JP2008063201A - epsi-IRON OXIDE POWDER HAVING IMPROVED MAGNETIC PROPERTY - Google Patents

epsi-IRON OXIDE POWDER HAVING IMPROVED MAGNETIC PROPERTY Download PDF

Info

Publication number
JP2008063201A
JP2008063201A JP2006244882A JP2006244882A JP2008063201A JP 2008063201 A JP2008063201 A JP 2008063201A JP 2006244882 A JP2006244882 A JP 2006244882A JP 2006244882 A JP2006244882 A JP 2006244882A JP 2008063201 A JP2008063201 A JP 2008063201A
Authority
JP
Japan
Prior art keywords
powder
magnetic
particles
particle diameter
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006244882A
Other languages
Japanese (ja)
Other versions
JP5130534B2 (en
Inventor
Shinichi Ogoshi
慎一 大越
Shunsuke Sakurai
俊介 桜井
Kimitaka Sato
王高 佐藤
Shinya Sasaki
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
University of Tokyo NUC
Original Assignee
Dowa Holdings Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, University of Tokyo NUC filed Critical Dowa Holdings Co Ltd
Priority to JP2006244882A priority Critical patent/JP5130534B2/en
Publication of JP2008063201A publication Critical patent/JP2008063201A/en
Application granted granted Critical
Publication of JP5130534B2 publication Critical patent/JP5130534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic powder of ε-Fe<SB>2</SB>O<SB>3</SB>crystal having improved magnetic properties and dispersibility into a liquid or a polymer base material. <P>SOLUTION: The magnetic powder is composed of iron oxide particles each containing ε-Fe<SB>2</SB>O<SB>3</SB>crystal (a crystal wherein a portion of Fe sites is substituted with a metal element M is included) as a main phase. In the magnetic powder, the average particle diameter is 10-200 nm and the number ratio of particles each having a particle diameter of <10 nm is ≤25%, in the particle diameter evaluated by TEM photograph, and when the molar ratio of M to Fe is expressed as M:F=x:(2-x), x is ≥0 and <1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はε−Fe23系の磁性粉末に関する。 The present invention relates to an ε-Fe 2 O 3 based magnetic powder.

磁気記録の分野では低ノイズ化を図りながら記録密度を高めることが要求されている。そのために、磁気記録媒体の側では、媒体の保磁力Hcをできるだけ大きくすること、そして媒体を構成する磁性粒子の微細化を図りながら磁気的分離化を促進することが肝要となる。さらには、磁性粒子が微細化しても記録状態が安定に保持されることも重要視される。   In the field of magnetic recording, it is required to increase recording density while reducing noise. Therefore, on the magnetic recording medium side, it is important to increase the coercive force Hc of the medium as much as possible and promote magnetic separation while miniaturizing the magnetic particles constituting the medium. Furthermore, it is important to keep the recording state stable even when the magnetic particles are miniaturized.

例えば、記録ビットを構成する磁気的に結合した磁気集合体の最小単位の磁気的エネルギー(KU×V)が、記録を乱そうとする熱エネルギー(kB×T)を大きく上回ることが挙げられる。ここで、KUは磁気異方性エネルギー定数、Vは磁気クラスター体積、kBはボルツマン定数、Tは絶対温度である。記録状態が安定に保持される指標として(KU×V)/(kB×T)を用い、この比がほぼ60以上(〜10年耐用)になることが一般的な目標とされている。このことは、一層の高記録密度化を図るためには、磁気クラスター体積Vを下げ、磁気異方性定数KUを上げざるを得ない状況にあると言える。KUについては、KU∝Hc(Hcは保磁力)の関係にあるため、言い換えると、高記録密度の磁気記録媒体を目指すほど、高いHcを有する磁性材料が必要になる。 For example, the magnetic energy (K U × V) of the minimum unit of the magnetically coupled magnetic aggregate constituting the recording bit greatly exceeds the thermal energy (k B × T) that tries to disturb the recording. It is done. Here, K U is the magnetic anisotropy energy constant, V is the magnetic cluster volume, k B is the Boltzmann constant, and T is the absolute temperature. Using (K U × V) / (k B × T) as an index for stably maintaining the recording state, it is a general goal that this ratio is approximately 60 or more (10-year service life). . This is in order to further increase the recording density lowers the magnetic cluster volume V, it can be said that the situation inevitably raise the magnetic anisotropy constant K U. Since K U has a relationship of K U ∝Hc (Hc is a coercive force), in other words, a magnetic material having a higher Hc is required as a magnetic recording medium with a higher recording density is aimed.

また、(KU×V)/(kB×T)の値が100以下の場合でも記録磁化が時間の経過につれて減少する事例も報告されており、このことは、低ノイズ化のためには磁気クラスター体積Vを下げる要求が強くなるほど、高い磁気異方性定数KUを持たねばならないことを意味する。したがって、低ノイズ化の観点からも、高記録密度の磁気記録媒体を目指すほど、高いHcを有する磁性材料が必要になる。 In addition, even when the value of (K U × V) / (k B × T) is 100 or less, there has been reported an example in which the recording magnetization decreases with the passage of time. as the request to reduce the magnetic cluster volume V becomes stronger, which means that must have a high magnetic anisotropy constant K U. Therefore, from the viewpoint of reducing noise, a magnetic material having a high Hc is required as a magnetic recording medium having a higher recording density is aimed.

非特許文献1〜3に示されるように、最近、ナノオーダーの粒子サイズで室温において20kOeという巨大なHcを示すε−Fe23の存在が確認されている。Fe23の組成を有しながら結晶構造が異なる多形には最も普遍的なものとしてα−Fe23およびγ−Fe23があるが、ε−Fe23もその一つである。しかし、ε−Fe23の結晶構造と磁気的性質が明らかにされたのは、非特許文献1〜3に見られるように、ε−Fe23結晶をほぼ単相の状態で合成できるようになったごく最近のことである。このε−Fe23は巨大なHcを示すことから、前記のような高記録密度の磁気記録媒体への適用が期待される。 As shown in Non-Patent Documents 1 to 3, recently, existence of ε-Fe 2 O 3 exhibiting a huge Hc of 20 kOe at room temperature with a nano-order particle size has been confirmed. Α-Fe 2 O 3 and γ-Fe 2 O 3 are the most universal polymorphs having a composition of Fe 2 O 3 but different crystal structures, and ε-Fe 2 O 3 is one of them. One. However, the crystal structure and magnetic properties of ε-Fe 2 O 3 were clarified because, as seen in Non-Patent Documents 1 to 3, ε-Fe 2 O 3 crystals were synthesized in a substantially single-phase state. This is only recently. Since this ε-Fe 2 O 3 shows huge Hc, it is expected to be applied to a magnetic recording medium having a high recording density as described above.

Jian Jin,Shinichi Ohkoshi and Kazuhito Hashimoto,ADVANCED MATERIALS 2004,16,No.1、January 5,p.48-51Jian Jin, Shinichi Ohkoshi and Kazuhito Hashimoto, ADVANCED MATERIALS 2004, 16, No. 1, January 5, p.48-51 Jian Jin,Kazuhito Hashimoto and Shinichi Ohkoshi,JOURNAL OF MATERIALS CHIMISTRY 2005,15,p.1067-1071Jian Jin, Kazuhito Hashimoto and Shinichi Ohkoshi, JOURNAL OF MATERIALS CHIMISTRY 2005, 15, p.1067-1071 Shunsuke Sakurai,Jian Jin,Kazuhito Hashimoto and Shinichi Ohkoshi,JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,Vol.74,No.7,July,2005、p.1946-1949Shunsuke Sakurai, Jian Jin, Kazuhito Hashimoto and Shinichi Ohkoshi, JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Vol.74, No.7, July, 2005, p.1946-1949

非常に高いHcをもった磁性材料を記録媒体として実用化するためには、その記録媒体に実際に情報を書き込める記録磁場を発生する磁気ヘッドが必要である。磁気ヘッドの発生磁場は、一般的には、そこに使用される軟磁性膜の飽和磁束密度に比例するともいわれる。現在、1.5〜4.5kOe(1.19×105〜3.58×105A/m)程度のHcをもつハードディスクが報告されているが、このようなハードディスクに情報を記録するための磁気ヘッドには、2.4Tといった高い飽和磁束密度をもつ材料が使用されている。 In order to put a magnetic material having a very high Hc into practical use as a recording medium, a magnetic head that generates a recording magnetic field capable of actually writing information on the recording medium is required. The magnetic field generated by the magnetic head is generally said to be proportional to the saturation magnetic flux density of the soft magnetic film used there. Currently, hard disks having Hc of about 1.5 to 4.5 kOe (1.19 × 10 5 to 3.58 × 10 5 A / m) have been reported. In order to record information on such hard disks. In the magnetic head, a material having a high saturation magnetic flux density of 2.4 T is used.

非特許文献1〜3に見られるように、20kOe(1.59×106A/m)レベルの巨大なHcを持つε−Fe23の場合は、これを磁気記録媒体の磁気記録材料に用いても、現状よりもさらに高い飽和磁束密度をもつ材料が存在しないと、情報を記録することができない。すなわち、現状レベルの磁気ヘッド材料では磁気記録ができない。 As seen in Non-Patent Documents 1 to 3 , in the case of ε-Fe 2 O 3 having a huge Hc of 20 kOe (1.59 × 10 6 A / m) level, this is used as a magnetic recording material of a magnetic recording medium. However, information cannot be recorded unless there is a material having a higher saturation magnetic flux density than the current state. That is, magnetic recording cannot be performed with the current level of magnetic head material.

発明者らは詳細な検討の結果、ε−Fe23結晶のFeサイトの一部を、3価の金属元素Mで置換したとき、その置換量に応じて保磁力Hcを低下させることができる場合があることを見出した。金属元素Mは例えばAl、Ga、Inなどである。このような置換手法を用いて保磁力Hcをコントロールすることにより、磁気ヘッド等で磁気記録が可能な範囲内で非常に高いHcを呈する磁性粉末が構築でき、種々の用途で実用化が期待される。 As a result of detailed studies, the inventors have found that when a part of the Fe site of the ε-Fe 2 O 3 crystal is substituted with the trivalent metal element M, the coercive force Hc can be reduced according to the amount of substitution. I found out that I could do it. The metal element M is, for example, Al, Ga, In or the like. By controlling the coercive force Hc using such a replacement method, a magnetic powder exhibiting extremely high Hc can be constructed within a range where magnetic recording can be performed with a magnetic head or the like, and it is expected to be put to practical use in various applications. The

しかしながら、磁性粉末を実際に磁気記録媒体や電波吸収体などの磁性材料として利用するためには、[1]角形比SQが高く、かつSFD(switching field distribution)が小さいなど、総合的に優れた磁気特性を有することが要求され、また[2]高分子基材中への充填性が良好であることが要求される。さらに[3]液中や高分子基材中への粉末粒子の分散性が良好であることも重要である。磁場配向等の操作によって磁気記録媒体や電波吸収体の性能向上を図る際には、分散性と充填性の両方が良好であることが必須要件となる。   However, in order to actually use the magnetic powder as a magnetic material such as a magnetic recording medium or a radio wave absorber, [1] the square ratio SQ is high and the SFD (switching field distribution) is small. It is required to have magnetic properties, and [2] a good filling property in the polymer base material is required. [3] It is also important that the dispersibility of the powder particles in the liquid or the polymer base material is good. In order to improve the performance of the magnetic recording medium and the radio wave absorber by operations such as magnetic field orientation, it is essential that both the dispersibility and the filling property are good.

非特許文献1〜3に示されるように、ε−Fe23結晶は、逆ミセル法とゾル−ゲル法を組み合わせたプロセスにより合成することができる。しかし、そのようにして合成されたε−Fe23結晶の粉末は、必ずしも安定して総合的に優れた磁気特性を有するとは限らず、また、高分子基材中への充填性や、液中あるいは高分子基材中への分散性についても更なる改善が望まれる。そこで本発明は、上記の合成プロセスを利用して製造できる粉末であって、総合的な磁気特性が改善され、あるいはさらに高分子基材中への充填性や、液中や高分子基材中への分散性が改善されたε−Fe23結晶の粉末を提供することを目的とする。 As shown in Non-Patent Documents 1 to 3, the ε-Fe 2 O 3 crystal can be synthesized by a process combining a reverse micelle method and a sol-gel method. However, the powder of ε-Fe 2 O 3 crystal synthesized in such a manner does not always have stable and excellent magnetic properties, and the filling property into the polymer base material is not limited. Further improvement in the dispersibility in the liquid or the polymer substrate is desired. Therefore, the present invention is a powder that can be produced by using the above-described synthesis process, and has improved overall magnetic properties, or further, can be filled into a polymer base material, in a liquid or in a polymer base material. An object of the present invention is to provide a powder of ε-Fe 2 O 3 crystals having improved dispersibility.

上記目的を達成するために、本発明では、ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の粒子からなり、TEM写真により測定される粒子径において、平均粒子径が10〜200nm、かつ、粒子径10nm未満の粒子の個数割合が25%以下好ましくは8%以下である磁性粉末が提供される。なかでも充填性の良好な粉末として、さらに[粒子径の標準偏差]/[平均粒子径]×100で表される変動係数が50%以下好ましくは40%以下であるように粒度調整されているものが提供される。前記のMは、例えばAl、Ga、Inの1種以上からなる。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。
In order to achieve the above object, the present invention comprises iron oxide particles whose main phase is an ε-Fe 2 O 3 crystal (including one in which a part of Fe site is substituted with a metal element M), A magnetic powder having an average particle diameter of 10 to 200 nm and a number ratio of particles having a particle diameter of less than 10 nm in a particle diameter measured by a TEM photograph is 25% or less, preferably 8% or less. Among them, as a powder having good filling properties, the particle size is adjusted so that the coefficient of variation represented by [standard deviation of particle diameter] / [average particle diameter] × 100 is 50% or less, preferably 40% or less. Things are provided. Said M consists of 1 or more types, for example, Al, Ga, and In.
However, when the molar ratio of M to Fe in the iron oxide is expressed as M: Fe = x: (2-x), 0 ≦ x <1.

上記の「鉄酸化物」は、この磁性粉末の粒子において、(i)α−Fe23と空間群が同じである結晶、(ii)γ−Fe23と空間群が同じである結晶、(iii)ε−Fe23と空間群が同じである結晶、(iv)Fe34と空間群が同じである結晶、および(v)FeOと空間群が同じである結晶のうち、1種以上で構成される部分である。「主相」とは、上記(i)〜(v)の各結晶のうち、鉄酸化物全体に占めるモル比が50モル%以上である結晶を意味する。これら各結晶のモル比は、X線回折に基づくリードベルト法による解析で見積もることができる。 In the above-mentioned “iron oxide”, in this magnetic powder particle, (i) a crystal having the same space group as α-Fe 2 O 3 and (ii) a space group being the same as γ-Fe 2 O 3 (Iii) a crystal having the same space group as ε-Fe 2 O 3 , (iv) a crystal having the same space group as Fe 3 O 4 , and (v) a crystal having the same space group as FeO. Among these, it is a part comprised by 1 or more types. The “main phase” means a crystal having a molar ratio of 50 mol% or more to the whole iron oxide among the crystals of the above (i) to (v). The molar ratio of each of these crystals can be estimated by analysis by a lead belt method based on X-ray diffraction.

本発明の磁性粉末では、この主相はε−Fe23結晶である。ただし、本明細書でいう「ε−Fe23結晶」には、特に断らない限り、Feサイトが他の元素で置換されていない純粋なε−Fe23結晶の他、Feサイトの一部が3価の金属元素Mで置換されており、前記純粋なε−Fe23結晶と空間群が同じである(すなわち空間群がPna21である)結晶が含まれる。 In the magnetic powder of the present invention, this main phase is ε-Fe 2 O 3 crystal. However, “ε-Fe 2 O 3 crystal” as used in this specification includes, unless otherwise specified, a pure ε-Fe 2 O 3 crystal in which the Fe site is not substituted with other elements, A crystal partially including a trivalent metal element M and having the same space group as the pure ε-Fe 2 O 3 crystal (that is, the space group is Pna2 1 ) is included.

また本発明では特に、分散性の良好な粉末として、前記鉄酸化物の粒子の表面にSi酸化物が存在している、鉄酸化物とSi酸化物の複合粒子からなり、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%に調整されている粉末が提供される。このSi酸化物は、SiO2を主体とするシリカ成分であると考えられるが、その形態は必ずしも結晶質とは限らず、ブロードなX線回折ピークを呈するアモルファス状のものであって構わない。存在量が少ないときはブロードなX線回折ピークも検出されない場合もある。またこの磁性粉末として、単磁区構造の磁性粒子で構成されるものが提供される。 Further, in the present invention, as a powder having good dispersibility, it is composed of a composite particle of iron oxide and Si oxide, in which Si oxide is present on the surface of the iron oxide particle, and Si / (Fe + M) A powder in which the Si content represented by x100 is adjusted to 0.1 to 30 mol% is provided. This Si oxide is considered to be a silica component mainly composed of SiO 2 , but the form is not necessarily crystalline, and may be an amorphous one exhibiting a broad X-ray diffraction peak. When the abundance is small, a broad X-ray diffraction peak may not be detected. Further, as the magnetic powder, a powder composed of magnetic particles having a single magnetic domain structure is provided.

本発明の磁性粉末の磁気特性として、保磁力Hcが1000〜15000 Oe(7.96×104〜1.19×106A/m)であり、かつSFD(switching field distribution)が0.80以下好ましくは0.55以下であるものが好適な対象となる。 As magnetic characteristics of the magnetic powder of the present invention, the coercive force Hc is 1000 to 15000 Oe (7.96 × 10 4 to 1.19 × 10 6 A / m), and SFD (switching field distribution) is 0.80. A preferable target is below 0.55 or less.

TEM(透過型電子顕微鏡)写真からの平均粒子径の計測は、60万倍に拡大したTEM写真画像から各粒子の最も大きな径(ロッド状のものでは長軸径)を測定することにより求めることができる。独立した粒子300個について求めた粒子径の平均値を、その粉末の平均粒子径とする。以下、これを「TEM平均粒子径」ということがある。粒子径の標準偏差は、測定した各粒子の粒子径をマイクロソフト社の表計算ソフト「エクセル」に組み込まれているSTDEV関数を使って算出することができる。   Measurement of the average particle diameter from a TEM (transmission electron microscope) photograph is obtained by measuring the largest diameter of each particle (major axis diameter in the case of a rod-shaped one) from a TEM photograph image magnified 600,000 times. Can do. Let the average value of the particle diameter calculated | required about 300 independent particle | grains be the average particle diameter of the powder. Hereinafter, this may be referred to as “TEM average particle diameter”. The standard deviation of the particle diameter can be calculated by using the STDEV function incorporated in the spreadsheet software “Excel” of Microsoft Corporation for the measured particle diameter of each particle.

(1)この磁性粉末は常温付近で非常に高い保磁力Hcが得られるので、磁気記録媒体の信頼性向上に寄与できる。また、その保磁力は添加元素Mの含有量によってコントロールできるので、保磁力が高すぎるためにε−Fe23が使えなかった磁性用途においても、使用可能な範囲において、できるだけ高い保磁力を有する磁性材料の提供が可能となる。
(2)この磁性粉末は、鉄が3価まで酸化された鉄酸化物の粒子からなるので、従来のメタル系磁性粉末と比べ、大気環境での耐食性が極めて良好である。
(3)この磁性粉末は、粒子径が極めて小さい「超常磁性」の粒子の存在割合が少なくなるように粒度調整されているので、角形比SQが改善された良好な磁気特性が得られる。また、特に粒子径が狭い範囲に揃ったシャープな粒度分布の磁性粉末が提供され、高分子基材中などへの充填性が向上することにより、ε−Fe23結晶に特有の高保磁力特性や電波吸収特性の顕著な発揮が期待される。
(4)粒子表面に適量のSi酸化物を有するものでは、液中や高分子基材中における粉末粒子の分散性が改善され、特に高分子基材中での磁場配向による顕著な特性向上効果が期待される。
(1) Since this magnetic powder has a very high coercive force Hc near room temperature, it can contribute to the improvement of the reliability of the magnetic recording medium. In addition, since the coercive force can be controlled by the content of the additive element M, even in magnetic applications where ε-Fe 2 O 3 cannot be used because the coercive force is too high, the coercive force is as high as possible within the usable range. It is possible to provide a magnetic material having the same.
(2) Since this magnetic powder consists of iron oxide particles in which iron is oxidized to trivalent, the corrosion resistance in the air environment is extremely good as compared with the conventional metal-based magnetic powder.
(3) Since this magnetic powder is adjusted in particle size so that the existence ratio of “superparamagnetic” particles having a very small particle diameter is reduced, good magnetic characteristics with improved squareness ratio SQ can be obtained. In addition, a magnetic powder having a sharp particle size distribution with a particularly narrow particle size is provided, and the high coercivity unique to the ε-Fe 2 O 3 crystal is improved by improving the filling property in a polymer base material. It is expected that the characteristics and radio wave absorption characteristics will be remarkably exhibited.
(4) In the case of having an appropriate amount of Si oxide on the particle surface, the dispersibility of the powder particles in the liquid or in the polymer base material is improved. There is expected.

非特許文献1〜3に記載されるように、逆ミセル法とゾル−ゲル法を組み合わせた工程と、熱処理(焼成)工程により、ε−Fe23ナノ微粒子を合成することができ、本発明でもこの合成プロセスを利用することができる。逆ミセル法は、界面活性剤を含んだ2種類のミセル溶液、すなわちミセル溶液I(原料ミセル)とミセル溶液II(中和剤ミセル)を混合することによって、ミセル内で水酸化鉄の沈殿反応を進行させることを要旨とする。ゾル−ゲル法は、ミセル内で生成した水酸化鉄微粒子の表面にシリカコーティングを施すことを要旨とする。表面がシリカで覆われた水酸化鉄微粒子は、液から分離されたあと、所定の温度(700〜1300℃の範囲内)で大気雰囲気下での熱処理に供される。この熱処理によりε−Fe23結晶が合成される。この結晶を主相とする鉄酸化物の粉末に対して、例えば分級操作を施す手法を利用して粒度分布を調整することによって、本発明の磁性粉末を得ることができる。 As described in Non-Patent Documents 1 to 3, ε-Fe 2 O 3 nanoparticles can be synthesized by a process combining a reverse micelle method and a sol-gel method and a heat treatment (firing) step. This synthesis process can also be used in the invention. In the reverse micelle method, two types of micelle solution containing a surfactant, ie, micelle solution I (raw material micelle) and micelle solution II (neutralizer micelle) are mixed to precipitate iron hydroxide in the micelle. The gist of this is to proceed. The gist of the sol-gel method is to apply a silica coating to the surface of the iron hydroxide fine particles generated in the micelle. The iron hydroxide fine particles whose surface is covered with silica are separated from the liquid and then subjected to a heat treatment in an air atmosphere at a predetermined temperature (in the range of 700 to 1300 ° C.). By this heat treatment, ε-Fe 2 O 3 crystals are synthesized. The magnetic powder of the present invention can be obtained by adjusting the particle size distribution using, for example, a classification operation for the iron oxide powder containing the crystal as a main phase.

より具体的には、例えば以下のようにする。
n−オクタンを油相とするミセル溶液Iの水相には、鉄源としての硝酸鉄(III)、鉄の一部を金属元素Mで置換させる場合はM源としてのM硝酸塩(例えばAlの場合、硝酸アルミニウム(III)9水和物、Gaの場合、硝酸ガリウム(III)n水和物、Inの場合、硝酸インジウム(III)3水和物)、および界面活性剤(例えば臭化セチルトリメチルアンモニウム)を溶かし、同じくn−オクタンを油相とするミセル溶液IIの水相にはアンモニア水溶液を用いる。その際、ミセル溶液Iの水相に適量のアルカリ土類金属(Ba、Sr、Caなど)の硝酸塩を溶解させておくことができる。これらアルカリ土類金属の硝酸塩は形状制御剤として機能する。すなわち、アルカリ土類金属が液中に存在すると最終的にロッド形状のε−Fe23結晶を得ることができる。形状制御剤がない場合は、粒状のε−Fe23結晶を得ることができる。
More specifically, for example, the following is performed.
In the aqueous phase of the micelle solution I having n-octane as the oil phase, iron nitrate (III) as an iron source is used. When a part of iron is replaced with the metal element M, M nitrate (for example, Al Aluminum nitrate (III) 9 hydrate, Ga, gallium nitrate (III) n hydrate, In, indium nitrate (III) trihydrate), and surfactants (eg cetyl bromide) An aqueous ammonia solution is used for the aqueous phase of micelle solution II in which trimethylammonium) is dissolved and n-octane is used as the oil phase. At that time, an appropriate amount of alkaline earth metal (Ba, Sr, Ca, etc.) nitrate can be dissolved in the aqueous phase of the micelle solution I. These alkaline earth metal nitrates function as shape control agents. That is, when alkaline earth metal is present in the liquid, a rod-shaped ε-Fe 2 O 3 crystal can be finally obtained. When there is no shape control agent, granular ε-Fe 2 O 3 crystals can be obtained.

両ミセル溶液IとIIを合体させたあと、ゾル−ゲル法を併用する。すなわち、シラン(例えばテトラエトキシシラン、テトラメトキシシラン)を合体液に滴下しながら攪拌を続け、ミセル内で水酸化鉄の生成反応を進行させる。これにより、ミセル内で生成する微細な水酸化鉄沈殿の粒子表面にはシランの加水分解によって生成したシリカがコーティングされる。次いで、シリカコーティングされた水酸化鉄粒子を液から分離・洗浄・乾燥して得た粒子粉体を炉内に装入し、空気中で700〜1300℃、好ましくは900〜1200℃、さらに好ましくは950〜1150℃の温度範囲で熱処理(焼成)する。この熱処理によりシリカコート内で酸化反応が進行して、微細な水酸化鉄粒子は微細なε−Fe23粒子に変化する。この酸化反応の際に、シリカコートの存在がα−Fe23やγ−Fe23の結晶ではなく、ε−Fe23結晶の生成に寄与すると共に、粒子同士の焼結を防止する作用を果たす。 After combining both micelle solutions I and II, the sol-gel method is used in combination. That is, stirring is continued while dripping silane (for example, tetraethoxysilane, tetramethoxysilane) into the combined liquid, and the reaction of producing iron hydroxide proceeds in the micelle. As a result, the surface of fine particles of iron hydroxide produced in the micelle is coated with silica produced by hydrolysis of silane. Next, the particle powder obtained by separating, washing, and drying the silica-coated iron hydroxide particles from the liquid is charged into a furnace, and 700 to 1300 ° C, preferably 900 to 1200 ° C, more preferably in air. Is heat-treated (fired) in a temperature range of 950 to 1150 ° C. By this heat treatment, an oxidation reaction proceeds in the silica coat, and the fine iron hydroxide particles are changed to fine ε-Fe 2 O 3 particles. During this oxidation reaction, the presence of the silica coat contributes to the formation of ε-Fe 2 O 3 crystals, not α-Fe 2 O 3 or γ-Fe 2 O 3 crystals, and the particles are sintered together. Acts to prevent.

熱処理(焼成)前の段階で、シリカコートの量は、原料中に含まれるSi含有量がSi/(Fe+M)×100で表されるモル比で50〜1000モル%の範囲とすることができる。平均粒子径を小さくする場合ほどシリカコートの量を多くすることが望ましい。シリカコートの量が上記のモル比で50モル%未満の量だと、粒子の焼結による粗大化が顕著になり、またα−Fe23結晶が生成しやすくなるので好ましくない。例えば、磁気記録に適した粒子径が100nm以下の焼結の少ない磁性粉末を得るためには上記Si含有量が100モル%以上のシリカコートを施すことが好ましい。一方、1000モル%を超えて過剰にシリカコートを施しても、粒子径は顕著には変化しないため、経済的に好ましくない。 In the stage before the heat treatment (firing), the amount of the silica coat can be in the range of 50 to 1000 mol% in terms of the molar ratio expressed by Si / (Fe + M) × 100 in the Si content contained in the raw material. . It is desirable to increase the amount of silica coat as the average particle size is reduced. When the amount of the silica coat is less than 50 mol% in the above molar ratio, coarsening due to sintering of the particles becomes remarkable and α-Fe 2 O 3 crystals are easily formed, which is not preferable. For example, in order to obtain a magnetic powder having a particle size of 100 nm or less suitable for magnetic recording and having little sintering, it is preferable to apply a silica coat having a Si content of 100 mol% or more. On the other hand, an excessive silica coating exceeding 1000 mol% is not economically preferable because the particle diameter does not change significantly.

熱処理(焼成)によって合成されるε−Fe23結晶を主相とする鉄酸化物粒子の粒子径は、熱処理(焼成)前の段階におけるシリカコートの量、焼成温度、焼成時間を調整することによりコントロール可能である。一般にシリカコートの量を多くすると平均粒子径は小さくなる。また、焼成温度を低くすると比較的小径側に狭い粒度分布を持つ粉末が得られやすい。しかしこの場合、結晶化が不十分となったり、超常磁性を示す極微細粒子の存在割合が多くなったりして磁気特性の低下を招きやすい。一方、焼成温度を高くすると粒子径のバラツキが大きいブロードな粒度分布の粉末が得られやすい。この場合、粒子の充填度が高い磁気記録媒体や電波吸収体を構築することが難しくなる。また、効果的な磁場配向を行うことが難しくなる。 The particle diameter of the iron oxide particles mainly composed of ε-Fe 2 O 3 crystals synthesized by heat treatment (firing) adjusts the amount of silica coat, the firing temperature, and the firing time before the heat treatment (firing). Can be controlled. In general, when the amount of silica coat is increased, the average particle size is decreased. Further, when the firing temperature is lowered, a powder having a narrow particle size distribution on the relatively small diameter side is easily obtained. However, in this case, crystallization is insufficient, or the presence ratio of ultrafine particles exhibiting superparamagnetism is increased, which tends to cause a decrease in magnetic properties. On the other hand, when the firing temperature is increased, a powder having a broad particle size distribution with a large variation in particle diameter is easily obtained. In this case, it becomes difficult to construct a magnetic recording medium or a radio wave absorber having a high degree of particle filling. In addition, it is difficult to perform effective magnetic field orientation.

このように、焼成時の粒子径コントロールだけでは、所望の粒度分布にコントロールすることは極めて困難である。そこで、上記のプロセスを利用してε−Fe23結晶を合成する場合、粒度分布をコントロールするには「分級」の操作を行うことが有効となる。ただし、分級を効率的に行うためには、粉末粒子が液中に十分に分散していることが重要である。したがって、分級に先立って、分散性を改善する処理を行うことが望ましい。 Thus, it is extremely difficult to control to a desired particle size distribution only by controlling the particle size during firing. Therefore, when the ε-Fe 2 O 3 crystal is synthesized using the above process, it is effective to perform a “classification” operation in order to control the particle size distribution. However, in order to perform classification efficiently, it is important that the powder particles are sufficiently dispersed in the liquid. Therefore, it is desirable to perform a process for improving dispersibility prior to classification.

分散性を改善する処理としては、上記のようにゾル−ゲル工程でシリカコーティングを施す場合には、熱処理(焼成)後に、そのシリカコートの大部分を除去し、適量のSi酸化物が鉄酸化物粒子の表面に存在するようにコントロールすることが有効である。シリカコートの除去は、NaOHやKOHなどの強アルカリを溶解させた水溶液中に、熱処理後の磁性粉末を入れて、撹拌することにより実施できる。溶解速度を上げる場合は、アルカリ溶液を加温するとよい。代表的には、NaOHなどのアルカリをシリカ分に対して、3モル倍以上添加し、水溶液温度が60〜70℃の状態で、磁性粉末を入れ撹拌すると、シリカを良好に溶解することができる。ただし、粒子表面に存在するSi酸化物の量をSi/(Fe+M)×100で表されるSi含有量が0.1〜30モル%になるように調整するためには、後述実施例に示す〔手順6−2〕のようにして、再溶解処理を実施することが極めて有効である。アルカリとしては、NaOHに限らず、NH3や、場合によってはN(CH34OHのような有機アルカリの水溶液を用いても構わない。 As a treatment for improving dispersibility, when silica coating is applied in the sol-gel process as described above, most of the silica coat is removed after heat treatment (firing), and an appropriate amount of Si oxide is oxidized by iron. It is effective to control it so that it exists on the surface of the object particle. The removal of the silica coat can be carried out by putting the magnetic powder after the heat treatment in an aqueous solution in which a strong alkali such as NaOH or KOH is dissolved and stirring. In order to increase the dissolution rate, the alkaline solution may be heated. Typically, when alkali such as NaOH is added 3 mol times or more with respect to the silica content, and the magnetic powder is added and stirred while the aqueous solution temperature is 60 to 70 ° C., the silica can be dissolved well. . However, in order to adjust the amount of Si oxide present on the particle surface so that the Si content represented by Si / (Fe + M) × 100 is 0.1 to 30 mol%, it will be described in the examples below. It is extremely effective to perform the re-dissolution treatment as in [Procedure 6-2]. The alkali is not limited to NaOH, and an aqueous solution of organic alkali such as NH 3 or, in some cases, N (CH 3 ) 4 OH may be used.

このようなシリカコートの除去手法を用いて、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%になるように磁性粒子表面のSi酸化物の量をコントロールすることにより、分級に適した分散性の良い粉末が得られる。磁性粒子表面のSi酸化物はSiO2として存在していると考えられるが、前述のようにX線回折ピークがブロードなアモルファス状の状態として存在していて構わない。SiO2は、水中では等電点がpH2前後にあり、そのため、pH3以上の広いpH範囲において水中での高い分散性を示す。シリカコートの除去試験を進めるうちに、Si/(Fe+M)×100によるSi含有量が0.1モル%を下回ると、液中での分散性の低下が観測された。この場合、Si酸化物は鉄酸化物粒子の表面に島状に存在しているものと考えられる。このため、シリカコートを完全に除去してしまうのではなく、上式によるSi含有量が0.1モル%以上になるようにSi酸化物を残す。 Using such a silica coat removal method, the amount of Si oxide on the surface of the magnetic particles is controlled so that the Si content represented by Si / (Fe + M) × 100 is 0.1 to 30 mol%. Thus, a powder with good dispersibility suitable for classification can be obtained. Although it is considered that the Si oxide on the surface of the magnetic particles exists as SiO 2, as described above, the X-ray diffraction peak may exist in a broad amorphous state. SiO 2 has an isoelectric point around pH 2 in water, and therefore exhibits high dispersibility in water in a wide pH range of pH 3 or higher. As the silica coating removal test proceeded, when the Si content by Si / (Fe + M) × 100 was less than 0.1 mol%, a decrease in dispersibility in the liquid was observed. In this case, it is considered that the Si oxide exists in an island shape on the surface of the iron oxide particles. For this reason, the silica coat is not completely removed, but the Si oxide is left so that the Si content according to the above formula becomes 0.1 mol% or more.

Si/(Fe+M)×100によるSi含有量が0.1モル%未満の場合、Si酸化物は鉄酸化物粒子の表面に島状に存在しているものと考えられる。ところが、0.1モル%以上の範囲では、鉄酸化物の粒子表面がほぼ完全にSi酸化物で覆われた状態になると推測され、液中での分散性が顕著に改善される。Si/(Fe+M)×100によるSi含有量が0.5モル%以上となるようにSi酸化物を存在させることがより好ましく、1モル%以上とすることが一層好ましい。   When the Si content by Si / (Fe + M) × 100 is less than 0.1 mol%, the Si oxide is considered to be present in the form of islands on the surface of the iron oxide particles. However, in the range of 0.1 mol% or more, it is presumed that the iron oxide particle surface is almost completely covered with Si oxide, and the dispersibility in the liquid is remarkably improved. The Si oxide is more preferably present such that the Si content by Si / (Fe + M) × 100 is 0.5 mol% or more, and more preferably 1 mol% or more.

一方、鉄酸化物粒子の表面に存在するSi酸化物の量が過剰に多いと、Si酸化物同士が、磁性粒子同士を架橋するようになり、激しい場合は、Si酸化物中に磁性粒子が、分散しているような構造体となる。こうなると、分級は極めて困難となる。種々検討の結果、Si/(Fe+M)×100によるSi含有量が30モル%以下の範囲になるようにSi酸化物の付着量をコントロールする必要がある。20モル%以下の範囲とすることがより好ましく、10モル%以下が一層好ましく、5モル%以下がさらに一層好ましい。   On the other hand, if the amount of the Si oxide present on the surface of the iron oxide particles is excessively large, the Si oxides crosslink the magnetic particles, and if severe, the magnetic particles are contained in the Si oxide. It becomes a structure that is dispersed. If this happens, classification becomes extremely difficult. As a result of various studies, it is necessary to control the amount of Si oxide deposited so that the Si content by Si / (Fe + M) × 100 is within a range of 30 mol% or less. More preferably, it is within the range of 20 mol% or less, more preferably 10 mol% or less, and even more preferably 5 mol% or less.

磁性粒子の表面コーティング物質は、シリカに限らず、化学的に安定で、融点の高い物質であり、かつ磁性粒子を溶解させずに除去可能な物質であれば、ゾル−ゲル工程を利用して種々のものが使用できると考えられる。例えば、低温で合成されるアルミナは、シリカと同様にアルカリにより容易に除去できるため、好ましい。また、カルシアやマグネシアも、弱酸で容易に溶解できるため、磁性粒子の溶解を最小限にとどめ溶解させることが可能であり、使用できると考えられる。   The surface coating material for magnetic particles is not limited to silica, but is a chemically stable, high melting point material that can be removed without dissolving the magnetic particles. It is thought that various things can be used. For example, alumina synthesized at a low temperature is preferable because it can be easily removed by alkali like silica. In addition, calcia and magnesia can be easily dissolved with a weak acid, so that the dissolution of magnetic particles can be minimized and used.

分級の操作は、粒子径による液中での沈降速度の違いを利用した一般的な手法を利用して実施できる。具体的には、例えば上記のように液中での分散性を改善する処理を施すなどして、分散性の良好な磁性粉末を用意する。ただし、液中のイオン強度が高い場合は粒子同士の静電的反発力が損なわれるため分散状態が作りにくい。この場合は、適切な方法で上記磁性粉末を洗浄し、それを純水に分散したときに、水溶液の導電率が1mS/m(ミリジーメンス)以下になるようにすると、磁性粉末が水中に良好に分散した混濁液を得ることができる。磁性粉末が分散した混濁液を遠心分離器にかけ、所定の回転数で遠心分離を実施すると、その遠心力で沈降する大きさの粒子のみが沈降し、その他の粒子は、分散したまま液中にとどまる。これにより、粒子を分級することができる。   The classification operation can be carried out using a general method using the difference in the sedimentation speed in the liquid depending on the particle diameter. Specifically, a magnetic powder having good dispersibility is prepared, for example, by performing a treatment for improving dispersibility in a liquid as described above. However, when the ionic strength in the liquid is high, the electrostatic repulsion between the particles is impaired, so that it is difficult to create a dispersed state. In this case, when the magnetic powder is washed by an appropriate method and dispersed in pure water, the magnetic powder is good in water if the conductivity of the aqueous solution is 1 mS / m (milli Siemens) or less. A turbid liquid dispersed in can be obtained. When the turbid liquid in which the magnetic powder is dispersed is applied to a centrifuge and centrifuged at a predetermined rotational speed, only particles of a size that settles by the centrifugal force settles, and other particles remain dispersed in the liquid. Stay. Thereby, particles can be classified.

ただし、このように方法で分級を成功させるためには、磁性粉末が1粒子ずつ極めて良好に、液中に分散することが重要である。粒子が凝集している場合は、その凝集体の大きさで沈降してしまため、一次粒子のレベルでの分級は望めない。シリカコーティングの溶解除去に、N(CH34OH水溶液を用いた場合は、N(CH34OHが分散剤としても作用するため、より良好な分散状態を保つことができる。 However, in order to succeed in classification by such a method, it is important that the magnetic powder is dispersed in the liquid very well one by one. If the particles are agglomerated, they will settle at the size of the agglomerates, so classification at the primary particle level cannot be expected. The dissolution removal of the silica coating, the case of using N (CH 3) 4 OH aqueous solution, since N (CH 3) 4 OH acts as a dispersing agent, it is possible to maintain a better dispersion state.

磁気特性を改善させる観点からは、超常磁性を示す極微細粒子をできるだけ除去するように分級を行うことが極めて効果的である。具体的には、粒子径が5nmより小さい粒子は、超常磁性であり、硬磁性体的振る舞いは示さず、軟磁性体的に振る舞うため、5nmより小さい粒子が多く含まれると、その超常磁性の影響により粉体の磁気特性が著しく低下する。また、5〜10nmの範囲の粒子径も、すでに単磁区構造をとる臨界半径より小さいことが予想され、磁気特性の低下が観察される。したがって、粒子径5nm未満の粒子、好ましくは10nm未満の粒子はできるだけ除去されていることが好ましい。種々検討の結果、TEM写真により測定される粒子径において、粒子径10nm未満の粒子の個数割合が25%以下、好ましくは10%以下、さらに好ましくは8%以下であるように粒度調整することが、超常磁性の悪影響を回避する上で極めて有効である。   From the viewpoint of improving magnetic characteristics, it is extremely effective to perform classification so as to remove as much as possible ultrafine particles exhibiting superparamagnetism. Specifically, particles having a particle size of less than 5 nm are superparamagnetic and do not exhibit a hard magnetic behavior, and behave like a soft magnetic material. The magnetic properties of the powder are significantly reduced due to the influence. In addition, the particle diameter in the range of 5 to 10 nm is also expected to be smaller than the critical radius already having a single magnetic domain structure, and a decrease in magnetic properties is observed. Therefore, it is preferable that particles having a particle diameter of less than 5 nm, preferably particles of less than 10 nm, are removed as much as possible. As a result of various studies, the particle size can be adjusted so that the number ratio of particles having a particle diameter of less than 10 nm is 25% or less, preferably 10% or less, and more preferably 8% or less in the particle diameter measured by a TEM photograph. It is extremely effective in avoiding the adverse effects of superparamagnetism.

このような磁気特性を改善した磁性粉末のTEM平均粒子径は10〜200nmの範囲であることが望ましく、10〜100nmの範囲であることがより好ましい。現在市販されているデータバックアップ用磁気記録テープにおいては、その磁性粒子の平均粒子径が200nm以下のものが殆どであり、これより微細な磁性粒子のものが求められている。   The TEM average particle size of the magnetic powder with improved magnetic properties is preferably in the range of 10 to 200 nm, and more preferably in the range of 10 to 100 nm. Most of magnetic recording tapes for data backup currently on the market have an average particle size of 200 nm or less, and finer magnetic particles are required.

磁気記録媒体や電波吸収体における磁性粒子の充填性を改善する観点からは、個々の粒子の粒子径ができるだけ狭い粒径範囲に揃っていることが望ましい。ただし、平均粒子径の変動に応じて、許容される粒子径のバラツキ(標準偏差)も変動する。発明者らの検討によれば、TEM写真により測定される粒子径において、[粒子径の標準偏差]/[平均粒子径]×100で表される変動係数が50%以下であるような粒度分布をとることが、充填性向上に効果的である。変動係数が40%以下であることがより好ましい。粒子径10nm未満の粒子の割合を上記のように低減したε−Fe23結晶の粉体において、変動係数を安定的に30%以下にコントロールする手法は現時点で確立されていないが、将来的にはそのような粉体を得ることも可能になると考えられる。 From the viewpoint of improving the packing properties of the magnetic particles in the magnetic recording medium and the radio wave absorber, it is desirable that the particle diameters of the individual particles are as narrow as possible. However, the variation (standard deviation) in the allowable particle diameter varies depending on the variation in the average particle diameter. According to the study by the inventors, the particle size distribution such that the variation coefficient represented by [standard deviation of particle size] / [average particle size] × 100 in the particle size measured by the TEM photograph is 50% or less. It is effective to improve the filling property. More preferably, the coefficient of variation is 40% or less. In the ε-Fe 2 O 3 crystal powder in which the proportion of particles having a particle diameter of less than 10 nm is reduced as described above, a method for stably controlling the coefficient of variation to 30% or less has not been established at present. In particular, it is considered possible to obtain such a powder.

変動係数のコントロールは、[1]シリカコートの量、焼成温度および焼成時間、[2]シリカコートの除去(分散性の確保)、[3]分級操作、という3者の条件を組み合わせることによって可能となる。   The coefficient of variation can be controlled by combining three conditions: [1] amount of silica coat, firing temperature and firing time, [2] removal of silica coat (ensuring dispersibility), and [3] classification operation. It becomes.

ところで、上記のようなε−Fe23結晶の合成においては、ε−Fe23結晶と空間群を異にする鉄酸化物結晶(不純物結晶)が混在する場合がある。そのような不純物結晶として、α−Fe23、γ−Fe23、FeO、Fe34が挙げられる。金属元素Mが添加されている場合は、これらの不純物結晶のFeの一部もMで置換されている可能性がある。不純物結晶の混在は、ε−Fe23結晶の特性をできるだけ多く引き出す上で好ましいとは言えないが、本発明の効果を阻害しない範囲で許容される。 By the way, in the synthesis of the ε-Fe 2 O 3 crystal as described above, an ε-Fe 2 O 3 crystal may be mixed with an iron oxide crystal (impurity crystal) having a different space group. Examples of such impurity crystals include α-Fe 2 O 3 , γ-Fe 2 O 3 , FeO, and Fe 3 O 4 . When the metal element M is added, part of Fe in these impurity crystals may be substituted with M. Mixing of impurity crystals is not preferable for extracting as much of the characteristics of the ε-Fe 2 O 3 crystal as possible, but is allowed as long as the effects of the present invention are not impaired.

例えば、鉄酸化物中に占めるε−Fe23結晶の割合が75モル%以上である場合は、従来の磁性材料では実現が難しかった優れた磁気特性を呈し、種々の磁性用途で有用である。鉄酸化物中に占めるε−Fe23結晶の割合が50〜75モル%未満であっても、飽和磁化σsが2emu/g(2A・m2/kg)以上を満たすような磁性材料であれば、高感度の読み取り磁気ヘッドであるGMR(巨大磁気抵抗効果)ヘッドやさらに高感度であるトンネル効果を利用したTMRヘッドを利用すると、書き込んだ信号を高い強度で読み取ることが可能であり、用途をなす。 For example, when the ratio of ε-Fe 2 O 3 crystal in iron oxide is 75 mol% or more, it exhibits excellent magnetic properties that are difficult to realize with conventional magnetic materials, and is useful in various magnetic applications. is there. Even if the ratio of the ε-Fe 2 O 3 crystal in the iron oxide is less than 50 to 75 mol%, the magnetic material satisfies the saturation magnetization σs of 2 emu / g (2 A · m 2 / kg) or more. If there is a GMR (giant magnetoresistive effect) head that is a high-sensitivity read magnetic head or a TMR head that uses the tunnel effect that is more sensitive, it is possible to read the written signal with high intensity, Make use.

置換元素Mについては、発明者らの詳細な検討によれば、置換量に応じて、ε−Fe23結晶の保磁力Hcをコントロールしやすい元素Mとして、AlおよびGaを挙げることができる。実例を挙げると、置換後の結晶をε−MxFe2-x3と表記するとき、MがAlの場合、x=0(Al無添加の粒状粒子粉体)のときHc=17.6kOe(1.40×106A/m)、x=0.4のときHc=11.8kOe(0.94×106A/m)、x=0.5のときHc=11.1kOe(0.88×106A/m)、x=0.6のときHc=9.7kOe(0.77×106A/m)、x=0.7のときHc=7.6kOe(0.61×106A/m)といった保磁力Hcの変化挙動が見られた。またMがGaの場合、x=0(Ga無添加、形状制御剤Ba添加有りのロッド状粒子粉体)のときHc=19.0kOe(1.512×106A/m)、x=0.22のときHc=15.3kOe(1.22×106A/m)、x=0.43のときHc=10.7kOe(0.851×106A/m)、x=0.62のときHc=6.5kOe(0.52×106A/m)、x=0.80のときHc=1.3kOe(0.10×106A/m)といった挙動が見られた。 Regarding the substitution element M, according to detailed examinations by the inventors, Al and Ga can be mentioned as the element M that can easily control the coercive force Hc of the ε-Fe 2 O 3 crystal according to the substitution amount. . For example, when the crystal after substitution is expressed as ε-M x Fe 2−x O 3 , when M is Al, when x = 0 (aluminum-free granular particle powder), Hc = 17. 6 kOe (1.40 × 10 6 A / m), when x = 0.4, Hc = 11.8 kOe (0.94 × 10 6 A / m), when x = 0.5, Hc = 11.1 kOe ( 0.88 × 10 6 A / m), when x = 0.6, Hc = 9.7 kOe (0.77 × 10 6 A / m), and when x = 0.7, Hc = 7.6 kOe (0.6). A change behavior of the coercive force Hc such as 61 × 10 6 A / m) was observed. When M is Ga, Hc = 19.0 kOe (1.512 × 10 6 A / m) and x = 0 when x = 0 (rod-shaped particle powder with no addition of Ga and shape control agent Ba) Hc = 15.3 kOe (1.22 × 10 6 A / m) when .22, Hc = 10.7 kOe (0.851 × 10 6 A / m) when x = 0.43, x = 0.62 Hc = 6.5 kOe (0.52 × 10 6 A / m), and when x = 0.80, Hc = 1.3 kOe (0.10 × 10 6 A / m).

また、ロッド形状のε−Fe23結晶を得る場合に添加されるアルカリ土類金属(Ba、Sr、Caなど)は、通常、生成する結晶の表層部などに存在する。これらのアルカリ土類金属元素をAと表示するとき、その存在量(含有量)は、多くてもA/(Fe+M)×100で表される配合比が20質量%以下の範囲であり、20質量%を超えるアルカリ土類金属の含有は、形状制御剤としての機能を果たす上では一般に不必要である。10質量%以下であることがより好ましい。 In addition, alkaline earth metals (Ba, Sr, Ca, etc.) that are added to obtain rod-shaped ε-Fe 2 O 3 crystals are usually present in the surface layer of the crystals to be produced. When these alkaline earth metal elements are denoted as A, the abundance (content) is at most a blending ratio represented by A / (Fe + M) × 100 within a range of 20% by mass or less, 20 The inclusion of alkaline earth metal in excess of mass% is generally unnecessary in order to function as a shape control agent. More preferably, it is 10 mass% or less.

なお、前述のとおり本発明のε−Fe23結晶の合成については、その前駆体となる水酸化鉄と水酸化アルミニウムの超微粒子を逆ミセル法で作製する例を挙げたが、数百nm以下の同様の前駆体が作製できれば、その前駆体作製は特に逆ミセル法に限られるものではない。 As described above, for the synthesis of the ε-Fe 2 O 3 crystal of the present invention, an example in which ultrafine particles of iron hydroxide and aluminum hydroxide as precursors thereof are produced by the reverse micelle method has been given. If a similar precursor of nm or less can be produced, the production of the precursor is not particularly limited to the reverse micelle method.

ε−Fe23結晶を以下の手順に従って合成した。置換元素MとしてGaを使用した。 ε-Fe 2 O 3 crystals were synthesized according to the following procedure. Ga was used as the substitution element M.

《ε−Fe23結晶の合成》
〔手順1〕
ミセル溶液Iとミセル溶液IIの2種類のミセル溶液を調整する。
・ミセル溶液Iの作製
テフロン(登録商標)製のフラスコに、純水6mL、n−オクタン18.3mLおよび1−ブタノール3.7mLを入れる。そこに、硝酸鉄(III)9水和物を0.00240モル、硝酸ガリウム(III)n水和物(和光純薬工業株式会社製の純度99.9%でn=7〜9のものを使用し、使用に当たっては事前に定量分析を行ってnを特定してから仕込み量を計算した)を0.00060モル添加し、室温で良く撹拌しながら溶解させる。さらに、界面活性剤としての臭化セチルトリメチルアンモニウムを、純水/界面活性剤のモル比が30となるような量で添加し、撹拌により溶解させ、ミセル溶液Iを得る。
このときの仕込み組成は、GaとFeのモル比をGa:Fe=x:(2−x)と表すときx=0.40である。
<< Synthesis of ε-Fe 2 O 3 crystal >>
[Procedure 1]
Two kinds of micelle solutions, micelle solution I and micelle solution II, are prepared.
-Preparation of micelle solution I In a Teflon (registered trademark) flask, 6 mL of pure water, 18.3 mL of n-octane and 3.7 mL of 1-butanol are added. There, 0.0000 mol of iron (III) nitrate nonahydrate, gallium nitrate (III) n hydrate (99.9% purity by Wako Pure Chemical Industries, n = 7-9) Use and quantitatively analyze in advance and specify n, and then charge amount is calculated)) is added at 0.00060 mol and dissolved at room temperature with good stirring. Further, cetyltrimethylammonium bromide as a surfactant is added in such an amount that the molar ratio of pure water / surfactant becomes 30, and dissolved by stirring to obtain a micelle solution I.
The charged composition at this time is x = 0.40 when the molar ratio of Ga to Fe is expressed as Ga: Fe = x: (2-x).

・ミセル溶液IIの作製
25%アンモニア水2mLを純水4mLに混ぜて撹拌し、その液に、さらにn―オクタン18.3mLと1−ブタノール3.7mLを加えてよく撹拌する。その溶液に、界面活性剤として臭化セチルトリメチルアンモニウムを、(純水+アンモニア中の水分)/界面活性剤のモル比が30となるような量で添加し、溶解させ、ミセル溶液IIを得る。
-Preparation of micelle solution II 2 mL of 25% aqueous ammonia is mixed with 4 mL of pure water and stirred, and further 18.3 mL of n-octane and 3.7 mL of 1-butanol are added to the solution and stirred well. Cetyltrimethylammonium bromide as a surfactant is added to the solution in such an amount that the molar ratio of (pure water + water in ammonia) / surfactant is 30 and dissolved to obtain a micelle solution II. .

〔手順2〕
ミセル溶液Iをよく撹拌しながら、ミセルI溶液に対してミセル溶液IIを滴下する。滴下終了後、混合液を30分間撹拌し続ける。
[Procedure 2]
While stirring the micelle solution I, the micelle solution II is added dropwise to the micelle I solution. After completion of the dropping, the mixture is continuously stirred for 30 minutes.

〔手順3〕
手順2で得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン6.1mLを加える。約1日そのまま、撹拌し続ける。
[Procedure 3]
While stirring the mixed solution obtained in procedure 2, 6.1 mL of tetraethoxysilane is added to the mixed solution. Continue stirring for about 1 day.

〔手順4〕
手順3で得られた溶液を遠心分離機にセットして遠心分離処理する。この処理で得られた沈殿物を回収する。回収された沈殿物をクロロホルムとメタノールの混合溶液を用いて複数回洗浄する。
[Procedure 4]
The solution obtained in step 3 is set in a centrifuge and centrifuged. The precipitate obtained by this treatment is recovered. The collected precipitate is washed several times with a mixed solution of chloroform and methanol.

〔手順5〕
手順4で得られた沈殿物を乾燥した後、大気雰囲気の炉内で1100℃で4時間の熱処理を施す。
[Procedure 5]
After drying the precipitate obtained in procedure 4, heat treatment is performed at 1100 ° C. for 4 hours in an air atmosphere furnace.

〔手順6−1〕
手順5で得られた熱処理粉を、メノウ製乳鉢により丁寧に解粒を実施したのち、10モル/LのNaOH水溶液1L(リットル)中に入れ、液温70℃で24時間撹拌し、粒子表面に存在するであろうシリカの除去処理を行う。次いで、ろ過し、十分に水洗する。
[Procedure 6-1]
The heat-treated powder obtained in step 5 was carefully pulverized with an agate mortar, then placed in 1 L (liter) of 10 mol / L NaOH aqueous solution, stirred at a liquid temperature of 70 ° C. for 24 hours, and the particle surface The silica which will exist in this is removed. It is then filtered and washed thoroughly with water.

〔手順6−2〕
水洗された粉末を純水1L中に入れて分散させ、室温で撹拌しながらpHをモニターして希硝酸を少量ずつ添加していき、pH2.5〜3.0に調整する。撹拌を続けているとpHは変動するので、常にpH2.5〜3.0に調整する。pH調整しながら、撹拌を1時間実施する。アルカリで熱処理粉を処理するとシリカ分は溶解するが、同時にFeもわずかながら溶解し、アルカリ溶液中で溶解し難い無定形なFeケイ酸塩が液中で合成することが確認されている。このFeケイ酸塩は、酸に対する溶解度が高いため、上記操作により除去を行う(再溶解処理)。
[Procedure 6-2]
The water-washed powder is dispersed in 1 L of pure water, pH is monitored while stirring at room temperature, and dilute nitric acid is added little by little to adjust to pH 2.5 to 3.0. Since the pH fluctuates when stirring is continued, the pH is always adjusted to 2.5 to 3.0. Stirring is carried out for 1 hour while adjusting the pH. When the heat-treated powder is treated with an alkali, the silica component is dissolved, but at the same time Fe is also slightly dissolved, and it has been confirmed that an amorphous Fe silicate which is difficult to dissolve in an alkaline solution is synthesized in the solution. Since this Fe silicate has high solubility in acid, it is removed by the above operation (re-dissolution treatment).

また、金属元素Mについても手順6−1で溶解が生じ、シリカ分と反応してM元素のケイ酸塩を合成する場合があることが確認されている。また、手順3や手順4のときにSiと金属元素Mが化合物を形成する場合があることも確認されている。特に、MがAlの場合、Siと化合物を形成しやすい傾向にある。このようにシリカがM元素とのケイ酸塩を形成するときは、手順6−1のアルカリ処理だけでは、目的とするSi含有量までSiを除去できないことが起こりうる。このような場合にも、手順6−2は有効である。すなわち、後述の分級工程を実施するために必要となる分散性を備えた粉末を得るためには、目的とするSi含有量になるまで、手順6−1と手順6−2を繰り返すことが、極めて効果的である。   Further, it has been confirmed that the metal element M is dissolved in the procedure 6-1 and may react with the silica component to synthesize the M element silicate. Further, it has been confirmed that Si and the metal element M may form a compound during the procedure 3 and the procedure 4. In particular, when M is Al, it tends to form a compound with Si. Thus, when silica forms a silicate with M element, it may happen that Si cannot be removed to the target Si content only by the alkali treatment in Procedure 6-1. Even in such a case, the procedure 6-2 is effective. That is, in order to obtain a powder having dispersibility necessary for carrying out the classification step described later, the procedure 6-1 and the procedure 6-2 are repeated until the target Si content is reached. It is extremely effective.

次に、手順6−2を終えて得られた粉末を以下の分級工程に供した。
《分級工程》
〔手順7−1〕
[1]超純水1L当たりに、乾燥重量5gに相当するウエット状態の粉末入れる。
[2]強撹拌を1時間実施し、粉末粒子を十分に分散させる。
[3]この分散液を遠心分離器(日立工機製CR21GII)を用いて20000rpmで遠心分離する。
[4]固液分離したのちに、上澄み液の導電率を測定する。測定後、上澄み液を廃棄する。
〔手順7−2〕
上記[4]で、上澄み液の導電率が1mS/m(ミリジーメンス)より高い場合は、上記[1]〜[4]を繰り返す。
Next, the powder obtained after finishing the procedure 6-2 was subjected to the following classification step.
<< Classification process >>
[Procedure 7-1]
[1] A wet powder equivalent to a dry weight of 5 g is added per liter of ultrapure water.
[2] Strong stirring is performed for 1 hour to sufficiently disperse the powder particles.
[3] This dispersion is centrifuged at 20000 rpm using a centrifuge (CR21GII manufactured by Hitachi Koki Co., Ltd.).
[4] After the solid-liquid separation, the conductivity of the supernatant is measured. After measurement, discard the supernatant.
[Procedure 7-2]
In the above [4], when the conductivity of the supernatant liquid is higher than 1 mS / m (milli Siemens), the above [1] to [4] are repeated.

〔手順7−3〕
上澄み液の導電率が下がるにつれて、粒子が分散系になってくることが観察でき、上澄み液の導電率が1mS/m以下になったものは、純水を入れ、強撹拌を行い、強力な超音波洗浄機にて1時間かける。さらに、少量のNaOHを添加してpH11付近に調整することにより、極めて良好な分散状態を得ることができる。
[Procedure 7-3]
As the conductivity of the supernatant liquid decreases, it can be observed that the particles become dispersed. When the conductivity of the supernatant liquid is 1 mS / m or less, pure water is added and strong agitation is performed. Take 1 hour in an ultrasonic cleaner. Furthermore, a very good dispersion state can be obtained by adding a small amount of NaOH to adjust the pH to around 11.

Si酸化物の等電点が、pH2前後であるから、基本的にはpHが高いほど静電的反発力が大きくなり、より良好な分散性を示すと考えられる。ただし、実際は、pHを上昇させるためにNaOHなどのアルカリを添加すると、イオン強度が高くなることにより、分散性を阻害する作用も生じる。したがって、Si酸化物が表層に存在する粒子の場合は、静電的反発力による分散性向上作用と、イオン強度上昇に伴う凝集性増大作用とのバランスにより、最も分散性が良好となるpHが決定される。発明者らの詳細な検討によれば、pH11±1.5、好ましくはpH11±0.5の範囲に調整することが望ましい。   Since the isoelectric point of the Si oxide is around pH 2, basically, the higher the pH, the greater the electrostatic repulsion, and it is considered that better dispersibility is exhibited. However, in practice, when an alkali such as NaOH is added to raise the pH, the ionic strength increases, and this also has the effect of inhibiting dispersibility. Therefore, in the case of particles in which Si oxide is present in the surface layer, the pH at which the dispersibility is the best is obtained by the balance between the dispersibility improving effect due to electrostatic repulsion and the agglomeration increasing effect accompanying the increase in ionic strength. It is determined. According to detailed investigations by the inventors, it is desirable to adjust the pH to within a range of pH 11 ± 1.5, preferably pH 11 ± 0.5.

〔手順7−4〕
手順7−3で得られた分散液を構成する粉末(まだ分級されていない段階の粉末)を、ここでは「元粉」と呼ぶ。観察用および特性調査用の元粉試料を採取した後、元粉の分散液を遠心分離器にかけ、18000rpmで遠心分離を行う。これによって、沈殿物と、上澄み液が得られる。上澄みは濁っており、粒子が存在していることが目視で確認できる。すなわちこの遠心分離操作により、元粉が、粒度分布の異なる2種類の粉体に分級される。なお、この遠心分離を行う際には、分離の分解能を上げるために、途中に撹拌+超音波による分散工程を入れて、複数回の遠心分離操作を行うことが望ましい。このようにして得られた沈殿物を構成する粉末を「沈殿粉」と呼び、上澄み中に存在する粉末を「上澄み粉」と呼ぶ。上澄み粉については、上澄み液に硝酸を少量ずつ添加し、等電点付近のpH7に調整後、遠心分離器で18000rpmで遠心分離を行って固液分離することにより回収することができる。
[Procedure 7-4]
The powder constituting the dispersion obtained in the procedure 7-3 (powder that has not been classified yet) is referred to herein as “original powder”. After collecting the original powder sample for observation and characteristic investigation, the dispersion of the original powder is applied to a centrifuge and centrifuged at 18000 rpm. As a result, a precipitate and a supernatant are obtained. The supernatant is cloudy and it can be visually confirmed that particles are present. That is, by this centrifugation operation, the base powder is classified into two types of powders having different particle size distributions. When performing this centrifugation, it is desirable to perform a plurality of centrifugation operations with a stirring step and a dispersion process using ultrasonic waves in the middle in order to increase the resolution of the separation. The powder constituting the precipitate thus obtained is called “precipitate powder”, and the powder present in the supernatant is called “supernatant powder”. The supernatant powder can be recovered by adding nitric acid to the supernatant little by little and adjusting to pH 7 near the isoelectric point, followed by solid-liquid separation by centrifugation at 18000 rpm in a centrifuge.

元粉のTEM写真を図1(a)に、沈殿粉のTEM写真を図1(b)に、上澄み粉のTEM写真を図1(c)に示す。各粉末について、TEMにより個々の粒子の粒子径を測定することにより粒度分布を調べた。表1中に、TEM平均粒子径、粒子径の標準偏差、[粒子径の標準偏差]/[TEM平均粒子径]×100により算出される変動係数、粒子径10nm未満の粒子の個数%、Dx粒径を示してある。ここでDx粒径は後述のX線回折により求められた粒子径(結晶子径)である。元粉から、粒径10nm未満の粒子の多くを上澄み粉として除去して得られた沈殿粉が、本発明の対象粉末である。   A TEM photograph of the original powder is shown in FIG. 1 (a), a TEM photograph of the precipitated powder is shown in FIG. 1 (b), and a TEM photograph of the supernatant powder is shown in FIG. 1 (c). About each powder, the particle size distribution was investigated by measuring the particle diameter of each particle by TEM. In Table 1, TEM average particle diameter, standard deviation of particle diameter, [standard deviation of particle diameter] / [TEM average particle diameter] × 100 variation coefficient, number% of particles having a particle diameter of less than 10 nm, Dx The particle size is shown. Here, the Dx particle diameter is a particle diameter (crystallite diameter) obtained by X-ray diffraction described later. Precipitated powder obtained by removing many particles having a particle size of less than 10 nm as a supernatant powder from the original powder is the target powder of the present invention.

得られた各試料粉末(元粉、沈殿粉、上澄み粉)を粉末X線回折(XRD:リガク製RINT2000、線源CoKα線、電圧40kV、電流30mA)に供したところ、図2に示した回折パターンが得られた。これら3種類の粉体の回折パターンは、いずれもε−Fe23の結晶構造(斜方晶、空間群Pna21)に対応する回折ピークを有している。したがって、その結晶がこれらの粉末における主相であることが明らかである。また、2θが30°より低角側には、アモルファス状のSiO2に起因するブロードなピークが、わずかながら観察された。これは、手順6−1、6−2でシリカコートの大部分を除去したことに伴い、粒子表面に少量のSi酸化物が存在していることを示すものである。(実施例2〜4においても同様であった)。 Each of the obtained sample powders (original powder, precipitated powder, and supernatant powder) was subjected to powder X-ray diffraction (XRD: RINT2000 manufactured by Rigaku, source CoKα line, voltage 40 kV, current 30 mA), and the diffraction shown in FIG. A pattern was obtained. The diffraction patterns of these three kinds of powders all have diffraction peaks corresponding to the crystal structure of ε-Fe 2 O 3 (orthorhombic crystal, space group Pna2 1 ). It is therefore clear that the crystals are the main phase in these powders. Moreover, a broad peak due to amorphous SiO 2 was slightly observed on the lower angle side of 2θ than 30 °. This indicates that a small amount of Si oxide is present on the particle surface as most of the silica coat is removed in procedures 6-1 and 6-2. (The same applies to Examples 2 to 4).

得られた各試料粉末を蛍光X線分析(日本電子製JSX―3220)に供したところ、GaとFeのモル比をGa:Fe=x:(2−x)と表すときのxの値は、仕込み組成;x=0.40であったのに対し、元粉;x=0.38、沈殿粉;x=0.39、上澄み粉;x=0.38であった。元粉、沈殿粉、上澄み粉の違いによる組成の顕著なずれは観測されなかった(実施例2〜4でも同様)。また、各試料粉末の、Si/(Fe+Ga)×100によるSi含有量(モル%)を表1に記載した。手順6−1、6−2で、粒子表面に存在するSi酸化物の量を適正範囲にコントロールしたことにより液中分散性が向上し、上記のような分級操作が可能になったと言える。   When each obtained sample powder was subjected to fluorescent X-ray analysis (JSX-3220 manufactured by JEOL Ltd.), the value of x when the molar ratio of Ga to Fe is expressed as Ga: Fe = x: (2-x) is The raw composition; x = 0.38, the precipitated powder; x = 0.39, the supernatant powder; x = 0.38. No significant shift in composition due to the difference between the original powder, the precipitated powder, and the supernatant powder was observed (the same applies to Examples 2 to 4). In addition, Table 1 shows the Si content (mol%) of each sample powder according to Si / (Fe + Ga) × 100. It can be said that in steps 6-1 and 6-2, by controlling the amount of Si oxide present on the particle surface within an appropriate range, the dispersibility in the liquid was improved, and the classification operation as described above became possible.

また、得られた各試料粉末について、常温(300K)における磁気ヒステリシスループを測定した。元粉の磁気ヒステリシスループを図3(a)に、沈殿粉のそれを図3(b)に、上澄み粉のそれを図3(c)に示す。また、図3(a)〜(c)の磁気ヒステリシスループを重ねて表示したものが図3(d)である。磁気ヒステリシスループの測定は、Digtal Measurement Systems社の振動試料型磁力計(VSM)のMODEL880を用いて、印加磁場13kOe(1.035×106A/m)の条件で行った。各粉体の保磁力Hc、飽和磁化σs、残留磁化σr、角形比SQ(=σr/σs)、SFDの値を表1に記載した。 Moreover, about each obtained sample powder, the magnetic hysteresis loop in normal temperature (300K) was measured. The magnetic hysteresis loop of the original powder is shown in FIG. 3 (a), that of the precipitated powder is shown in FIG. 3 (b), and that of the supernatant powder is shown in FIG. 3 (c). FIG. 3D shows the magnetic hysteresis loops of FIGS. 3A to 3C displayed in an overlapping manner. The measurement of the magnetic hysteresis loop was performed under the condition of an applied magnetic field of 13 kOe (1.035 × 10 6 A / m) using MODEL 880 of a vibrating sample magnetometer (VSM) manufactured by Digital Measurement Systems. Table 1 shows the coercive force Hc, saturation magnetization σs, residual magnetization σr, squareness ratio SQ (= σr / σs), and SFD of each powder.

図3(a)より、元粉では印加磁場=0 Oe(以下「ゼロ磁場」という)付近で、曲線にわずかに歪みが生じていることがわかる。これは、磁性粉末中に超常磁性の粒子が含まれるときに観察される現象である。図3(b)の沈殿粉では、この歪みがほとんど観察されずゼロ磁場付近でも滑らかな曲線を示す。一方、図3(c)の上澄み粉では、ゼロ磁場付近での曲線の歪みが大きく、また、保磁力Hcが大幅に低減している。これは超常磁性を呈する極微細粒子の存在割合が多いことに起因すると考えられる。図3(d)からわかるように、元粉から、極微細粒子を多く含む上澄み粉を除去することによって分級された沈殿粉(本発明対象の粉末)では、元粉に対して、磁気特性の大幅な改善が認められる。(磁気特性に関し後述実施例2〜4でも概ね以上と同様ことが確認された)。また、表1に見られるように、沈殿粉は、元粉よりもSFDが大幅に低下し、総合的な磁気特性の改善が認められた(後述実施例2〜4の表2〜4においても同じ)。   From FIG. 3A, it can be seen that the original powder has a slight distortion in the vicinity of the applied magnetic field = 0 Oe (hereinafter referred to as “zero magnetic field”). This is a phenomenon observed when superparamagnetic particles are contained in the magnetic powder. In the precipitated powder of FIG. 3B, this distortion is hardly observed and a smooth curve is shown even in the vicinity of zero magnetic field. On the other hand, in the supernatant powder of FIG. 3C, the distortion of the curve near the zero magnetic field is large, and the coercive force Hc is greatly reduced. This is thought to be due to the large proportion of ultrafine particles exhibiting superparamagnetism. As can be seen from FIG. 3 (d), in the precipitated powder (powder of the present invention) classified by removing the supernatant powder containing a lot of ultrafine particles from the original powder, the magnetic characteristics of the original powder are different from those of the original powder. Significant improvement is observed. (It was confirmed that the magnetic characteristics were substantially the same in Examples 2 to 4 described later). Moreover, as seen in Table 1, the SFD of the precipitated powder was significantly lower than that of the original powder, and an improvement in the overall magnetic properties was observed (also in Tables 2 to 4 of Examples 2 to 4 described later). the same).

GaによるFeの置換量を変更した以外、実施例1と同様の実験を行った。すなわちここでは、GaとFeのモル比をGa:Fe=x:(2−x)と表すとき、仕込み組成においてx=0.33とした。
元粉のTEM写真を図4(a)に、沈殿粉のTEM写真を図4(b)に、上澄み粉のTEM写真を図4(c)に示す。
元粉、沈殿粉、上澄み粉のX線回折パターンを図5に示す。測定条件は実施例1と同様である(実施例3、4において同じ)。
元粉、沈殿粉、上澄み粉についての磁気ヒステリシスループを図6に重ねて表示する。測定条件は実施例1と同様である(実施例3、4において同じ)。
前記表1と同様の項目について、実施例2の結果を表2に示す。
An experiment similar to that of Example 1 was performed except that the amount of substitution of Fe by Ga was changed. That is, here, when the molar ratio of Ga and Fe is expressed as Ga: Fe = x: (2-x), x = 0.33 in the charged composition.
FIG. 4A shows a TEM photograph of the original powder, FIG. 4B shows a TEM photograph of the precipitated powder, and FIG. 4C shows a TEM photograph of the supernatant powder.
FIG. 5 shows X-ray diffraction patterns of the original powder, the precipitated powder, and the supernatant powder. The measurement conditions are the same as in Example 1 (same in Examples 3 and 4).
Magnetic hysteresis loops for the original powder, the precipitated powder, and the supernatant powder are displayed superimposed on FIG. The measurement conditions are the same as in Example 1 (same in Examples 3 and 4).
Table 2 shows the results of Example 2 for the same items as in Table 1.

GaによるFeの置換量を変更した以外、実施例1と同様の実験を行った。すなわちここでは、GaとFeのモル比をGa:Fe=x:(2−x)と表すとき、仕込み組成においてx=0.47とした。
元粉のTEM写真を図7(a)に、沈殿粉のTEM写真を図7(b)に、上澄み粉のTEM写真を図7(c)に示す。
元粉、沈殿粉、上澄み粉のX線回折パターンを図8に示す。
元粉、沈殿粉、上澄み粉についての磁気ヒステリシスループを図9に重ねて表示する。
前記表1と同様の項目について、実施例3の結果を表3に示す。
An experiment similar to that of Example 1 was performed except that the amount of substitution of Fe by Ga was changed. That is, here, when the molar ratio of Ga and Fe is expressed as Ga: Fe = x: (2-x), x = 0.47 in the charged composition.
FIG. 7 (a) shows a TEM photograph of the original powder, FIG. 7 (b) shows a TEM photograph of the precipitated powder, and FIG. 7 (c) shows a TEM photograph of the supernatant powder.
FIG. 8 shows X-ray diffraction patterns of the original powder, the precipitated powder, and the supernatant powder.
The magnetic hysteresis loops for the original powder, the precipitated powder, and the supernatant powder are displayed superimposed on FIG.
Table 3 shows the results of Example 3 for the same items as in Table 1.

GaによるFeの置換量を変更した以外、実施例1と同様の実験を行った。すなわちここでは、GaとFeのモル比をGa:Fe=x:(2−x)と表すとき、仕込み組成においてx=0.52とした。
元粉のTEM写真を図10(a)に、沈殿粉のTEM写真を図10(b)に、上澄み粉のTEM写真を図10(c)に示す。
元粉、沈殿粉、上澄み粉のX線回折パターンを図11に示す。
元粉、沈殿粉、上澄み粉についての磁気ヒステリシスループを図12に重ねて表示する。
前記表1と同様の項目について、実施例4の結果を表4に示す。
An experiment similar to that of Example 1 was performed except that the amount of substitution of Fe by Ga was changed. That is, here, when the molar ratio of Ga to Fe is expressed as Ga: Fe = x: (2-x), x = 0.52 in the charged composition.
FIG. 10A shows a TEM photograph of the original powder, FIG. 10B shows a TEM photograph of the precipitated powder, and FIG. 10C shows a TEM photograph of the supernatant powder.
FIG. 11 shows X-ray diffraction patterns of the original powder, the precipitated powder, and the supernatant powder.
Magnetic hysteresis loops for the original powder, the precipitated powder, and the supernatant powder are displayed superimposed on FIG.
Table 4 shows the results of Example 4 for the same items as in Table 1.

実施例1で得られた本発明の対象である「沈殿粉」を用いて、以下のように、磁性塗料を作り、これをテープに塗布し、磁場配向された磁気テープを作成した。   Using the “precipitated powder” that is the subject of the present invention obtained in Example 1, a magnetic paint was prepared as follows, and this was applied to the tape to produce a magnetically oriented magnetic tape.

〔磁性塗料の調製〕
磁性粉末(上記の沈殿粉)0.500gを秤量し、これをポット(内径45mm、深さ13mm)に入れる。蓋を開けた状態で10分間放置する。次にビヒクル〔塩ビ系樹脂MR−110(22質量%)、シクロヘキサノン(38.7質量%)、アセチルアセトン(0.3質量%)、ステアリン酸nブチル(0.3質量%)、メチルエチルケトン(MEK;38.7質量%)の混合液〕をマイクロピペットで0.700mL採取し、これを前記のポットに添加する。その後直ちにスチールボール(2mm径)30g、ナイロンボール(8mm径)10個をポットに加え、蓋を閉じ10分間静置する。その後、このポットを遠心式ボールミル(FRITSCH P−6)にセットし、ゆっくりと回転数を上げ、600rpmに合わせ、60分間分散処理を行う。遠心式ボールミルが停止した後、ポットを取り出し、マイクロピペットを使用し、あらかじめ、MEKとトルエンを1:1で混合しておいた調整液を1.800mL添加する。再度遠心式ボールミルにこのポットをセットし、600rpmで5分間分散処理することにより、塗料を調製する。
[Preparation of magnetic paint]
Weigh 0.500 g of magnetic powder (precipitated powder) and put it in a pot (inner diameter 45 mm, depth 13 mm). Leave for 10 minutes with the lid open. Next, vehicle [vinyl chloride resin MR-110 (22 mass%), cyclohexanone (38.7 mass%), acetylacetone (0.3 mass%), n-butyl stearate (0.3 mass%), methyl ethyl ketone (MEK; (38.7% by mass) is collected with a micropipette and added to the pot. Immediately thereafter, 30 g of steel balls (2 mm diameter) and 10 nylon balls (8 mm diameter) are added to the pot, and the lid is closed and allowed to stand for 10 minutes. Thereafter, the pot is set on a centrifugal ball mill (FRITSCH P-6), and the number of rotations is slowly increased to 600 rpm, and dispersion treatment is performed for 60 minutes. After the centrifugal ball mill is stopped, the pot is taken out, and 1.800 mL of a preliminarily mixed solution of MEK and toluene at 1: 1 is added using a micropipette. The pot is set again in the centrifugal ball mill, and the paint is prepared by dispersing the mixture at 600 rpm for 5 minutes.

〔磁気テープの作成〕
前記の分散を終了した後に、ポットの蓋を開け、ナイロンボールを取り除き、調製された塗料をスチールボールごとアプリケーター(隙間55μm)に入れ、支持フィルム(東レ株式会社製ポリエチレンフィルム:商品名15C−B500:膜厚15μm)対して塗布を行う。塗布後素早く、5.5kGの配向器のコイルの中心に置き、磁場配向させ、その後乾燥させる。
[Making magnetic tape]
After finishing the above dispersion, the pot lid is opened, the nylon balls are removed, the prepared paint is put together with the steel balls into an applicator (gap 55 μm), and a support film (polyethylene film manufactured by Toray Industries, Inc .: trade name 15C-B500) : Film thickness 15 μm). Immediately after application, it is placed in the center of a 5.5 kG orienter coil, magnetically oriented and then dried.

以上のようにして作成した磁気テープについて、実施例1の粉末の場合と同様に磁気ヒステリシスループを測定した。その結果を図4に示す。原料粉についての図3(b)と比較すると、ループが大きくなり、磁化の配向が起きたことによる効果が確認できる。すなわち、磁場による配向が実現できた結果、テープの磁気特性は、原料粉(沈殿粉)の特性と比較すると、保磁力Hcが7644Oe(6.08×105A/m)から8613Oe(6.85×105A/m)に、角形比SQ(=σr/σs)が0.60から0.82に、SFDが0.401から0.388にそれぞれ改善され、磁気特性の大幅な改善がもたらされた。
磁場をかけることにより粉末粒子の配向できたのは、沈殿粉が高分子基材に対して良好な分散性を有していることによる。
About the magnetic tape produced as mentioned above, the magnetic hysteresis loop was measured similarly to the case of the powder of Example 1. The result is shown in FIG. Compared with FIG. 3B for the raw material powder, the loop becomes larger, and the effect due to the occurrence of magnetization orientation can be confirmed. That is, as a result of realizing the orientation by the magnetic field, the magnetic properties of the tape are from coercive force Hc of 7644 Oe (6.08 × 10 5 A / m) to 8613 Oe (6. 6) compared with the properties of the raw material powder (precipitated powder). 85 × 10 5 A / m), the squareness ratio SQ (= σr / σs) has been improved from 0.60 to 0.82, and the SFD has been improved from 0.401 to 0.388. It was brought.
The reason why the powder particles can be oriented by applying a magnetic field is that the precipitated powder has good dispersibility with respect to the polymer substrate.

実施例1で得られた元粉のTEM写真。4 is a TEM photograph of the original powder obtained in Example 1. FIG. 実施例1で得られた沈殿粉(本発明対象)のTEM写真。4 is a TEM photograph of the precipitated powder (subject of the present invention) obtained in Example 1. FIG. 実施例1で得られた上澄み粉のTEM写真。4 is a TEM photograph of the supernatant powder obtained in Example 1. FIG. 実施例1で得られた各試料粉末のX線回折パターン。The X-ray diffraction pattern of each sample powder obtained in Example 1. 実施例1で得られた元粉の磁気ヒステリシスループ。The magnetic hysteresis loop of the base powder obtained in Example 1. 実施例1で得られた沈殿粉(本発明対象)の磁気ヒステリシスループ。The magnetic hysteresis loop of the precipitated powder (subject of the present invention) obtained in Example 1. 実施例1で得られた上澄み粉の磁気ヒステリシスループ。The magnetic hysteresis loop of the supernatant powder obtained in Example 1. 図3(a)〜(c)の磁気ヒステリシスループを重ねて表示した図。FIG. 4 is a diagram in which the magnetic hysteresis loops of FIGS. 実施例2で得られた元粉のTEM写真。4 is a TEM photograph of the original powder obtained in Example 2. FIG. 実施例2で得られた沈殿粉(本発明対象)のTEM写真。4 is a TEM photograph of the precipitated powder (subject of the present invention) obtained in Example 2. 実施例2で得られた上澄み粉のTEM写真。4 is a TEM photograph of the supernatant powder obtained in Example 2. FIG. 実施例2で得られた各試料粉末のX線回折パターン。The X-ray diffraction pattern of each sample powder obtained in Example 2. 実施例2で得られた各試料粉末の磁気ヒステリシスループを重ねて表示した図。The figure which displayed the magnetic hysteresis loop of each sample powder obtained in Example 2 in piles. 実施例3で得られた元粉のTEM写真。4 is a TEM photograph of the original powder obtained in Example 3. FIG. 実施例3で得られた沈殿粉(本発明対象)のTEM写真。4 is a TEM photograph of the precipitated powder (subject of the present invention) obtained in Example 3. 実施例3で得られた上澄み粉のTEM写真。4 is a TEM photograph of the supernatant powder obtained in Example 3. FIG. 実施例3で得られた各試料粉末のX線回折パターン。The X-ray diffraction pattern of each sample powder obtained in Example 3. 実施例3で得られた各試料粉末の磁気ヒステリシスループを重ねて表示した図。The figure which displayed the magnetic hysteresis loop of each sample powder obtained in Example 3 in piles. 実施例4で得られた元粉のTEM写真。4 is a TEM photograph of the original powder obtained in Example 4. FIG. 実施例4で得られた沈殿粉(本発明対象)のTEM写真。4 is a TEM photograph of the precipitated powder (subject of the present invention) obtained in Example 4. 実施例4で得られた上澄み粉のTEM写真。4 is a TEM photograph of the supernatant powder obtained in Example 4. FIG. 実施例4で得られた各試料粉末のX線回折パターン。The X-ray diffraction pattern of each sample powder obtained in Example 4. 実施例4で得られた各試料粉末の磁気ヒステリシスループを重ねて表示した図。The figure which displayed the magnetic hysteresis loop of each sample powder obtained in Example 4 in piles. 実施例5で作成した磁気テープの磁気ヒステリシスループ。The magnetic hysteresis loop of the magnetic tape created in Example 5.

Claims (7)

ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の粒子からなり、TEM写真により測定される粒子径において、平均粒子径が10〜200nm、かつ、粒子径10nm未満の粒子の個数割合が25%以下である磁性粉末。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。
It consists of iron oxide particles whose main phase is ε-Fe 2 O 3 crystals (including those in which part of the Fe site is substituted with the metal element M). Magnetic powder having a diameter of 10 to 200 nm and a number ratio of particles having a particle diameter of less than 10 nm of 25% or less.
However, when the molar ratio of M to Fe in the iron oxide is expressed as M: Fe = x: (2-x), 0 ≦ x <1.
ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の粒子からなり、TEM写真により測定される粒子径において、平均粒子径が10〜200nm、かつ、粒子径10nm未満の粒子の個数割合が8%以下である磁性粉末。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。
It consists of iron oxide particles whose main phase is ε-Fe 2 O 3 crystals (including those in which part of the Fe site is substituted with the metal element M). Magnetic powder having a diameter of 10 to 200 nm and a number ratio of particles having a particle diameter of less than 10 nm is 8% or less.
However, when the molar ratio of M to Fe in the iron oxide is expressed as M: Fe = x: (2-x), 0 ≦ x <1.
[粒子径の標準偏差]/[平均粒子径]×100で表される変動係数が50%以下である請求項1または2に記載の磁性粉末。   The magnetic powder according to claim 1 or 2, wherein a coefficient of variation represented by [standard deviation of particle diameter] / [average particle diameter] x 100 is 50% or less. 前記鉄酸化物の粒子は、表面にSi酸化物を有する複合粒子であり、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%に調整されている請求項1〜3のいずれかに記載の磁性粉末。   The iron oxide particles are composite particles having Si oxide on the surface, and the Si content represented by Si / (Fe + M) × 100 is adjusted to 0.1 to 30 mol%. The magnetic powder in any one of -3. 前記のMは、Al、Ga、Inの1種以上からなる請求項1〜4のいずれかに記載の磁性粉末。   The magnetic powder according to any one of claims 1 to 4, wherein M is one or more of Al, Ga, and In. 単磁区構造の微細粒子からなる請求項1〜5のいずれかに記載の磁性粉末。   The magnetic powder according to any one of claims 1 to 5, comprising fine particles having a single magnetic domain structure. 保磁力Hcが1000〜15000 Oe(7.96×104〜1.19×106A/m)、かつSFD(switching field distribution)が0.80以下である請求項1〜6のいずれかに記載の磁性材料。 The coercive force Hc is 1000 to 15000 Oe (7.96 × 10 4 to 1.19 × 10 6 A / m), and the SFD (switching field distribution) is 0.80 or less. The magnetic material described.
JP2006244882A 2006-09-08 2006-09-08 Ε iron oxide powder with improved magnetic properties Active JP5130534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244882A JP5130534B2 (en) 2006-09-08 2006-09-08 Ε iron oxide powder with improved magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244882A JP5130534B2 (en) 2006-09-08 2006-09-08 Ε iron oxide powder with improved magnetic properties

Publications (2)

Publication Number Publication Date
JP2008063201A true JP2008063201A (en) 2008-03-21
JP5130534B2 JP5130534B2 (en) 2013-01-30

Family

ID=39286219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244882A Active JP5130534B2 (en) 2006-09-08 2006-09-08 Ε iron oxide powder with improved magnetic properties

Country Status (1)

Country Link
JP (1) JP5130534B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149785A1 (en) * 2007-05-31 2008-12-11 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
JP2011016673A (en) * 2009-07-07 2011-01-27 Tamagawa Seiki Co Ltd Spherical ferrite nanoparticle and method for producing the same
WO2011040534A1 (en) * 2009-09-30 2011-04-07 国立大学法人 東京大学 Method for improving coercive force of epsilon-type iron oxide, and epsilon-type iron oxide
JP2014198666A (en) * 2014-05-16 2014-10-23 多摩川精機株式会社 Method for producing spherical ferrite nanoparticle
WO2014175387A1 (en) * 2013-04-26 2014-10-30 国立大学法人 東京大学 Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
JP2014232860A (en) * 2012-11-30 2014-12-11 富士フイルム株式会社 Method for manufacturing hexagonal ferrite magnetic particles, hexagonal ferrite magnetic particle produced thereby, and utilization thereof
US20150111066A1 (en) * 2013-10-22 2015-04-23 Sony Corporation Magnetic recording medium
JP6083779B1 (en) * 2015-10-05 2017-02-22 エム・テクニック株式会社 Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
JP6092492B1 (en) * 2015-10-05 2017-03-08 エム・テクニック株式会社 Composition for laminated coating film comprising iron oxide particles coated with silicon oxide
WO2017094752A1 (en) * 2015-11-30 2017-06-08 国立大学法人 東京大学 Oriented body, method for manufacturing same, device for manufacturing same, and magnetic recording medium
JP2017139044A (en) * 2016-02-01 2017-08-10 日立マクセル株式会社 Magnetic recording medium
EP3528253A4 (en) * 2016-10-17 2019-09-18 Sony Corporation Magnetic powder, method for producing same and magnetic recording medium
WO2019189282A1 (en) 2018-03-29 2019-10-03 国立大学法人 東京大学 Iron-based oxide magnetic powder and method for producing same
WO2021065936A1 (en) * 2019-09-30 2021-04-08 国立大学法人 東京大学 Iron-based oxide magnetic powder and method for manufacturing same
WO2021065935A1 (en) * 2019-09-30 2021-04-08 Dowaエレクトロニクス株式会社 Iron-based oxide magnetic powder and method for producing same
US11450344B2 (en) 2019-08-09 2022-09-20 Fujifilm Corporation Magnetic recording medium, magnetic recording and reproducing device, and e-iron oxide powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139509A (en) * 1984-07-31 1986-02-25 Japan Synthetic Rubber Co Ltd Material containing ultrafine grain ferrous oxide and manufacture thereof
JP2003252618A (en) * 2002-03-01 2003-09-10 Kanagawa High-Technology Foundation Magnetic nanoparticulate, its production method and magnetic nanoparticulate thin film
JP2005340690A (en) * 2004-05-31 2005-12-08 Asahi Techno Glass Corp Hexagonal ferrite magnetic powder and its manufacturing method
JP2006089308A (en) * 2004-09-21 2006-04-06 Toyota Central Res & Dev Lab Inc Composite iron oxide particle and its production method
JP2006306707A (en) * 2005-03-30 2006-11-09 Toyota Central Res & Dev Lab Inc Oxide composite material and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139509A (en) * 1984-07-31 1986-02-25 Japan Synthetic Rubber Co Ltd Material containing ultrafine grain ferrous oxide and manufacture thereof
JP2003252618A (en) * 2002-03-01 2003-09-10 Kanagawa High-Technology Foundation Magnetic nanoparticulate, its production method and magnetic nanoparticulate thin film
JP2005340690A (en) * 2004-05-31 2005-12-08 Asahi Techno Glass Corp Hexagonal ferrite magnetic powder and its manufacturing method
JP2006089308A (en) * 2004-09-21 2006-04-06 Toyota Central Res & Dev Lab Inc Composite iron oxide particle and its production method
JP2006306707A (en) * 2005-03-30 2006-11-09 Toyota Central Res & Dev Lab Inc Oxide composite material and its production method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012034146; Shunsuke SAKURAI et al: 'Reorientation Phenomenon in a Magnetic Phase of epsilon-Fe2O3 Nanocrystal' Journal of the Physical Society of Japan Vol.74,NO.7, 20050715, p.1946〜1949, 社団法人 日本物理学会 *
JPN6012034148; Jian Jin et al: 'Formation of spherical and rod-shaped epsilon-Fe2O3 nanocrystals with a large coercive field' Journal of Materials Chemistry Vol.15、No.10, 20050314, p.1067〜1071 *
JPN6012034149; Jian Jin et al: 'Giant Coercive Field of Nanometer-Sized Iron Oxide' Advanced Materials VOl.16、No.1, 20040105, p.48〜51 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171066A1 (en) * 2007-05-31 2010-07-08 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
US8444872B2 (en) 2007-05-31 2013-05-21 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
WO2008149785A1 (en) * 2007-05-31 2008-12-11 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
JP2011016673A (en) * 2009-07-07 2011-01-27 Tamagawa Seiki Co Ltd Spherical ferrite nanoparticle and method for producing the same
US9458026B2 (en) 2009-09-30 2016-10-04 The University Of Tokyo Method for improving coercive force of epsilon-type iron oxide, and epsilon-type iron oxide
WO2011040534A1 (en) * 2009-09-30 2011-04-07 国立大学法人 東京大学 Method for improving coercive force of epsilon-type iron oxide, and epsilon-type iron oxide
CN102548903A (en) * 2009-09-30 2012-07-04 国立大学法人东京大学 Method for improving coercive force of epsilon-type iron oxide, and epsilon-type iron oxide
JPWO2011040534A1 (en) * 2009-09-30 2013-02-28 国立大学法人 東京大学 Method for improving coercive force of epsilon-type iron oxide and epsilon-type iron oxide
JP5408593B2 (en) * 2009-09-30 2014-02-05 国立大学法人 東京大学 Method for improving coercive force of epsilon-type iron oxide and epsilon-type iron oxide
EP3473599A1 (en) * 2009-09-30 2019-04-24 The University of Tokyo Method for improving coercive force of epsilon-type iron oxide
US9633770B2 (en) 2009-09-30 2017-04-25 The University Of Tokyo Method for improving coercive force of epsilon-type iron oxide, and epsilon-type iron oxide
US9514776B2 (en) 2012-11-30 2016-12-06 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic particles, method of manufacturing magnetic coating material, and method of manufacturing magnetic recording medium
JP2014232860A (en) * 2012-11-30 2014-12-11 富士フイルム株式会社 Method for manufacturing hexagonal ferrite magnetic particles, hexagonal ferrite magnetic particle produced thereby, and utilization thereof
CN105143109A (en) * 2013-04-26 2015-12-09 国立大学法人东京大学 Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
US9916922B2 (en) 2013-04-26 2018-03-13 The University Of Tokyo Iron oxide magnetic nanoparticle powder and method of producing the same, iron oxide magnetic nanoparticle thin film containing the iron oxide magnetic nanoparticle powder and method of producing the same
JP2014224027A (en) * 2013-04-26 2014-12-04 国立大学法人 東京大学 Iron oxide nano magnetic particle powder, method for producing the same, iron oxide nano magnetic particle thin film comprising the iron oxide nano magnetic particle powder, and method for producing the same
EP2990382B1 (en) * 2013-04-26 2024-04-10 The University of Tokyo Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
WO2014175387A1 (en) * 2013-04-26 2014-10-30 国立大学法人 東京大学 Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
US20150111066A1 (en) * 2013-10-22 2015-04-23 Sony Corporation Magnetic recording medium
US10803897B2 (en) 2013-10-22 2020-10-13 Sony Corporation Magnetic recording medium
US11430477B2 (en) 2013-10-22 2022-08-30 Sony Corporation Magnetic recording medium
JP2014198666A (en) * 2014-05-16 2014-10-23 多摩川精機株式会社 Method for producing spherical ferrite nanoparticle
JP6083779B1 (en) * 2015-10-05 2017-02-22 エム・テクニック株式会社 Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
JP2017218570A (en) * 2015-10-05 2017-12-14 エム・テクニック株式会社 Silicon oxide-coated iron oxide composition for coating containing iron oxide particles coated with silicon oxide
JP2017218568A (en) * 2015-10-05 2017-12-14 エム・テクニック株式会社 Silicon oxide-coated iron oxide composition for coating containing iron oxide particles coated with silicon oxide
JP2017218374A (en) * 2015-10-05 2017-12-14 エム・テクニック株式会社 Silicon oxide-coated iron oxide composition for coating containing iron oxide particles coated with silicon oxide
JP6216949B1 (en) * 2015-10-05 2017-10-25 エム・テクニック株式会社 Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
JP6092492B1 (en) * 2015-10-05 2017-03-08 エム・テクニック株式会社 Composition for laminated coating film comprising iron oxide particles coated with silicon oxide
JPWO2017094752A1 (en) * 2015-11-30 2018-09-13 国立大学法人 東京大学 Alignment body, manufacturing method thereof, manufacturing apparatus thereof, and magnetic recording medium
EP3385951A4 (en) * 2015-11-30 2019-07-31 The University Of Tokyo Oriented body, method for manufacturing same, device for manufacturing same, and magnetic recording medium
WO2017094752A1 (en) * 2015-11-30 2017-06-08 国立大学法人 東京大学 Oriented body, method for manufacturing same, device for manufacturing same, and magnetic recording medium
US11087792B2 (en) 2015-11-30 2021-08-10 The University Of Tokyo Oriented body, method for producing the same, device for producing the same, and magnetic recording medium
JP2017139044A (en) * 2016-02-01 2017-08-10 日立マクセル株式会社 Magnetic recording medium
US11170813B2 (en) 2016-10-17 2021-11-09 Sony Corporation Magnetic powder, method of producing the same, and magnetic recording medium
EP3528253A4 (en) * 2016-10-17 2019-09-18 Sony Corporation Magnetic powder, method for producing same and magnetic recording medium
US11401170B2 (en) 2018-03-29 2022-08-02 Dowa Electronics Materials Co., Ltd. Iron based oxide magnetic powder and method for producing same
WO2019189282A1 (en) 2018-03-29 2019-10-03 国立大学法人 東京大学 Iron-based oxide magnetic powder and method for producing same
US11450344B2 (en) 2019-08-09 2022-09-20 Fujifilm Corporation Magnetic recording medium, magnetic recording and reproducing device, and e-iron oxide powder
WO2021065935A1 (en) * 2019-09-30 2021-04-08 Dowaエレクトロニクス株式会社 Iron-based oxide magnetic powder and method for producing same
WO2021065936A1 (en) * 2019-09-30 2021-04-08 国立大学法人 東京大学 Iron-based oxide magnetic powder and method for manufacturing same
CN114466823A (en) * 2019-09-30 2022-05-10 国立大学法人东京大学 Iron-based oxide magnetic powder and method for producing same

Also Published As

Publication number Publication date
JP5130534B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
JP5124825B2 (en) ε Iron oxide based magnetic material
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JP5445843B2 (en) Magnetic iron oxide particles, magnetic material, and electromagnetic wave absorber
JP4728916B2 (en) Magnetic material
US8097180B2 (en) Magnetic material
JP4730905B2 (en) Magnetic material and memory and sensor using the same
JP5105503B2 (en) ε Iron oxide production method
JP2007294841A (en) Metallic magnetic powder for magnetic recording medium, and method of manufacturing the same
US7964013B2 (en) FeRh-FePt core shell nanostructure for ultra-high density storage media
CA2115669A1 (en) Hexagonal magnetic ferrite pigment for high density magnetic recording applications
JP2004319923A (en) Iron nitride-based magnetic powder
CN111902869B (en) Method for producing magnetic powder and method for producing magnetic recording medium
JP5731483B2 (en) Metal magnetic powder and method for producing the same, magnetic paint, and magnetic recording medium
JP2625708B2 (en) Method for producing ultra-high coercivity metal powder
JP6103172B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP5403241B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5418773B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5316522B2 (en) Magnetic particle powder
JP2002255560A (en) Hematite powder for non-magnetic base layer of magnetic recording medium, non-magnetic base layer of magnetic recording medium, and magnetic recording medium using the same
JPH0755830B2 (en) Magnetic particle powder and method for producing the same
JPH0774081B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250