JP2005340690A - Hexagonal ferrite magnetic powder and its manufacturing method - Google Patents

Hexagonal ferrite magnetic powder and its manufacturing method Download PDF

Info

Publication number
JP2005340690A
JP2005340690A JP2004160541A JP2004160541A JP2005340690A JP 2005340690 A JP2005340690 A JP 2005340690A JP 2004160541 A JP2004160541 A JP 2004160541A JP 2004160541 A JP2004160541 A JP 2004160541A JP 2005340690 A JP2005340690 A JP 2005340690A
Authority
JP
Japan
Prior art keywords
magnetic powder
hexagonal ferrite
ferrite magnetic
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004160541A
Other languages
Japanese (ja)
Other versions
JP4675581B2 (en
Inventor
Akira Manabe
章 真鍋
Hiroyuki Suzuki
宏幸 鈴木
Takashi Morita
高史 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Asahi Techno Glass Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Techno Glass Corp filed Critical Asahi Techno Glass Corp
Priority to JP2004160541A priority Critical patent/JP4675581B2/en
Publication of JP2005340690A publication Critical patent/JP2005340690A/en
Application granted granted Critical
Publication of JP4675581B2 publication Critical patent/JP4675581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide particle powder of hexagonal ferrite suitable for coating type very high density magnetic recording medium, and to provide its manufacturing method. <P>SOLUTION: Hexagonal ferrite magnetic particles whose geometric mean plate diameter is 18-30 nm are treated in solution of water of strong acid, particles whose plate diameter is at most 10 nm are removed by dissolution, and abundance of the particles is made at most 3%. By the above processes, very fine particles which show superparamagnetism particles in the hexagonal ferrite magnetic powder are eliminated, particle size distribution is improved, and geometric standard deviation of plate diameter and board thickness of the magnetic particles is made at most 1.25. As a result, SFD of the magnetic powder is improved, and the hexagonal ferrite magnetic powder suitable for coating type very high density magnetic recording medium can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、六方晶フェライト磁性粉末およびその製造方法に関し、特に塗布型の超高密度磁気記録媒体の磁性粉末としての使用に適した六方晶フェライト磁性粉末およびその製造方法に関する。   The present invention relates to a hexagonal ferrite magnetic powder and a method for producing the same, and more particularly to a hexagonal ferrite magnetic powder suitable for use as a magnetic powder in a coating-type ultrahigh-density magnetic recording medium and a method for producing the same.

塗布型の磁気記録媒体は、量産性に優れるとともに、高い信頼性が得られることから、これまで磁気記録システムに広く用いられてきた。最近のブロードバンド時代を迎えての情報量の飛躍的な増大に対処応するために、磁気記録システムのより一層の大容量化と高転送レート化、そして磁気記録媒体のより一層の高密度化が求められている。これまでに0.1Gb/inレベルの面記録密度を持つ塗布型の磁気記録媒体がすでに開発されており、1〜数Gb/in以上の超高密度磁気記録の可能な媒体の開発が次目標となっている。 The coating-type magnetic recording medium has been widely used in magnetic recording systems so far because it has excellent mass productivity and high reliability. In order to cope with the dramatic increase in the amount of information in the recent broadband age, the magnetic recording system will have a larger capacity, a higher transfer rate, and a higher density of magnetic recording media. It has been demanded. This has been coated magnetic recording medium is already developing with areal density of 0.1 GB / in 2 levels by, the development of one to several Gb / in 2 or more ultra-high density magnetic recording medium capable The next goal.

磁気記録媒体の記録密度を高めるためには、磁化反転の遷移領域がシャープであって孤立反転波形の半値幅(PW50)か狭く、また低域から高域まで出力変化が少なく平坦であることが求められてきた。このため高密度記録の可能な磁気記録媒体には、磁性層が薄いことが必要とされ、最近では磁性層厚を従来の数100nmから数十nmにまで薄くした磁気記録媒体がすでに開発されている。 In order to increase the recording density of the magnetic recording medium, the transition region of the magnetization reversal is sharp, the half width (PW 50 ) of the isolated reversal waveform is narrow, and the output change from low to high is small and flat. Has been demanded. For this reason, a magnetic recording medium capable of high-density recording requires a thin magnetic layer, and recently, a magnetic recording medium having a magnetic layer thickness reduced from several hundreds of nanometers to several tens of nanometers has already been developed. Yes.

高密度に記録された信号を高感度で読み出すためには、MR(磁気抵抗効果)を利用した高感度の再生ヘッドが用いられるようになり、磁気記録における記録密度は著しく向上した。高感度のMRヘッドに対しては、ヘッドか飽和するのを防ぎ、また波形歪みやパルス波形の非対称性が発生するのを防ぐために、磁気記録媒体の磁性層は均一性の良好な薄層であって、低域から高域まで出力変化が少なく平坦であることが要求される。   In order to read signals recorded at high density with high sensitivity, a high-sensitivity reproducing head using MR (magnetoresistance effect) has come to be used, and the recording density in magnetic recording has been remarkably improved. For high-sensitivity MR heads, the magnetic layer of the magnetic recording medium is a thin layer with good uniformity in order to prevent the head from becoming saturated and to prevent waveform distortion and pulse waveform asymmetry. Therefore, it is required to have a flat output with little change in output from the low range to the high range.

高感度のMRヘッドを使用した磁気記録機器では、媒体ノイズを低減することによって機器の信号対ノイズ比を高めることができる。媒体ノイズの低減には、磁気記録媒体の磁性粒子の微細化が求められる。   In a magnetic recording device using a high-sensitivity MR head, the signal-to-noise ratio of the device can be increased by reducing the medium noise. In order to reduce the medium noise, it is required to make the magnetic particles of the magnetic recording medium finer.

粒子サイズの微細化に適し、高密度記録に適した磁性粉末として六方晶フェライト磁性粉末がある。六方晶フェライト磁性粉末を用いた磁気記録媒体は、その磁化が比較的小さいため記録された磁化が比較的小さいことが指摘されていたが、信号の再生に高感度のMRヘッドを用いることにより、十分な信号出力が得られるようになったため、超高密度磁気記録媒体として期待されている。   Hexagonal ferrite magnetic powder is suitable as a magnetic powder suitable for finer particle size and high density recording. It has been pointed out that the magnetic recording medium using hexagonal ferrite magnetic powder has a relatively small magnetization due to its relatively small magnetization, but by using a highly sensitive MR head for signal reproduction, Since a sufficient signal output can be obtained, it is expected as an ultra-high density magnetic recording medium.

六方晶フェライト磁性粉末のフェライト粒子は粒子形状がほぼ六角板状であるため、その粒子サイズや形状は、平均板径と平均板厚、あるいは平均板径と平均の板状比(平均板径を平均板厚で除したもの)で表現される。上述した既存の磁気記録媒体の記録密度を上回る超高密度磁気記録媒体であり、磁性層の厚さが例えば100nm以下と薄く、媒体ノイズが低く信号対ノイズ比の高い媒体を得るには、これに用いる六方晶フェライト磁性粉末は平均板径が30nm以下であり、その平均板厚はその約1/3程度あるいはそれ以下に微細化されたものが求められている。   Since the ferrite particles of the hexagonal ferrite magnetic powder have a hexagonal plate shape, the particle size and shape are determined by the average plate diameter and average plate thickness, or the average plate diameter and average plate ratio (average plate diameter (Divided by the average thickness). In order to obtain an ultra-high-density magnetic recording medium that exceeds the recording density of the above-described existing magnetic recording medium, and has a thin magnetic layer of, for example, 100 nm or less, a low medium noise, and a high signal-to-noise ratio. The hexagonal ferrite magnetic powder used in the invention has an average plate diameter of 30 nm or less, and the average plate thickness is required to be refined to about 1/3 or less.

しかしながら、六方晶フェライト磁性粉末の平均粒子径を30nm以下にまで微細化したものを従来の製造方法に従って製造すると、例えば特許文献1(特開平10−92618号公報)に記載されているように、スイッチンク磁界分布SFD(逆方向の磁界を印加した場合の磁化反転磁界分布の半値幅ΔHをHcで除した値、ΔH/Hc)が著しく増大したものとなり、超高密度磁気記録媒体に適した六方晶フェライト磁性粉末が得られないという、微細化された磁性粒子の作製に伴う新しい技術的な問題点が見出されている。   However, when the average particle diameter of the hexagonal ferrite magnetic powder is refined to 30 nm or less according to a conventional production method, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 10-92618), The switching magnetic field distribution SFD (a value obtained by dividing the half-value width ΔH of the magnetization reversal magnetic field distribution when a magnetic field in the reverse direction is applied, Hc, ΔH / Hc) is remarkably increased, and is suitable for an ultra-high density magnetic recording medium. A new technical problem associated with the production of miniaturized magnetic particles has been found that hexagonal ferrite magnetic powder cannot be obtained.

結晶性および磁気特性が良好な六方晶フェライト磁性粉末は、ガラス結晶化法によって製造されている。ガラス結晶化法による六方晶フェライト磁性粉末の製造においては、溶融ガラスの均質性、急冷速度、および母相から六方晶フェライトの結晶を析出させる熱処理条件などを制御することにより、得られる六方晶フェライト磁性粉末の板径を制御することができる。しかし、このようにして粒子の平均板径を小さくしたものは、超常磁性粒子を示す粒子の比率が相対的に高くなり、またSFDが増大するために、磁気記録媒体に適した磁性粒子を得ることはできなかった。なお超常磁性粒子は、粒子体積が小さいために熱擾乱で磁気モーメントが磁化の本来の安定方向から絶えず外れて揺動し、保磁力を消失した状態の磁性粒子である。   Hexagonal ferrite magnetic powders having good crystallinity and magnetic properties are produced by a glass crystallization method. In the production of hexagonal ferrite magnetic powder by the glass crystallization method, the obtained hexagonal ferrite is controlled by controlling the homogeneity of the molten glass, the rapid cooling rate, and the heat treatment conditions for precipitating hexagonal ferrite crystals from the matrix. The plate diameter of the magnetic powder can be controlled. However, when the average plate diameter of the particles is reduced in this way, the ratio of the particles indicating superparamagnetic particles becomes relatively high and the SFD increases, so that magnetic particles suitable for the magnetic recording medium are obtained. I couldn't. Superparamagnetic particles are magnetic particles in a state where the magnetic moment is constantly deviating from the original stable direction of magnetization due to thermal disturbance because the particle volume is small, and the coercive force disappears.

特許文献1には、ガラス結晶化法により、母相から六方晶フェライトの結晶粒子を析出させる熱処理工程を、結晶核析出段階と結晶成長段階の2段階で行ない、結晶核析出段階での核体積と存在密度を規定することにより、平均板径10nm以下の粒子の存在確率を下げることが記載されている。この方法はこれまでの六方晶フェライト粒子の微細化に有効であったが、平均板径が30nm以下と、極めて微細な六方晶フェライト磁性粉末粒子を作製する場合には、結晶核析出段階と結晶成長段階とが近接し、熱処理工程を2段階に分けて制御することが困難となった。   In Patent Document 1, a heat treatment step for precipitating hexagonal ferrite crystal particles from a parent phase by a glass crystallization method is performed in two stages, a crystal nucleus precipitation stage and a crystal growth stage. It is described that the existence probability of particles having an average plate diameter of 10 nm or less is lowered by defining the existence density. This method has been effective for refining hexagonal ferrite particles so far. However, when producing extremely fine hexagonal ferrite magnetic powder particles having an average plate diameter of 30 nm or less, a crystal nucleus precipitation stage and a crystal Since the growth stage is close, it is difficult to control the heat treatment process in two stages.

特許文献2(特開平6−290924号公報)には、高密度磁気記録用の磁性粉末は粒子サイズかよく揃い、板径分布の幾何標準偏差が1.5以下であることが好ましいことが記載されており、その実施例には、磁性粉末粒子の幾何標準偏差が、1.42および1.4の磁性粉が記載されている。しかしながら、特許文献2に記載された製造方法では、この標準偏差値がそのほぼ限界であり、これ以上に磁性粉末粒子のサイズを揃えることは、特許文献2に記載された製造方法では困難であった。また粉末の粒度分布の改善には、一般には分級が用いられるが、こうして得られる磁性粉末は粒子サイズが非常に微細であるため、これまで有用な分級手段が見出されていなかった。   Patent Document 2 (Japanese Patent Laid-Open No. 6-290924) describes that the magnetic powder for high-density magnetic recording has a uniform particle size and preferably has a geometric standard deviation of 1.5 or less in the plate diameter distribution. In the examples, magnetic powder particles having a geometric standard deviation of 1.42 and 1.4 are described. However, in the manufacturing method described in Patent Document 2, this standard deviation value is almost the limit, and it is difficult for the manufacturing method described in Patent Document 2 to make the size of the magnetic powder particles more uniform. It was. In order to improve the particle size distribution of the powder, classification is generally used. However, since the magnetic powder thus obtained has a very fine particle size, no useful classification means has been found so far.

従来、微細で粒径サイズがよく揃い、結晶性と磁気特性が良好な六方晶フェライト磁性粉末を製造するには、特許文献1や特許文献2に記載されているガラス結晶化法が適していることが知られている。ガラス結晶化法による六方晶フェライト磁性粉末の作製では、ガラス成分中に析出した六方晶フェライト磁性粉末の粒子を抽出するために、例えば特許文献3(特開昭56−169128号公報)に示されているように、酢酸を用い、ガラス成分だけを溶解し除去する工程を有している。この工程では、ガラス成分の溶解に六方晶フェライトを溶解しない酢酸が使用されている。   Conventionally, the glass crystallization method described in Patent Document 1 or Patent Document 2 is suitable for producing a hexagonal ferrite magnetic powder that is fine, has a uniform grain size, and has good crystallinity and magnetic properties. It is known. In the production of hexagonal ferrite magnetic powder by the glass crystallization method, for example, Patent Document 3 (Japanese Patent Laid-Open No. 56-169128) discloses extraction of hexagonal ferrite magnetic powder particles precipitated in a glass component. As shown in the figure, acetic acid is used to dissolve and remove only the glass component. In this step, acetic acid that does not dissolve hexagonal ferrite is used to dissolve the glass component.

他方、特許文献4(特開昭64−66821号公報)には、六方晶フェライト磁性粉末の製造において硝酸を使用することが記載されている。特許文献4では、ガラス結晶化法による六方晶フェライト磁性粉末の製造において、溶融物を急冷して得た非晶質体の薄片を熱処理し、ガラス成分相に六方晶フェライトの微粒子を析出させると、この薄片の表面にだけ粗大粒子が発生するという現象がみられ、抽出する六方晶フェライト磁性粉末にこの粗大粒子を混入させないよう、予め除去しておく必要があることから、薄片を酢酸や硝酸などの酸に浸し、表面の粗大粒子を除去するものである。このように特許文献4では、薄片の表面にのみ酸を作用させて薄片表面の粗大粒子を除き、他方、抽出しようとする薄片内部の六方晶フェライト磁性粉末に対しては、この酸が作用して侵すことのないように配慮したものである。
特開平10−92618号公報 特開平6−290924号公報 特開昭56−169128号公報 特開昭64−66821号公報
On the other hand, Patent Document 4 (Japanese Patent Application Laid-Open No. 64-66821) describes the use of nitric acid in the production of hexagonal ferrite magnetic powder. In Patent Document 4, in the production of hexagonal ferrite magnetic powder by the glass crystallization method, the amorphous flakes obtained by quenching the melt are heat-treated to precipitate hexagonal ferrite fine particles in the glass component phase. However, the phenomenon that coarse particles are generated only on the surface of the flakes is observed, and it is necessary to remove the coarse particles in advance so that the coarse particles are not mixed into the hexagonal ferrite magnetic powder to be extracted. It is immersed in an acid such as to remove coarse particles on the surface. Thus, in Patent Document 4, the acid acts only on the surface of the flakes to remove the coarse particles on the flake surface, while the acid acts on the hexagonal ferrite magnetic powder inside the flakes to be extracted. It is designed not to invade.
JP-A-10-92618 JP-A-6-290924 JP-A-56-169128 JP-A 64-66821

上述したように、超高密度磁気記録媒体に用いることができる六方晶フェライト磁性粉末は得られておらず、これまでに知られている製造方法では製造が困難であることから、その製造が可能な新しい製造方法を開発することが、超高密度磁気記録媒体を実現するための重要な課題であった。本発明はこの課題を解決し、超高密度磁気記録媒体に適した六方晶フェライト磁性粉末とその製造方法を提供するものである。   As described above, hexagonal ferrite magnetic powder that can be used for ultra-high density magnetic recording media has not been obtained, and it is difficult to manufacture by the known manufacturing methods, so that it can be manufactured. Developing a new manufacturing method was an important issue for realizing an ultra-high density magnetic recording medium. The present invention solves this problem and provides a hexagonal ferrite magnetic powder suitable for an ultrahigh density magnetic recording medium and a method for producing the same.

本発明者らは、上記の六方晶フェライト磁性粉末の製造における酸処理のプロセスに着目し、研究を重ねた結果、六方晶フェライト磁性粉末の製造方法の発明に到達することができた。またこうして得られた六方晶フェライト磁性粉末について詳細に研究した結果、超高密度磁気記録媒体に適した六方晶フェライト磁性粉末の発明に到達することができた。   The inventors of the present invention focused on the acid treatment process in the production of the above hexagonal ferrite magnetic powder, and as a result of repeated research, the inventors have reached the invention of a method for producing a hexagonal ferrite magnetic powder. Further, as a result of detailed studies on the hexagonal ferrite magnetic powder thus obtained, the inventors have reached the invention of a hexagonal ferrite magnetic powder suitable for an ultrahigh density magnetic recording medium.

本発明の六方晶フェライト磁性粉末は、平均板径が18〜30nm、板径の幾何標準偏差が1.25以下であるとともに、平均板厚が5〜10nm、板厚の幾何標準偏差が1.25以下であって、板径が10nm以下の粒子比率が3%以下であり、さらに比表面積が40〜80m/gの六方晶フェライト粒子で構成され、SFDが0.7以下であることを特徴とする。 The hexagonal ferrite magnetic powder of the present invention has an average plate diameter of 18 to 30 nm and a geometric standard deviation of the plate diameter of 1.25 or less, an average plate thickness of 5 to 10 nm, and a geometric standard deviation of the plate thickness of 1. 25 or less, the ratio of the particles having a plate diameter of 10 nm or less is 3% or less, further composed of hexagonal ferrite particles having a specific surface area of 40 to 80 m 2 / g, and the SFD is 0.7 or less. Features.

このような六方晶フェライト磁性粉末は、例えばガラス結晶化法を用いて六方晶フェライト磁性粉末を製造し、製造された六方晶フェライト磁性粉末の粒度分布のうち微小な粒子の成分を溶解して除き、粒度分布を改善することによって得ることができる。   Such a hexagonal ferrite magnetic powder is produced by, for example, producing a hexagonal ferrite magnetic powder using a glass crystallization method, and dissolving and removing fine particle components in the particle size distribution of the produced hexagonal ferrite magnetic powder. Can be obtained by improving the particle size distribution.

六方晶フェライト磁性粉末の微小な粒子成分を溶解する方法としては、磁性粉末を一部溶解する酸性の比較的強い水溶液、例えば強酸の水溶液に所定の時間浸漬する方法を用いることができる。この際の溶解量を適切に選ぶことにより、微小な粒子を溶解により消滅させる一方で、粒度分布の主要な部分を占める粒子に対しては、溶解の影響が相対的に小さく、その結果として磁性粉末の粒度分布を狭めることができる。   As a method for dissolving the fine particle component of the hexagonal ferrite magnetic powder, a method of immersing in a relatively acidic aqueous solution in which a part of the magnetic powder is dissolved, for example, a strong acid aqueous solution, for a predetermined time can be used. By appropriately selecting the amount of dissolution at this time, fine particles disappear by dissolution, while the influence of dissolution is relatively small for particles occupying a major part of the particle size distribution, resulting in magnetic properties. The particle size distribution of the powder can be narrowed.

本発明において、六方晶フェライト磁性粉末の平均板径は、この磁性粉末の透過型電子顕微鏡像により、500個の粉末粒子の板径を無作為に選択して測定し、これらの測定値を算術平均して得たものである。また六方晶フェライト磁性粉末の平均板厚についても同様に、この磁性粉末の透過型電子顕微鏡像により、500個の粉末粒子の板厚を無作為に選択して測定し、これらの測定値を算術平均して得たものである。   In the present invention, the average plate diameter of the hexagonal ferrite magnetic powder is measured by randomly selecting the plate diameter of 500 powder particles from the transmission electron microscope image of the magnetic powder, and calculating these measured values. It was obtained on average. Similarly, the average plate thickness of the hexagonal ferrite magnetic powder is also measured by randomly selecting the plate thickness of 500 powder particles from the transmission electron microscope image of the magnetic powder, and calculating these measured values. It was obtained on average.

本発明の六方晶フェライト磁性粉末の平均板径は、18〜30nmである。六方晶フェライト磁性粉末の平均板径が18nm未満では、粒子の磁化値が小さくなるとともに分散が難しくなり、超高密度磁気記録媒体に用いた場合の信号対雑音比が著しく低下する。また六方晶フェライト磁性粉末の平均板径が30nmを超えると、超高密度磁気記録媒体に用いた場合に媒体ノイズが著しく増大する。その平均板径は、28nm以下であることがより好ましく、26nm以下であることがさらに好ましい。   The average plate diameter of the hexagonal ferrite magnetic powder of the present invention is 18 to 30 nm. When the average plate diameter of the hexagonal ferrite magnetic powder is less than 18 nm, the magnetization value of the particles becomes small and dispersion becomes difficult, and the signal-to-noise ratio when used in an ultrahigh density magnetic recording medium is remarkably lowered. On the other hand, when the average plate diameter of the hexagonal ferrite magnetic powder exceeds 30 nm, the medium noise is remarkably increased when used in an ultra-high density magnetic recording medium. The average plate diameter is more preferably 28 nm or less, and further preferably 26 nm or less.

本発明における六方晶フェライト磁性粉末の平均板厚は、5〜10nmである。六方晶フェライト磁性粉末の平均板厚が5nm未満では、粒子の磁化値が小さくなるとともに分散が難しくなり、超高密度磁気記録媒体に用いた場合の信号対雑音比が著しく低下する。また平均板厚が10nmを超えると、超高密度磁気記録媒体に用いた場合の媒体ノイズが著しく増大する。このような理由から、本発明の六方晶フェライト磁性粉末の平均板厚は、9nm以下であることがより好ましく、8nm以下であることがさらに好ましい。   The average plate thickness of the hexagonal ferrite magnetic powder in the present invention is 5 to 10 nm. When the average plate thickness of the hexagonal ferrite magnetic powder is less than 5 nm, the magnetization value of the particles becomes small and dispersion becomes difficult, and the signal-to-noise ratio when used in an ultrahigh density magnetic recording medium is remarkably lowered. On the other hand, when the average plate thickness exceeds 10 nm, the medium noise when used in an ultra-high density magnetic recording medium is remarkably increased. For these reasons, the average plate thickness of the hexagonal ferrite magnetic powder of the present invention is more preferably 9 nm or less, and further preferably 8 nm or less.

本発明における六方晶フェライト磁性粉末粒子の板径の幾何標準偏差は、この磁性粉末の透過型電子顕微鏡像から無作為に選択した500個の粉末粒子について板径を測定し、対数正規確率紙の横軸を板径、縦軸に個数の積算値を%表示にとり、これらの測定値をプロットし、プロットされた点に対し、最もフィットする直線を定め、この直線上で積算ふるい下値84.1%における板径を求め、これを積算ふるい下50%における板径で除すことによって得られるものである。この際のプロットした点に対し最もフィットする直線の決定には、最小二乗法を用いることができる。板径が10nmの粒子比率は、このプロットから直ちに読み取ることができる。   The geometric standard deviation of the plate diameter of the hexagonal ferrite magnetic powder particles in the present invention is obtained by measuring the plate diameter of 500 powder particles randomly selected from the transmission electron microscope image of the magnetic powder, The horizontal axis represents the plate diameter, and the vertical axis represents the integrated value of the number in%. These measured values are plotted, and a straight line that best fits the plotted points is determined. % Is obtained by dividing by the plate diameter at 50% under integrated sieving. The least square method can be used to determine the straight line that best fits the plotted points. The particle ratio with a plate diameter of 10 nm can be read immediately from this plot.

磁性粒子の板厚の幾何標準偏差についても同様に、この磁性粉末の透過型電子顕微鏡像から無作為に選択した500個の粉末粒子について板厚を測定し、対数正規確率紙の横軸を板厚、縦軸に個数の積算値を%表示にとり、これらの測定値をプロットし、プロットされた点に対し、最もフィットする直線を定め、この直線上で積算値84.1%に対応する板厚を求め、これを積算値50%における板厚で除すことによって得られるものである。この際にもプロットした点に対し最もフィットする直線の決定には、最小二乗法を用いることができる。   Similarly, for the geometric standard deviation of the thickness of the magnetic particles, the thickness was measured for 500 powder particles randomly selected from the transmission electron microscope image of the magnetic powder, and the horizontal axis of the lognormal probability paper was plotted on the horizontal axis. The integrated value of the number is displayed in% on the thickness and vertical axis, and these measured values are plotted. A straight line that best fits the plotted points is determined, and the plate corresponding to the integrated value of 84.1% is defined on this straight line. The thickness is obtained and divided by the plate thickness at an integrated value of 50%. In this case, the least square method can be used to determine the straight line that best fits the plotted points.

磁気記録媒体に用いられる六方晶フェライト磁性粉末の粒子は、板状の粒子形状を有し板面に垂直な方向に磁化容易軸を有しており、この磁性粉末を塗布した超高密度磁気記録媒体は、粒子の板面が塗布面に平行になるように薄層の塗布がなされる。この際、六方晶フェライト磁性粉末粒子は、板径がよく揃っているとともに、板厚もよく揃っていることが必要であることがわかった。   The particles of hexagonal ferrite magnetic powder used in magnetic recording media have a plate-like particle shape and an easy axis of magnetization in the direction perpendicular to the plate surface. Ultra high density magnetic recording coated with this magnetic powder. The medium is coated in a thin layer so that the plate surface of the particles is parallel to the coating surface. At this time, it was found that the hexagonal ferrite magnetic powder particles had to have the same plate diameter and the same plate thickness.

本発明における六方晶フェライト磁性粉末の板径の幾何標準偏差は1.25以下であるとともに、板厚の幾何標準偏差が1.25以下である。実際、板径の幾何標準偏差が1.25を超えると、これを用いた磁気記録媒体のノイズの急激な増加がみられ、また板厚の幾何標準偏差が1.25を超えた場合にも、これを用いた磁気記録媒体のノイズの急激な増加がみられた。板径や板厚の不揃いは塗膜の平滑性を妨げ、その影響は塗膜が薄層であるほど顕著であり、媒体ノイズの増加をもたらすことがわかった。   The geometric standard deviation of the plate diameter of the hexagonal ferrite magnetic powder in the present invention is 1.25 or less, and the geometric standard deviation of the plate thickness is 1.25 or less. Actually, when the geometric standard deviation of the plate diameter exceeds 1.25, the noise of the magnetic recording medium using the same is rapidly increased, and also when the geometric standard deviation of the plate thickness exceeds 1.25. There was a sharp increase in noise in magnetic recording media using this. It was found that the unevenness of the plate diameter and plate thickness hindered the smoothness of the coating film, and the effect was more remarkable as the coating film was thinner, resulting in an increase in medium noise.

上記六方晶フェライト磁性粉末の比表面積は、BET法に基づいて測定して得られた値であって、その値は40〜80m/gである。比表面積が40m/g未満では、超高密度磁気記録媒体を作製する際の磁性塗料の分散安定性の確保が困難となって超高密度磁気記録媒体の製造に適さなくなり、また比表面積が80m/gを超えると、磁性粉末粒子の配向性が低下するとともに充填性が低下し、いずれの場合も超高密度磁気記録に適さなくなることがわかった。六方晶フェライト磁性粉末の比表面積は、45m/g以上であることがより好ましく、また60m/g以下であることがより好ましい。 The specific surface area of the hexagonal ferrite magnetic powder is a value obtained by measurement based on the BET method, and the value is 40 to 80 m 2 / g. If the specific surface area is less than 40 m 2 / g, it is difficult to ensure the dispersion stability of the magnetic coating material when producing an ultra-high density magnetic recording medium, making it unsuitable for production of an ultra-high density magnetic recording medium. When it exceeded 80 m 2 / g, it was found that the orientation of the magnetic powder particles was lowered and the filling property was lowered, and in any case, it was not suitable for ultra high density magnetic recording. The specific surface area of the hexagonal ferrite magnetic powder is more preferably 45 m 2 / g or more, and more preferably 60 m 2 / g or less.

また上記六方晶フェライト磁性粉末は、含有する水分量が0.5〜4.0質量%であることが、磁気記録媒体を作製する際に、磁性粉末粒子をバインダ中によく分散させる上で好ましいことがわかった。含有する水分量が0.5質量%未満では、六方晶フェライト磁性粉末の粒子間の凝集力が現われ、凝集体を形成し易くなることがわかった。また含有する水分量が4.0質量%を超えると、磁気記録媒体を作製する際に、過剰な水分により磁性粉末粒子表面に物質が吸着するのを妨げ、磁性粉末粒子がバインダ中に分散するのを妨げる傾向がみられることがわかった。   The hexagonal ferrite magnetic powder preferably has a water content of 0.5 to 4.0% by mass in order to disperse the magnetic powder particles well in the binder when producing a magnetic recording medium. I understood it. It has been found that when the water content is less than 0.5% by mass, the cohesive force between the particles of the hexagonal ferrite magnetic powder appears and it becomes easy to form an aggregate. On the other hand, if the amount of water contained exceeds 4.0% by mass, the magnetic powder particles are dispersed in the binder by preventing excessive moisture from adsorbing substances on the surface of the magnetic powder particles when the magnetic recording medium is produced. It was found that there was a tendency to prevent this.

本発明において、六方晶フェライト磁性粉末のSFDの値は、0.7以下である。SFDの値が0.7を超えると、超高密度磁気記録媒体において記録された信号の自己減磁が増加し、出力が低下することがわかった。また本発明においては磁性粉末のSFDの値が0.6以下であることがさらに好ましいことがわかった。本発明において、SFDの値として約0.3までの低減が得られている。   In the present invention, the SFD value of the hexagonal ferrite magnetic powder is 0.7 or less. It was found that when the value of SFD exceeds 0.7, the self-demagnetization of the signal recorded in the ultra high density magnetic recording medium increases and the output decreases. In the present invention, it has been found that the SFD value of the magnetic powder is more preferably 0.6 or less. In the present invention, the SFD value is reduced to about 0.3.

本発明における磁性粉末のSFD値は、振動試料型磁力計(VSM)を用い、最大磁界10kOeとしてこの磁性粉末磁気ヒステリシス曲線を描き、このときの第2象限におけるσ−H曲線の微分曲線(dσ/dH)の半値幅を求め、これを磁性粉末の保磁力Hcの値で除した値である。   For the SFD value of the magnetic powder in the present invention, a magnetic sample magnetic hysteresis curve is drawn using a vibrating sample magnetometer (VSM) with a maximum magnetic field of 10 kOe, and the differential curve (dσ) of the σ-H curve in the second quadrant at this time. / DH) is obtained by dividing the half-value width by the value of the coercive force Hc of the magnetic powder.

SFDは磁性粉末の保磁力の広がりを示すパラメータであり、SFDが小さいほど高密度特性の向上が得られる。磁性粉末中の10nm以下の粒子比率を3%以下にすることにより、磁性粉末のSFDが著しく改善され、またこの磁性粉末を用いた超高密度磁気記録媒体の高密度記録特性を向上させることができることがわかった。   SFD is a parameter indicating the spread of the coercive force of the magnetic powder, and the smaller the SFD, the higher the density characteristics can be improved. By making the particle ratio of 10 nm or less in the magnetic powder 3% or less, the SFD of the magnetic powder is remarkably improved, and the high density recording characteristics of the ultra high density magnetic recording medium using this magnetic powder can be improved. I knew it was possible.

本発明の六方晶フェライト磁性粉末の保磁力は、2,000〜5,000Oeであることが好ましい。本発明の30nm以下の微小な六方晶フェライト磁性粉末を磁気記録媒体に用いる場合には、磁性粒子の保磁力か大きいことが特に有利である。保磁力が2,000Oe未満では、記録磁化の揺動に対する安定性や記録減磁が低下する。しかしながら、磁性粉末の保磁力が5,000Oeを超えると、この磁性粉末を用いた磁気記録媒体は、現有の記録ヘッドで磁化記録することが困難となる。   The coercive force of the hexagonal ferrite magnetic powder of the present invention is preferably 2,000 to 5,000 Oe. When the fine hexagonal ferrite magnetic powder of 30 nm or less of the present invention is used for a magnetic recording medium, it is particularly advantageous that the magnetic particles have a large coercive force. When the coercive force is less than 2,000 Oe, the stability against fluctuation of the recording magnetization and the recording demagnetization are deteriorated. However, if the coercive force of the magnetic powder exceeds 5,000 Oe, it becomes difficult for the magnetic recording medium using this magnetic powder to perform magnetic recording with the existing recording head.

本発明者らは、強酸の水溶液を用い、磁性粉末中の微小粒子を除去することにより、こうした超高密度磁気記録媒体に適した六方晶フェライト磁性粉末を得ることができることを見出した。   The present inventors have found that a hexagonal ferrite magnetic powder suitable for such an ultra-high density magnetic recording medium can be obtained by using an aqueous solution of a strong acid and removing fine particles in the magnetic powder.

本発明における第1の六方晶フェライト磁性粉末の製造方法は、幾何平均板径が18〜30nmの六方晶フェライト磁性粒子を、強酸の水溶液で処理することにより、板径が10nm以下の粒子の存在量を3%以下にすることを特徴とする。   In the first method for producing a hexagonal ferrite magnetic powder in the present invention, hexagonal ferrite magnetic particles having a geometric average plate diameter of 18 to 30 nm are treated with an aqueous solution of a strong acid, whereby particles having a plate diameter of 10 nm or less are present. The amount is 3% or less.

ここに六方晶フェライト磁性粒子の処理に用いる強酸の水溶液は、水溶液中でほとんど完全に電離し、その濃度によってpHの値を大きく変えることができ、六方晶フェライト磁性粒子の表面を溶解することのできる酸の水溶液である。強酸の水溶液の濃度としてはは、0.2〜2mol/Lが好ましい。この濃度の強酸の水溶液を用いて六方晶フェライト磁性粒子表面の溶解をすることにより、微小サイズの粒子を溶解して消滅させ、粒度分布の改善された六方晶フェライト磁性粉末を得ることができる。   Here, the aqueous solution of strong acid used for the treatment of hexagonal ferrite magnetic particles is almost completely ionized in the aqueous solution, and the pH value can be changed greatly depending on its concentration, so that the surface of the hexagonal ferrite magnetic particles can be dissolved. It is an aqueous solution of an acid that can be produced. The concentration of the strong acid aqueous solution is preferably 0.2 to 2 mol / L. By dissolving the surface of the hexagonal ferrite magnetic particles using an aqueous solution of a strong acid having this concentration, it is possible to dissolve and eliminate the fine sized particles to obtain a hexagonal ferrite magnetic powder having an improved particle size distribution.

本発明において、上記の強酸の濃度が0.2mol/L未満では、六方晶フェライト粒子に対する反応が十分でなく、また強酸の濃度が2mol/Lを超えると、フェライト磁性粒子の溶解量が増大し、処理後の磁性粉末の収量が急激に減少するので好ましくない。この理由により、強酸の濃度は0.5mol/L以上であることがより好ましく、他方で強酸の濃度は1.5mol/L以下であることがより好ましい。   In the present invention, when the concentration of the strong acid is less than 0.2 mol / L, the reaction to the hexagonal ferrite particles is not sufficient, and when the concentration of the strong acid exceeds 2 mol / L, the amount of ferrite magnetic particles dissolved increases. This is not preferable because the yield of the magnetic powder after the treatment is drastically reduced. For this reason, the concentration of strong acid is more preferably 0.5 mol / L or more, and the concentration of strong acid is more preferably 1.5 mol / L or less.

本発明の六方晶フェライト磁性粉末の製造方法は、ガラス結晶化法を用いた六方晶フェライト磁性粉末の製造プロセスに取りこむことができる。   The method for producing a hexagonal ferrite magnetic powder according to the present invention can be incorporated into a process for producing a hexagonal ferrite magnetic powder using a glass crystallization method.

本発明における第2の六方晶フェライト磁性粉末の製造方法は、六方晶フェライト磁性粉末の構成成分およびガラス形成成分を混合し、加熱溶融して溶融物を得る工程と、前記溶融物を急冷し急冷固化物を得る工程と、前記急冷固化物を加熱処理を施し、六方晶フェライト粒子の析出した結晶化物を得る工程と、前記結晶化物を強酸の水溶液で処理し、前記結晶化物のガラス成分を溶解するとともに、前記結晶化物中に析出した六方晶フェライト粒子の表面を一部溶解することにより、微小サイズの粒子を溶解除去して六方晶フェライト磁性粉末を得る工程とを有することを特徴とする。   The second method for producing a hexagonal ferrite magnetic powder according to the present invention includes a step of mixing the components of the hexagonal ferrite magnetic powder and a glass forming component, heating and melting to obtain a melt, and quenching and quenching the melt. A step of obtaining a solidified product, a step of subjecting the rapidly solidified product to heat treatment to obtain a crystallized product in which hexagonal ferrite particles are precipitated, and a treatment of the crystallized product with an aqueous solution of a strong acid to dissolve the glass component of the crystallized product. And a step of dissolving a part of the surface of the hexagonal ferrite particles precipitated in the crystallized product to dissolve and remove fine sized particles to obtain a hexagonal ferrite magnetic powder.

この製造方法によれば、従来のガラス結晶化法による六方晶フェライト磁性粉末の製造方法において、六方晶フェライト粒子をガラス成分中に析出させた結晶化物から、酢酸を用いてガラス成分を溶解して除去し、六方晶フェライト粒子を取出す工程で、酢酸の代わりに、強酸の水溶液を用いることにより、ガラス成分を溶解し除去するとともに、微小サイズの粒子を溶解して除き、粒度分布の改善された六方晶フェライト磁性粉末を得ることができる。ここに強酸の濃度は、0.2〜2mol/Lが好ましい。強酸の濃度が0.2mol/L未満では、六方晶フェライト粒子に対する反応が十分でなく、また強酸の濃度が2mol/Lを超えると、フェライト磁性粒子の溶解量が増大し、処理後の磁性粉末の収量が急激に減少するので好ましくない。この理由により、強酸の濃度は0.5mol/L以上であることがより好ましく、他方で強酸の濃度は1.5mol/L以下であることがより好ましい。   According to this production method, in a conventional method for producing a hexagonal ferrite magnetic powder by glass crystallization, a glass component is dissolved using acetic acid from a crystallized product in which hexagonal ferrite particles are precipitated in the glass component. In the process of removing and removing hexagonal ferrite particles, by using an aqueous solution of strong acid instead of acetic acid, the glass component is dissolved and removed, and the fine particle is dissolved and removed to improve the particle size distribution. Hexagonal ferrite magnetic powder can be obtained. Here, the concentration of the strong acid is preferably 0.2 to 2 mol / L. If the concentration of the strong acid is less than 0.2 mol / L, the reaction to the hexagonal ferrite particles is not sufficient, and if the concentration of the strong acid exceeds 2 mol / L, the amount of the ferrite magnetic particles dissolved increases, and the magnetic powder after the treatment This is not preferable because the yield of is decreased rapidly. For this reason, the concentration of strong acid is more preferably 0.5 mol / L or more, and the concentration of strong acid is more preferably 1.5 mol / L or less.

上記強酸の水溶液による処理は、水溶液の温度を70〜100℃の範囲に制御して行なうことが好ましい。強酸の水溶液を70℃以上にすることにより、強酸の水溶液で溶解するガラス組成成分の溶解度を高めることができ、強酸の水溶液がガラス組成成分の溶解について飽和に近づいたり飽和に達して溶解が進まなくなることや、過飽和溶液となって再析出したりするのを防ぐことができる。この理由から強酸の水溶液の温度は、80℃以上にすることがより好ましい。また強酸の水溶液は100℃に近づくと強酸の蒸発量が増大することから、その温度は90℃以下に保つことがより好ましい。   The treatment with the strong acid aqueous solution is preferably carried out by controlling the temperature of the aqueous solution in the range of 70 to 100 ° C. By setting the strong acid aqueous solution to 70 ° C. or higher, the solubility of the glass composition component dissolved in the strong acid aqueous solution can be increased, and the dissolution of the strong acid aqueous solution approaches or reaches saturation with respect to the dissolution of the glass composition component. It is possible to prevent disappearance and reprecipitation as a supersaturated solution. For this reason, the temperature of the strong acid aqueous solution is more preferably 80 ° C. or higher. Moreover, since the evaporation amount of a strong acid will increase when the aqueous solution of a strong acid approaches 100 degreeC, it is more preferable to keep the temperature at 90 degrees C or less.

上記強酸の水溶液による処理時間は、処理によって得られる板径および板厚分布の改善、あるいはSFDの改善の状況から判断して選ぶことができ、例えば板径が約10nm、板厚が約3nmの粒子を溶解し消失させる溶解厚さを目安とし、その処理時間を選定することができる。   The treatment time with the aqueous solution of the strong acid can be selected based on the improvement of the plate diameter and thickness distribution obtained by the treatment or the improvement of SFD. For example, the plate diameter is about 10 nm and the plate thickness is about 3 nm. The treatment time can be selected based on the dissolution thickness at which particles dissolve and disappear.

さらに本発明の六方晶フェライト磁性粉末の製造方法は、ガラス結晶化法を用いた六方晶フェライト磁性粉末の製造工程に、強酸処理の工程を加えた構成とすることができる。   Furthermore, the manufacturing method of the hexagonal ferrite magnetic powder of the present invention can be configured by adding a strong acid treatment step to the manufacturing step of the hexagonal ferrite magnetic powder using the glass crystallization method.

本発明における第3の六方晶フェライト磁性粉末の製造方法は、六方晶フェライト磁性粉末の基本成分および保磁力調整のための置換成分、並びにガラス形成成分を混合し、加熱溶融して溶融物を得る工程と、前記溶融物を急冷し急冷固化物を得る工程と、前記急冷固化物を熱処理してガラス成分の相に六方晶フェライト粒子が析出した結晶化物を得る工程と、前記結晶化物が有するガラス成分を溶解除去し、六方晶フェライト磁性粉末を得る工程と、前記六方晶フェライト磁性粉末を強酸の水溶液で処理し、六方晶フェライト磁性粉末中の微小サイズの粒子を溶解除去し、微小サイズ粒子が除去された六方晶フェライト磁性粉末を得る工程とを有することを特徴とする。   In the third method for producing a hexagonal ferrite magnetic powder in the present invention, the basic component of hexagonal ferrite magnetic powder, a substitution component for adjusting the coercive force, and a glass-forming component are mixed and melted by heating to obtain a melt. A step of quenching the melt to obtain a rapidly solidified product, a step of heat-treating the rapidly solidified product to obtain a crystallized product in which hexagonal ferrite particles are precipitated in a glass component phase, and a glass of the crystallized product. Dissolving and removing the components to obtain a hexagonal ferrite magnetic powder; treating the hexagonal ferrite magnetic powder with an aqueous solution of a strong acid; dissolving and removing fine particles in the hexagonal ferrite magnetic powder; And a step of obtaining a removed hexagonal ferrite magnetic powder.

ここに強酸の濃度は、0.2〜2mol/Lが好ましい。強酸の濃度が0.2mol/L未満では、六方晶フェライト粒子に対する反応が十分でなく、また強酸の濃度が2mol/Lを超えると、フェライト磁性粒子の溶解量が増大し、処理後の磁性粉末の収量が急激に減少するので好ましくない。この理由により、強酸の濃度は0.5mol/L以上であることがより好ましく、他方で強酸の濃度は1.5mol/L以下であることがより好ましい。   Here, the concentration of the strong acid is preferably 0.2 to 2 mol / L. If the concentration of the strong acid is less than 0.2 mol / L, the reaction to the hexagonal ferrite particles is not sufficient, and if the concentration of the strong acid exceeds 2 mol / L, the amount of the ferrite magnetic particles dissolved increases, and the magnetic powder after the treatment This is not preferable because the yield of is decreased rapidly. For this reason, the concentration of strong acid is more preferably 0.5 mol / L or more, and the concentration of strong acid is more preferably 1.5 mol / L or less.

この製造方法によれば、従来のガラス結晶化法によって製造された六方晶フェライト粒子に対し、強酸の水溶液による溶解処理を行うことにより、微小サイズの粒子を除去し、粒度分布の改善された六方晶フェライト磁性粉末を得ることができる。   According to this production method, hexagonal ferrite particles produced by a conventional glass crystallization method are subjected to a dissolution treatment with an aqueous solution of a strong acid to remove fine particles and improve the hexagonal particle size distribution. Crystalline ferrite magnetic powder can be obtained.

本発明の六方晶フェライト磁性粉末の製造方法においては、強酸として塩酸、硝酸およびフッ酸から選ばれる少なくともいずれか1種、または塩酸、硝酸およびフッ酸から選ばれる少なくともいずれか1種と酢酸との混合してなる混合酸の水溶液を用いることができる。   In the method for producing a hexagonal ferrite magnetic powder of the present invention, at least one selected from hydrochloric acid, nitric acid and hydrofluoric acid as a strong acid, or at least one selected from hydrochloric acid, nitric acid and hydrofluoric acid, and acetic acid. A mixed acid aqueous solution obtained by mixing can be used.

これらの強酸の水溶液を用いることにより、酸処理によってフェライト磁性粉末粒子の表面の適正量を溶解し、磁性粉末粒子の板径分布および板厚分布をシャープにすることができる。硝酸の水溶液は、溶解量の制御が容易であることから、特に好ましく用いることができる。   By using an aqueous solution of these strong acids, an appropriate amount of the surface of the ferrite magnetic powder particles can be dissolved by acid treatment, and the plate diameter distribution and plate thickness distribution of the magnetic powder particles can be sharpened. An aqueous solution of nitric acid can be particularly preferably used because the amount of dissolution can be easily controlled.

本発明の六方晶フェライト磁性粉末の製造方法によれば、上記の強酸処理を用い、磁性粉末粒子の平均板径が18〜30nm、板径の幾何標準偏差が1.25以下であるとともに、この磁性粉末粒子の平均板厚が5〜10nm、板厚の幾何標準偏差が1.25以下の六方晶フェライト磁性粉末を得ることができる。   According to the method for producing a hexagonal ferrite magnetic powder of the present invention, using the above strong acid treatment, the magnetic powder particles have an average plate diameter of 18 to 30 nm and a geometric standard deviation of the plate diameter of 1.25 or less. A hexagonal ferrite magnetic powder having an average plate thickness of 5 to 10 nm and a geometric standard deviation of plate thickness of 1.25 or less can be obtained.

六方晶フェライト磁性粉末の平均粒子径が30nm以下の場合は、従来の方法では板径の幾何標準偏差として1.4以下にすることができなかったが、本発明の六方晶フェライト磁性粉末の製造方法により、磁性粉末粒子の板径の幾何標準偏差と板厚の幾何標準偏差を共に1.25以下にすることができ、さらにこれらの幾何標準偏差として1.05まで実現できるようになった。   When the average particle diameter of the hexagonal ferrite magnetic powder is 30 nm or less, the geometric standard deviation of the plate diameter cannot be reduced to 1.4 or less by the conventional method, but the production of the hexagonal ferrite magnetic powder of the present invention is not possible. By this method, both the geometric standard deviation of the plate diameter and the geometric standard deviation of the plate thickness of the magnetic powder particles can be made 1.25 or less, and further, the geometric standard deviation can be realized up to 1.05.

このような製造方法によって得られる六方晶フェライト磁性粉末は、超高密度磁気記録用途に特に適した磁性粉末となる。   The hexagonal ferrite magnetic powder obtained by such a manufacturing method is a magnetic powder particularly suitable for ultrahigh density magnetic recording applications.

本発明により、塗布型で超高密度記録の可能な磁気記録媒体の磁性粉末として用いることができる六方晶フェライト磁性粉末が明らかにされ、また本発明の製造方法により、これまで製造が困難であった超高密度磁気記録媒体に適した六方晶フェライト磁性粉末の製造が可能となった。   According to the present invention, a hexagonal ferrite magnetic powder that can be used as a magnetic powder of a coating type and capable of ultra-high density recording is clarified, and the manufacturing method of the present invention has been difficult to manufacture. Hexagonal ferrite magnetic powder suitable for ultra high density magnetic recording media can be manufactured.

次に本発明の実施の形態について、図面を参照しながら具体的に説明する。   Next, embodiments of the present invention will be specifically described with reference to the drawings.

図1はガラス結晶化法を利用した本発明の六方晶フェライト磁性粉末の製造方法に係る一実施形態を示す工程の流れを示した図である。図1において、六方晶フェライトの成分とガラス成分110は、混合工程120にて混合し混合物130を得る。この混合物を加熱溶融工程140にて加熱溶融して溶融物150を得る。次にこの加熱溶融物150を急冷固化工程160にて急冷固化して急冷固化物170を得る。続いて急冷固化物170を加熱結晶化工程180にて加熱結晶化し、ガラス成分中に六方晶フェライト粒子の析出した結晶化物190を得る。この結晶化物190を強酸処理工程201にて強酸水溶液により強酸処理することにより、結晶化物190のガラス成分を溶解するとともに、微細な六方晶フェライト粒子を溶解して除去し、洗浄工程230にて水洗浄することにより、粒度分布の良好な六方晶フェライト磁性粉末240を得ることができる。   FIG. 1 is a diagram showing a flow of steps showing an embodiment according to a method for producing a hexagonal ferrite magnetic powder of the present invention using a glass crystallization method. In FIG. 1, the hexagonal ferrite component and the glass component 110 are mixed in the mixing step 120 to obtain a mixture 130. This mixture is heated and melted in the heating and melting step 140 to obtain a melt 150. Next, the heated melt 150 is rapidly cooled and solidified in a rapid solidification step 160 to obtain a rapidly solidified product 170. Subsequently, the rapidly solidified product 170 is heated and crystallized in the heat crystallization step 180 to obtain a crystallized product 190 in which hexagonal ferrite particles are precipitated in the glass component. The crystallized product 190 is subjected to a strong acid treatment with a strong acid aqueous solution in the strong acid treatment step 201 to dissolve the glass component of the crystallized product 190 and dissolve and remove fine hexagonal ferrite particles. By washing, a hexagonal ferrite magnetic powder 240 having a good particle size distribution can be obtained.

図2はガラス結晶化法を利用した本発明の六方晶フェライト磁性粉末の製造方法に係る他の一実施形態を示す工程の流れを示した図である。図2において、六方晶フェライトの成分とガラス成分110の混合工程120から、加熱結晶化工程180にて加熱結晶化し、ガラス成分中に六方晶フェライト粒子の析出した結晶化物190を得るまでは、図1と同じである。   FIG. 2 is a diagram showing a process flow showing another embodiment of the method for producing a hexagonal ferrite magnetic powder of the present invention using a glass crystallization method. In FIG. 2, from the mixing step 120 of the hexagonal ferrite component and the glass component 110 to the heat crystallization step 180 in the heat crystallization step, a crystallized product 190 in which hexagonal ferrite particles are precipitated in the glass component is obtained. Same as 1.

即ち、六方晶フェライトの成分とガラス成分110は、混合工程120にて混合し混合物130を得る。この混合物を加熱溶融工程140にて加熱溶融して溶融物150を得る。この加熱溶融物150を急冷固化工程160にて急冷固化して急冷固化物170を得る。続いて急冷固化物170を加熱結晶化工程180にて加熱結晶化し、ガラス成分中に六方晶フェライト粒子の析出した結晶化物190を得る。次にこの結晶化物190を、酢酸処理工程202にて酢酸水溶液を用いて処理することにより、結晶化物190中のガラス成分を溶解し、六方晶フェライト磁性粒子210を得る。続いてこの六方晶フェライト磁性粒子210に対し、強酸処理工程220にて六方晶フェライト磁性粒子210中の微細な六方晶フェライト粒子を溶解して除き、洗浄工程230にて水洗浄することにより、粒度分布の良好な六方晶フェライト磁性粉末240を得ることができる。   That is, the hexagonal ferrite component and the glass component 110 are mixed in the mixing step 120 to obtain a mixture 130. This mixture is heated and melted in the heating and melting step 140 to obtain a melt 150. The heated melt 150 is rapidly cooled and solidified in a rapid solidification step 160 to obtain a rapidly solidified product 170. Subsequently, the rapidly solidified product 170 is heated and crystallized in the heat crystallization step 180 to obtain a crystallized product 190 in which hexagonal ferrite particles are precipitated in the glass component. Next, the crystallized product 190 is treated with an acetic acid aqueous solution in the acetic acid treatment step 202, whereby the glass component in the crystallized product 190 is dissolved to obtain hexagonal ferrite magnetic particles 210. Subsequently, with respect to the hexagonal ferrite magnetic particles 210, fine hexagonal ferrite particles in the hexagonal ferrite magnetic particles 210 are dissolved and removed in the strong acid treatment step 220, and then washed with water in the washing step 230. A hexagonal ferrite magnetic powder 240 having a good distribution can be obtained.

上記洗浄工程230においては、分離された洗浄液の電気伝導率をmS/mの単位で表したとき、その数値が沈降スラリー濃度(磁性粉末量)の質量%の1/4以下の値になるまで水洗浄をすることが好ましいことがわかった。こうすることにより、洗浄後の磁性粉末からの不純物の塩の析出が抑制でき、超高密度記録媒体用磁性粉末として好ましいことがわかった。また、洗浄処理された磁性粉末は、この磁性粉末を浸漬し煮沸した浸漬液の電気伝導率が、0.02〜6.0mS/mとなるように調整されていることが好ましいことを見出した。ここに磁性粉末を浸漬し煮沸した浸漬液の電気伝導率浸漬し煮沸した液の電気伝導率とは、磁性粉末5gを200mLのビーカーに入れ、100mLの純水にし浸漬し、210℃に加熱されたホットプレートにて40分間煮沸し、この液をPET容器に密閉して空気との接触を断った状態で15分間水冷した後に測定した電気伝導率である。   In the cleaning step 230, when the electrical conductivity of the separated cleaning liquid is expressed in units of mS / m, the numerical value is equal to or less than ¼ of the mass% of the precipitated slurry concentration (magnetic powder amount). It was found that water washing is preferable. By doing so, it was found that precipitation of impurity salts from the magnetic powder after washing can be suppressed, which is preferable as a magnetic powder for ultra-high density recording media. Further, it has been found that the washed magnetic powder is preferably adjusted so that the electric conductivity of the immersion liquid in which the magnetic powder is immersed and boiled is 0.02 to 6.0 mS / m. . The electric conductivity of the immersion liquid boiled and immersed in the magnetic powder. The electric conductivity of the immersion and boiled liquid is that 5 g of the magnetic powder is placed in a 200 mL beaker, immersed in 100 mL of pure water, and heated to 210 ° C. It is the electrical conductivity measured after boiling for 40 minutes on a hot plate and sealing the liquid in a PET container and water cooling for 15 minutes in a state where contact with air was cut off.

組成式BaO・n(Fe11.3Co0.1Zn0.4Nb0.218)、(ただしnは約1)で表される六方晶のBaフェライト磁性粉末を、次のガラス結晶化法の工程に従って作製した。 A hexagonal Ba ferrite magnetic powder represented by the composition formula BaO.n (Fe 11.3 Co 0.1 Zn 0.4 Nb 0.2 O 18 ) (where n is about 1) is converted into the following glass crystal It was prepared according to the steps of the chemical method.

ガラス成分(BaO、B)とBaフェライト成分(BaO、Fe、CoO、ZnO、NbO)を所定量秤量し混合して混合物を得た。白金ルツボにこの混合物を入れ、1300℃〜1400℃にて溶解して溶融物とした後、この溶融物を双ローラ上に落下させて圧延急冷した。 A predetermined amount of glass components (BaO, B 2 O 3 ) and Ba ferrite components (BaO, Fe 2 O 3 , CoO, ZnO, NbO) were weighed and mixed to obtain a mixture. This mixture was put in a platinum crucible and melted at 1300 ° C. to 1400 ° C. to form a melt, and then the melt was dropped on a twin roller and rapidly cooled by rolling.

こうして得た急冷物を結晶化炉に入れ、室温より650℃まで昇温し、この温度を5時間保つパターンにて熱処理を施し、ガラス成分の相にBaフェライト粒子が析出した結晶化物を得た。この結晶化物をまず粉砕機を用い200μm程度の大きさにまで粉砕し、さらにボールミルにて10μm程度にまで微粉砕を行なった。   The rapidly cooled product thus obtained was placed in a crystallization furnace, heated from room temperature to 650 ° C., and subjected to heat treatment in a pattern for maintaining this temperature for 5 hours, thereby obtaining a crystallized product in which Ba ferrite particles were precipitated in the glass component phase. . This crystallized product was first pulverized to a size of about 200 μm using a pulverizer, and further pulverized to about 10 μm using a ball mill.

次に30Lのタンクにこの微粉砕した結晶化物を1kg入れ、これに所定濃度の硝酸水溶液を入れ、ヒーターを用いてタンク中の液を昇温し、液の温度を80℃〜90℃に制御し、4時間攪拌を行なうことにより、微粉砕された結晶化物と酸による反応を進めた後、磁性粉末粒子を沈降させ、残りの液を排水した。この磁性粉末粒子に60℃〜80℃の温水を加えて懸濁させた後、磁性粉末粒子を沈降させ、残りの液を排水する水洗浄を繰返し行なった。続いてpH4にてAl表面処理を行ない、再び水洗浄を繰返した。この水洗浄は、残りの液の電気伝導度が20μSに低下するまで行なった。   Next, 1 kg of this finely pulverized crystallized product is put into a 30 L tank, and a nitric acid aqueous solution of a predetermined concentration is put into this tank. Then, by stirring for 4 hours, the reaction with the finely pulverized crystallized product and acid was advanced, and then the magnetic powder particles were settled, and the remaining liquid was drained. The magnetic powder particles were suspended by adding warm water of 60 ° C. to 80 ° C., then the magnetic powder particles were settled, and water washing for draining the remaining liquid was repeated. Subsequently, Al surface treatment was performed at pH 4, and water washing was repeated again. This water washing was performed until the electric conductivity of the remaining liquid decreased to 20 μS.

こうして水洗浄を行なったスラリーを乾燥させ、磁性粉末を得た。磁性粉末は水分量が0.1〜0.2質量%となるように水分を調整した。   The slurry thus washed with water was dried to obtain a magnetic powder. The magnetic powder was adjusted to have a moisture content of 0.1 to 0.2% by mass.

(実施例1)
上記の工程において、硝酸水溶液の濃度を0.8mol/Lとし、この酸の水溶液と微粉砕された結晶化物との反応を4時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。 この実施例の条件を表1にまとめ、また得られた磁性粉末について、各項目の評価を行なった結果を表2にまとめて示した。
(Example 1)
In the above process, the concentration of the aqueous nitric acid solution was 0.8 mol / L, and the reaction between the aqueous acid solution and the finely pulverized crystallized material was performed for 4 hours, followed by washing with water and drying to obtain a magnetic powder. . Table 1 summarizes the conditions of this example, and Table 2 summarizes the results of the evaluation of each item for the obtained magnetic powder.

なお、保磁力Hc、SFD、および飽和磁化σsの測定にはVSMを用い、比表面積測定にはBET方式による測定装置を用い、また磁性粉末粒子の板径、板厚の分布の測定には透過型電子顕微鏡像を用い、いずれの場合ももすでに述べた基準に従って測定評価を行なった。また収率は、水洗、乾燥後の六方晶フェライト磁性粉末の重量を計量し、理論量に対する比率を算出したものである。   Note that VSM is used to measure the coercive force Hc, SFD, and saturation magnetization σs, a BET-type measuring device is used to measure the specific surface area, and transmission is used to measure the plate diameter and thickness distribution of the magnetic powder particles. In each case, measurement evaluation was performed using a scanning electron microscope image in accordance with the criteria already described. Further, the yield is obtained by measuring the weight of the hexagonal ferrite magnetic powder after washing and drying and calculating the ratio to the theoretical amount.

(実施例2)
上記の工程において、硝酸水溶液の濃度を1.1mol/Lとし、この酸の水溶液と微粉砕された結晶化物との反応を4時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。 この実施例の条件を表1にまとめ、また得られた磁性粉末について各項目の評価を行なった結果を表2にまとめて示した。
(Example 2)
In the above steps, the concentration of the aqueous nitric acid solution was 1.1 mol / L, and the reaction between the aqueous acid solution and the finely pulverized crystallized material was performed for 4 hours, followed by washing with water and drying to obtain a magnetic powder. . Table 1 summarizes the conditions of this example, and Table 2 summarizes the results of evaluation of each item for the obtained magnetic powder.

(実施例3)
上記の工程において、硝酸水溶液の濃度を1.4mol/Lとし、この酸の水溶液と微粉砕された結晶化物との反応を4時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。この実施例の条件を表1にまとめ、また得られた磁性粉末について各項目の評価を行なった結果を表2にまとめて示した。
(Example 3)
In the above process, the concentration of the aqueous nitric acid solution was 1.4 mol / L, and the reaction between the aqueous acid solution and the finely pulverized crystallized material was performed for 4 hours, followed by washing with water and drying to obtain a magnetic powder. . Table 1 summarizes the conditions of this example, and Table 2 summarizes the results of evaluation of each item for the obtained magnetic powder.

(実施例4)
上記の工程において、硝酸水溶液の濃度を1.7mol/Lとし、この酸の水溶液と微粉砕された結晶化物との反応を4時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。この実施例の条件を表1にまとめ、また得られた磁性粉末について各項目の評価を行なった結果を表2にまとめて示した。
Example 4
In the above step, the concentration of the aqueous nitric acid solution was 1.7 mol / L, and the reaction between the aqueous acid solution and the finely pulverized crystal was allowed to proceed for 4 hours, followed by washing with water and drying to obtain a magnetic powder. . Table 1 summarizes the conditions of this example, and Table 2 summarizes the results of evaluation of each item for the obtained magnetic powder.

図3には、実施例3で得られた磁性粉末の板径分布を黒丸と実線にて示した。図3にはこの実施例3の磁性粉末との比較のために、強酸水溶液による処理を行なわない場合(後述の比較例3)の磁性粉末の板径分布を併せて示した。   In FIG. 3, the plate diameter distribution of the magnetic powder obtained in Example 3 is shown by black circles and solid lines. For comparison with the magnetic powder of Example 3, FIG. 3 also shows the plate diameter distribution of the magnetic powder when the treatment with the strong acid aqueous solution is not performed (Comparative Example 3 described later).

これら実施例1〜4の結果から、硝酸水溶液の濃度を0.8mol/Lから1.7mol/Lまで変えて4時間の硝酸水溶液処理を行なうと、いずれの場合も磁性粉末の板径分布および板厚分布の改善、並びにSFDの改善が得られ、本発明の効果が得られることがわかった。また磁性粉末の収量は硝酸の濃度を高めるとともに減少することが示された。   From these results of Examples 1 to 4, when the concentration of the nitric acid aqueous solution was changed from 0.8 mol / L to 1.7 mol / L and the nitric acid aqueous solution treatment was performed for 4 hours, the plate diameter distribution of the magnetic powder and It was found that the plate thickness distribution was improved and the SFD was improved, and the effects of the present invention were obtained. It was also shown that the yield of magnetic powder decreased with increasing nitric acid concentration.

(実施例5)
上記の工程において、結晶化物を粉砕機を用い200μm程度の大きさにまで粉砕し、その後のボールミルによる微粉砕を省略し、これを1.1mol/Lの濃度の硝酸水溶液と6時間反応させた後、水洗浄し乾燥して磁性粉末を得た。この実施例の条件を表1にまとめ、また得られた磁性粉末について各項目の評価を行なった結果を表2にまとめて示した。
(Example 5)
In the above step, the crystallized product was pulverized to a size of about 200 μm using a pulverizer, and the subsequent pulverization by a ball mill was omitted, and this was reacted with an aqueous nitric acid solution having a concentration of 1.1 mol / L for 6 hours. Thereafter, it was washed with water and dried to obtain a magnetic powder. Table 1 summarizes the conditions of this example, and Table 2 summarizes the results of evaluation of each item for the obtained magnetic powder.

得られた磁性粉末中のアルミナ含有量は0.1%以下であり、用いた原料が不純物として含有するアルミナ量のレベルであった。ボールミルによる結晶化物の微粉砕を行なった場合には、ボールミルを構成しているアルミナが磁性粉末に混入することにより、磁性粉末中に約0.3%のアルミナの混入がみられるが、ボールミルによる結晶化物の微粉砕を省略することにより、磁性粉末へのボールミルからのアルミナ混入を回避することができた。   The content of alumina in the obtained magnetic powder was 0.1% or less, and the level of the amount of alumina contained as an impurity in the used raw material. When the crystallized product is finely pulverized by a ball mill, about 0.3% of alumina is mixed in the magnetic powder by mixing the alumina constituting the ball mill into the magnetic powder. By omitting the fine pulverization of the crystallized product, it was possible to avoid mixing alumina into the magnetic powder from the ball mill.

(実施例6)
上記の工程において、粉砕後の結晶化物を10%の酢酸で4時間酸処理した後、硝酸を濃度が1.18mol/Lになるまで加え、さらに4時間酸処理した。その後、水洗浄し乾燥して磁性粉末を得た。この実施例の条件を表1にまとめ、また得られた磁性粉末について各項目の評価を行なった結果を表2にまとめて示した。
(Example 6)
In the above step, the crystallized product after pulverization was acid-treated with 10% acetic acid for 4 hours, and then nitric acid was added until the concentration reached 1.18 mol / L, followed by further acid treatment for 4 hours. Thereafter, it was washed with water and dried to obtain a magnetic powder. Table 1 summarizes the conditions of this example, and Table 2 summarizes the results of evaluation of each item for the obtained magnetic powder.

結晶化物を粉砕したものを先に酢酸で処理し、磁性粉末を分散させた状態にし、これを硝酸水溶液処理することにより、SFDに改善がみられた。10nm以下の粒子比率について、数値の上では他の実施例との差異がみられなかった。硝酸水溶液処理による磁性粉末の分布が改善されることによりSFDの改善が得られたものと考えられる。   The SFD was improved by treating the pulverized crystallized product with acetic acid first to make the magnetic powder dispersed, and treating this with a nitric acid aqueous solution. Regarding the particle ratio of 10 nm or less, there was no difference from the other examples in terms of numerical values. It is considered that the improvement of SFD was obtained by improving the distribution of the magnetic powder by the nitric acid aqueous solution treatment.

(実施例7)
上記の工程において、硝酸水溶液の濃度を0.5mol/Lにし、この酸の水溶液と微粉砕された結晶化物との反応を6時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。この実施例の条件を表1にまとめ、また得られた磁性粉末について各項目の評価を行なった結果を表2にまとめて示した。この結果から、硝酸水溶液の濃度を0.5mol/Lにしても、本発明の効果が得られることがわかった。

Figure 2005340690
Figure 2005340690
(Example 7)
In the above process, the concentration of the aqueous nitric acid solution was adjusted to 0.5 mol / L, and the reaction between the aqueous acid solution and the finely-crystallized crystal was allowed to proceed for 6 hours, followed by washing with water and drying to obtain a magnetic powder. . Table 1 summarizes the conditions of this example, and Table 2 summarizes the results of evaluation of each item for the obtained magnetic powder. From this result, it was found that the effect of the present invention can be obtained even when the concentration of the aqueous nitric acid solution is 0.5 mol / L.
Figure 2005340690
Figure 2005340690

なお、上記実施例に加えて、硝酸水溶液の濃度を0.2mol/Lまで下げた場合にも、本発明の効果が得られることを確かめた。   In addition to the above examples, it was confirmed that the effect of the present invention was obtained even when the concentration of the aqueous nitric acid solution was lowered to 0.2 mol / L.

(比較例1)
上記の工程において、硝酸水溶液の濃度を0.1mol/Lにし、この酸の水溶液と微粉砕された結晶化物との反応を4時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。 この比較例の条件を表3に示し、また得られた磁性粉末について各項目の評価を行ない、その結果を表4に示した。
(Comparative Example 1)
In the above process, the concentration of the aqueous nitric acid solution was adjusted to 0.1 mol / L, and the reaction between the aqueous acid solution and the finely pulverized crystallized material was performed for 4 hours, followed by washing with water and drying to obtain a magnetic powder. . The conditions of this comparative example are shown in Table 3, and each item was evaluated for the obtained magnetic powder. The results are shown in Table 4.

この結果から、硝酸水溶液の濃度を0.1mol/Lにまで下げると、得られる磁性粉末の板径および板厚の分布は改善されず、本発明の効果が得られないことがわかった。   From this result, it was found that when the concentration of the aqueous nitric acid solution was lowered to 0.1 mol / L, the distribution of the plate diameter and plate thickness of the obtained magnetic powder was not improved, and the effect of the present invention could not be obtained.

(比較例2)
上記の工程において、硝酸水溶液の濃度を3.1mol/Lにし、この酸の水溶液と微粉砕された結晶化物との反応を4時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。この比較例の条件を表3に示し、また得られた磁性粉末について各項目の評価を行ない、その結果を表4に示した。
(Comparative Example 2)
In the above step, the concentration of the aqueous nitric acid solution was 3.1 mol / L, and the reaction between the aqueous acid solution and the finely ground crystallized product was performed for 4 hours, followed by washing with water and drying to obtain a magnetic powder. . The conditions of this comparative example are shown in Table 3, and each item was evaluated for the obtained magnetic powder. The results are shown in Table 4.

この結果から、硝酸水溶液の濃度を3.1mol/Lにまで上げると、板径および板厚の分布は改善されるが、得られる磁性粉末の収率が10%まで減少するので、実用的でないことがわかった。   From this result, when the concentration of the nitric acid aqueous solution is increased to 3.1 mol / L, the distribution of the plate diameter and plate thickness is improved, but the yield of the magnetic powder obtained is reduced to 10%, which is not practical. I understood it.

(比較例3)
上記の工程において、硝酸水溶液を用いず、代わりに10%酢酸を用いる従来の方法により、10%酢酸と微粉砕された結晶化物との反応を4時間行なわせた後、水洗浄し乾燥して磁性粉末を得た。この比較例の条件を表3に示し、また得られた磁性粉末について各項目の評価を行ない、その結果を表4に示した。
(Comparative Example 3)
In the above step, the reaction between 10% acetic acid and the finely ground crystallized product was carried out for 4 hours by a conventional method using 10% acetic acid instead of using an aqueous nitric acid solution, followed by washing with water and drying. A magnetic powder was obtained. The conditions of this comparative example are shown in Table 3, and each item was evaluated for the obtained magnetic powder. The results are shown in Table 4.

この結果は、10%酢酸を用いる従来の方法では、得られる磁性粉末の板径および板厚の分布が大きく、超高密度磁気記録媒体に適した磁性粉末が得られていないことを示している。   This result shows that in the conventional method using 10% acetic acid, the distribution of the plate diameter and plate thickness of the obtained magnetic powder is large, and a magnetic powder suitable for an ultra-high density magnetic recording medium cannot be obtained. .

(比較例4)
上記の工程において、急冷物の結晶化炉における熱処理温度を高めることにより、平均板径が約42nmの磁性粒子を結晶化させ、この結晶化物を粉砕機とボールミルにて微粉砕した後、濃度1.1mol/Lの硝酸水溶液と4時間反応させてた後、水洗浄し乾燥して磁性粉末を得た。この比較例の条件を表3に示し、また得られた磁性粉末について各項目の評価を行ない、その結果を表4に示した。
(Comparative Example 4)
In the above process, by increasing the heat treatment temperature in the crystallization furnace of the rapidly cooled product, the magnetic particles having an average plate diameter of about 42 nm are crystallized, and the crystallized product is finely pulverized by a pulverizer and a ball mill, and then the concentration After reacting with a 1 mol / L nitric acid aqueous solution for 4 hours, it was washed with water and dried to obtain a magnetic powder. The conditions of this comparative example are shown in Table 3, and each item was evaluated for the obtained magnetic powder. The results are shown in Table 4.

酸処理する磁性粒子の板径および板厚が本発明で規定する範囲を超えて大きいと、酸処理で磁性粒子の板径および板厚を超高密度磁気記録媒体に適する大きさにすることができず、また磁性粉末の板径および板厚の分布の改善も十分に得ることができないことを、この結果は示している。   When the plate diameter and plate thickness of the magnetic particles to be acid-treated are larger than the range specified in the present invention, the plate size and plate thickness of the magnetic particles can be made suitable for ultrahigh density magnetic recording media by acid treatment. This result indicates that neither the improvement of the distribution of the plate diameter and the plate thickness of the magnetic powder can be obtained.

(比較例5)
上記の工程において、急冷物の結晶化炉における熱処理温度を低くすることにより、平均板径が約14nmの磁性粒子を結晶化させ、この結晶化物を粉砕機とボールミルにて微粉砕した後、濃度1.1mol/Lの硝酸水溶液と4時間反応させてた後、水洗浄し乾燥して磁性粉末を得た。この比較例の条件を表3に示し、また得られた磁性粉末について各項目の評価を行ない、その結果を表4に示した。
(Comparative Example 5)
In the above process, the magnetic particles having an average plate diameter of about 14 nm are crystallized by lowering the heat treatment temperature in the crystallization furnace of the rapidly cooled product, and the crystallized product is finely pulverized with a pulverizer and a ball mill, After reacting with a 1.1 mol / L nitric acid aqueous solution for 4 hours, it was washed with water and dried to obtain a magnetic powder. The conditions of this comparative example are shown in Table 3, and each item was evaluated for the obtained magnetic powder. The results are shown in Table 4.

この結果は、酸処理する磁性粒子の板径および板厚が本発明で規定する範囲よりも小さいと、磁性粉末について板径および板厚の分布の改善を得ることができないことを示している。   This result shows that when the plate diameter and plate thickness of the acid-treated magnetic particles are smaller than the range defined in the present invention, it is impossible to improve the plate diameter and plate thickness distribution of the magnetic powder.

本発明で規定する範囲より小さい平均粒径または本発明で規定する範囲より小さい平均板厚の磁性粒子粉末に本発明の酸処理を適用すると、微細粒子は除去されるものの、もともと小サイズであった粒子の表面が溶かされて、かえって板径が10nm未満の粒子を増やしてしまうので好ましくない。   When the acid treatment of the present invention is applied to a magnetic particle powder having an average particle size smaller than the range defined in the present invention or an average plate thickness smaller than the range defined in the present invention, fine particles are removed, but the particle size is originally small. Since the surface of the particles is melted, the number of particles having a plate diameter of less than 10 nm is increased.

(比較例6)
上記の工程において、ボールミルによる微粉砕を省略し、結晶化物粉砕20μmにて酢酸処理した。その結果、ガラス成分が除去できず、粉末の評価には至らなかった。この結果についても表4に示した。

Figure 2005340690
Figure 2005340690
(Comparative Example 6)
In the above step, fine pulverization with a ball mill was omitted, and acetic acid treatment was performed with crystallized product pulverization at 20 μm. As a result, the glass component could not be removed, and the powder was not evaluated. This result is also shown in Table 4.
Figure 2005340690
Figure 2005340690

本発明により、従来は製造することか困難であった塗布型の超高密度磁気記録媒体に適した磁性粉末を作製することができるようになった。また本発明に係る磁性粉末を用いることにより、塗布型の超高密度磁気記録媒体が実現可能となった。従って本発明の産業上の利用可能性は大である。   According to the present invention, it has become possible to produce a magnetic powder suitable for a coating-type ultrahigh-density magnetic recording medium, which has been difficult to manufacture. Also, by using the magnetic powder according to the present invention, a coating type ultra-high density magnetic recording medium can be realized. Therefore, the industrial applicability of the present invention is great.

本発明の六方晶フェライト磁性粉末の製造方法に係る一実施形態を示す工程の流れを示した図である。It is the figure which showed the flow of the process which shows one Embodiment which concerns on the manufacturing method of the hexagonal ferrite magnetic powder of this invention. 本発明の六方晶フェライト磁性粉末の製造方法に係る他の一実施形態を示す工程の流れを示した図である。It is the figure which showed the flow of the process which shows other one Embodiment which concerns on the manufacturing method of the hexagonal ferrite magnetic powder of this invention. 本発明の一実施例の六方晶フェライト磁性粉末の板径分布と一比較例の六方晶フェライト磁性粉末の板径分布とを示した図である。It is the figure which showed the plate diameter distribution of the hexagonal ferrite magnetic powder of one Example of this invention, and the plate diameter distribution of the hexagonal ferrite magnetic powder of one comparative example.

符号の説明Explanation of symbols

110…六方晶フェライトの成分とガラス成分、120…混合工程、130…混合物、140…加熱溶融工程、150…溶融物、160…急冷固化工程、170…急冷固化物、180…加熱結晶化工程、190…結晶化物、201…強酸処理工程、202…酢酸処理工程、210…六方晶フェライト磁性粒子、220…強酸処理工程、230…洗浄工程、240…六方晶フェライト磁性粉末。   110 ... Hexagonal ferrite component and glass component, 120 ... Mixing step, 130 ... Mixture, 140 ... Heat-melting step, 150 ... Melted product, 160 ... Rapid solidification step, 170 ... Rapid solidification product, 180 ... Heat crystallization step, 190 ... crystallized product, 201 ... strong acid treatment step, 202 ... acetic acid treatment step, 210 ... hexagonal ferrite magnetic particles, 220 ... strong acid treatment step, 230 ... washing step, 240 ... hexagonal ferrite magnetic powder.

Claims (7)

平均板径が18〜30nm、板径の幾何標準偏差が1.25以下であるとともに、平均板厚が5〜10nm、板厚の幾何標準偏差が1.25以下であって、板径が10nm以下の粒子比率が3%以下であり、さらに比表面積が40〜80m/gの六方晶フェライト粒子で構成され、SFD値が0.7以下であることを特徴とする六方晶フェライト磁性粉末。 The average plate diameter is 18 to 30 nm, the geometric standard deviation of the plate diameter is 1.25 or less, the average plate thickness is 5 to 10 nm, the geometric standard deviation of the plate thickness is 1.25 or less, and the plate diameter is 10 nm. A hexagonal ferrite magnetic powder comprising: hexagonal ferrite particles having a particle ratio of 3% or less, a specific surface area of 40 to 80 m 2 / g, and an SFD value of 0.7 or less. 六方晶フェライト磁性粉末の粒度分布における微小な粒子の成分を溶解して除き、粒度分布の改善を得たものであることを特徴とする請求項1記載の六方晶フェライト磁性粉末。   The hexagonal ferrite magnetic powder according to claim 1, wherein the particle size distribution of the hexagonal ferrite magnetic powder is removed by dissolving and removing fine particle components. 平均板径が18〜30nmの六方晶フェライト磁性粒子を、強酸の水溶液で処理することにより、板径が10nm以下の粒子の存在量を3%以下にすることを特徴とする六方晶フェライト磁性粉末の製造方法。   A hexagonal ferrite magnetic powder having a plate diameter of 10 nm or less is reduced to 3% or less by treating hexagonal ferrite magnetic particles having an average plate diameter of 18 to 30 nm with an aqueous solution of a strong acid. Manufacturing method. 六方晶フェライト磁性粉末の構成成分およびガラス形成成分を混合し、加熱溶融して溶融物を得る工程と、
前記溶融物を急冷し急冷固化物を得る工程と、
前記急冷固化物を加熱処理を施し、六方晶フェライト粒子の析出した結晶化物を得る工程と、
前記結晶化物を強酸の水溶液で処理し、前記結晶化物のガラス成分を溶解するとともに、前記結晶化物中に析出した六方晶フェライト粒子の表面を一部溶解することにより、微小サイズの粒子を溶解除去して六方晶フェライト磁性粉末を得る工程と
を有することを特徴とする六方晶フェライト磁性粉末の製造方法。
Mixing the components of the hexagonal ferrite magnetic powder and the glass-forming component, heating and melting to obtain a melt,
Quenching the melt to obtain a rapidly solidified product;
Heat-treating the rapidly solidified product to obtain a crystallized product in which hexagonal ferrite particles are precipitated;
The crystallized product is treated with an aqueous solution of a strong acid to dissolve the glass component of the crystallized product and dissolve a part of the surface of the hexagonal ferrite particles precipitated in the crystallized product, thereby dissolving and removing fine particles. And obtaining a hexagonal ferrite magnetic powder. A method for producing a hexagonal ferrite magnetic powder.
六方晶フェライト磁性粉末をを構成する基本成分および保磁力調整のための置換成分、並びにガラス形成成分を混合し、加熱溶融して溶融物を得る工程と、
前記溶融物を急冷し急冷固化物を得る工程と、
前記急冷固化物を熱処理してガラス成分の相に六方晶フェライト粒子が析出した結晶化物を得る工程と、
前記結晶化物が有するガラス成分を溶解除去し、六方晶フェライト磁性粉末を得る工程と、
前記六方晶フェライト磁性粉末を強酸の水溶液で処理し、六方晶フェライト磁性粉末中の微小サイズの六方晶フェライト粒子を溶解除去し、微小サイズの六方晶フェライト粒子が除去された六方晶フェライト磁性粉末を得る工程と
を有すること特徴とする六方晶フェライト磁性粉末の製造方法。
Mixing the basic component constituting the hexagonal ferrite magnetic powder and the substitution component for adjusting the coercive force, and the glass forming component, and heating and melting to obtain a melt;
Quenching the melt to obtain a rapidly solidified product;
Heat treating the rapidly solidified product to obtain a crystallized product in which hexagonal ferrite particles are precipitated in the glass component phase;
Dissolving and removing the glass component of the crystallized product to obtain a hexagonal ferrite magnetic powder;
The hexagonal ferrite magnetic powder is treated with an aqueous solution of a strong acid to dissolve and remove the fine hexagonal ferrite particles in the hexagonal ferrite magnetic powder. A method for producing a hexagonal ferrite magnetic powder.
前記強酸が、塩酸、硝酸およびフッ酸から選ばれる少なくともいずれか1種、または塩酸、硝酸およびフッ酸から選ばれる少なくともいずれか1種と酢酸との混合してなるものであることを特徴とする請求項2〜4のいずれか1項記載の六方晶フェライト磁性粉末の製造方法。   The strong acid is formed by mixing at least one selected from hydrochloric acid, nitric acid, and hydrofluoric acid, or at least one selected from hydrochloric acid, nitric acid, and hydrofluoric acid and acetic acid. The method for producing a hexagonal ferrite magnetic powder according to any one of claims 2 to 4. 請求項3〜6のいずれか1項記載の製造方法により、平均板径が18〜30nm、板径の幾何標準偏差が1.25以下であるとともに、幾何平均板厚が5〜10nm、板厚の幾何標準偏差が1.25以下の六方晶フェライト磁性粉末を得ることを特徴とする六方晶フェライト磁性粉末の製造方法。   The manufacturing method according to any one of claims 3 to 6, wherein the average plate diameter is 18 to 30 nm, the geometric standard deviation of the plate diameter is 1.25 or less, the geometric average plate thickness is 5 to 10 nm, and the plate thickness. A hexagonal ferrite magnetic powder having a geometric standard deviation of 1.25 or less is obtained.
JP2004160541A 2004-05-31 2004-05-31 Method for producing hexagonal ferrite magnetic powder Active JP4675581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160541A JP4675581B2 (en) 2004-05-31 2004-05-31 Method for producing hexagonal ferrite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160541A JP4675581B2 (en) 2004-05-31 2004-05-31 Method for producing hexagonal ferrite magnetic powder

Publications (2)

Publication Number Publication Date
JP2005340690A true JP2005340690A (en) 2005-12-08
JP4675581B2 JP4675581B2 (en) 2011-04-27

Family

ID=35493872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160541A Active JP4675581B2 (en) 2004-05-31 2004-05-31 Method for producing hexagonal ferrite magnetic powder

Country Status (1)

Country Link
JP (1) JP4675581B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063201A (en) * 2006-09-08 2008-03-21 Univ Of Tokyo epsi-IRON OXIDE POWDER HAVING IMPROVED MAGNETIC PROPERTY
JP2010024113A (en) * 2008-07-23 2010-02-04 Fujifilm Corp Method for producing hexagonal ferrite magnetic powder, and magnetic recording medium and method for producing the same
JP2010095751A (en) * 2008-10-15 2010-04-30 Toda Kogyo Corp Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP2010241639A (en) * 2009-04-06 2010-10-28 Toshiba Corp Hexagonal ferrite powder, magnetic recording medium using the same, and method for producing the hexagonal ferrite powder
JP2011181130A (en) * 2010-02-26 2011-09-15 Dowa Electronics Materials Co Ltd Magnetic recording hexagonal ferrite magnetic powder and method for producing the same
JP2013077786A (en) * 2011-09-30 2013-04-25 Fujifilm Corp Hexagonal ferrite magnetic powder and production method of the same, and magnetic recording medium and method for manufacturing the medium
US8801956B2 (en) 2009-10-20 2014-08-12 Dowa Electronics Materials Co., Ltd. Hexagonal crystal ferrite magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium using the powder
JP2015054808A (en) * 2013-09-13 2015-03-23 Dowaエレクトロニクス株式会社 Method for manufacturing hexagonal ferrite powder
CN113675396A (en) * 2021-08-24 2021-11-19 贵州丕丕丕电子科技有限公司 Composite lithium cobalt oxide positive electrode material, preparation method and lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5770771B2 (en) 2013-03-25 2015-08-26 富士フイルム株式会社 Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690505A (en) * 1979-12-24 1981-07-22 Toshiba Corp Manufacture of magnetic powder for high density magnetic recording
JPS5842203A (en) * 1981-09-07 1983-03-11 Toshiba Corp Manufacture of magnetic powder for high density magnetic recurding medium
JPH029724A (en) * 1988-02-05 1990-01-12 Basf Ag Method for manufacturing ferrite of hexagonal system
JPH05254845A (en) * 1990-04-09 1993-10-05 Centre Natl Rech Scient (Cnrs) Preparation of hexaferrite particle
JPH05326233A (en) * 1992-05-15 1993-12-10 Toshiba Glass Co Ltd Production of magnetic powder
JPH07201547A (en) * 1993-12-28 1995-08-04 Toshiba Corp Manufacture of ba ferrite magnetic powder
JPH11250446A (en) * 1998-02-27 1999-09-17 Toda Kogyo Corp Acicular hematite particle powder for nonmagnetic base surface layer of magnetic recording medium and magnetic recording medium
JP2002329309A (en) * 2001-04-27 2002-11-15 Fuji Photo Film Co Ltd Magnetic recording medium
JP2002373414A (en) * 2001-04-09 2002-12-26 Sony Corp Magnetic recording medium and magnetic coating material
JP2003077116A (en) * 2001-09-03 2003-03-14 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690505A (en) * 1979-12-24 1981-07-22 Toshiba Corp Manufacture of magnetic powder for high density magnetic recording
JPS5842203A (en) * 1981-09-07 1983-03-11 Toshiba Corp Manufacture of magnetic powder for high density magnetic recurding medium
JPH029724A (en) * 1988-02-05 1990-01-12 Basf Ag Method for manufacturing ferrite of hexagonal system
JPH05254845A (en) * 1990-04-09 1993-10-05 Centre Natl Rech Scient (Cnrs) Preparation of hexaferrite particle
JPH05326233A (en) * 1992-05-15 1993-12-10 Toshiba Glass Co Ltd Production of magnetic powder
JPH07201547A (en) * 1993-12-28 1995-08-04 Toshiba Corp Manufacture of ba ferrite magnetic powder
JPH11250446A (en) * 1998-02-27 1999-09-17 Toda Kogyo Corp Acicular hematite particle powder for nonmagnetic base surface layer of magnetic recording medium and magnetic recording medium
JP2002373414A (en) * 2001-04-09 2002-12-26 Sony Corp Magnetic recording medium and magnetic coating material
JP2002329309A (en) * 2001-04-27 2002-11-15 Fuji Photo Film Co Ltd Magnetic recording medium
JP2003077116A (en) * 2001-09-03 2003-03-14 Fuji Photo Film Co Ltd Magnetic recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063201A (en) * 2006-09-08 2008-03-21 Univ Of Tokyo epsi-IRON OXIDE POWDER HAVING IMPROVED MAGNETIC PROPERTY
JP2010024113A (en) * 2008-07-23 2010-02-04 Fujifilm Corp Method for producing hexagonal ferrite magnetic powder, and magnetic recording medium and method for producing the same
JP2010095751A (en) * 2008-10-15 2010-04-30 Toda Kogyo Corp Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP2010241639A (en) * 2009-04-06 2010-10-28 Toshiba Corp Hexagonal ferrite powder, magnetic recording medium using the same, and method for producing the hexagonal ferrite powder
US8801956B2 (en) 2009-10-20 2014-08-12 Dowa Electronics Materials Co., Ltd. Hexagonal crystal ferrite magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium using the powder
JP2011181130A (en) * 2010-02-26 2011-09-15 Dowa Electronics Materials Co Ltd Magnetic recording hexagonal ferrite magnetic powder and method for producing the same
JP2013077786A (en) * 2011-09-30 2013-04-25 Fujifilm Corp Hexagonal ferrite magnetic powder and production method of the same, and magnetic recording medium and method for manufacturing the medium
JP2015054808A (en) * 2013-09-13 2015-03-23 Dowaエレクトロニクス株式会社 Method for manufacturing hexagonal ferrite powder
CN113675396A (en) * 2021-08-24 2021-11-19 贵州丕丕丕电子科技有限公司 Composite lithium cobalt oxide positive electrode material, preparation method and lithium ion battery
CN113675396B (en) * 2021-08-24 2023-12-01 贵州丕丕丕电子科技有限公司 Composite lithium cobalt oxide positive electrode material, preparation method and lithium ion battery

Also Published As

Publication number Publication date
JP4675581B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5770772B2 (en) Hexagonal ferrite magnetic particles, production method thereof, magnetic powder for magnetic recording, and magnetic recording medium
JP5645865B2 (en) Hexagonal strontium ferrite magnetic powder and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof
US7708902B2 (en) Magnetic material, and memory and sensor using same
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JP4675581B2 (en) Method for producing hexagonal ferrite magnetic powder
JP5912335B2 (en) Hexagonal ferrite magnetic powder and magnetic recording medium using the same
JPH0430086B2 (en)
JPH0986906A (en) Production of functional oxide powder for functional thin film
JP6077198B2 (en) Hexagonal ferrite agglomerated particles
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JP2005340673A (en) Hexagonal ferrite magnetic powder and manufacturing method thereof
JP5770771B2 (en) Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium
JPH05326233A (en) Production of magnetic powder
JP5403242B2 (en) Hexagonal ferrite particles for magnetic recording media
JP4672287B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2717735B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JP2010239067A (en) Magnetic fine particle powder for magnetic recording medium, and manufacturing method of the same
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
JP5603901B2 (en) Hexagonal ferrite magnetic powder and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof
JP2023152933A (en) Magnetic recording media magnetic powder and method for manufacturing the same
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JPH1092618A (en) Hexagonal ferrite magnetic powder and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4675581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250