミックレンジがR1からR2(=R1×α1/α2)に広くなる。
そして、非基準画像データにおいて、データ量Tmax以下のデータ量(輝度値LTH以下の輝度値)となる画素位置に対しては、基準画像データのデータ量を採用し、非基準画像データにおいて、データ量Tmaxより大きいデータ量(輝度値LTHより大きい輝度値)となる画素位置に対しては、非基準画像データのデータ量を採用する。よって、図19(b)のように、基準画像データと非基準画像データとが輝度値LTHとの関係に基づいて合成された、ダイナミックレンジがR2となる合成画像データが得られる。
そして、ダイナミックレンジR2を元のダイナミックレンジR1に圧縮する。このとき、合成して得られた図19(b)のような合成画像データに対して、図20のように、データ量がTth以下のデータ量における変換前に対する変換後の傾きβ1が、データ量がTthよりも大きいデータ量における変換前に対する変換後の傾きβ2よりも大きくなるような変換式に基づいて、圧縮変換が行われる。このように圧縮変換することで、ダイナミックレンジが基準画像データ及び非基準画像データのダイナミックレンジと同じ合成画像データが生成される。
そして、画像合成回路34で基準画像データと非基準画像データとが合成されて得られた合成画像データが、画像メモリ35に格納される。画像メモリ35に格納された合成画像データによる合成画像は、シャッタボタン21の押下に応じて撮影された静止画像を表している。この静止画像となる合成画像データは、画像メモリ35からNTSCエンコーダ6に与えられると、モニタ7に合成画像が再生表示される。又、合成画像データが、画像メモリ35から画像圧縮回路8に与えられると、画像圧縮回路8で圧縮符号化された後メモリカード9に保存される。
(広ダイナミックレンジ撮影モードの動作フロー)
更に、上述のように広ダイナミックレンジ撮影モードにおいて各ブロックが動作するときにおいて、シャッタボタン21が押下げられたときの装置全体における動作フローについて、図21を参照して説明する。尚、図21は、広ダイナミックレンジ撮影モードにおける装置主要部での動作フローを説明するための機能ブロック図である。
撮像素子2において露光時間T2で撮影された非基準画像データF1が、画像メモリ5に与えられて格納された後、撮像素子2において露光時間T1で撮影された基準画像データF2が、画像メモリ5に与えられて格納される。そして、画像メモリ5内の非基準画像データF1及び基準画像データF2それぞれが輝度調整回路31に与えられると、輝度調整回路31において、非基準画像データF1の平均輝度値と基準画像データF2の平均輝度値とが等しくなるように、それぞれのデータ量を増幅する。
これにより、非基準画像データF1のデータ量が増幅された非基準画像データF1aと、基準画像データF2のデータ量が増幅された基準画像データF2aとが、位置ズレ検出回路32に与えられる。位置ズレ検出回路32では、平均輝度値が等しくなった非基準画像データF1aと基準画像データF2aとを比較することで、非基準画像データF1aと基準画像データF2aとの間の位置ズレ量を示す全体動きベクトルMが算出される。
この全体動きベクトルMが位置ズレ補正回路33に与えられるとともに、画像メモリ5内の非基準画像データF1が位置ズレ補正回路33に与えられる。これにより、位置ズレ補正回路33では、全体動きベクトルMに基づいて、非基準画像データF1に対して位置ズレ補正を行い、非基準画像データF1bを生成する。
この位置ズレ補正された非基準画像データF1bが画像合成回路34に与えられるとともに、画像メモリ5内の基準画像データF2が画像合成回路34に与えられる。そして、画像合成回路34では、非基準画像データF1bと基準画像データF2それぞれのデータ量に基づいて、広ダイナミックレンジとなる合成画像データFを生成して、画像メモリ35内に格納する。これにより、広ダイナミックレンジ画像生成回路30を動作させて、露光量の小さい画像における黒ツブレと露光量の大きい画像における白トビを無くした広ダイナミックレンジとなる画像を取得することができる。
尚、本動作フロー例において、非基準画像データF1が撮影された後に、基準画像データF2が撮影されるものとしたが、順番については、逆で合っても構わない。即ち、撮像素子2において露光時間T1で撮影された基準画像データF2が、画像メモリ5に与えられて格納された後、撮像素子2において露光時間T2で撮影された非基準画像データF1が、画像メモリ5に与えられて格納される。
更に、非基準画像データF1及び基準画像データF2が1フレーム毎に撮影されるとき、それぞれの撮影時間が露光時間によって異なるものとしても構わないし、露光時間にかかわらず同一となっても構わない。露光時間にかかわらず各フレームの撮影時間が同じ場合は、水平走査及び垂直走査などの読み出しタイミングを各フレーム毎に変更する必要が無く、ソフトウェアやハードウェアにおける演算の負担を軽減することができる。又、露光時間に応じて撮影時間の長さを変更する場合は、非基準画像データF1に対する撮影時間を短くすることができるため、基準画像データF2を撮影した後に非基準画像データF1を撮影した場合などにおいては、フレーム間の位置ズレを抑制することができる。
本実施形態によると、広ダイナミックレンジ撮像モードにおいて、露光量のことなる2フレーム分の画像データを合成することで、広ダイナミックレンジとなる合成画像を生成するとき、合成する2フレーム分の画像データの位置合わせを行う。このとき、それぞれの平均輝度値がほぼ一致するように、各フレームの画像データに対して輝度調整を行った後に、画像データの位置ズレを検出して、位置ズレ補正を行う。よって、合成画像におけるブレを防ぐとともに、高階調で高精度の画像を取得することができる。
<第2の実施形態>
本発明の第2の実施形態について、図面を参照して説明する。図22は、本実施形態の撮像装置における広ダイナミックレンジ画像生成回路30の内部構成を示すブロック図である。尚、図22に示す構成において、図2の構成と同一の目的で使用する部分については同一の符号を付してその詳細な説明は省略する。
本実施形態の撮像装置における広ダイナミックレンジ画像生成回路30は、図22に示すように、図2の広ダイナミックレンジ画像生成回路30より輝度調整回路31を省き、位置ズレ検出回路32で検出された位置ズレ(全体動きベクトル)より実際の位置ズレを予測する位置ズレ予測回路36を追加した構成となる。この図22に示す構成の広ダイナミックレンジ画像生成回路30において、位置ズレ検出回路32、位置ズレ補正回路33、画像合成回路34での動作については、第1の実施形態と同様の動作となるため、その詳細な説明については省略する。
まず、本実施形態の撮像装置において、ダイナミックレンジ切換スイッチ22によって広ダイナミックレンジ撮影モードが設定されているときにおいて、シャッタボタン21が押下げられていない場合は、第1の実施形態と同様の動作を行う。即ち、撮像素子2で一定間隔の撮影が行われ、その画像データに基づく画像がモニタ7で再生表示されるとともに、広ダイナミックレンジ画像生成回路30にも与えられ、位置ズレ検出回路32において、図13のステップS48の処理(パン・チルト状態判定処理)などで利用される2フレーム間の動きベクトルの算出が行われる。
又、広ダイナミックレンジ撮影モードが設定されているときにおいて、シャッタボタン21が押下げられると、本実施形態では、露光時間の短い2フレームと露光時間の長い1フレームの3フレーム分の撮影が撮像素子2で行われ、画像メモリ5に格納される。そして、露光時間の短い2フレームの撮影については、その露光時間を同一とし、撮影して得られた画像の平均輝度値が略等しい状態となる。尚、露光時間の短い2フレームによる画像データそれぞれを非基準画像データとし、露光時間の長いフレームによる画像データそれぞれを基準画像データとする。
2つの非基準画像データが画像メモリ5より位置ズレ検出回路32に与えられることで、画像間の位置ズレ(全体動きベクトル)が検出される。その後、位置ズレ予測回路36において、非基準画像データの撮影タイミングの時間差Taと、連続して撮影される非基準画像データ及び基準画像データの撮影タイミングの時間差Tbとの比に基づいて、連続して撮影される非基準画像データ及び基準画像データの画像間の位置ズレ(全体動きベクトル)が予測される。
この予測された画像間の位置ズレ(全体動きベクトル)が位置ズレ補正回路33に与えられると、位置ズレ補正回路33において、基準画像データのフレームに連続した非基準画像データに対して位置ズレ補正が行われる。そして、位置ズレ補正回路33で位置ズレ補正がなされた非基準画像データが画像合成回路34に与えられると、画像メモリ5から与えられる基準画像データと合成されて、合成画像データが生成される。この合成画像データが画像メモリ35に一時的に格納される。この静止画像となる合成画像データは、画像メモリ35からNTSCエンコーダ6に与えられると、モニタ7に合成画像が再生表示される。又、合成画像データが、画像メモリ35から画像圧縮回路8に与えられると、画像圧縮回路8で圧縮符号化された後メモリカード9に保存される。
このように動作する撮像装置において、位置ズレ検出回路32では、画像メモリ5より2フレーム分の非基準画像データが与えられると、第1の実施形態における図12及び図13のフローチャートによる動作を行うことで、全体動きベクトルを算出して、位置ズレの検出が行われる。又、位置ズレ補正回路33では、位置ズレ予測回路36からの全体動きベクトルが与えられるとともに、画像メモリ5から非基準画像データが与えられると、第1の実施形態と同様の位置ズレ補正処理が成される(図17参照)。更に、画像合成回路34では、画像メモリ5及び位置ズレ補正回路33それぞれから基準画像データ及び非基準画像データが与えられると、第1の実施形態と同様の画像合成処理が成される(図18〜図20参照)。よって、本実施形態における広ダイナミックレンジ撮影モードの動作フローについて、以下に説明する。
(広ダイナミックレンジ撮影モードの動作フローの第1例)
まず、広ダイナミックレンジ撮影モードにおいてシャッタボタン21が押下げられたときの装置全体における動作フローの第1例について、図23を参照して説明する。本例では、非基準画像データ、基準画像データ、非基準画像データの順番で撮影が行われる。
撮像素子2において露光時間T2で撮影された非基準画像データF1xが、画像メモリ5に与えられて格納された後、撮像素子2において露光時間T1で撮影された基準画像データF2が、画像メモリ5に与えられて格納される。その後、更に、撮像素子2において露光時間T2で撮影された非基準画像データF1yが、画像メモリ5に与えられて格納される。そして、画像メモリ5内の非基準画像データF1x,F1yが位置ズレ検出回路32に与えられると、位置ズレ検出回路32では、非基準画像データF1x,F1yを比較することで、非基準画像データF1x,F1y間の位置ズレ量を示す全体動きベクトルMが算出される。
この全体動きベクトルMが位置ズレ予測回路36に与えられる。この位置ズレ予測回路36では、撮像素子2において、非基準画像データF1x,F1yそれぞれが読み出されるタイミングの時間差Taの間に、全体動きベクトルMだけの位置ズレが生じたものとされるとともに、位置ズレ量が時間に比例するものとする。よって、位置ズレ予測回路36では、非基準画像データF1x,F1yそれぞれが読み出されるタイミングの時間差Taと、非基準画像データF1x及び基準画像データF2それぞれが読み出されるタイミングの時間差Tbと、非基準画像データF1x,F1y間の位置ズレ量を示す全体動きベクトルMとより、非基準画像データF1x及び基準画像データF2間の位置ズレ量を示す全体動きベクトルM1が、M×Tb/Taと算出される。
このようにして位置ズレ予測回路36で得られた全体動きベクトルM1が位置ズレ補正回路33に与えられるとともに、画像メモリ5内の非基準画像データF1xが位置ズレ補正回路33に与えられる。これにより、位置ズレ補正回路33では、全体動きベクトルM1に基づいて、非基準画像データF1xに対して位置ズレ補正を行うことで、非基準画像データF1zが生成される。
この位置ズレ補正された非基準画像データF1zが画像合成回路34に与えられるとともに、画像メモリ5内の基準画像データF2が画像合成回路34に与えられる。そして、画像合成回路34では、非基準画像データF1zと基準画像データF2それぞれのデータ量に基づいて、広ダイナミックレンジとなる合成画像データFを生成して、画像メモリ35内に格納する。これにより、広ダイナミックレンジ画像生成回路30を動作させて、露光量の小さい画像における黒ツブレと露光量の大きい画像における白トビを無くした広ダイナミックレンジとなる画像を取得することができる。
(広ダイナミックレンジ撮影モードの動作フローの第2例)
又、広ダイナミックレンジ撮影モードにおいてシャッタボタン21が押下げられたときの装置全体における動作フローの第2例について、図24を参照して説明する。本例では、非基準画像データ、非基準画像データ、基準画像データの順番で撮影が行われる。
上述の第1例と異なり、撮像素子2において露光時間T2によって連続的に撮影された非基準画像データF1x,F1yが、画像メモリ5に与えられて格納された後、撮像素子2において露光時間T1で撮影された基準画像データF2が、画像メモリ5に与えられて格納される。このときも、第1例と同様、画像メモリ5内の非基準画像データF1x,F1yが位置ズレ検出回路32に与えられ、非基準画像データF1x,F1y間の位置ズレ量を示す全体動きベクトルMが算出される。
この全体動きベクトルMが位置ズレ予測回路36に与えられると、第1例と異なり、非基準画像データF1yの直後に基準画像データF2が取得されるため、非基準画像データF1y及び基準画像データF2間の位置ズレ量を示す全体動きベクトルM2が求められることとなる。即ち、非基準画像データF1x,F1yそれぞれが読み出されるタイミングの時間差Taと、非基準画像データF1y及び基準画像データF2それぞれが読み出されるタイミングの時間差Tcと、非基準画像データF1x,F1y間の位置ズレ量を示す全体動きベクトルMとより、非基準画像データF1y及び基準画像データF2間の位置ズレ量を示す全体動きベクトルM2が、M×Tc/Taと算出される。
そして、位置ズレ補正回路33に、位置ズレ予測回路36で得られた全体動きベクトルM2と、画像メモリ5内の非基準画像データF1yとが与えられ、非基準画像データF1yに対して、全体動きベクトルM2に基づく位置ズレ補正を行うことで、非基準画像データF1wが生成される。よって、画像合成回路34では、非基準画像データF1wと基準画像データF2それぞれのデータ量に基づいて、広ダイナミックレンジとなる合成画像データFを生成して、画像メモリ35内に格納する。これにより、広ダイナミックレンジ画像生成回路30を動作させて、露光量の小さい画像における黒ツブレと露光量の大きい画像における白トビを無くした広ダイナミックレンジとなる画像を取得することができる。
(広ダイナミックレンジ撮影モードの動作フローの第3例)
又、広ダイナミックレンジ撮影モードにおいてシャッタボタン21が押下げられたときの装置全体における動作フローの第3例について、図25を参照して説明する。本例では、基準画像データ、非基準画像データ、非基準画像データの順番で撮影が行われる。
上述の第1例と異なり、撮像素子2において露光時間T1で撮影された基準画像データF2が、画像メモリ5に与えられて格納された後、撮像素子2において露光時間T2によって連続的に撮影された非基準画像データF1x,F1yが、画像メモリ5に与えられて格納される。このときも、第1例及び第2例と同様、画像メモリ5内の非基準画像データF1x,F1yが位置ズレ検出回路32に与えられ、非基準画像データF1x,F1y間の位置ズレ量を示す全体動きベクトルMが算出される。
この全体動きベクトルMが位置ズレ予測回路36に与えられると、第1例及び第2例と異なり、非基準画像データF1xの直前で基準画像データF2が取得されるため、基準画像データF2及び非基準画像データF1x間の位置ズレ量を示す全体動きベクトルM3が求められることとなる。即ち、非基準画像データF1x,F1yそれぞれが読み出されるタイミングの時間差Taと、基準画像データF2及び非基準画像データF1xそれぞれが読み出されるタイミングの時間差−Tbと、非基準画像データF1x,F1y間の位置ズレ量を示す全体動きベクトルMとより、基準画像データF2及び非基準画像データF1x間の位置ズレ量を示す全体動きベクトルM3が、M×(−Tb)/Taと算出される。このように、基準画像データF2及び非基準画像データF1x間の位置ズレ量を示す全体動きベクトルM3は、第1例及び第2例と異なり、非基準画像データF1x,F1y間の位置ズレ量を示す全体動きベクトルMと逆方向のベクトルとなるため、負の値となる。
そして、位置ズレ補正回路33に、位置ズレ予測回路36で得られた全体動きベクトルM3と、画像メモリ5内の非基準画像データF1xとが与えられ、非基準画像データF1xに対して、全体動きベクトルM3に基づく位置ズレ補正を行うことで、非基準画像データF1zが生成される。よって、画像合成回路34では、非基準画像データF1zと基準画像データF2それぞれのデータ量に基づいて、広ダイナミックレンジとなる合成画像データFを生成して、画像メモリ35内に格納する。これにより、広ダイナミックレンジ画像生成回路30を動作させて、露光量の小さい画像における黒ツブレと露光量の大きい画像における白トビを無くした広ダイナミックレンジとなる画像を取得することができる。
上述の第1例〜第3例のようにして、広ダイナミックレンジ撮影モードでの撮影動作を行う場合、非基準画像データF1x,F1y及び基準画像データF2が1フレーム毎に撮影されるときの撮影時間が、露光時間によって異なるものとしても構わないし、露光時間にかかわらず同一となっても構わない。露光時間にかかわらず各フレームの撮影時間が同じ場合は、水平走査及び垂直走査などの読み出しタイミングを各フレーム毎に変更する必要が無く、ソフトウェアやハードウェアにおける演算の負担を軽減することができる。そして、第2例及び第3例のように動作させる場合は、位置ズレ予測回路36での増幅率をほぼ1又は−1とすることができ、その演算処理を更に簡単化することができる。
又、露光時間に応じて撮影時間の長さを変更する場合は、非基準画像データF1x,F1yに対する撮影時間を短くすることができる。この場合、第1例のように動作させることで、位置ズレ予測回路36での増幅率を1に近づけることができ、その演算処理を更に簡単化することができる。即ち、非基準画像データF1yに対する撮影時間を短くすることができるため、基準画像データF2と非基準画像データF1xとにおける位置ズレを、非基準画像データF1x,F1yにおける位置ズレとみなすことができる。
又、上述の第1例のようにして、広ダイナミックレンジ撮影モードでの撮影動作を行う場合、基準画像データF2と非基準画像データF1yとによって合成画像データFが生成されるものとしても構わない。このとき、露光時間に応じて撮影時間の長さを変更するものとすると、非基準画像データF1yに対する撮影時間を短くすることができるため、フレーム間の位置ズレを抑制することができる。
更に、上述の第1例〜第3例において、位置ズレ予測回路36で用いられる各フレーム間の時間差を、説明を簡単に行うため、信号読出タイミングに基づいて求められるものとしたが、各フレームの露光時間の時間軸における中心位置(時間重心位置)に相当するタイミングに基づいて求められるものとしても構わない。
本発明の撮像装置は、CCDやCMOSセンサなどの撮像素子を備えたデジタルスチルカメラやデジタルビデオに適用可能である。更には、CCDやCMOSセンサなどの撮像素子を有することで、デジタルカメラ機能を備えた携帯電話機などの携帯端末装置においても適用可能である。
は、本発明の各実施形態における撮像装置の全体的構成図である。 は、第1の実施形態の撮像装置における広ダイナミックレンジ画像生成回路の内部構成を示すブロック図である。 は、図2の輝度調整回路の内部構成を示すブロック図である。 は、被写体の輝度分布と基準画像データ及び非基準画像データとの関係を示す図である。 は、図2の位置ズレ検出回路の内部構成を示すブロック図である。 は、図5の代表点マッチング回路の内部構成を示すブロック図である。 は、図6の代表点マッチング回路にて定義される、各動きベクトル検出領域と各小領域を示す図である。 は、図7に示す各領域における、代表点とサンプリング点を示す図である。 は、図7に示す各領域における、代表点と最小の累積相関値に対応するサンプリング点の画素位置を表す図である。 は、最小の累積相関値に対応する画素とその近傍画素の各画素位置を表す図である。 は、図6の演算回路の出力データを表としてまとめた図である。 は、位置ズレ検出回路の動作手順を表すフローチャートである。 は、位置ズレ検出回路の動作手順を表すフローチャート図である。 は、図12のステップS17における採用最小相関値の選択処理に参照される累積相関値のパターンを表す図である。 は、図12のステップS17における採用最小相関値の選択処理を詳細に表したフローチャートである。 は、位置ズレ検出回路の機能的な内部構成を示す詳細ブロック図である。 は、位置ズレ補正回路における位置ズレ補正動作を示す基準画像データ及び非基準画像データの間の全体動きベクトルの状態を示す図である。 は、画像合成回路に与えられる基準画像データ及び非基準画像データの輝度と信号値の関係を示す図である。 は、画像合成回路において、図18における基準画像データ及び非基準画像データを合成するときの信号量の変化を示す図である。 は、画像合成回路において、図19(b)において合成された画像データを圧縮するときの信号量の変化を示す図である。 は、第1の実施形態における広ダイナミックレンジ撮影モードにおける装置主要部での動作フローを説明するための機能ブロック図である。 は、第2の実施形態の撮像装置における広ダイナミックレンジ画像生成回路の内部構成を示すブロック図である。 は、第2の実施形態における広ダイナミックレンジ撮影モードにおける装置主要部での動作フローの第1例を説明するための機能ブロック図である。 は、第2の実施形態における広ダイナミックレンジ撮影モードにおける装置主要部での動作フローの第2例を説明するための機能ブロック図である。 は、第2の実施形態における広ダイナミックレンジ撮影モードにおける装置主要部での動作フローの第3例を説明するための機能ブロック図である。
符号の説明
1 レンズ
2 撮像素子
3 カメラ回路
4 A/D変換回路
5 画像メモリ
6 NTSCエンコーダ
7 モニタ
8 画像圧縮回路
9 記録媒体
10 マイコン(マイクロコンピュータ)
11 撮影制御回路
12 メモリ制御回路
21 シャッタボタン
22 ダイナミックレンジ切換スイッチ
23 メカニカルシャッタ
30 広ダイナミックレンジ画像生成回路
31 輝度調整回路
32 位置ズレ検出回路
33 位置ズレ補正回路
34 画像合成回路
35 画像メモリ
36 位置ズレ予測回路

Claims (9)

  1. 撮影時の露光時間の長い画像による基準画像データと撮影時の露光時間の短い画像による非基準画像データとを合成する合成画像データを生成する画像合成部を備えた撮像装置において、
    平均輝度値が略等しい2つの画像データを比較することによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出する位置ズレ検出部と、
    該位置ズレ検出部で検出された位置ズレ量に基づいて前記非基準画像データの位置ズレを補正する位置ズレ補正部と、
    を備え、
    前記画像合成部において、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記非基準画像データとを合成することで、前記合成画像データを生成することを特徴とする撮像装置。
  2. 前記基準画像データ及び前記非基準画像データそれぞれに対して増幅又は減衰処理を施すことにより、前記基準画像データ及び前記非基準画像データそれぞれの平均輝度値を略等しい状態とする輝度調整部を備え、
    前記位置ズレ検出部が、該輝度調整部で値が調整された前記基準画像データ及び前記非基準画像データによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出することを特徴とする請求項1に記載の撮像装置。
  3. 前記非基準画像データが、同一の露光時間となる2画像の第1及び第2非基準画像データであり、
    前記位置ズレ検出部において、前記第1及び第2非基準画像データの位置ズレ量を検出した後、前記第1非基準画像データと前記基準画像データの撮像タイミングの時間差と、前記第1及び第2非基準画像データの撮像タイミングの時間差とによる比に基づいて、前記第1非基準画像データと前記基準画像データの位置ズレ量を算出し、
    前記位置ズレ補正部において、前記位置ズレ検出部で算出された位置ズレ量に基づいて前記第1非基準画像データの位置ズレを補正し、
    前記画像合成部において、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記第1非基準画像データとを合成することで、前記合成画像データを生成することを特徴とする請求項1に記載の撮像装置。
  4. 前記基準画像データの撮影タイミングが、前記第1及び第2非基準画像データの撮影タイミングの間にあることを特徴とする請求項3に記載の撮像装置。
  5. 前記第1及び第2非基準画像データの撮影タイミングが連続することを特徴とする請求項3に記載の撮像装置。
  6. 光電変換動作を行うことで撮影して得られた電気信号を画像データとして出力する撮像素子と、
    前記撮像素子からの前記画像データを一時的に記憶する画像メモリと、
    を備え、
    前記画像メモリに記憶された前記非基準画像データ及び前記基準画像データが、前記位置ズレ検出部、前記位置ズレ補正部、及び前記画像合成部それぞれに与えられることを特徴とする請求項1〜請求項5のいずれかに記載の撮像装置。
  7. 撮影時の露光時間の長い画像による基準画像データと撮影時の露光時間の短い画像による非基準画像データとを合成する合成画像データを生成する画像合成ステップを有する撮像方法において、
    平均輝度値が略等しい2つの画像データを比較することによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出する位置ズレ検出ステップと、
    該位置ズレ検出部で検出された位置ズレ量に基づいて前記非基準画像データの位置ズレを補正する位置ズレ補正ステップと、
    を備え、
    前記画像合成ステップにおいて、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記非基準画像データとを合成することで、前記合成画像データを生成することを特徴とする撮像方法。
  8. 前記基準画像データ及び前記非基準画像データそれぞれに対して増幅又は減衰処理を施すことにより、前記基準画像データ及び前記非基準画像データそれぞれの平均輝度値を略等しい状態とする輝度調整ステップを備え、
    前記位置ズレ検出ステップが、該輝度調整ステップで値が調整された前記基準画像データ及び前記非基準画像データによって、前記非基準画像データと前記基準画像データとの位置ズレ量を検出することを特徴とする請求項7に記載の撮像方法。
  9. 前記非基準画像データが、同一の露光時間となる2画像の第1及び第2非基準画像データであり、
    前記位置ズレ検出ステップにおいて、前記第1及び第2非基準画像データの位置ズレ量を検出した後、前記第1非基準画像データと前記基準画像データの撮像タイミングの時間差と、前記第1及び第2非基準画像データの撮像タイミングの時間差とによる比に基づいて、前記第1非基準画像データと前記基準画像データの位置ズレ量を算出し、
    前記位置ズレ補正ステップにおいて、前記位置ズレ検出部で算出された位置ズレ量に基づいて前記第1非基準画像データの位置ズレを補正し、
    前記画像合成ステップにおいて、前記基準画像データと前記位置補正部で位置ズレ補正が成された前記第1非基準画像データとを合成することで、前記合成画像データを生成することを特徴とする請求項7に記載の撮像方法。
JP2006287170A 2006-10-23 2006-10-23 撮像装置及び撮像方法 Expired - Fee Related JP4806329B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006287170A JP4806329B2 (ja) 2006-10-23 2006-10-23 撮像装置及び撮像方法
US11/876,078 US20080095408A1 (en) 2006-10-23 2007-10-22 Imaging apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287170A JP4806329B2 (ja) 2006-10-23 2006-10-23 撮像装置及び撮像方法

Publications (2)

Publication Number Publication Date
JP2008109176A true JP2008109176A (ja) 2008-05-08
JP4806329B2 JP4806329B2 (ja) 2011-11-02

Family

ID=39317974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287170A Expired - Fee Related JP4806329B2 (ja) 2006-10-23 2006-10-23 撮像装置及び撮像方法

Country Status (2)

Country Link
US (1) US20080095408A1 (ja)
JP (1) JP4806329B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062785A (ja) * 2008-09-03 2010-03-18 Sony Corp 画像処理装置、撮像装置、固体撮像素子、画像処理方法およびプログラム
JP2011004353A (ja) * 2009-06-22 2011-01-06 Canon Inc 画像処理装置、画像処理方法
JP2011097207A (ja) * 2009-10-28 2011-05-12 Victor Co Of Japan Ltd 信号処理装置
WO2011061940A1 (ja) * 2009-11-18 2011-05-26 パナソニック株式会社 画像処理方法および画像処理装置
JP2011151795A (ja) * 2009-12-21 2011-08-04 Olympus Imaging Corp 撮像装置、撮像方法、および、撮像プログラム
JP2011166728A (ja) * 2010-01-13 2011-08-25 Nikon Corp 画像処理装置、画像処理方法
JP2013153541A (ja) * 2013-05-14 2013-08-08 Jvc Kenwood Corp 信号処理装置及び信号処理方法
JP2013162359A (ja) * 2012-02-06 2013-08-19 Canon Inc 画像処理装置および画像処理方法
JP2014053823A (ja) * 2012-09-07 2014-03-20 Canon Inc 画像処理装置及び画像処理方法、プログラム、並びに記憶媒体
JP2014060502A (ja) * 2012-09-14 2014-04-03 Canon Inc 画像処理装置及び画像処理方法
US9299147B2 (en) 2013-08-20 2016-03-29 Canon Kabushiki Kaisha Image processing apparatus, image capturing apparatus, and image processing method
US10397475B2 (en) 2016-09-26 2019-08-27 Canon Kabushiki Kaisha Capturing control apparatus and method of controlling the same
JP2021184591A (ja) * 2020-04-22 2021-12-02 アクシス アーベー 高ダイナミックレンジ画像の電子画像安定化を実施するための方法、デバイス、カメラ、およびソフトウェア

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI389559B (zh) * 2009-08-14 2013-03-11 Ind Tech Res Inst 前景影像分離方法
JP5458865B2 (ja) * 2009-09-18 2014-04-02 ソニー株式会社 画像処理装置、撮像装置、および画像処理方法、並びにプログラム
CN102186020A (zh) * 2010-01-13 2011-09-14 株式会社尼康 图像处理装置、图像处理方法
US8606009B2 (en) * 2010-02-04 2013-12-10 Microsoft Corporation High dynamic range image generation and rendering
KR101665511B1 (ko) * 2010-02-11 2016-10-12 삼성전자 주식회사 광역 역광 보정 하드웨어 장치 및 이를 포함하는 촬영 장치
WO2012015359A1 (en) * 2010-07-26 2012-02-02 Agency For Science, Technology And Research Method and device for image processing
JP5617445B2 (ja) * 2010-08-31 2014-11-05 ソニー株式会社 撮像装置、および信号処理方法、並びにプログラム
EP2717012B1 (en) * 2011-05-27 2016-07-27 Panasonic Intellectual Property Management Co., Ltd. Image processing apparatus and image processing method
JP5050256B1 (ja) * 2011-06-21 2012-10-17 オリンパス株式会社 撮像装置及び撮像方法
WO2013059116A1 (en) * 2011-10-20 2013-04-25 Dolby Laboratories Licensing Corporation Method and system for video equalization
KR101439013B1 (ko) * 2013-03-19 2014-09-05 현대자동차주식회사 스테레오 영상 처리 장치 및 방법
WO2016132976A1 (ja) * 2015-02-17 2016-08-25 ソニー株式会社 送信装置、送信方法、受信装置および受信方法
CA2977204C (en) 2015-03-05 2023-04-04 Sony Corporation Photoelectric conversion of video data having a predetermined photoelectric conversion characteristic
JP6390512B2 (ja) * 2015-05-21 2018-09-19 株式会社デンソー 車載カメラ装置
JP6233424B2 (ja) * 2016-01-05 2017-11-22 ソニー株式会社 撮像システムおよび撮像方法
CN109314776B (zh) * 2017-05-17 2021-02-26 深圳配天智能技术研究院有限公司 图像处理方法、图像处理设备及存储介质
WO2020137217A1 (ja) * 2018-12-27 2020-07-02 富士フイルム株式会社 撮像素子、撮像装置、画像データ処理方法、及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341582A (ja) * 1999-05-31 2000-12-08 Sony Corp 撮像装置及びその方法
JP2001054004A (ja) * 1999-08-05 2001-02-23 Sanyo Electric Co Ltd 動き検出装置
JP2005210485A (ja) * 2004-01-23 2005-08-04 Sony Corp 画像処理方法、および画像処理装置、並びにコンピュータ・プログラム
JP2005333248A (ja) * 2004-05-18 2005-12-02 Sumitomo Electric Ind Ltd カメラ式車両感知器における画面の輝度調整方法及び装置
JP2006197460A (ja) * 2005-01-17 2006-07-27 Konica Minolta Photo Imaging Inc 画像処理方法、画像処理装置、画像処理プログラム及び撮像装置
JP2006238374A (ja) * 2005-02-28 2006-09-07 Sony Corp 符号化装置および方法、復号装置および方法、画像処理システムおよび方法、記録媒体、並びにプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420635A (en) * 1991-08-30 1995-05-30 Fuji Photo Film Co., Ltd. Video camera, imaging method using video camera, method of operating video camera, image processing apparatus and method, and solid-state electronic imaging device
US5309243A (en) * 1992-06-10 1994-05-03 Eastman Kodak Company Method and apparatus for extending the dynamic range of an electronic imaging system
JP3074967B2 (ja) * 1992-10-27 2000-08-07 松下電器産業株式会社 高ダイナミックレンジ撮像・合成方法及び高ダイナミックレンジ撮像装置
US5801773A (en) * 1993-10-29 1998-09-01 Canon Kabushiki Kaisha Image data processing apparatus for processing combined image signals in order to extend dynamic range
US6040858A (en) * 1994-11-18 2000-03-21 Canon Kabushiki Kaisha Method and apparatus for expanding the dynamic range of sensed color images
JP3630905B2 (ja) * 1997-02-28 2005-03-23 キヤノン株式会社 撮像方法及び撮像装置
JP4282113B2 (ja) * 1998-07-24 2009-06-17 オリンパス株式会社 撮像装置および撮像方法、並びに、撮像プログラムを記録した記録媒体
JP2000050151A (ja) * 1998-07-28 2000-02-18 Olympus Optical Co Ltd 撮像装置
JP4511066B2 (ja) * 2001-03-12 2010-07-28 オリンパス株式会社 撮像装置
US7379094B2 (en) * 2002-04-18 2008-05-27 Olympus Corporation Electronic still imaging apparatus and method having function for acquiring synthesis image having wide-dynamic range
US7409104B2 (en) * 2002-07-18 2008-08-05 .Sightic Vista Ltd Enhanced wide dynamic range in imaging
KR100530746B1 (ko) * 2002-12-24 2005-11-23 삼성테크윈 주식회사 촬영 상태가 부적절하였음을 알려주는 디지털 카메라 및그 제어방법
US6879731B2 (en) * 2003-04-29 2005-04-12 Microsoft Corporation System and process for generating high dynamic range video
KR100810310B1 (ko) * 2003-08-29 2008-03-07 삼성전자주식회사 조도차가 다른 영상의 재구성 장치 및 방법
JP2005077886A (ja) * 2003-09-02 2005-03-24 Canon Inc 撮影装置
JP4434939B2 (ja) * 2004-12-27 2010-03-17 キヤノン株式会社 撮像装置及びその制御方法
US7612813B2 (en) * 2006-02-03 2009-11-03 Aptina Imaging Corporation Auto exposure for digital imagers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341582A (ja) * 1999-05-31 2000-12-08 Sony Corp 撮像装置及びその方法
JP2001054004A (ja) * 1999-08-05 2001-02-23 Sanyo Electric Co Ltd 動き検出装置
JP2005210485A (ja) * 2004-01-23 2005-08-04 Sony Corp 画像処理方法、および画像処理装置、並びにコンピュータ・プログラム
JP2005333248A (ja) * 2004-05-18 2005-12-02 Sumitomo Electric Ind Ltd カメラ式車両感知器における画面の輝度調整方法及び装置
JP2006197460A (ja) * 2005-01-17 2006-07-27 Konica Minolta Photo Imaging Inc 画像処理方法、画像処理装置、画像処理プログラム及び撮像装置
JP2006238374A (ja) * 2005-02-28 2006-09-07 Sony Corp 符号化装置および方法、復号装置および方法、画像処理システムおよび方法、記録媒体、並びにプログラム

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749646B2 (en) 2008-09-03 2014-06-10 Sony Corporation Image processing apparatus, imaging apparatus, solid-state imaging device, image processing method and program
JP4661922B2 (ja) * 2008-09-03 2011-03-30 ソニー株式会社 画像処理装置、撮像装置、固体撮像素子、画像処理方法およびプログラム
US9325918B2 (en) 2008-09-03 2016-04-26 Sony Corporation Image processing apparatus, imaging apparatus, solid-state imaging device, image processing method and program
JP2010062785A (ja) * 2008-09-03 2010-03-18 Sony Corp 画像処理装置、撮像装置、固体撮像素子、画像処理方法およびプログラム
JP2011004353A (ja) * 2009-06-22 2011-01-06 Canon Inc 画像処理装置、画像処理方法
JP2011097207A (ja) * 2009-10-28 2011-05-12 Victor Co Of Japan Ltd 信号処理装置
WO2011061940A1 (ja) * 2009-11-18 2011-05-26 パナソニック株式会社 画像処理方法および画像処理装置
JP2011151795A (ja) * 2009-12-21 2011-08-04 Olympus Imaging Corp 撮像装置、撮像方法、および、撮像プログラム
JP2011166728A (ja) * 2010-01-13 2011-08-25 Nikon Corp 画像処理装置、画像処理方法
JP2013162359A (ja) * 2012-02-06 2013-08-19 Canon Inc 画像処理装置および画像処理方法
JP2014053823A (ja) * 2012-09-07 2014-03-20 Canon Inc 画像処理装置及び画像処理方法、プログラム、並びに記憶媒体
JP2014060502A (ja) * 2012-09-14 2014-04-03 Canon Inc 画像処理装置及び画像処理方法
JP2013153541A (ja) * 2013-05-14 2013-08-08 Jvc Kenwood Corp 信号処理装置及び信号処理方法
US9299147B2 (en) 2013-08-20 2016-03-29 Canon Kabushiki Kaisha Image processing apparatus, image capturing apparatus, and image processing method
US10397475B2 (en) 2016-09-26 2019-08-27 Canon Kabushiki Kaisha Capturing control apparatus and method of controlling the same
JP2021184591A (ja) * 2020-04-22 2021-12-02 アクシス アーベー 高ダイナミックレンジ画像の電子画像安定化を実施するための方法、デバイス、カメラ、およびソフトウェア
JP7169388B2 (ja) 2020-04-22 2022-11-10 アクシス アーベー 高ダイナミックレンジ画像の電子画像安定化を実施するための方法、デバイス、カメラ、およびソフトウェア

Also Published As

Publication number Publication date
US20080095408A1 (en) 2008-04-24
JP4806329B2 (ja) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4806329B2 (ja) 撮像装置及び撮像方法
JP4762089B2 (ja) 画像合成装置及び方法並びに撮像装置
JP4315971B2 (ja) 撮像装置
US7929611B2 (en) Frame rate converting apparatus, pan/tilt determining apparatus, and video apparatus
US7656443B2 (en) Image processing apparatus for correcting defect pixel in consideration of distortion aberration
JP5347707B2 (ja) 撮像装置および撮像方法
US6882754B2 (en) Image signal processor with adaptive noise reduction and an image signal processing method therefor
JP5643563B2 (ja) 画像処理装置及びその制御方法
JP2005252626A (ja) 撮像装置および画像処理方法
TWI467313B (zh) 影像處理裝置、影像處理方法、及記錄媒體
US20140286593A1 (en) Image processing device, image procesisng method, program, and imaging device
JP2000341577A (ja) 手振れ補正装置およびその補正方法
JP4420906B2 (ja) 撮像装置
JP2008236289A (ja) 撮像装置
JP4985124B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP2010147786A (ja) 撮像装置及び画像処理方法
JP2008271529A (ja) 撮像装置
US20060197854A1 (en) Image capturing apparatus and computer software product
JP6037224B2 (ja) 画像処理装置、撮像装置、およびプログラム
JP3980781B2 (ja) 撮像装置および撮像方法
JP2005236662A (ja) 撮像方法、撮像装置及び撮像システム
JP5277863B2 (ja) 撮像装置および撮像方法
US20090015691A1 (en) Image pickup apparatus and method for controlling the same
JP2003078808A (ja) 動きベクトル検出装置および方法、手振れ補正装置および方法、並びに撮像装置
JP4771896B2 (ja) 動き検出装置及び方法並びに撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees