JP2004319923A - Iron nitride-based magnetic powder - Google Patents

Iron nitride-based magnetic powder Download PDF

Info

Publication number
JP2004319923A
JP2004319923A JP2003115197A JP2003115197A JP2004319923A JP 2004319923 A JP2004319923 A JP 2004319923A JP 2003115197 A JP2003115197 A JP 2003115197A JP 2003115197 A JP2003115197 A JP 2003115197A JP 2004319923 A JP2004319923 A JP 2004319923A
Authority
JP
Japan
Prior art keywords
magnetic powder
iron
iron nitride
based magnetic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003115197A
Other languages
Japanese (ja)
Inventor
Naoki Usuki
直樹 臼杵
Yuji Sasaki
勇治 佐々木
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003115197A priority Critical patent/JP2004319923A/en
Publication of JP2004319923A publication Critical patent/JP2004319923A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnetic powder that maintains a needle-line shape, shows high coercive field strength as a fine particle state, and is suitable for a magnetic record medium for high-density recording such as a digital video tape and a backup tape for computers. <P>SOLUTION: An oxide of iron or a hydroxide is used as a starting raw material for directly depositing at least one element selected from a rare earth element, boron, silicon, aluminum, and phosphorus to perform heating reduction treatment. After that, nitriding treatment is applied at a temperature not higher than reduction treatment temperature, thus obtaining iron nitride-based magnetic powder. In the iron nitride-based magnetic powder, iron and nitrogen are used as constitutional elements; at least Fe<SB>16</SB>N<SB>2</SB>phase is included; the content of nitrogen to iron is 1.0-20.0 atom.%; and the shape of the iron nitride-based magnetic powder is a spindle or needle shape where the average size of a particle long axis is within 20-100 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、窒化鉄系磁性粉末に関し、さらに詳しくは、デジタルビデオテープ、コンピュータ用バックアップテープなど、高密度記録が要求される磁気記録媒体に最適な磁性粉末に関するものである。
【0002】
【従来の技術】
磁性粉末を結合剤に分散してなる塗布型磁気記録媒体は、その記録再生方式がアナログ方式からデジタル方式への移行に伴い、記録密度の一層の向上が要求されている。とくに、高密度ビデオテープやコンピュータ用バックアップテープにおいては、この要求が年々高まってきている。
【0003】
このような記録密度の向上にあたり、短波長記録に対応するため、年々、微粒子化がはかられ、現在では、粒子長さが0.1μm以下の針状のメタル磁性粉末が実用化に供されている。また、短波長記録時の減磁による出力低下を防止するために、年々、高保磁力化がはかられ、たとえば、鉄−コバルト合金化により、199.0kA/m(2,500エルステッド)程度の保磁力が実現されている(特許文献1参照)
【0004】
しかし、単純に鉄−コバルト合金からなる針状粒子を用いる磁気記録媒体では、微粒子化に伴い、保磁力を維持することが困難になってくる。すなわち、針状粒子では、針状形状にすることによる形状磁気異方性により保磁力を得ている。しかし、粒子サイズが小さくなるとBET比表面積が大きくなり、飽和磁化が著しく低下する。そこで、針状比(長軸長さ/短軸長さ)を小さくして、比表面積の著しい増加を防止しているが、針状比の低下は形状磁気異方性の低下を招き、その結果、保磁力が低下する。つまり、従来の針状メタル磁性粉末では、本質的に粒子サイズが小さくなるにしたがい、保磁力が低下する。
【0005】
このため、上記のような針状の磁性粉末とは全く異なる、平均粒子サイズが5〜200nmの範囲にある粒状ないし楕円状の希土類−鉄−ホウ素系磁性粉末を使用した磁気記録媒体が提唱されている(特許文献2参照)。
また、粒子形状が針状でない鉄系の磁性粉末として、粒子形状が不定形で、Fe16相を主相としたBET比表面積が10m/g以上の窒化鉄系磁性粉末を用いて、高保磁力を得ることが提案されている(特許文献3参照)。
【0006】
【特許文献1】
特開平3−49026号公報(第6頁)
【特許文献2】
特開2001−181754号公報(第4頁、第19頁)
【特許文献3】
特開2000−277311号公報(第2〜5頁、図2)
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献2の希土類−鉄−ホウ素系磁性粉末は、希土類化合物による高い結晶磁気異方性とコアとなる鉄系材料による高飽和磁化のバランスの上で成立する複合材料であり、これに新たに改良を加える、たとえばその保磁力をより高めようとしても、磁気記録媒体に最適な分散性や化学安定性を維持した状態で上記磁気特性を改良することは難しい。
また、特許文献3の窒化鉄系磁性粉末は、実施例としてBET比表面積が10〜22m/gのものしか示されておらず、粒子サイズがなお大きく、しかも、得られている保磁力は結晶磁気異方性に依存し、94.7〜179.1kA/m(1,190〜2,250エルステッド)程度である。
さらに、これらの球状ないし不定形の磁性粉末は、磁気記録媒体とするための磁性塗料の調製において、その分散方法などが従来の針状の磁性粉末を使用したものとは異なり、新たな分散方法を開発する必要がある。
【0008】
本発明は、このような事情に照らし、従来の針状形状を維持し、新たな分散方法を開発する必要のない粒子形状で、微粒子としても高保磁力を有する、デジタルビデオテープ、コンピュータ用バックアップテープなどの高密度記録用の磁気記録媒体にとくに適した磁性粉末を得ることを目的としている。
また、本発明は、従来の針状磁性粉末では形状磁気異方性のみにより保磁力を発現させているため、鉄−コバルト合金において高価なコバルトを多量に用いて飽和磁化を大きくし、高保磁力を得ていたのに対し、希少金属である高価なコバルトを多量に使用することなく、資源的に問題のない元素を主構成元素として、高保磁力を得ることを別の目的としている。
【0009】
【課題を解決するための手段】
本発明者らは、上記の目的に対して、鋭意検討した結果、鉄と窒素を構成元素とし、かつFe16相を少なくとも含み、さらに鉄に対する窒素の含有量を特定の範囲とした粒子長軸の平均サイズが20〜100nmの範囲の紡錘状または針状の窒化鉄系磁性粉末が、この目的を満たすことがわかった。
また、このような特徴を持つ窒化鉄系磁性粉末は、出発原料に鉄の酸化物または水酸化物を使用し、これに直接、または希土類元素やシリコン、アルミニウムなどを被着したのち、加熱還元処理を行い、その後、還元処理温度以下の温度で窒化処理を行うことにより、製造できるものであることもわかった。
【0010】
本発明は、このような知見をもとにして、完成されたものである。
すなわち、本発明は、鉄と窒素を少なくとも構成元素とし、かつFe16相を少なくとも含む磁性粉末であって、鉄に対する窒素の含有量が1.0〜20.0原子%であり、粒子長軸の平均サイズが20〜100nmの範囲の紡錘状または針状であることを特徴とする窒化鉄系磁性粉末と、出発原料に鉄の酸化物または水酸化物を用い、これに直接、または希土類元素、ホウ素、シリコン、アルミニウム、リンの中から選ばれる少なくともひとつの元素を被着したのち、加熱還元処理を行い、その後、還元処理温度以下の温度で窒化処理を行うことを特徴とする上記構成の窒化鉄系磁性粉末の製造方法とに係るものである。
【0011】
なお、本発明において、窒化鉄系磁性粉末の形状である「紡錘状または針状」とは、その針状比(粒子長軸/粒子短軸)が2以上で、好ましくは8未満、より好ましくは5未満であることを意味している。
【0012】
【発明の実施の形態】
本発明者らは、従来の針状磁性粉末が持つ形状磁気異方性だけでなく、結晶磁気異方性を付与してより高保磁力を得ることを目指し、各種の磁性粉末を合成して磁気異方性を調べた結果、鉄と窒素を少なくとも構成元素とし、Fe16相を少なくとも含む磁性粉末が高い結晶磁気異方性を示すことがわかった。また、Fe16相を少なくとも含む磁性粉末の形状を針状粉末とすることで、形状磁気異方性と結晶磁気異方性の両方による相乗効果により、全体の磁気異方性がさらに大きくなり、より高保磁力が得られることがわかった。
【0013】
この窒化鉄系磁性粉末において、鉄に対する窒素の含有量は1.0〜20.0原子%にする必要があることがわかった。鉄に対する窒素の含有量が1.0原子%より少ないと、Fe16相の形成量が少なくなり、保磁力増加の効果が少なくなる。また、20.0原子%を超えると、非磁性窒化物が形成されやすくなり保磁力増加の効果が少なくなり、また飽和磁化が過度に低下する。
【0014】
また、このような窒化鉄系磁性粉末に、希土類元素やホウ素、シリコン、アルミニウム、リンなどの元素を含有させると、針状形状の維持により効果があり、高保磁力が得られやすくなることがわかった。
とくに、希土類元素と、ホウ素、シリコン、アルミニウム、リンなどの元素を組み合わせて含有させるのが、好ましいことがわかった。
希土類元素としては、イットリウム、サマリウム、ネオジウムが好ましい。その含有量は、鉄に対して、0.05〜20.0原子%が最適である。ホウ素、シリコン、アルミニウム、リンなどを含有させる場合、その総含有量は、鉄に対して、0.1〜20.0原子%とするのが好ましい。
希土類元素や、ホウ素、シリコン、アルミニウム、リンなどの含有量が、上記よりも少ないと、針状形状を維持しにくくなり、保磁力が低くなる傾向があり、逆に上記よりも多くなると、後述する還元処理や窒化処理が起こりにくくなり、高い保磁力を得ることが難しくなる。
【0015】
また、このような窒化鉄系磁性粉末は、紡錘状または針状の形状を有し、その粒子サイズを、粒子長軸の平均サイズが20〜100nmの範囲となるようにするのが好ましく、とくに30〜80nmの範囲とするのが最適であることがわかった。粒子長軸の平均サイズが20nmより小さくなると、磁性塗料調製時の分散性が悪くなり、また100nmより大きくなると、ノイズ増加の原因となるだけでなく、平滑な磁性層面を得にくくなる。
なお、粒子長軸の平均サイズとは、透過型電子顕微鏡(TEM)にて撮影した写真の粒子長軸のサイズを実測し、300個の平均値により求められる。
【0016】
このような窒化鉄系磁性粉末は、飽和磁化が60〜160Am/kg(60〜160emu/g)、好ましくは90〜155Am/kg(90〜155emu/g)、さらに好ましくは100〜145Am/kg(100〜145emu/g)の範囲にあり、従来の(特許文献2,3の)磁性粉末のような過度に高すぎることのない、適度な飽和磁化を有している。
また、保磁力が119.4〜398.0kA/m(1,500〜5,000エルステッド)、好ましくは159.2〜358.2kA/m(2,000〜4,500エルステッド)、さらに好ましくは175.1〜318.4kA/m(2,200〜4,000エルステッド)の範囲にあり、高価なコバルト元素を多量に使用することなく、従来の針状の鉄系磁性粉末に比べて、さらに高い保磁力が得られるものであることがわかった。
【0017】
また、このような窒化鉄系磁性粉末は、BET比表面積が30〜150m/gの範囲にあるとき、磁気記録媒体用として最適な性能を示すことがわかった。BET比表面積が小さすぎると、粒子サイズが大きくなり、磁気記録媒体に適用すると、粒子性ノイズが高くなり、また磁性層の表面平滑性が低下して、再生出力が低下しやすい。また、BET比表面積が大きすぎると、磁性粉末の凝集により磁性塗料中で均一な分散体を得ることが難しく、磁気記録媒体に適用すると、配向性が低下しやすく、かつ表面平滑性が低下しやすい。
【0018】
このように、鉄と窒素を少なくとも構成元素とし、かつFe16相を少なくとも含み、さらに鉄に対する窒素の含有量が特定範囲に規制された特定粒子サイズの紡錘状または針状の窒化鉄系磁性粉末によると、従来の磁性粉末に比べて、より微粒子でかつより高保磁力を有し、しかも適度な飽和磁化を示し、デジタルビデオテープ、コンピュータ用バックアップテープなどの高密度記録用の磁気記録媒体に適した性能が得られることが見い出された。
このような効果が奏される理由については、今のところ、必ずしも明らかではない。推測では、紡錘状または針状の形状を持つ形状磁気異方性にFe16相の高い結晶磁気異方性が加わることによる相乗効果により、従来の鉄系磁性粉末に比べて、保磁力が大きく向上したものと思われる。
【0019】
本発明の窒化鉄系磁性粉末において、これに希土類元素を含有させる場合、希土類元素は、磁性粉末の内部に存在させてもよいが、形状を維持した状態でより高い保磁力を得るには、磁性粉末を内層と外層との多層構成として、外層部分を希土類元素を少なくとも1種含む化合物で構成するのが望ましい。
この場合、磁性粉末の内層のFe相をFe16相とするが、内相をすべてFe16相とする必要はなく、Fe16相とα−Fe相の混相としてもよい。むしろ、Fe16相とα−Fe相との割合を適宜調整することにより、所望の保磁力に容易に設定できる利点がある。
【0020】
希土類元素としては、イットリウム、イッテルビウム、セシウム、プラセオジウム、ランタン、ユーロピウム、ネオジウムなどが挙げられる。
これらのうち、イットリウム、サマリウムまたはネオジウムは、還元時の粒子形状の維持効果が大きいことから、これらの元素の中から、その少なくとも1種を選択使用するのが望ましい。
【0021】
また、このような希土類元素とともに、半金属元素を含有させ、これらの元素を含有する酸化物や化合物を形成させるのも有効である。半金属元素としては、ホウ素、シリコン、アルミニウム、リン、炭素、カルシウム、マグネシウムなどが挙げられる。これらの半金属元素の中でも、ホウ素、シリコン、アルミニム、リンから選ばれる少なくとも1種の元素が望ましく、これと希土類元素と併用することにより、より高い保磁力を得ることができる。
【0022】
つぎに、本発明の窒化鉄系磁性粉末の製造方法について、説明する。
出発原料としては、鉄の酸化物または水酸化物を使用する。たとえば、ヘマタイト、マグネタイト、ゲータイトなどが挙げられる。粒子長軸の平均サイズとしては、とくに限定されないが、20〜120nm程度が望ましい。粒子サイズが小さすぎると、還元処理時に粒子間焼結が生じやすく、また大きすぎると、還元窒化処理後の粒子径が大きくなりすぎて、磁気記録媒体としたときにノイズが大きくなり好ましくない。
【0023】
この出発原料に希土類元素を被着する場合、通常、アルカリまたは酸の水溶液中に出発原料を分散させ、これに希土類元素の塩を溶解させ、中和反応などにて原料粉末に希土類元素を含む水酸化物や水和物を沈殿析出させればよい。
希土類元素の含有量は、磁性粉末中の鉄に対して、0.05〜20.0原子%とするのがよい。希土類元素の量が少なすぎると、還元時の粒子形状維持の効果が小さくなる。また希土類元素の量が多すぎると、添加した希土類元素のうち、未反応な部分が多くなり、保磁力向上に寄与しないばかりか、非磁性物質を形成して、飽和磁化の過度な低下が生じやすい。
【0024】
希土類元素のほかに、半金属元素として、たとえばホウ素、シリコン、アルミニウム、リンなどの元素で構成された化合物を溶解させ、これに原料粉末を浸漬して、原料粉末に対して、希土類元素とともに半金属元素を被着させてもよい。これらの被着処理を効率良く行うため、還元剤、pH緩衝剤、粒径制御剤などの添加剤を混入させてもよい。これらの被着処理として、希土類元素を被着したのち、半金属元素を被着させるようにしてもよい。希土類元素と半金属元素を併用すると、粒子の形状維持効果がより発揮され、好ましい。
半金属元素の含有量は、磁性粉末中の鉄に対し、0.1〜20.0原子%とするのが好ましい。半金属元素の含有量が少なすぎると、還元時の粒子形状維持の効果が小さくなる。また、半金属元素の含有量が多すぎると、添加した半金属元素のうち、未反応な部分が多くなり、保磁力向上に寄与しないばかりか、非磁性物質を形成して、飽和磁化の過度な低下が生じやすい。
【0025】
つぎに、このように希土類元素またはこれと半金属元素を被着させた原料や、上記の各元素を全く被着させなかった原料を使用して、これらを水素気流中で加熱還元する。還元ガスは、とくに限定されず、水素ガス以外に、一酸化炭素ガスなどの還元性ガスを使用してもよい。
還元温度としては、300〜600℃とするのが望ましい。還元温度が300℃より低くなると、還元反応が十分進まなくなり、また、600℃を超えると、粉末粒子の焼結が起こりやすくなり、いずれも好ましくない。
【0026】
このような加熱還元処理後、窒化処理を施すことにより、本発明の窒化鉄系磁性粉末が得られる。窒化処理としては、アンモニアを含むガスを用いて行うのが望ましい。アンモニアガス単体のほかに、水素ガス、ヘリウムガス、窒素ガス、アルゴンガスなどをキャリアーガスとした混合ガスを使用してもよい。窒素ガスは安価なため、とくに好ましい。
窒化処理温度は、100〜300℃とするのがよい。窒化処理温度が低すぎると、窒化が十分進まず、保磁力増加の効果が少ない。高すぎると、窒化が過剰に促進され、FeNやFeN相などの割合が増加し、保磁力がむしろ低下し、さらに飽和磁化の過度な低下を引き起こしやすい。
【0027】
このような窒化処理にあたり、得られる窒化鉄系磁性粉末における、鉄に対する窒素の量が1.0〜20.0原子%となるように、窒化処理の条件を選択することが望ましい。上記窒素の量が少なすぎると、Fe16の生成量が少ないため、保磁力向上の効果が少なくなる。また、上記窒素の量が多すぎると、FeNやFeN相などが形成されやすくなり、保磁力がむしろ低下し、さらに飽和磁化の過度な低下を引き起こしやすい。
【0028】
【実施例】
以下に、本発明の実施例を記載して、より具体的に説明する。ただし、本発明は、以下の実施例にのみ限定されない。
【0029】
実施例1
形状が針状で粒子長軸の平均サイズが62nm、針状比が約6のゲータイト粒子10gを500ccの水に、超音波分散機を用いて、30分間分散させた。この分散液に2.5gの硝酸イットリウムを加えて溶解し、30分間撹拌した。これとは別に、0.8gの水酸化ナトリウムを100ccの水に溶解した。この水酸化ナトリウム水溶液を上記の分散液に約30分間かけて滴下し、滴下終了後、さらに1時間攪拌した。この処理により、ゲータイト粒子表面にイットリウムの水酸化物を被着析出させた。これを水洗し、ろ過後、90℃で乾燥して、ゲータイト粒子の表面にイットリウムの水酸化物を被着形成した粉末を得た。
【0030】
このようにゲータイト粒子の表面にイットリウムの水酸化物を被着形成した粉末を水素気流中430℃で3時間加熱還元して、磁性粉末を得た。つぎに、水素ガスを流した状態で、約1時間かけて、180℃まで降温した。180℃に到達した状態で、ガスをアンモニアガスに切り替え、温度を180℃に保った状態で、20時間窒化処理を行った。その後、アンモニアガスを流した状態で、180℃から90℃まで降温し、90℃で、アンモニアガスから酸素と窒素の混合ガスに切り替え、2時間安定化処理を行った。
【0031】
ついで、混合ガスを流した状態で、90℃から40℃まで降温し、40℃で約10時間保持したのち、空気中に取り出した。
このようにして得られた窒化鉄系磁性粉末は、そのイットリウムと窒素の含有量を蛍光X線により測定したところ、それぞれ5.5原子%と11.0原子%であった。X線回折パターンより、Fe16相を示すプロファイルを得た。このプロファイルより、この磁性粉末がFe16相とα−Fe相との混合相から成り立っていることがわかった。
【0032】
また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、粒子長軸の平均サイズが53nm、針状比が約5の針状粒子であることがわかった。BET法により求めた比表面積は75.1m/gであった。
さらに、1,270kA/m(16キロエルステッド)の磁界を印加して測定した飽和磁化は125.2Am/kg(125.2emu/g)、保磁力は213.3kA/m(2,680エルステッド)であった。
【0033】
実施例2
出発原料として、形状が針状で粒子長軸の平均サイズが62nm、針状比が約6のゲータイト粒子に代えて、形状が針状で粒子長軸の平均サイズが48nm、針状比が約5のゲータイト粒子を同量使用した以外は、実施例1と同様にして、窒化鉄系磁性粉末を製造した。
この窒化鉄系磁性粉末は、そのイットリウムと窒素の含有量を蛍光X線により測定したところ、それぞれ5.4原子%と11.6原子%であった。X線回折パターンより、Fe16相を示すプロファイルを得た。
【0034】
また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、形状が針状で粒子長軸の平均サイズが42nmで、針状比が約4の粒子であった。BET法により求めた比表面積は88.4m/gであった。
さらに、1,270kA/m(16キロエルステッド)の磁界を印加して測定した飽和磁化は93.1Am/kg(93.1emu/g)、保磁力は187.1kA/m(2,350エルステッド)であった。
【0035】
実施例3
硝酸イットリウムの添加量を2.5gから7.4gに、水酸化ナトリウムの添加量を0.8gから2.3gに、それぞれ変更した以外は、実施例1と同様にして、窒化鉄系磁性粉末を製造した。
この窒化鉄系磁性粉末は、そのイットリウムと窒素の含有量を蛍光X線により測定したところ、それぞれ14.1原子%と9.7原子%であった。X線回折パターンより、Fe16相を示すプロファイルを得た。
【0036】
また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、粒子長軸の平均サイズが55nm、針状比が約5の針状粒子であった。BET法により求めた比表面積は78.6m/gであった。
さらに、1,270kA/m(16キロエルステッド)の磁界を印加して測定した飽和磁化は132.6Am/kg(132.6emu/g)、保磁力は203.0kA/m(2,550エルステッド)であった。
【0037】
実施例4
窒化処理温度を180℃から200℃に変更した以外は、実施例1と同様にして、窒化鉄系磁性粉末を製造した。
この窒化鉄系磁性粉末は、そのイットリウムと窒素の含有量を蛍光X線により測定したところ、それぞれ5.4原子%と16.5原子%であった。X線回折パターンより、Fe16相を示すプロファイルを得た。
【0038】
また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、粒子長軸の平均サイズが53nm、針状比が約5の針状粒子であった。BET法により求めた比表面積は74.4m/gであった。
さらに、1,270kA/m(16キロエルステッド)の磁界を印加して測定した飽和磁化は112.6Am/kg(112.6emu/g)、保磁力は199.8kA/m(2,510エルステッド)であった。
【0039】
実施例5
硝酸イットリウム2.5g、水酸化ナトリウム0.8gを加えた操作後に、さらにケイ酸ナトリウム2.3gを加えて、ゲータイト粒子の表面にイットリウムの水酸化物とシリカを被着析出させるようにした以外は、実施例1と同様にして、窒化鉄系磁性粉末を製造した。
このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、シリコンおよび窒素の含有量を蛍光X線により測定したところ、それぞれ5.5原子%、5.2原子%および10.2原子%であった。X線回折パターンより、Fe16相を示すプロファイルを得た。このプロファイルより、この磁性粉末が、Fe16相とα−Fe相との混合相から成り立っていることがわかった。
【0040】
また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、粒子長軸の平均サイズが54nm、針状比が約5の針状粒子であることがわかった。BET法により求めた比表面積は77.9m/gであった。
さらに、1,270kA/m(16キロエルステッド)の磁界を印加して測定した飽和磁化は120.2Am/kg(120.2emu/g)、保磁力は216.5kA/m(2,720エルステッド)であった。
【0041】
比較例1
水素ガスによる加熱還元処理のみを行い、窒化処理を行わなかった以外は、実施例1と同様にして、鉄系磁性粉末を製造した。
この鉄系磁性粉末は、そのイットリウムの含有量を蛍光X線により測定したところ、5.3原子%であった。X線回折パターンより、α−Fe単相を示すプロファイルを得た。
【0042】
また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、粒子長軸の平均サイズが53nm、針状比が約5の針状粒子であった。BET法により求めた比表面積は78.5m/gであった。
さらに、1,270kA/m(16キロエルステッド)の磁界を印加して測定した飽和磁化は148.3Am/kg(148.3emu/g)、保磁力は134.5kA/m(1,690エルステッド)であった。
【0043】
比較例2
イットリウムの被着処理と窒化処理を行うことなく、水素ガスによる加熱還元処理のみを行った以外は、実施例1と同様にして、鉄系磁性粉末を製造した。
この鉄系磁性粉末は、X線回折パターンより、α−Fe単相を示すプロファイルを得た。
【0044】
また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、針状というよりも粒状に近い粒子形状を示し、平均粒子サイズが約0.2μmであって、粒子サイズ分布の極めて広い粒子であった。
さらに、1,270kA/m(16キロエルステッド)の磁界を印加して測定した飽和磁化は181.5Am/kg(181.5emu/g)、保磁力は28.7kA/m(330エルステッド)であった。
【0045】
上記実施例1〜5および比較例1,2の各磁性粉末について、その製造条件を、表1にまとめて示した。また、上記の各磁性粉末について、その元素組成(イットリウム、シリコンおよび窒素の原子%)、Fe16相の有無、平均粒子サイズおよびBET比表面積を、表2にまとめて示した。さらに、上記の各磁性粉末について、その飽和磁化および保磁力を、表3にまとめて示した。
【0046】

Figure 2004319923
【0047】
Figure 2004319923
【0048】
Figure 2004319923
【0049】
上記の結果から明らかなように、本発明の実施例1〜5の各窒化鉄系磁性粉末は、比較例1,2の磁性粉末に比べて、明らかに高い保磁力を有しており、本発明の構成とすることにより、従来の針状形状を維持しつつ、微粒子状態として、高保磁力を発揮させうるものであることがわかる。
【0050】
【発明の効果】
以上のように、本発明は、紡錘状または針状という形状に依存する磁気異方性にFe16相に基づく磁気異方性を付与することで、高価なコバルトを多量に使用することなく、従来の針状粒子では達成できなかった高い保磁力が得られ、デジタルビデオテープ、コンピュータ用バックアップテープなどの高密度記録用の磁気記録媒体に適した磁性粉末を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an iron nitride-based magnetic powder, and more particularly, to a magnetic powder suitable for a magnetic recording medium requiring high-density recording, such as a digital video tape and a backup tape for a computer.
[0002]
[Prior art]
As the recording / reproducing method of the coating type magnetic recording medium in which the magnetic powder is dispersed in the binder is changed from the analog method to the digital method, further improvement in the recording density is required. In particular, this demand has been increasing year by year for high-density video tapes and computer backup tapes.
[0003]
In order to cope with short-wavelength recording in improving such recording density, finer particles are being developed year by year, and at present, acicular metal magnetic powder having a particle length of 0.1 μm or less is being put to practical use. ing. Further, in order to prevent a decrease in output due to demagnetization at the time of short wavelength recording, a high coercive force has been achieved year by year. For example, about 199.0 kA / m (2,500 Oersted) is achieved by iron-cobalt alloying. A coercive force is realized (see Patent Document 1)
[0004]
However, in a magnetic recording medium that simply uses needle-like particles made of an iron-cobalt alloy, it becomes difficult to maintain a coercive force as the particle size decreases. That is, in the acicular particles, the coercive force is obtained by the shape magnetic anisotropy due to the acicular particles. However, as the particle size decreases, the BET specific surface area increases, and the saturation magnetization decreases significantly. Therefore, the needle ratio (major axis length / minor axis length) is reduced to prevent a remarkable increase in the specific surface area. However, a decrease in the needle ratio causes a decrease in shape magnetic anisotropy. As a result, the coercive force decreases. That is, in the conventional needle-shaped metal magnetic powder, the coercive force decreases as the particle size becomes smaller essentially.
[0005]
Therefore, a magnetic recording medium using a granular or elliptical rare earth-iron-boron magnetic powder having an average particle size in the range of 5 to 200 nm, which is completely different from the acicular magnetic powder as described above, has been proposed. (See Patent Document 2).
In addition, as an iron-based magnetic powder having a non-acicular particle shape, an iron nitride-based magnetic powder having an irregular particle shape and a BET specific surface area of 10 m 2 / g or more with a Fe 16 N 2 phase as a main phase is used. It has been proposed to obtain a high coercive force (see Patent Document 3).
[0006]
[Patent Document 1]
JP-A-3-49026 (page 6)
[Patent Document 2]
JP 2001-181754 A (pages 4 and 19)
[Patent Document 3]
JP-A-2000-27731 (pages 2 to 5, FIG. 2)
[0007]
[Problems to be solved by the invention]
However, the rare-earth-iron-boron-based magnetic powder of Patent Document 2 is a composite material that is established on the balance between high crystal magnetic anisotropy by a rare-earth compound and high saturation magnetization by an iron-based material serving as a core. Even if a new improvement is made, for example, the coercive force is further increased, it is difficult to improve the above magnetic characteristics while maintaining the optimum dispersibility and chemical stability for the magnetic recording medium.
Further, the iron nitride-based magnetic powder disclosed in Patent Document 3 has only a BET specific surface area of 10 to 22 m 2 / g as an example, and the particle size is still large. It is about 94.7 to 179.1 kA / m (1,190 to 2,250 Oe) depending on the crystal magnetic anisotropy.
Furthermore, these spherical or amorphous magnetic powders are different from those using conventional acicular magnetic powders in the preparation of a magnetic coating material for use as a magnetic recording medium in a new dispersion method. Need to be developed.
[0008]
In view of such circumstances, the present invention maintains a conventional needle-like shape, has a high coercive force even as fine particles, and has a particle shape that does not require the development of a new dispersion method, a digital video tape, a backup tape for a computer. It is an object of the present invention to obtain a magnetic powder particularly suitable for a magnetic recording medium for high density recording such as.
Further, in the present invention, since the coercive force is expressed only by the shape magnetic anisotropy in the conventional needle-shaped magnetic powder, the saturation magnetization is increased by using a large amount of expensive cobalt in the iron-cobalt alloy, and the coercive force is increased. On the other hand, another object is to obtain a high coercive force by using an element having no problem in resources as a main constituent element without using a large amount of expensive cobalt which is a rare metal.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the above object, and as a result, as a result, particles containing iron and nitrogen as constituent elements, containing at least Fe 16 N 2 phase, and further having a nitrogen content relative to iron in a specific range. It has been found that a spindle-shaped or needle-shaped iron nitride-based magnetic powder having a long axis average size in the range of 20 to 100 nm satisfies this purpose.
In addition, the iron nitride-based magnetic powder having such characteristics uses an iron oxide or hydroxide as a starting material, and directly or after applying a rare earth element, silicon, aluminum, or the like, is heated and reduced. It was also found that it can be manufactured by performing the treatment and then performing the nitriding treatment at a temperature equal to or lower than the reduction treatment temperature.
[0010]
The present invention has been completed based on such findings.
That is, the present invention provides a magnetic powder containing at least iron and nitrogen as constituent elements and at least a Fe 16 N 2 phase, wherein the content of nitrogen with respect to iron is 1.0 to 20.0 atom%, An iron nitride-based magnetic powder characterized in that it has a spindle-shaped or needle-like shape having a long axis average size in the range of 20 to 100 nm, and an iron oxide or hydroxide as a starting material, which is directly or After applying at least one element selected from the group consisting of rare earth elements, boron, silicon, aluminum and phosphorus, performing a heat reduction treatment, and then performing a nitriding treatment at a temperature equal to or lower than the reduction treatment temperature. And a method for producing an iron nitride-based magnetic powder having the above configuration.
[0011]
In the present invention, the “spindle shape or needle shape” which is the shape of the iron nitride-based magnetic powder means that the needle ratio (particle major axis / particle minor axis) is 2 or more, preferably less than 8, and more preferably 8. Means less than 5.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have synthesized various magnetic powders to obtain not only the shape magnetic anisotropy of the conventional needle-shaped magnetic powder but also a crystal magnetic anisotropy to obtain a higher coercive force. As a result of examining the anisotropy, it was found that a magnetic powder containing iron and nitrogen at least as constituent elements and containing at least the Fe 16 N 2 phase exhibited high crystal magnetic anisotropy. Further, by making the shape of the magnetic powder containing at least the Fe 16 N 2 phase into acicular powder, the overall magnetic anisotropy is further increased due to a synergistic effect of both shape magnetic anisotropy and crystal magnetic anisotropy. It was found that higher coercive force could be obtained.
[0013]
It was found that in this iron nitride-based magnetic powder, the nitrogen content relative to iron had to be 1.0 to 20.0 atomic%. If the content of nitrogen with respect to iron is less than 1.0 atomic%, the formation amount of the Fe 16 N 2 phase decreases, and the effect of increasing the coercive force decreases. On the other hand, if it exceeds 20.0 atomic%, nonmagnetic nitride is easily formed, the effect of increasing the coercive force is reduced, and the saturation magnetization is excessively reduced.
[0014]
Further, it is found that when such an iron nitride-based magnetic powder contains a rare earth element or an element such as boron, silicon, aluminum, or phosphorus, it is more effective to maintain a needle-like shape, and a high coercive force is easily obtained. Was.
In particular, it has been found that it is preferable to include a rare earth element in combination with an element such as boron, silicon, aluminum, and phosphorus.
As the rare earth element, yttrium, samarium, and neodymium are preferable. The content is optimally 0.05 to 20.0 atomic% with respect to iron. When boron, silicon, aluminum, phosphorus and the like are contained, the total content is preferably 0.1 to 20.0 atomic% with respect to iron.
If the content of rare earth elements, boron, silicon, aluminum, phosphorus and the like is less than the above, it becomes difficult to maintain the needle-like shape, and the coercive force tends to decrease. The reduction process and the nitriding process are less likely to occur, and it is difficult to obtain a high coercive force.
[0015]
Further, such an iron nitride-based magnetic powder has a spindle-like or needle-like shape, and the particle size thereof is preferably such that the average size of the major axis of the particle is in the range of 20 to 100 nm, particularly preferably It has been found that the optimum range is 30 to 80 nm. If the average size of the major axis of the particles is smaller than 20 nm, the dispersibility at the time of preparing the magnetic coating material is deteriorated. If the average size is larger than 100 nm, it not only causes an increase in noise but also makes it difficult to obtain a smooth magnetic layer surface.
The average size of the major axis of the particles is obtained by actually measuring the size of the major axis of a photograph taken with a transmission electron microscope (TEM) and obtaining an average value of 300 particles.
[0016]
Such iron nitride-based magnetic powder, the saturation magnetization is 60~160Am 2 / kg (60~160emu / g ), preferably 90~155Am 2 / kg (90~155emu / g ), more preferably 100~145Am 2 / Kg (100 to 145 emu / g), and has an appropriate saturation magnetization which is not excessively high like conventional magnetic powders (Patent Documents 2 and 3).
Further, the coercive force is 119.4 to 398.0 kA / m (1,500 to 5,000 Oersted), preferably 159.2 to 358.2 kA / m (2,000 to 4,500 Oersted), and more preferably. It is in the range of 175.1 to 318.4 kA / m (2,200 to 4,000 Oersteds), and does not use a large amount of expensive cobalt element. It was found that a high coercive force could be obtained.
[0017]
Further, it has been found that such an iron nitride-based magnetic powder exhibits optimum performance for use as a magnetic recording medium when the BET specific surface area is in the range of 30 to 150 m 2 / g. If the BET specific surface area is too small, the particle size increases, and when applied to a magnetic recording medium, the particle noise increases, and the surface smoothness of the magnetic layer decreases, so that the reproduction output tends to decrease. On the other hand, if the BET specific surface area is too large, it is difficult to obtain a uniform dispersion in the magnetic paint due to agglomeration of the magnetic powder, and when applied to a magnetic recording medium, the orientation tends to decrease, and the surface smoothness decreases. Cheap.
[0018]
As described above, a spindle-shaped or needle-shaped iron nitride-based material having a specific particle size in which iron and nitrogen are at least constituent elements and at least the Fe 16 N 2 phase is contained, and the content of nitrogen with respect to iron is regulated to a specific range. According to magnetic powder, compared to conventional magnetic powder, it has finer particles, higher coercive force, and shows appropriate saturation magnetization, and is a magnetic recording medium for high-density recording such as digital video tape and computer backup tape. It has been found that the performance suitable for is obtained.
The reason for such an effect is not always clear at this time. It is presumed that the coercive force is higher than that of the conventional iron-based magnetic powder due to the synergistic effect of adding the high crystalline magnetic anisotropy of the Fe 16 N 2 phase to the shape magnetic anisotropy having a spindle or needle shape. Seems to have improved greatly.
[0019]
In the iron nitride-based magnetic powder of the present invention, when a rare earth element is contained therein, the rare earth element may be present inside the magnetic powder, but in order to obtain a higher coercive force while maintaining the shape, It is desirable that the magnetic powder has a multilayer structure of an inner layer and an outer layer, and the outer layer portion is formed of a compound containing at least one rare earth element.
In this case, although the inner layer of the Fe phase of the magnetic powder and the Fe 16 N 2 phase, need not be all the internal phase Fe 16 N 2 phase, or a mixed phase of Fe 16 N 2 phase and alpha-Fe phase . Rather, there is an advantage that a desired coercive force can be easily set by appropriately adjusting the ratio between the Fe 16 N 2 phase and the α-Fe phase.
[0020]
Examples of the rare earth element include yttrium, ytterbium, cesium, praseodymium, lanthanum, europium, neodymium, and the like.
Among them, yttrium, samarium or neodymium has a large effect of maintaining the particle shape at the time of reduction. Therefore, it is desirable to select and use at least one of these elements.
[0021]
It is also effective to include a metalloid element together with such a rare earth element to form an oxide or a compound containing these elements. Examples of the metalloid element include boron, silicon, aluminum, phosphorus, carbon, calcium, and magnesium. Among these metalloid elements, at least one element selected from boron, silicon, aluminum, and phosphorus is desirable, and a higher coercive force can be obtained by using this and a rare earth element together.
[0022]
Next, a method for producing the iron nitride-based magnetic powder of the present invention will be described.
As starting materials, iron oxides or hydroxides are used. For example, hematite, magnetite, goethite and the like can be mentioned. The average size of the major axis of the particles is not particularly limited, but is preferably about 20 to 120 nm. If the particle size is too small, sintering between particles is likely to occur during the reduction treatment, and if it is too large, the particle diameter after the reduction and nitridation treatment becomes too large, which is not preferable because the noise becomes large when used as a magnetic recording medium.
[0023]
When applying a rare earth element to this starting material, usually, the starting material is dispersed in an aqueous solution of an alkali or an acid, a salt of the rare earth element is dissolved therein, and the rare earth element is contained in the raw material powder by a neutralization reaction or the like. The hydroxide or hydrate may be precipitated.
The content of the rare earth element is preferably 0.05 to 20.0 atomic% with respect to the iron in the magnetic powder. If the amount of the rare earth element is too small, the effect of maintaining the particle shape during the reduction will be reduced. On the other hand, if the amount of the rare earth element is too large, the unreacted portion of the added rare earth element increases, which not only does not contribute to the improvement of the coercive force, but also forms a nonmagnetic substance, causing an excessive decrease in the saturation magnetization. Cheap.
[0024]
In addition to the rare earth element, a compound composed of an element such as boron, silicon, aluminum, and phosphorus as a metalloid element is dissolved, and the raw material powder is immersed in the compound. A metal element may be deposited. In order to perform these deposition processes efficiently, additives such as a reducing agent, a pH buffer, and a particle size controlling agent may be mixed. In these deposition treatments, a rare earth element may be deposited, and then a metalloid element may be deposited. When a rare earth element and a metalloid element are used together, the effect of maintaining the shape of the particles is more exhibited, which is preferable.
The content of the metalloid element is preferably set to 0.1 to 20.0 atomic% with respect to iron in the magnetic powder. If the content of the metalloid element is too small, the effect of maintaining the particle shape at the time of reduction is reduced. On the other hand, if the content of the metalloid element is too large, the unreacted portion of the added metalloid element increases, not only does not contribute to the improvement of the coercive force, but also forms a non-magnetic substance, resulting in excessive saturation magnetization. Significant reduction is likely to occur.
[0025]
Next, using the raw material on which the rare earth element or the semimetal element is deposited, or the raw material on which the above-mentioned elements are not deposited at all, these are reduced by heating in a hydrogen stream. The reducing gas is not particularly limited, and a reducing gas such as a carbon monoxide gas may be used in addition to the hydrogen gas.
The reduction temperature is desirably 300 to 600 ° C. When the reduction temperature is lower than 300 ° C., the reduction reaction does not proceed sufficiently. When the reduction temperature is higher than 600 ° C., sintering of the powder particles is liable to occur.
[0026]
By performing a nitriding treatment after such a heat reduction treatment, the iron nitride-based magnetic powder of the present invention is obtained. The nitriding treatment is desirably performed using a gas containing ammonia. In addition to ammonia gas alone, a mixed gas using hydrogen gas, helium gas, nitrogen gas, argon gas or the like as a carrier gas may be used. Nitrogen gas is particularly preferable because it is inexpensive.
The nitriding temperature is preferably set to 100 to 300 ° C. If the nitriding temperature is too low, nitriding does not proceed sufficiently, and the effect of increasing the coercive force is small. If it is too high, nitriding is excessively promoted, the proportion of Fe 4 N or Fe 3 N phase or the like increases, the coercive force decreases rather, and the saturation magnetization tends to excessively decrease.
[0027]
In such a nitriding treatment, it is desirable to select the conditions of the nitriding treatment so that the amount of nitrogen relative to iron in the obtained iron nitride-based magnetic powder is 1.0 to 20.0 atomic%. If the amount of nitrogen is too small, the amount of Fe 16 N 2 produced is small, and the effect of improving the coercive force is reduced. On the other hand, if the amount of nitrogen is too large, a Fe 4 N or Fe 3 N phase or the like is likely to be formed, and the coercive force is rather reduced, and the saturation magnetization is likely to be excessively reduced.
[0028]
【Example】
Hereinafter, examples of the present invention will be described in more detail. However, the present invention is not limited only to the following examples.
[0029]
Example 1
10 g of goethite particles having a needle-like shape, an average particle major axis size of 62 nm, and a needle-like ratio of about 6 were dispersed in 500 cc of water for 30 minutes using an ultrasonic dispersing machine. 2.5 g of yttrium nitrate was added to the dispersion to dissolve it, and the mixture was stirred for 30 minutes. Separately, 0.8 g of sodium hydroxide was dissolved in 100 cc of water. The aqueous sodium hydroxide solution was added dropwise to the above dispersion over about 30 minutes, and after the addition was completed, the mixture was further stirred for 1 hour. By this treatment, a hydroxide of yttrium was deposited on the surface of the goethite particles. This was washed with water, filtered, and dried at 90 ° C. to obtain a powder in which yttrium hydroxide was formed on the surfaces of goethite particles.
[0030]
The powder obtained by depositing the yttrium hydroxide on the surface of the goethite particles in this manner was reduced by heating at 430 ° C. for 3 hours in a hydrogen stream to obtain a magnetic powder. Next, the temperature was lowered to 180 ° C. over about one hour while flowing hydrogen gas. When the temperature reached 180 ° C., the gas was switched to ammonia gas, and a nitriding treatment was performed for 20 hours while maintaining the temperature at 180 ° C. Thereafter, the temperature was lowered from 180 ° C. to 90 ° C. in a state where the ammonia gas was flown, and at 90 ° C., the ammonia gas was switched to a mixed gas of oxygen and nitrogen, and a stabilization treatment was performed for 2 hours.
[0031]
Then, the temperature was lowered from 90 ° C. to 40 ° C. in a state where the mixed gas was flowed, and the temperature was kept at 40 ° C. for about 10 hours, and then taken out into the air.
The content of yttrium and nitrogen in the iron nitride-based magnetic powder thus obtained was measured by fluorescent X-ray and found to be 5.5 atomic% and 11.0 atomic%, respectively. From the X-ray diffraction pattern, a profile showing the Fe 16 N 2 phase was obtained. From this profile, it was found that this magnetic powder was composed of a mixed phase of the Fe 16 N 2 phase and the α-Fe phase.
[0032]
Observation of the particle shape with a high-resolution analytical transmission electron microscope revealed that the particles were needle-like particles having an average particle major axis size of 53 nm and a needle-like ratio of about 5. The specific surface area determined by the BET method was 75.1 m 2 / g.
Further, the saturation magnetization is 125.2Am 2 /kg(125.2emu/g measured by applying a magnetic field of 1,270 kA / m (16 kOe)) and a coercive force of 213.3kA / m (2,680 oersteds )Met.
[0033]
Example 2
As a starting material, instead of goethite particles having a needle-like shape and an average particle long axis size of 62 nm and a needle-like ratio of about 6, a needle-like shape and an average particle long axis size of 48 nm and a needle-like ratio of about 6 are used. Iron nitride-based magnetic powder was produced in the same manner as in Example 1 except that the same amount of the goethite particles of No. 5 was used.
The content of yttrium and nitrogen in this iron nitride-based magnetic powder was measured by fluorescent X-ray, and was 5.4 atomic% and 11.6 atomic%, respectively. From the X-ray diffraction pattern, a profile showing the Fe 16 N 2 phase was obtained.
[0034]
Observation of the particle shape with a high-resolution analytical transmission electron microscope revealed that the particles had a needle shape, an average particle major axis size of 42 nm, and a needle ratio of about 4. The specific surface area determined by the BET method was 88.4 m 2 / g.
Further, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 93.1 Am 2 / kg (93.1 emu / g), and the coercive force is 187.1 kA / m (2,350 Oe). )Met.
[0035]
Example 3
Iron nitride magnetic powder in the same manner as in Example 1, except that the addition amount of yttrium nitrate was changed from 2.5 g to 7.4 g and the addition amount of sodium hydroxide was changed from 0.8 g to 2.3 g. Was manufactured.
The content of yttrium and nitrogen in the iron nitride-based magnetic powder was measured by X-ray fluorescence, and was found to be 14.1 at% and 9.7 at%, respectively. From the X-ray diffraction pattern, a profile showing the Fe 16 N 2 phase was obtained.
[0036]
Observation of the particle shape with a high-resolution analytical transmission electron microscope revealed that the particles were needle-like particles having an average size of the long axis of the particles of 55 nm and a needle-like ratio of about 5. The specific surface area determined by the BET method was 78.6 m 2 / g.
Further, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 132.6 Am 2 / kg (132.6 emu / g), and the coercive force is 203.0 kA / m (2,550 Oe). )Met.
[0037]
Example 4
An iron nitride-based magnetic powder was produced in the same manner as in Example 1, except that the nitriding temperature was changed from 180 ° C to 200 ° C.
The content of yttrium and nitrogen in this iron nitride-based magnetic powder was measured by fluorescent X-ray, and was 5.4 atomic% and 16.5 atomic%, respectively. From the X-ray diffraction pattern, a profile showing the Fe 16 N 2 phase was obtained.
[0038]
Observation of the particle shape with a high-resolution analytical transmission electron microscope revealed that the average particle size of the major axis of the particles was 53 nm, and the ratio of needles was about 5. The specific surface area determined by the BET method was 74.4 m 2 / g.
Further, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 112.6 Am 2 / kg (112.6 emu / g), and the coercive force is 199.8 kA / m (2,510 Oe). )Met.
[0039]
Example 5
After the operation of adding 2.5 g of yttrium nitrate and 0.8 g of sodium hydroxide, 2.3 g of sodium silicate was further added to deposit and deposit hydroxide and silica of yttrium on the surface of goethite particles. In the same manner as in Example 1, an iron nitride-based magnetic powder was produced.
The iron nitride-based magnetic powder thus obtained was measured for its yttrium, silicon, and nitrogen contents by fluorescent X-ray. As a result, it was found that the contents were 5.5 at%, 5.2 at%, and 10.2 at%, respectively. Met. From the X-ray diffraction pattern, a profile showing the Fe 16 N 2 phase was obtained. From this profile, it was found that this magnetic powder was composed of a mixed phase of Fe 16 N 2 phase and α-Fe phase.
[0040]
Observation of the particle shape with a high-resolution analytical transmission electron microscope revealed that the particles were acicular particles having an average particle major axis of 54 nm and an acicular ratio of about 5. The specific surface area determined by the BET method was 77.9 m 2 / g.
Further, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 120.2 Am 2 / kg (120.2 emu / g), and the coercive force is 216.5 kA / m (2,720 Oe). )Met.
[0041]
Comparative Example 1
An iron-based magnetic powder was produced in the same manner as in Example 1 except that only the heat reduction treatment with hydrogen gas was performed and the nitriding treatment was not performed.
The content of yttrium in this iron-based magnetic powder was measured by fluorescent X-ray and found to be 5.3 atomic%. From the X-ray diffraction pattern, a profile showing an α-Fe single phase was obtained.
[0042]
Observation of the particle shape with a high-resolution analytical transmission electron microscope revealed that the average particle size of the major axis of the particles was 53 nm, and the ratio of needles was about 5. The specific surface area determined by the BET method was 78.5 m 2 / g.
Further, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 148.3 Am 2 / kg (148.3 emu / g), and the coercive force is 134.5 kA / m (1,690 Oe). )Met.
[0043]
Comparative Example 2
An iron-based magnetic powder was produced in the same manner as in Example 1, except that only the heat reduction treatment with hydrogen gas was performed without performing the yttrium deposition treatment and the nitriding treatment.
The iron-based magnetic powder obtained a profile indicating an α-Fe single phase from the X-ray diffraction pattern.
[0044]
Observation of the particle shape with a high-resolution analytical transmission electron microscope showed that the particle shape was more granular than acicular, with an average particle size of about 0.2 μm and an extremely wide particle size distribution. Was.
Further, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) was 181.5 Am 2 / kg (181.5 emu / g), and the coercive force was 28.7 kA / m (330 Oe). there were.
[0045]
The production conditions of the magnetic powders of Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 1. Table 2 summarizes the elemental composition (atomic% of yttrium, silicon and nitrogen), the presence or absence of a Fe 16 N 2 phase, the average particle size, and the BET specific surface area of each of the above magnetic powders. Table 3 shows the saturation magnetization and coercive force of each of the above magnetic powders.
[0046]
Figure 2004319923
[0047]
Figure 2004319923
[0048]
Figure 2004319923
[0049]
As is clear from the above results, each of the iron nitride-based magnetic powders of Examples 1 to 5 of the present invention has a clearly higher coercive force as compared with the magnetic powders of Comparative Examples 1 and 2. It can be seen that the configuration of the present invention can exhibit a high coercive force in a fine particle state while maintaining the conventional needle-like shape.
[0050]
【The invention's effect】
As described above, the present invention uses a large amount of expensive cobalt by imparting magnetic anisotropy based on the Fe 16 N 2 phase to magnetic anisotropy depending on the shape of a spindle or a needle. Thus, a high coercive force, which could not be achieved by conventional needle-like particles, is obtained, and a magnetic powder suitable for a high-density recording magnetic recording medium such as a digital video tape or a computer backup tape can be provided.

Claims (8)

鉄と窒素を少なくとも構成元素とし、かつFe16相を少なくとも含む磁性粉末であって、鉄に対する窒素の含有量が1.0〜20.0原子%であり、粒子長軸の平均サイズが20〜100nmの範囲の紡錘状または針状であることを特徴とする窒化鉄系磁性粉末。A magnetic powder containing at least iron and nitrogen as constituent elements and at least a Fe 16 N 2 phase, wherein the content of nitrogen with respect to iron is 1.0 to 20.0 atom%, and the average size of the particle major axis is A spindle-shaped or needle-shaped magnetic powder having a diameter in the range of 20 to 100 nm. 希土類元素を含有する請求項1に記載の窒化鉄系磁性粉末。The iron nitride-based magnetic powder according to claim 1, which contains a rare earth element. 希土類元素がイットリウム、サマリウム、ネオジウムの中から選ばれる少なくともひとつの元素である請求項2に記載の窒化鉄系磁性粉末。The iron nitride magnetic powder according to claim 2, wherein the rare earth element is at least one element selected from yttrium, samarium, and neodymium. 鉄に対する希土類元素の含有量が0.05〜20.0原子%である請求項2または3に記載の窒化鉄系磁性粉末。The iron nitride magnetic powder according to claim 2 or 3, wherein the content of the rare earth element relative to iron is 0.05 to 20.0 atomic%. ホウ素、シリコン、アルミニウム、リンの中から選ばれる少なくともひとつの元素を含有する請求項1〜4のいずれかに記載の窒化鉄系磁性粉末。The iron nitride-based magnetic powder according to any one of claims 1 to 4, further comprising at least one element selected from boron, silicon, aluminum, and phosphorus. 鉄に対するホウ素、シリコン、アルミニウムおよびリンの総含有量が0.1〜20.0原子%である請求項5に記載の窒化鉄系磁性粉末。The iron nitride-based magnetic powder according to claim 5, wherein the total content of boron, silicon, aluminum, and phosphorus with respect to iron is 0.1 to 20.0 atomic%. 保磁力が119.4〜398.0A/m(1,500〜5,000エルステッド)、飽和磁化が60〜160Am/kg(60〜160emu/g)、BET比表面積が30〜150m/gの範囲にある請求項1〜6のいずれかに記載の窒化鉄系磁性粉末。The coercive force is 119.4 to 398.0 A / m (1,500 to 5,000 Oe), the saturation magnetization is 60 to 160 Am 2 / kg (60 to 160 emu / g), and the BET specific surface area is 30 to 150 m 2 / g. The iron nitride-based magnetic powder according to any one of claims 1 to 6, wherein 出発原料に鉄の酸化物または水酸化物を用い、これに直接、または希土類元素、ホウ素、シリコン、アルミニウム、リンの中から選ばれる少なくともひとつの元素を被着したのち、加熱還元処理を行い、その後、還元処理温度以下の温度で窒化処理を行って、請求項1〜7のいずれかに記載の窒化鉄系磁性粉末を得ることを特徴とする窒化鉄系磁性粉末の製造方法。Using an oxide or hydroxide of iron as a starting material, directly or on a rare earth element, boron, silicon, aluminum, after applying at least one element selected from phosphorus, heat reduction treatment, Thereafter, a nitriding treatment is performed at a temperature equal to or lower than a reduction treatment temperature to obtain the iron nitride-based magnetic powder according to claim 1.
JP2003115197A 2003-04-21 2003-04-21 Iron nitride-based magnetic powder Withdrawn JP2004319923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115197A JP2004319923A (en) 2003-04-21 2003-04-21 Iron nitride-based magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115197A JP2004319923A (en) 2003-04-21 2003-04-21 Iron nitride-based magnetic powder

Publications (1)

Publication Number Publication Date
JP2004319923A true JP2004319923A (en) 2004-11-11

Family

ID=33474463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115197A Withdrawn JP2004319923A (en) 2003-04-21 2003-04-21 Iron nitride-based magnetic powder

Country Status (1)

Country Link
JP (1) JP2004319923A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216178A (en) * 2005-02-04 2006-08-17 Hitachi Maxell Ltd Magnetic tape
JP2007258427A (en) * 2006-03-23 2007-10-04 Tdk Corp Magnetic particle and its manufacturing method
US7688617B2 (en) 2005-10-18 2010-03-30 Nec Corporation MRAM and operation method of the same
WO2015148810A1 (en) * 2014-03-28 2015-10-01 Regents Of The Univesity Of Minnesota Iron nitride magnetic material including coated nanoparticles
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216178A (en) * 2005-02-04 2006-08-17 Hitachi Maxell Ltd Magnetic tape
US7688617B2 (en) 2005-10-18 2010-03-30 Nec Corporation MRAM and operation method of the same
JP2007258427A (en) * 2006-03-23 2007-10-04 Tdk Corp Magnetic particle and its manufacturing method
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
EP3123484A4 (en) * 2014-03-28 2017-06-14 Regents of the University of Minnesota Iron nitride magnetic material including coated nanoparticles
AU2015235987B2 (en) * 2014-03-28 2017-03-16 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
WO2015148810A1 (en) * 2014-03-28 2015-10-01 Regents Of The Univesity Of Minnesota Iron nitride magnetic material including coated nanoparticles
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy

Similar Documents

Publication Publication Date Title
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JP2000277311A5 (en)
JP2004319923A (en) Iron nitride-based magnetic powder
JP4143713B2 (en) Magnetic powder for magnetic recording
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP2625708B2 (en) Method for producing ultra-high coercivity metal powder
JP2011162882A (en) Ferromagnetic metal powder, and magnetic recording medium using the same
JP2010095751A (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP4146769B2 (en) Magnetic recording medium
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2002050508A (en) Method of manufacturing magnetic powder
JPH1083906A (en) Metallic powder for magnetic recording use and manufacture thereof
JP3129414B2 (en) Manufacturing method of acicular iron alloy magnetic particles for magnetic recording
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP4070147B1 (en) Magnetic recording medium
JP2003100507A (en) Magnetic powder
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP5418773B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5700191B2 (en) Method for producing ferromagnetic metal particle powder, magnetic recording medium
JP2007149258A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704