JP2008078175A - トレンチmos型炭化珪素半導体装置の製造方法 - Google Patents

トレンチmos型炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
JP2008078175A
JP2008078175A JP2006252195A JP2006252195A JP2008078175A JP 2008078175 A JP2008078175 A JP 2008078175A JP 2006252195 A JP2006252195 A JP 2006252195A JP 2006252195 A JP2006252195 A JP 2006252195A JP 2008078175 A JP2008078175 A JP 2008078175A
Authority
JP
Japan
Prior art keywords
trench
silicon carbide
film
semiconductor device
carbide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006252195A
Other languages
English (en)
Inventor
Hiroyuki Fujisawa
広幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006252195A priority Critical patent/JP2008078175A/ja
Publication of JP2008078175A publication Critical patent/JP2008078175A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【目的】酸化速度の速い結晶面やイオンビームによる結晶面の損傷を利用することなく、トレンチ底面のSiO膜厚を厚くして、その絶縁破壊強度を高くすることができるトレンチMOS型炭化珪素半導体装置の製造方法を提供すること。
【構成】Si面を主表面とするn型炭化珪素半導体基板1に、第一のn型エピタキシャル炭化珪素薄膜2とp型エピタキシャル炭化珪素薄膜3と第二のn型エピタキシャル炭化珪素薄膜4をこの順に形成した後、Al膜マスク5を用いて、第一のn型エピタキシャル炭化珪素薄膜に達するトレンチ6を形成し、再度形成したAl膜マスク7を用いて、前記トレンチ底部に凹凸8を形成する工程とその後の熱酸化工程を有するトレンチMOS型炭化珪素半導体装置の製造方法であって、前記凹凸を形成する工程が、その後の熱酸化工程により酸化膜に変えられた凸部同士が接触する程度の凸部間隔を有する凹凸形状に加工される工程であるトレンチMOS型炭化珪素半導体装置の製造方法とする。
【選択図】 図1

Description

本発明は半導体材料として炭化珪素(以下SiCとも言う)結晶基板を用い、トレンチゲート構造を有するMOSFET、IGBT等の電圧駆動型の(MOS型電力用)炭化珪素半導体装置の製造方法に関する。
炭化珪素半導体材料は、シリコン半導体材料と比較して大きなバンドギャップを持つため、高い絶縁破壊電界強度を有する。半導体装置の導通状態における抵抗であるオン抵抗は、その半導体材料の絶縁破壊電界強度の3乗に逆比例するため、例えば広く用いられている4H型と呼ばれる結晶形態の半導体基板を用いた炭化珪素半導体装置においては、そのオン抵抗をシリコン半導体の数100分の1に低減できる可能性がある。その良好な放熱性を示す大きな熱伝導度特性ともあいまって、次世代の低損失電力用半導体装置として期待されている。近年、炭化珪素ウエハ(半導体基板)の品質向上と大口径化の進展ともあいまって、シリコン半導体装置の特性を大きく上回る金属酸化物半導体電界効果型トランジスタ(MOSFET)、バイポーラトランジスタ、接合型電界効果型トランジスタ(JFET)などの開発が盛んである。中でもMOSFETは、電圧駆動型素子なのでゲート駆動回路が低コストで済むだけでなく、電子あるいは正孔のみの多数キャリア素子であって、導通時の素子内にキャリアの蓄積がないので、ターンオフ時にそれらのキャリアを素子外に掃き出す時間、エネルギーを必要とせず、たとえば、電子、正孔の両方が伝導に寄与するバイポーラ型素子と比較して高速スイッチングが可能となる特長を有する。
図5に従来の一般的なトレンチゲート構造を有するトレンチ型MOSFET(主面に垂直な側壁のトレンチゲートを有するMOSFET、以下同様)の1セルピッチの断面構造を示す。n型低抵抗炭化珪素基板(ドレイン層)21上に、高抵抗n型ドリフト層22、p型ベース層23を順次エピタキシャルSiC成長により形成し、その後、p型ベース層23の表面からイオン注入によりn型ソース領域24を形成する。次にn型ソース層24側の主表面から酸化膜を介して形成したAl膜をマスクとして、RIE法によりn型ドリフト層22に達する垂直なトレンチ25を形成する。さらに、トレンチ25側にゲート酸化膜26、ゲート電極27、ソース/ベース電極28などを形成して、炭化珪素ウエハ30にトレンチゲート構造を形成する。その後、裏面側にドレイン電極29を形成してトレンチ型炭化珪素MOSFETが完成する。
前記トレンチ型MOSFETは、オフ状態時には、ソース/ベース電極28をアース電位にしておき、ゲート電極27に十分大きな負バイアスを印加すると、n型ソース領域24とドリフト層22に挟まれたpベース層23のゲート酸化膜26との界面近傍の領域には正孔が誘起された蓄積状態となり、伝導キャリアである電子の経路が遮断されるので電流は流れない。ドレイン電極29に正の高電圧を印加するとpベース層23とドリフト層22間の接合が逆バイアス状態になるので、空乏層がpベース領域23内とドリフト層22内に広がり、高電圧が維持される。
また、オン状態時には、ゲート電極27に閾値以上の正バイアスを印加するとソース領域24とドリフト層22に挟まれたpベース層23のトレンチ25の表面近傍の領域に電子が誘起された反転状態になり、電子がソース電極28、ソース領域24、pベース層23のゲート酸化膜26に接する反転層(図示せず)、ドリフト層22、基板21、ドレイン電極29の順にキャリアが流れる。
オン状態における抵抗について、構造上、図6に示されるような一般的なDIMOSFETでは加算されるドリフト層32のゲート酸化膜36との界面近傍を電子が移動するときの蓄積層抵抗と、ドリフト層32内のゲート酸化膜36近傍から下方のドレインに向かって流れるときにn型ドリフト層32が両隣のp型ベース層33に挟まれていることによって発生し易いJFET抵抗とが、前記図5に示すトレンチゲート型のトレンチ型MOSFETでは発生しないという長所がある。このため、DIMOSFETではセルピッチを小さくして行くと、あるセルピッチ距離からJFET抵抗が現れて、オン抵抗が増加するのに対し、トレンチ型MOSFETではセルピッチを小さくすればするほどオン抵抗が単調に減少するという長所がある。特に約3kV以下の耐圧を持つMOSFETにおいては、MOSチャネル抵抗が無視できないために微細化によるセルピッチの縮小が必須であり、トレンチ型MOSFETを使用する方が望ましいのである。
しかしながら、トレンチ型MOSFETでは、図7に示すように、トレンチ底部においてSiO膜26に印加される電界強度が非常に大きくなるという問題がある。図7は、図5のトレンチ型MOSFETの破線内の拡大構造を示す断面図と、この断面図に対応するように、破線の枠で示すpn構造部およびMOS構造部について、基板の厚さ方向に縦軸を合わせ、横軸にはオフ電圧印加状態における電界強度を表わすようにした電界強度分布図とを併せて示す図である。この図7によれば、MOS構造部の酸化膜26に大きな電界強度がかかっていることが分かる。この図7に示すように、トレンチ底部のSiO膜にかかる電界強度が大きくなるのは、炭化珪素の比誘電率(4H−SiCで9.7)とSiO膜の比誘電率(3.8)との差がSi(11.9)とSiO膜(3.8)の比誘電率の差より小さいことに起因する。さらに、この図7には示されていないが、トレンチコーナー部のSiO膜にかかる電界強度は、電界集中のため、さらに高くなることが多い。図7に示されるpn接合部(23/22間)でのピークの電界強度が炭化珪素の絶縁破壊電界強度に至って耐圧にブレイクダウンを生じるのが理想であるが、トレンチ型MOSFETの場合には、pn接合(23/22間)がその絶縁破壊電界強度に達する前に、トレンチ底部のSiO膜26がその絶縁破壊電界強度(約10MV/cm)に先に到達して、理論耐圧より低い電圧でブレイクダウンを起こしてしまう問題がある。シリコン半導体においては、絶縁破壊電界強度が0.2MV/cmとSiO膜の10MV/cmより2桁低いため、ほぼpn接合部でブレイクダウンが起きるが、炭化珪素(4H型結晶)の場合では、絶縁破壊電界強度が2MV/cmと大きく、SiO膜の絶縁破壊電界強度と1桁しか違わないので、SiO膜での絶縁破壊の問題がより顕著になるのである。この対策としてトレンチ底のSiO膜厚を厚くして回避する方法が既に知られている。そのようなSiO膜厚を厚くする具体的な方法としては、たとえば、酸化速度の速い(0001)カーボン面をトレンチ底面に使う方法(特許文献1)やイオンビームで底面に損傷を与えて底面の絶縁膜を厚くする方法(特許文献2)などが発表されている。
特開平7−326755号公報 特開2000−312003号公報
本発明は、前述と同様にトレンチ底でのSiO膜の絶縁破壊の問題を回避するために、トレンチ底部のSiO膜厚を厚くする方法に係わるが、前述とは異なる方法で、トレンチ底面のSiO膜厚を容易に、確実に厚くすることができるトレンチMOS型炭化珪素半導体装置の製造方法を提供することを目的とする。
特許請求の範囲の請求項1記載の発明によれば、Si面を主表面とする一導電型炭化珪素半導体基板に、第一の一導電型エピタキシャル炭化珪素薄膜と他導電型エピタキシャル炭化珪素薄膜と第二の一導電型エピタキシャル炭化珪素薄膜をこの順に形成した後、Al膜マスクを用いて、第一の一導電型エピタキシャル炭化珪素薄膜に達するトレンチを形成し、再度形成したAl膜マスクを用いて、前記トレンチ底部に凹凸を形成する工程とその後の熱酸化工程を有するトレンチMOS型炭化珪素半導体装置の製造方法にあって、前記凹凸を形成する工程が、その後の熱酸化工程により酸化膜に変えられた凸部同士が接触する程度の凸部間隔を有する凹凸形状に加工される工程であるトレンチMOS型炭化珪素半導体装置の製造方法とすることにより、前記本発明の目的は達成される。
特許請求の範囲の請求項2記載の発明によれば、前記トレンチ底部の凸部がトレンチ底部の短辺方向または長辺方向のいずれかに平行に周期的に形成されている特許請求の範囲の請求項1記載のトレンチMOS型炭化珪素半導体装置の製造方法とすることが好ましい。
特許請求の範囲の請求項3記載の発明によれば、前記トレンチの長辺方向の、長さをLt、幅をWtとし、底の凸部の、長さをL、幅をW、高さをh、個数をnとし、トレンチ底部の酸化膜形成時の熱酸化膜厚をtoxとし、前記トレンチの短辺方向に凸部を周期的に形成すると、相互に、
Lt=L、Wt=(2n+1)×W、h≧tox≧W
の関係が成り立つ特許請求の範囲の請求項2記載のトレンチMOS型炭化珪素半導体装置の製造方法とすることが望ましい。
特許請求の範囲の請求項4記載の発明によれば、前記トレンチの長辺方向の、長さをLt、幅をWtとし、底の凸部の、長さをL、幅をW、高さをh、個数をnとし、トレンチ底部の酸化膜形成時の熱酸化膜厚をtoxとし、前記トレンチの長辺方向に凸部を周期的に形成すると、相互に
Wt=W、Lt=(2n+1)×L、h≧tox≧W
の関係が成り立つ特許請求の範囲の請求項2記載のトレンチMOS型炭化珪素半導体装置の製造方法とすることも望ましい。
本発明によれば、酸化速度の速い結晶面やイオンビームによる結晶面の損傷を利用することなく、トレンチ底面のSiO膜厚を厚くして絶縁破壊強度を大きくすることができるトレンチMOS型炭化珪素半導体装置の製造方法を提供することができる。
以下、本発明の実施例について図面を参照しながら、詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1は、本発明の実施例1にかかり、トレンチの底部にトレンチの長辺に平行な凹凸を形成する方法を順に(a)、(b)、(c)で示すMOS型炭化珪素半導体基板のトレンチ部を、トレンチ長辺に直交する線で切断した断面図である。図2は本発明の実施例1にかかり、トレンチ底部に厚い酸化膜を形成する方法を説明するためのMOS型炭化珪素半導体基板のトレンチ部の平面図(a)および、トレンチ長辺に直交する線で切断した断面図(b)、(c)である。図3は本発明の実施例2にかかり、トレンチの長辺に直交する方向に形成される凹凸が複数、相互並列に長辺方向に繰り返される凹凸形状を形成する方法を示すMOS型炭化珪素半導体基板のトレンチ部を、トレンチ長辺に平行な線で切断した断面図(a)、(b)である。図4は本発明の実施例2にかかり、トレンチの底部に厚い酸化膜を形成する方法を示すMOS型炭化珪素半導体基板のトレンチ部の平面図(a)および、トレンチ長辺に平行な線で切断した断面図(b)、(c)である。
図1(a)に示すように、Si面を主表面とするn型炭化珪素半導体基板1に、ドリフト層となるn型エピタキシャル炭化珪素薄膜2を10μm、pベース層となるp型エピタキシャル炭化珪素薄膜3を2μm、n型ソース領域となるn型エピタキシャル炭化珪素薄膜4を0.5μm、この順にそれぞれ形成する。この積層半導体基板を1100℃で1時間パイロジェニック酸化した後、Al膜を0.2μmスパッタし、フォトプロセスでAl膜をパターニングし、Al膜マスク5を形成する。このAl膜マスク5を利用してSFとOガスを用いてICPプラズマにより異方性エッチングを行い、表面から垂直にn型エピタキシャル炭化珪素薄膜2に達するトレンチ6を形成する。トレンチ6は長辺の長さを100μm、短辺の長さを0.3μmとする。素子内にこのトレンチが複数個並んでいる。
次に、図1(b)に示すように、前記Al膜5を一旦除去した後、再度新しいAl膜を0.2μmスパッタし、フォトプロセスでAl膜をパターニングし、Al膜マスク7を形成する。次に図1(c)に示すように、このAl膜マスク7を利用して、再度SFとOガスを用いてICPプラズマエッチングを行いトレンチ底に凹凸部8を形成する。
この凹凸部8は、図2(a)のトレンチ部の平面図および同図(b)の断面図に示すように、トレンチ底のトレンチ長辺方向に平行に形成される凸部を有する形状であり、この凸部はトレンチの長辺方向の側壁から0.1μmの間隔をおいて形成されている。凸部のトレンチ短辺方向の幅は0.1μm、凸部のトレンチ長辺方向の長さはトレンチの長辺方向の長さと同じである。
この凹凸部8をトレンチ底部に有する積層半導体基板を、ウエット雰囲気で熱酸化することにより、厚さ0.1μmの熱酸化膜9を形成する(図2(c))。熱酸化の際、凸部のSiC側には0.05μm酸化が進み、SiCの外側には0.05μmSiO膜が成長する(または膨張する)。これによって凸部のSiO膜がトレンチ短辺方向に成長して隣接する凸部のSiO膜と相互に接触することにより、トレンチ底部の凹凸部がすべて厚いSiO膜を形成する構造ができあがる。ここで、トレンチ底部に新しく形成されたSiO膜の上面はトレンチMOSFETのpベース層3よりも深い位置となるように、トレンチの深さおよび凹凸部の形状を設定しておくことが重要である。
なお、以上の実施例1の説明に用いた種々の数値は一例であり、以下説明する関係式を満たす範囲で変更することができる。前記トレンチの長辺方向の長さをLt、幅をWt、底の凸部の長さをL、幅をW、高さをh、個数をn、トレンチ底酸化膜形成時の熱酸化膜厚をtoxとすると、相互に、
Lt=L、Wt=(2n+1)×W、h≧tox≧W
を満たす関係を有する数値とすることが好ましい。
またさらに、この実施例1では最初の炭化珪素半導体基板について、Si面を主面としたが、他の結晶面を用いても同様の効果が得られる。またトレンチの長辺、短辺の方向を変えても同様の効果が得られる。
Si面を主表面とするn型炭化珪素半導体基板1に、ドリフト層となるn型エピタキシャル炭化珪素薄膜2を10μm形成し、Pベース層となるp型エピタキシャル炭化珪素薄膜3を2μm形成し、n型ソース領域となるn型エピタキシャル炭化珪素薄膜4を0.5μm、この順にそれぞれ形成する。この積層半導体基板を1100℃1時間パイロジェニック酸化した後、Al膜を0.2μmスパッタし、フォトプロセスでAl膜をパターニングし、Al膜マスク5を形成する。このAl膜マスク5を利用してSFとOガスを用いてICPプラズマによる異方性エッチングを行い、表面から垂直にn型エピタキシャル炭化珪素薄膜2に達するトレンチ6を形成する。
トレンチは長辺の長さLtを100μm、短辺の長さWtを0.15μmとする。素子内にこのトレンチが複数個並んでいる。Al膜を除去した後、再度Al膜を0.2μmの厚さにスパッタし、フォトプロセスでAl膜をパターニングし、トレンチ底部の長辺に直交するAl膜が長辺方向に繰り返し相互並列に並ぶ形状のAl膜パターン7を形成する(図3(a))。
このAl膜マスク7を利用してSFとOガスを用いてICPプラズマにより底部表面から垂直に異方性エッチングを行いトレンチ底部に凹凸部8を形成する(図3(b))。
このトレンチ底部の凹凸部8は、図4(a)のトレンチ部平面図に示すように、トレンチの底部に、トレンチ長辺に直交する凸部が相互並列に形成される凹凸部8がトレンチ長辺方向に繰り返し並ぶ形状を有している。トレンチの短辺側壁から0.1μmの間隔をおいて凸部があり、さらに0.1μmの間隔をおいて次の凸部が相互に平行に並んでいる。言い換えると、凸部の幅は0.1μmで、トレンチ長辺方向に0.1μm間隔で相互に平行に並んでおり、凸部のトレンチ短辺方向の幅はトレンチ短辺方向の幅と同じ0.15μmである。
この凹凸部8をトレンチ底部に有する積層半導体基板を、ウエット雰囲気で熱酸化することにより、厚さ0.1μmの熱酸化膜9を形成する(図4(c))。この際、SiC側(凸部側)には0.05μm酸化が進み、SiCの外側には0.05μmSiO膜が成長する(膨張する)。これによって凸部のSiO膜がトレンチ長辺方向に成長し隣接する凸部のSiO膜と相互に接触してトレンチ底部の厚いSiO膜を形成する構造となる。
ここで、前記実施例1と同様に、トレンチ底部のSiO膜の上面はトレンチMOSFETのpベース層3よりも深い位置となるように、トレンチの深さおよび凹凸部の形状を設定しておくことが重要である。
なお、以上の実施例2の説明に用いた種々の数値は一例であり、実施例1と同様に、以下説明する関係式を満たす範囲で変更することができる。前記トレンチの長辺方向の長さをLt、幅をWt、底の凸部の長さをL、幅をW、高さをh、個数をn、トレンチ底酸化膜形成時の熱酸化膜厚をtoxとすると、相互に、
Wt=W、Lt=(2n+1)×L、h≧tox≧W
を満たす関係を有する数値とすることが好ましい。
さらにこの実施例2ではSi面を主面としたが、他の結晶面を用いても同様の効果が得られる。
本発明の実施例1にかかり、トレンチの底部にトレンチの長辺に平行な凹凸を形成する方法を示すMOS型炭化珪素半導体装置基板の要部断面図である。 本発明の実施例1にかかり、トレンチの底部に厚い酸化膜を形成する方法を示す半導体基板の要部断面図である。 本発明の実施例2にかかり、トレンチの長辺に直交する方向に形成される凹凸が複数、並列に長辺方向に繰り返される凹凸を形成する方法を示す半導体基板の要部断面図である。 本発明の実施例2にかかり、トレンチの底部に厚い酸化膜を形成する方法を示す半導体基板の要部断面図である。 従来のトレンチ型MOSFETの1セルピッチの断面図である。 従来の一般的なDIMOSFETの1セルピッチの断面図である。 従来のトレンチ型MOSFETの要部断面図と、pn構造部およびMOS構造部の電界強度分布図とを併せて示す図である。
符号の説明
1、… 一導電型炭化珪素半導体基板、n型炭化珪素半導体基板、
2、… 一導電型エピタキシャル炭化珪素薄膜、n型エピタキシャル炭化珪素薄膜、ドリフト層
3、… 他導電型エピタキシャル炭化珪素薄膜、p型エピタキシャル炭化珪素薄膜、pベース層
4、… 一導電型エピタキシャル炭化珪素薄膜、n型エピタキシャル炭化珪素薄膜、n型ソース領域
5、… Al膜パターン
6、… トレンチ
7、… Al膜パターン
8、… 凹凸部
Lt… トレンチ長辺方向の長さ
Wt… トレンチ長辺方向の幅
L、… 凸部の長さ
W、… 凸部の幅
tox… トレンチ底部の熱酸化膜厚さ。

Claims (4)

  1. Si面を主表面とする一導電型炭化珪素半導体基板に、第一の一導電型エピタキシャル炭化珪素薄膜と他導電型エピタキシャル炭化珪素薄膜と第二の一導電型エピタキシャル炭化珪素薄膜をこの順に形成した後、Al膜マスクを用いて、第一の一導電型エピタキシャル炭化珪素薄膜に達するトレンチを形成し、再度形成したAl膜マスクを用いて、前記トレンチ底部に凹凸を形成する工程とその後の熱酸化工程を有するトレンチMOS型炭化珪素半導体装置の製造方法であって、前記凹凸を形成する工程が、その後の熱酸化工程により酸化膜に変えられた凸部同士が接触する程度の凸部間隔を有する凹凸形状に加工される工程であることを特徴とするトレンチMOS型炭化珪素半導体装置の製造方法。
  2. 前記トレンチ底部の凸部がトレンチ底部の短辺方向または長辺方向のいずれかに平行に周期的に形成されていることを特徴とする請求項1記載のトレンチMOS型炭化珪素半導体装置の製造方法。
  3. 前記トレンチの長辺方向の、長さをLt、幅をWtとし、底の凸部の、長さをL、幅をW、高さをh、個数をnとし、トレンチ底部の酸化膜形成時の熱酸化膜厚をtoxとし、前記トレンチの短辺方向に凸部を周期的に形成すると、相互に
    Lt=L、Wt=(2n+1)×W、h≧tox≧W
    の関係が成り立つことを特徴とする請求項2記載のトレンチMOS型炭化珪素半導体装置の製造方法。
  4. 前記トレンチの長辺方向の、長さをLt、幅をWtとし、底の凸部の、長さをL、幅をW、高さをh、個数をnとし、トレンチ底部の酸化膜形成時の熱酸化膜厚をtoxとし、前記トレンチの長辺方向に凸部を周期的に形成すると、相互に
    Wt=W、Lt=(2n+1)×L、h≧tox≧W
    の関係が成り立つことを特徴とする請求項2記載のトレンチMOS型炭化珪素半導体装置の製造方法。
JP2006252195A 2006-09-19 2006-09-19 トレンチmos型炭化珪素半導体装置の製造方法 Pending JP2008078175A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252195A JP2008078175A (ja) 2006-09-19 2006-09-19 トレンチmos型炭化珪素半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252195A JP2008078175A (ja) 2006-09-19 2006-09-19 トレンチmos型炭化珪素半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2008078175A true JP2008078175A (ja) 2008-04-03

Family

ID=39349980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252195A Pending JP2008078175A (ja) 2006-09-19 2006-09-19 トレンチmos型炭化珪素半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2008078175A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563987B2 (en) 2011-06-28 2013-10-22 Panasonic Corporation Semiconductor device and method for fabricating the device
US8878290B2 (en) 2012-10-09 2014-11-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device
EP3232478A4 (en) * 2014-12-10 2017-11-29 Toyota Jidosha Kabushiki Kaisha Semiconductor device
CN111477679A (zh) * 2020-04-17 2020-07-31 重庆伟特森电子科技有限公司 不对称沟槽型SiC-MOSFET栅的制备方法
US10872975B2 (en) 2018-08-08 2020-12-22 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563987B2 (en) 2011-06-28 2013-10-22 Panasonic Corporation Semiconductor device and method for fabricating the device
US8878290B2 (en) 2012-10-09 2014-11-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device
EP3232478A4 (en) * 2014-12-10 2017-11-29 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US10872975B2 (en) 2018-08-08 2020-12-22 Kabushiki Kaisha Toshiba Semiconductor device
CN111477679A (zh) * 2020-04-17 2020-07-31 重庆伟特森电子科技有限公司 不对称沟槽型SiC-MOSFET栅的制备方法

Similar Documents

Publication Publication Date Title
US7595241B2 (en) Method for fabricating silicon carbide vertical MOSFET devices
JP5862660B2 (ja) 半導体装置およびその製造方法
JP4872217B2 (ja) 炭化珪素半導体素子の製造方法
JP2008016747A (ja) トレンチmos型炭化珪素半導体装置およびその製造方法
JP5565461B2 (ja) 半導体装置
JP2010258386A (ja) 炭化珪素半導体装置およびその製造方法
JP2011100877A (ja) 半導体装置及びその製造方法
US20240222498A1 (en) Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
WO2017064887A1 (ja) 半導体装置
JP2011114028A (ja) SiC半導体装置とその製造方法
US10756200B2 (en) Silicon carbide semiconductor element and method of manufacturing silicon carbide semiconductor
WO2018150467A1 (ja) 半導体装置および半導体装置の製造方法
JP5463725B2 (ja) 炭化珪素半導体装置およびその製造方法
US20160141356A1 (en) Semiconductor device
CN105470121A (zh) 形成晶体管的方法、衬底图案化的方法及晶体管
JP2010238725A (ja) 半導体装置及びその製造方法
JP2008078175A (ja) トレンチmos型炭化珪素半導体装置の製造方法
JP4929594B2 (ja) 半導体装置および半導体装置の製造方法
JP5366521B2 (ja) 炭化珪素半導体装置及びその製造方法
KR20140044075A (ko) 반도체 소자 및 그 제조 방법
JP6528640B2 (ja) 半導体装置及びその製造方法
JP3875245B2 (ja) 半導体装置
JP5556862B2 (ja) トレンチmos型炭化珪素半導体装置の製造方法
KR101382328B1 (ko) 반도체 소자 및 그 제조 방법
JP2011018764A (ja) 半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080204

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216