JP2008021833A - Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor - Google Patents

Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor Download PDF

Info

Publication number
JP2008021833A
JP2008021833A JP2006192582A JP2006192582A JP2008021833A JP 2008021833 A JP2008021833 A JP 2008021833A JP 2006192582 A JP2006192582 A JP 2006192582A JP 2006192582 A JP2006192582 A JP 2006192582A JP 2008021833 A JP2008021833 A JP 2008021833A
Authority
JP
Japan
Prior art keywords
carbon material
double layer
electric double
porous carbon
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006192582A
Other languages
Japanese (ja)
Inventor
Kazuhiko Mizuuchi
和彦 水内
Kazuhiro Morita
一洋 森田
Michio Inagaki
道夫 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2006192582A priority Critical patent/JP2008021833A/en
Publication of JP2008021833A publication Critical patent/JP2008021833A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous carbon material for a non-aqueous electric double layer capacitor which is excellent in high-speed charging/discharging performance and has less expansion of its volume in charging, and to provide a manufacturing method thereof and a non-aqueous electric double layer capacitor. <P>SOLUTION: A metal compound is blended with a coal pitch or a petrol pitch and a blended result is carbonized, and a carbide is cleaned with a solvent capable of dissolving the metal compound to obtain the porous carbon material for an electric double layer capacitor. The coal pitch etc. to be used is preferably has a primary quinoline insoluble component of not more than 2 mass% and the metal compound is preferably an organic acid salt of magnesium. A mass ratio of the metal compound to the coal pitch etc. is preferably 95:5 or 5:95. Preferably, the porous carbon material has an average diameter of micropores of 1 nm-10 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタ用多孔質炭素材料およびその製造方法ならびに非水系電気二重層キャパシタに関する。   The present invention relates to a porous carbon material for an electric double layer capacitor, a method for producing the same, and a non-aqueous electric double layer capacitor.

蓄電デバイスの一種である電気二重層キャパシタは、導電材料からなる電極の界面にイオンを吸脱着させることで電気を充放電する。なお、電気二重層キャパシタは、電解質の溶媒として水または有機溶媒のいずれを用いるかによって、水系と非水系に区分される。一般に、水系は高速充放電性を重視する用途、非水系はエネルギー密度を重視する用途で用いられることが多い。電極の活物質には、一般に、多孔質炭素材料が用いられる。多孔質炭素材料を用いた電気二重層キャパシタは、多孔質炭素材料と電解質の間で化学反応を伴わないことから、高速充放電性に優れ、ICバックアップ電源用等で、商品化が進んでいる。近年、燃料電気自動車(FCV)用途等での使用も検討されており、さらなる高速充放電性や体積当りの静電容量向上、低コスト化に寄与する多孔質炭素材料が望まれている。   An electric double layer capacitor, which is a kind of power storage device, charges and discharges electricity by adsorbing and desorbing ions at the interface of electrodes made of a conductive material. The electric double layer capacitor is classified into an aqueous type and a non-aqueous type depending on whether water or an organic solvent is used as an electrolyte solvent. In general, aqueous systems are often used for applications where high-speed charge / discharge characteristics are important, and non-aqueous systems are used for applications where energy density is important. In general, a porous carbon material is used for the active material of the electrode. Electric double layer capacitors using porous carbon materials do not involve a chemical reaction between the porous carbon material and the electrolyte, so they are excellent in high-speed charge / discharge characteristics, and are being commercialized for IC backup power supplies. . In recent years, use in fuel electric vehicles (FCV) and the like has been studied, and porous carbon materials that contribute to further high-speed charge / discharge performance, capacitance improvement per volume, and cost reduction are desired.

かかる要求を満たすべく、多孔質炭素材料の種類と、その賦活方法等に関して、さまざまな提案がなされている。   In order to satisfy such requirements, various proposals have been made regarding the types of porous carbon materials and the activation methods thereof.

例えば、電気二重層キャパシタの電極の重量(質量)当たりの静電容量を高める手段として、炭素材料を高温の水蒸気とさせて細孔を形成する、所謂水蒸気賦活法が広く用いられている。
これに対して、電極の体積当たりの静電容量を高める手段として、多孔質炭素材料をアルカリ賦活して微細孔径を有する多孔質化することも広く行なわれている。
For example, as a means for increasing the capacitance per weight (mass) of an electrode of an electric double layer capacitor, a so-called water vapor activation method in which a carbon material is made into high temperature water vapor to form pores is widely used.
On the other hand, as a means for increasing the electrostatic capacity per volume of the electrode, it is widely performed to make the porous carbon material porous with a fine pore diameter by alkali activation.

このような炭素材料を賦活処理して多孔質化する方法の一例として、例えばコールタール等の瀝青物を加熱処理して得た球状炭素粒子を表面賦活する方法が開示されている(特許文献1参照)。この方法により得られる炭素材料は約1nm径の微細な細孔を持つため、電気二重層キャパシタの初期容量が高く、内部抵抗が低く、低温特性に優れるとされている。   As an example of a method for activating such a carbon material to make it porous, a method for activating the surface of spherical carbon particles obtained by heating a bitumen such as coal tar is disclosed (Patent Document 1). reference). Since the carbon material obtained by this method has fine pores with a diameter of about 1 nm, the electric double layer capacitor has high initial capacity, low internal resistance, and excellent low temperature characteristics.

しかしながら、炭素材料を賦活処理して多孔質化する上記した従来の方法は、前者の水蒸気賦活法の場合、一般に、炭素材料の比表面積を増やすことで電極の重量当たりの静電容量を高めることが実現される反面、嵩密度が低下するために電極の体積当たりの静電容量が低下する。又、電極歩留が低下するという課題もある。
一方、後者のアルカリ賦活法の場合、一般に、得られる炭素材料は、充電時の体積膨張が大きく、極端な場合セルの破損に至るおそれがある。また賦活時に副生するアルカリ金属が高反応性のため、安全を確保するために装置コストが多大となる。
However, in the case of the former steam activation method, the above-described conventional method for activating a carbon material to make it porous generally increases the capacitance per electrode weight by increasing the specific surface area of the carbon material. However, since the bulk density decreases, the capacitance per volume of the electrode decreases. There is also a problem that the electrode yield decreases.
On the other hand, in the case of the latter alkali activation method, generally, the obtained carbon material has a large volume expansion at the time of charging, and in the extreme case, there is a possibility of damaging the cell. Moreover, since the alkali metal by-produced at the time of activation is highly reactive, the cost of the apparatus becomes large in order to ensure safety.

これに対して、賦活を行わずに多孔質炭素材料を得る方法としてポリビニルアルコール、スチレン等の有機質樹脂を酸化マグネシウム等のアルカリ金属微粒子と共に加熱し、微粒子表面に炭化物を析出させ、次いで酸洗浄することで微粒子を除去して、多孔質炭素の活性炭を製造する方法が開示されている(特許文献2参照。)。この方法により得られる高比表面積の活性炭はキャパシタ材料等に好適に用いることができるとされている。
しかしながら、炭素材料として用いるこれらの有機質樹脂は炭化歩留が低く、得られる多孔質炭素材料は高価なものになる。
特開平02−252227号公報 特開2006−62954号公報
On the other hand, as a method for obtaining a porous carbon material without activation, an organic resin such as polyvinyl alcohol or styrene is heated together with alkali metal fine particles such as magnesium oxide to precipitate carbide on the surface of the fine particles, followed by acid cleaning. Thus, a method for producing activated carbon of porous carbon by removing fine particles has been disclosed (see Patent Document 2). It is said that activated carbon having a high specific surface area obtained by this method can be suitably used for capacitor materials and the like.
However, these organic resins used as the carbon material have a low carbonization yield, and the resulting porous carbon material is expensive.
Japanese Patent Laid-Open No. 02-252227 JP 2006-62954 A

電気二重層キャパシタ用炭素材料を製造する従来技術は、上記のように、いずれも物性面や生産技術面で特有の課題を抱えるものである。
また、いずれの従来技術についても、高速充放電性に優れ、充電時の体積膨張も少ない多孔質炭素材料を得るうえでの有用性については必ずしも定かではない。
As described above, all of the conventional techniques for producing a carbon material for an electric double layer capacitor have specific problems in terms of physical properties and production technology.
In addition, in any of the conventional techniques, the usefulness in obtaining a porous carbon material that is excellent in high-speed charge / discharge characteristics and has a small volume expansion during charging is not necessarily clear.

本発明は、上記の課題に鑑みてなされたものであり、高速充放電性に優れ、充電時の体積膨張も少ない電気二重層キャパシタ用多孔質炭素材料およびその製造方法ならびに非水系電気二重層キャパシタを提供することを目的とする。
また、本発明は、高速充放電性に優れ、充電時の体積膨張も少ない電気二重層キャパシタ用多孔質炭素材料を低コスト且つ高歩留で得る方法を提供することを目的とする。
The present invention has been made in view of the above problems, and is a porous carbon material for an electric double layer capacitor that is excellent in high-speed charge / discharge properties and has a small volume expansion during charging, a method for producing the same, and a non-aqueous electric double layer capacitor The purpose is to provide.
Another object of the present invention is to provide a method for obtaining a porous carbon material for an electric double layer capacitor that is excellent in high-speed charge / discharge characteristics and has a small volume expansion during charging at low cost and high yield.

本発明に係る電気二重層キャパシタ用多孔質炭素材料の製造方法は、金属化合物と石炭系ピッチまたは石油系ピッチを混合した後、炭化し、次いで該金属化合物を溶解可能な溶剤で炭化物を洗浄することを特徴とする。   In the method for producing a porous carbon material for an electric double layer capacitor according to the present invention, a metal compound and a coal-based pitch or a petroleum-based pitch are mixed, then carbonized, and then the carbide is washed with a solvent capable of dissolving the metal compound. It is characterized by that.

また、本発明に係る電気二重層キャパシタ用多孔質炭素材料の製造方法は、前記石炭系ピッチまたは石油系ピッチの一次キノリン不溶分が2質量%以下であることを特徴とする。   The method for producing a porous carbon material for an electric double layer capacitor according to the present invention is characterized in that a primary quinoline insoluble content of the coal-based pitch or the petroleum-based pitch is 2% by mass or less.

また、本発明に係る電気二重層キャパシタ用多孔質炭素材料の製造方法は、前記金属化合物が、マグネシウムの有機酸塩であることを特徴とする。   In the method for producing a porous carbon material for an electric double layer capacitor according to the present invention, the metal compound is an organic acid salt of magnesium.

また、本発明に係る電気二重層キャパシタ用多孔質炭素材料の製造方法は、混合する前記金属化合物と石炭系ピッチまたは石油系ピッチの質量比が95:5〜5:95であることを特徴とする。   The method for producing a porous carbon material for an electric double layer capacitor according to the present invention is characterized in that a mass ratio of the metal compound to be mixed and a coal-based pitch or a petroleum-based pitch is 95: 5 to 5:95. To do.

また、本発明に係る電気二重層キャパシタ用多孔質炭素材料は、上記の非水系電気二重層キャパシタ用多孔性炭素材料の製造方法により製造される多孔性炭素材料であって、該多孔性炭素材料の平均細孔直径が1nm〜10nmであることを特徴とする。   The porous carbon material for an electric double layer capacitor according to the present invention is a porous carbon material produced by the above-described method for producing a porous carbon material for a non-aqueous electric double layer capacitor, and the porous carbon material The average pore diameter is from 1 nm to 10 nm.

また、本発明に係る非水系電気二重層キャパシタは、上記の電気二重層キャパシタ用多孔性炭素材料の製造方法により製造される多孔性炭素材料を電極活物質に用いる非水系電気二重層キャパシタであって、充電したときの、充電膨張率と最大電圧の比が4%/V以下であり、且つ、静電容量Fの電流密度I依存性が、0<−dF/dI(F/A)<1.0であることを特徴とする。   The non-aqueous electric double layer capacitor according to the present invention is a non-aqueous electric double layer capacitor using a porous carbon material produced by the above-described method for producing a porous carbon material for an electric double layer capacitor as an electrode active material. The ratio of the expansion coefficient to the maximum voltage when charging is 4% / V or less, and the dependency of the capacitance F on the current density I is 0 <−dF / dI (F / A) < It is characterized by 1.0.

本発明に係る電気二重層キャパシタ用多孔質炭素材料の製造方法は、金属化合物と石炭系ピッチまたは石油系ピッチを混合した後、炭化し、次いで金属化合物を溶解可能な溶剤で炭化物を洗浄するため、得られる多孔質炭素材料を電気二重層キャパシタに用いるときに、高速充放電性に優れ、充電時の体積膨張も少ない電気二重層キャパシタを実現することができる。また、多孔質炭素材料を低コスト且つ高歩留で得ることができる。
また、本発明に係る電気二重層キャパシタ用多孔質炭素材料および非水系電気二重層キャパシタは上記の方法で製造される多孔質炭素材料を用いるため、上記の効果を好適に得ることができる。
In the method for producing a porous carbon material for an electric double layer capacitor according to the present invention, a metal compound and a coal-based pitch or a petroleum-based pitch are mixed, then carbonized, and then the carbide is washed with a solvent capable of dissolving the metal compound. When the obtained porous carbon material is used in an electric double layer capacitor, it is possible to realize an electric double layer capacitor that is excellent in high-speed charge / discharge characteristics and has a small volume expansion during charging. Moreover, a porous carbon material can be obtained at low cost and high yield.
Moreover, since the porous carbon material for electric double layer capacitors and the non-aqueous electric double layer capacitor according to the present invention use the porous carbon material produced by the above method, the above-described effects can be preferably obtained.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

まず、本発明に係る非水系電気二重層キャパシタ用多孔質炭素材料の製造方法は、金属化合物と石炭系ピッチまたは石油系ピッチを混合した後、炭化し、次いで金属化合物を溶解可能な溶剤で炭化物を洗浄するものであり、これにより、金属化合物もしくはその変成物等の金属成分が除去された多孔質炭素材料を得る。   First, a method for producing a porous carbon material for a non-aqueous electric double layer capacitor according to the present invention includes mixing a metal compound and a coal-based pitch or a petroleum-based pitch, followed by carbonization and then a carbide with a solvent capable of dissolving the metal compound. Thus, a porous carbon material from which a metal component such as a metal compound or a modified product thereof is removed is obtained.

金属化合物は、1nm〜10nmの範囲の無機フィラーを形成するもので、且つ溶剤等に可溶であれば、特に限定するものではなく、例えば、酸化カルシウム又はカルシウムと有機酸の塩、酸化マグネシウム又はマグネシウムと有機酸の塩、アルミニウムの塩等を用いることができる。より好ましくは、クエン酸マグネシウム、グルコン酸マグネシウム等のマグネシウムと有機酸の塩である。   The metal compound is not particularly limited as long as it forms an inorganic filler in the range of 1 nm to 10 nm and is soluble in a solvent or the like. For example, calcium oxide or a salt of calcium and organic acid, magnesium oxide or Magnesium and organic acid salts, aluminum salts, and the like can be used. More preferred are salts of magnesium and organic acids such as magnesium citrate and magnesium gluconate.

石炭系ピッチは、石炭を乾留する際に生成する油やコールタールから分離される高沸点タール油およびタールピッチ(コールタールピッチ)等を挙げることができ、好ましくはタールピッチである。タールピッチは、軟化点70℃以下の軟ピッチ、軟化点70〜85℃程度の中ピッチおよび軟化点85℃以上の高ピッチがあり、いずれも使用可能であるが、歩留の点で高ピッチを使用することが有利である。また、タールピッチ、コールタールまたは高沸点タール油の2または3種類を混合したものでもよい。
石油系ピッチは、原油の常圧または減圧残渣などの重質油成分や、軽沸点の油類を改質し、重質したものを使用することができる。
上記の石炭系ピッチおよび石油系ピッチは適宜混合して用いてもよい。
Examples of the coal-based pitch include oil produced when carbon is distilled, high-boiling tar oil separated from coal tar, tar pitch (coal tar pitch), and the like, and tar pitch is preferable. Tar pitches include soft pitches with a softening point of 70 ° C. or lower, medium pitches with a softening point of about 70 to 85 ° C., and high pitches with a softening point of 85 ° C. or higher, both of which can be used. It is advantageous to use Moreover, what mixed 2 or 3 types, tar pitch, coal tar, or high boiling point tar oil may be used.
As the petroleum-based pitch, a heavy oil component obtained by modifying heavy oil components such as normal pressure or reduced pressure residue of crude oil or light-boiling point oils can be used.
The above coal-based pitch and petroleum-based pitch may be appropriately mixed and used.

得られる多孔質炭素材料の不純物が問題になる場合は、一般に一次QIと言われるキノリン不溶分を除去した原料を処理して得たピッチを用いることが好ましい。すなわち、ピッチ中の一次キノリン不溶分(QI)は、2質量%以下であることが好ましく、さらに0.1質量%以下であることがより好ましい。また、これにより、キャパシタの内部抵抗が少なくなる。
ここで、一次QIとは、原料油等にもともと含まれる固形分等の不純物をいい、原料油を熱処理してピッチ化するときに重合反応により生成する、一般的に二次QIと言われるキノリン不溶分と区別される。なお、本発明においてピッチ中に二次QIを含むことは特に問題ない。原料油の段階でQIを測定することにより得られる一次QI量は、QI除去処理を施さない限りそのままピッチに引き継がれる。
ピッチの原料であるコールタール等から一次QIを除去するには、ろ過、遠心分離、溶剤分離等の公知の方法を用いることができる。
When impurities in the obtained porous carbon material become a problem, it is preferable to use a pitch obtained by treating a raw material from which quinoline insoluble matter generally called primary QI is removed. That is, the primary quinoline insoluble matter (QI) in the pitch is preferably 2% by mass or less, and more preferably 0.1% by mass or less. This also reduces the internal resistance of the capacitor.
Here, the primary QI refers to impurities such as solid content originally contained in the raw material oil, etc., and is produced by a polymerization reaction when the raw material oil is heat-treated and pitched, and is generally referred to as secondary QI. Distinguishable from insoluble matter. In the present invention, it is not particularly problematic to include secondary QI in the pitch. The primary QI amount obtained by measuring the QI at the stage of the raw material oil is carried over to the pitch as it is unless QI removal processing is performed.
In order to remove primary QI from coal tar or the like which is a raw material of pitch, known methods such as filtration, centrifugation, and solvent separation can be used.

混合する金属化合物と石炭系ピッチまたは石油系ピッチの質量比は、特に限定するものではないが、95:5〜5:95であることが好ましい。   The mass ratio of the metal compound to be mixed and the coal-based pitch or petroleum-based pitch is not particularly limited, but is preferably 95: 5 to 5:95.

以下、本発明に係る電気二重層キャパシタ用多孔質炭素材料の製造方法について、詳細に説明する。   Hereinafter, the manufacturing method of the porous carbon material for electric double layer capacitors according to the present invention will be described in detail.

金属化合物と石炭系ピッチ等を混合する混合工程は、公知の装置を用いて行うことができ、石炭系ピッチ等の中に金属化合物を均等に分散できるものであればよい。例えば、両者をボールミルで粉砕混合してもよく、あるいはまた、金属化合物を溶剤に溶かしたものを微粉化したピッチに含浸させ、溶剤を乾燥除去させてもよい。   The mixing step for mixing the metal compound with the coal-based pitch or the like can be performed using a known device, and any metal compound that can uniformly disperse the metal compound in the coal-based pitch or the like may be used. For example, both of them may be pulverized and mixed with a ball mill, or the finely divided pitch may be impregnated with a metal compound dissolved in a solvent, and the solvent may be removed by drying.

上記の混合物を炭化する炭化工程は、公知の装置を用いることができ、均一に混合した混合物を、不活性雰囲気下で所定温度に加熱できれば良く、例えば耐熱性ルツボに上記混合物を装入してもよく、またバッチ式又は連続式炭化炉に装入してもよい。発生する揮発分を系外に排出するための排気装置を設置することが好ましい。炭化温度は、例えば600℃〜1000℃に設定するのがよい。   For the carbonization step of carbonizing the above mixture, a known apparatus can be used, and it is sufficient that the uniformly mixed mixture can be heated to a predetermined temperature under an inert atmosphere. For example, the mixture is charged into a heat-resistant crucible. It may also be charged into a batch or continuous carbonization furnace. It is preferable to install an exhaust device for discharging generated volatile matter out of the system. The carbonization temperature is preferably set to, for example, 600 ° C to 1000 ° C.

得られる炭化物を、金属化合物を溶解可能な溶剤で洗浄する洗浄工程、言い換えれば、炭化物中に残存する無機成分の除去工程は、公知の装置が使用できる。金属化合物が酸化カルシウムや酸化マグネシウムであれば希釈した無機酸等で炭化物を洗浄すればよい。希釈した無機酸の水溶液または有機酸を入れた槽に炭化物を装入し、攪拌することで、酸化カルシウムや酸化マグネシウムを除去できる。その後、純水等で無機酸等を洗浄除去すればよい。金属化合物の除去効率を上げるため、予め炭化物を公知の粉砕機で粉砕しておくのは好ましい方法のひとつである。
その後、炭化物を乾燥すれば、本発明の多孔質炭素材料が得られる。
A well-known apparatus can be used for the washing | cleaning process which wash | cleans the obtained carbide | carbonized_material with the solvent which can melt | dissolve a metal compound, in other words, the removal process of the inorganic component which remains in carbide | carbonized_material. If the metal compound is calcium oxide or magnesium oxide, the carbide may be washed with a diluted inorganic acid or the like. Calcium oxide and magnesium oxide can be removed by charging carbide in a tank containing diluted inorganic acid solution or organic acid and stirring. Thereafter, the inorganic acid or the like may be washed away with pure water or the like. In order to increase the removal efficiency of the metal compound, it is one of the preferable methods that the carbide is previously pulverized by a known pulverizer.
Then, if the carbide is dried, the porous carbon material of the present invention is obtained.

得られた多孔質炭素材料は、電気二重層キャパシタの個別の要求特性に適合する様、必要なら再度分級・粉砕・粒度調整を行う。
このものは、必要なら、更に賦活処理することもできる。例えば、水蒸気賦活・アルカリ賦活を行ってもよい。
賦活方法は、公知の方法が適用でき、再現性のある賦活方法であれば、方式は制限されない。アルカリ賦活法、電界賦活法は好ましい実施形態のひとつである。また、ガス賦活等の賦活方法を適宜組み合わせてもよい。
The obtained porous carbon material is classified, pulverized, and adjusted again if necessary so as to meet the individual required characteristics of the electric double layer capacitor.
This can be further activated if necessary. For example, steam activation and alkali activation may be performed.
As the activation method, a known method can be applied, and the method is not limited as long as it is a reproducible activation method. The alkali activation method and the electric field activation method are one of preferred embodiments. Moreover, you may combine suitably activation methods, such as gas activation.

上記の電気二重層キャパシタ用多孔性炭素材料の製造方法により製造される多孔性炭素材料は、用いる金属単体または金属単体の化合物の粒径によって制御された平均細孔直径が1nm〜10nmであることが好ましい。   The porous carbon material produced by the above-described method for producing a porous carbon material for an electric double layer capacitor has an average pore diameter of 1 nm to 10 nm controlled by the particle size of the metal simple substance or the metal simple substance compound used. Is preferred.

得られる多孔質炭素材料を用いて、電気二重層キャパシタを製造する際は、公知の製造法が採用でき、特に限定されない。
なお、本発明は、有機溶剤系電解液(電解質液)を用いる非水系電気二重層キャパシタに適用するときに、本発明の効果を好適に奏するものであるが、これに限らず、水系電解液(電解質液)を用いる水系電気二重層キャパシタに適用することができる。
When manufacturing an electric double layer capacitor using the obtained porous carbon material, a well-known manufacturing method can be employ | adopted and it does not specifically limit.
In addition, when this invention applies to the non-aqueous electric double layer capacitor which uses organic solvent electrolyte solution (electrolyte solution), there exists an effect of this invention suitably, but it is not restricted to this, Aqueous electrolyte solution It can be applied to an aqueous electric double layer capacitor using (electrolyte solution).

電気二重層キャパシタセルの組み立て方法については、公知の方法が適用できる。電極形成法についても限定されず、シート電極法、スラリー電極法のいずれも使用可能である。   As a method for assembling the electric double layer capacitor cell, a known method can be applied. The electrode forming method is not limited, and either a sheet electrode method or a slurry electrode method can be used.

このとき、炭素材料は、電気二重層キャパシタの設計に応じて、原料を電極の厚み以下の粒度に粉砕する。多孔質炭素材料の粉砕後粒度は、例えば数〜数十μmの範囲とする。粉砕方法は公知の方法が採用できる。   At this time, a carbon material grind | pulverizes a raw material into the particle size below the thickness of an electrode according to the design of an electric double layer capacitor. The particle size after pulverization of the porous carbon material is, for example, in the range of several to several tens of μm. As the pulverization method, a known method can be adopted.

電気二重層キャパシタは、主として多孔質炭素材料からなる一対の正負電極の間にセパレータを挟んだ素子を電解質液とともにケースに収容するとともに、電極に集電体を設けた構造とすることができる。なお、この場合、負極を多孔質炭素材料以外の他の材料で形成してもよい。   The electric double layer capacitor can have a structure in which an element having a separator sandwiched between a pair of positive and negative electrodes mainly made of a porous carbon material is housed in a case together with an electrolyte solution, and a current collector is provided on the electrode. In this case, the negative electrode may be formed of a material other than the porous carbon material.

電極構成としては、結合材を含むことが好ましく、特に多孔質炭素材料、導電性助剤および結合材からなる電極構成とすることが好ましい。
導電性助剤としては、例えばケッチェンブラック、アセチレンブラック、天然/人造黒鉛等を用いることができる。
結合材としては、特に制限がないが、シート電極法では例えばポリテトラフルオロエチレン(PTFE)等の結合材、スラリー電極法では例えばポリビニリデンフルオライド(PVDF)、PVA等が使用できる。
スラリー電極法における溶媒としては、例えばN−メチル−2−ピロリドン(NMP)、ジメチルフォルムアミド(DMF)、トルエン等またはその混合溶媒を使用することができる。
The electrode configuration preferably includes a binder, and particularly preferably an electrode configuration composed of a porous carbon material, a conductive auxiliary agent, and a binder.
As the conductive auxiliary agent, for example, ketjen black, acetylene black, natural / artificial graphite or the like can be used.
The binder is not particularly limited, and for example, a binder such as polytetrafluoroethylene (PTFE) can be used in the sheet electrode method, and polyvinylidene fluoride (PVDF), PVA, or the like can be used in the slurry electrode method.
As a solvent in the slurry electrode method, for example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), toluene, or a mixed solvent thereof can be used.

電極中の上記各成分の構成比については、特に制限はないが、多孔質炭素材料として50〜95質量%、導電性助剤として1〜25質量%、結合材として1〜25質量%の範囲で選択するのがよい。   Although there is no restriction | limiting in particular about the composition ratio of each said component in an electrode, The range of 50-95 mass% as a porous carbon material, 1-25 mass% as a conductive support agent, and 1-25 mass% as a binder. It is good to select with.

集電体については特に制限はなく、公知の例えば、表面エッチングしたアルミ箔、ステンレス箔などが適用でき、使用環境下で腐食されないものから適宜選定すればよい。   There is no restriction | limiting in particular about a collector, What is necessary is just to select suitably from well-known things, for example, the surface-etched aluminum foil, stainless steel foil, etc. which can be applied and are not corroded in a use environment.

非水系電解質液を用いる場合、電解質液に含まれる電解質は、特に限定するものではなく、公知の例えば(CNBF、CH(CNBF等が使用できる。イミダゾリウム誘導体の塩(EMI)や、ジエチル−メチル−(2−メトキシエチルアンモニウム(DEME)等のイオン性液体を用いてもよい。 When a non-aqueous electrolyte solution is used, the electrolyte contained in the electrolyte solution is not particularly limited, and known (C 2 H 5 ) 4 NBF 4 , CH 3 (C 2 H 5 ) 3 NBF 4 and the like are used. it can. An ionic liquid such as a salt of an imidazolium derivative (EMI) or diethyl-methyl- (2-methoxyethylammonium (DEME)) may be used.

また、非水系電解質液を用いる場合、電解質液は特に制限なく、公知の例えばプロピレンカーボネート(PC)、アセトニトリル等が使用できる。また、ポリマーゲル等を用いてもよい。キャパシタ内に貯蔵できるエネルギーは充電電圧の2乗と静電容量の1乗に比例することから、分解電圧の高いものを用いることが好ましい。必要なら、脱水剤や、副反応で生成すると考えられるガスの捕集剤を加えてもよい。
一方、水系電解質液を用いる場合、電解質は特に制限なく、例えば硫酸、水酸化カリウム等の公知の電解質が使用できる。
When a non-aqueous electrolyte solution is used, the electrolyte solution is not particularly limited, and known ones such as propylene carbonate (PC) and acetonitrile can be used. Further, a polymer gel or the like may be used. Since the energy that can be stored in the capacitor is proportional to the square of the charging voltage and the first power of the capacitance, it is preferable to use one having a high decomposition voltage. If necessary, a dehydrating agent or a gas scavenger considered to be generated by a side reaction may be added.
On the other hand, when an aqueous electrolyte solution is used, the electrolyte is not particularly limited, and known electrolytes such as sulfuric acid and potassium hydroxide can be used.

セパレータは、製造プロセス、用途から求まる耐薬品性、耐熱性等の要件を満たせば特に限定されない。例えばポリエチレン多孔膜、ポリプロピレン製不織布、ガラス繊維性不織布、セルロース性特殊紙等の公知の材料が使用可能である。   A separator will not be specifically limited if the requirements, such as chemical resistance and heat resistance which are calculated | required from a manufacturing process and a use, are satisfy | filled. For example, known materials such as polyethylene porous film, polypropylene nonwoven fabric, glass fiber nonwoven fabric, and cellulosic special paper can be used.

電気二重層キャパシタのセル形状は、特に制限はなく、コイン型、角型、円筒型等のいずれの方式も採用できる。
得られる電気二重層キャパシタは、非水系で充電したときの、充電膨張率と最大電圧の比が4%/V以下であり、且つ、静電容量Fの電流密度I依存性が、0<−dF/dI(F/A)<1.0であることが好ましい。
The cell shape of the electric double layer capacitor is not particularly limited, and any type such as a coin type, a square type, and a cylindrical type can be adopted.
The obtained electric double layer capacitor has a ratio of the charge expansion coefficient to the maximum voltage of 4% / V or less when charged in a non-aqueous system, and the dependency of the capacitance F on the current density I is 0 <−. It is preferable that dF / dI (F / A) <1.0.

以上説明した本発明に係る電気二重層キャパシタ用多孔質炭素材料の製造方法は、得られる多孔質炭素材料を電気二重層キャパシタに用いるときに、高速充放電性に優れ、充電時の体積膨張も少ない電気二重層キャパシタを実現することができる。また、多孔質炭素材料を低コスト且つ高歩留で得ることができる。
また、本発明に係る電気二重層キャパシタ用多孔質炭素材料および非水系電気二重層キャパシタは、上記の方法で製造される多孔質炭素材料を用いるため、上記の効果を好適に得ることができる。
The method for producing a porous carbon material for an electric double layer capacitor according to the present invention described above has excellent high-speed charge / discharge characteristics when the obtained porous carbon material is used for an electric double layer capacitor, and also has a volume expansion during charging. Fewer electric double layer capacitors can be realized. Moreover, a porous carbon material can be obtained at low cost and high yield.
Moreover, since the porous carbon material for electric double layer capacitors and the non-aqueous electric double layer capacitor according to the present invention use the porous carbon material produced by the above method, the above effects can be preferably obtained.

以下、本発明の実施例および比較例を説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   Examples of the present invention and comparative examples will be described below. In addition, this invention is not limited to the Example demonstrated below.

実施例−1
(多孔質炭素材の調製)
市販の石炭系ピッチ((株)シーケム製IP−86)を用いた。このもののQI値(JISK 2425準拠)は0.1%以下であった。金属化合物(金属単体の化合物)として、クエン酸マグネシウムを用いた。
クエン酸マグネシウムと石炭系ピッチを、質量比で80:20取り、乳鉢で均質になるまで混合した。ついでこの混合物をアルミナボードに取り、アルゴンガス気流下、炭化を行った。炭化条件は、昇温速度5度/分、保持温度900℃、保持時間1時間とした。
炭化後、回収した炭化物は、2.3モル/リットルの濃度の硫酸水溶液中で24時間攪拌し、無機成分を溶出させた。その後、純水で繰り返し洗浄し、硫酸根を除去し、乾燥し、目的の多孔質炭素材料を得た。このもののBET比表面積、細孔分布、電気化学特性を、以下の条件で測定した。なお、このものの平均細孔径は6nmであった。
Example-1
(Preparation of porous carbon material)
Commercially available coal pitch (IP-86 manufactured by Seachem Co., Ltd.) was used. The QI value (conforming to JISK 2425) of this product was 0.1% or less. Magnesium citrate was used as the metal compound (compound of simple metal).
Magnesium citrate and coal-based pitch were taken at a mass ratio of 80:20 and mixed in a mortar until homogeneous. The mixture was then taken on an alumina board and carbonized under an argon gas stream. The carbonization conditions were a heating rate of 5 degrees / minute, a holding temperature of 900 ° C., and a holding time of 1 hour.
After carbonization, the recovered carbide was stirred in a sulfuric acid aqueous solution having a concentration of 2.3 mol / liter for 24 hours to elute inorganic components. Thereafter, it was repeatedly washed with pure water to remove sulfate radicals and dried to obtain the desired porous carbon material. The BET specific surface area, pore distribution, and electrochemical properties of this product were measured under the following conditions. The average pore diameter of this product was 6 nm.

(比表面積並びに平均細孔径の測定)
ユアサアイオニクス社製AUTOSORB I型装置によりBET比表面積並びに平均細孔径を測定した。解析手法はBJH法を用いた。
(Measurement of specific surface area and average pore diameter)
The BET specific surface area and the average pore diameter were measured with an AUTOSORB I type apparatus manufactured by Yuasa Ionics. The BJH method was used for the analysis method.

(シート電極の調製)
多孔質炭素材料は、予め乳鉢で20μ程度に微粉砕した。ついで、多孔質炭素材料:三井デュポンフルオロケミカル社製テフロン樹脂(テフロンは登録商標)PTFE6−J、ケッチェン・ブラック・インターナショナル株式会社製EC600JDを質量比8:1:1で混合・分散し、シート化して厚み100μmのシート電極を得た。シート電極は、直径16mmφの円盤状に打ち抜き、120℃で8時間減圧乾燥した。
(Preparation of sheet electrode)
The porous carbon material was previously pulverized to about 20 μm in a mortar. Next, porous carbon material: Teflon resin (Teflon is a registered trademark) PTFE6-J manufactured by Mitsui DuPont Fluorochemical Co., Ltd. and EC600JD manufactured by Ketjen Black International Co., Ltd. are mixed and dispersed at a mass ratio of 8: 1: 1 to form a sheet. Thus, a sheet electrode having a thickness of 100 μm was obtained. The sheet electrode was punched into a disk shape with a diameter of 16 mmφ and dried under reduced pressure at 120 ° C. for 8 hours.

(テストセルの調製)
市販のガラス繊維製ろ紙をセパレータに用い、上記シート電極、セパレータで2極式のテストセルを組んだ。
電解質液は、富山薬品工業株式会社製の1モル/kgのテトラエチルアンモニウムテトラフルオロブロマイド(EtNBF)を含有するプロピレンカーボネート溶液を用いた。充放電試験に先立ち、シート電極には、電解質液を減圧下3時間含浸させた。
(Preparation of test cell)
A commercially available glass fiber filter paper was used as a separator, and a bipolar test cell was assembled with the sheet electrode and separator.
As the electrolyte solution, a propylene carbonate solution containing 1 mol / kg tetraethylammonium tetrafluorobromide (Et 4 NBF 4 ) manufactured by Toyama Pharmaceutical Co., Ltd. was used. Prior to the charge / discharge test, the sheet electrode was impregnated with an electrolyte solution under reduced pressure for 3 hours.

(電流密度並びに静電容量の測定)
上記2極セルで、充放電装置としてTOYO SYSTEM製TOSCAT−3000K装置を用い、最大電圧として、2.5Vの電圧を印加し、100mA/gで5回充放電させ、5回目の放電工程の電流−電圧曲線の傾きから静電容量を測定した。
電流密度Iは、実充放電電流と、テストセルに装入された正負両シート電極の重量の和Wから、I=実充放電電流/Wで設定した。
静電容量は、電極活物質基準の静電容量C(単位:ファラッド)として次式で求めた。
C=実放電電流*(T2−T1)/(V1−V2)/0.8
V1:充電電圧の80%となる値(単位:V)
V2:充電電圧の40%となる値(単位:V)
T1:V1における時間(単位:sec)
T2:V2における時間(単位:sec)
実放電電流:単位A
重量あたりの静電容量Fは、CをWで割って求めた。なお、このときの電流密度は100(mA/g−電極シート)である。
(Measurement of current density and capacitance)
In the above two-electrode cell, a TOSCAT-3000K device manufactured by TOYO SYSTEM is used as a charging / discharging device, a voltage of 2.5 V is applied as the maximum voltage, and charging / discharging is performed 5 times at 100 mA / g. -Capacitance was measured from the slope of the voltage curve.
The current density I was set as I = actual charge / discharge current / W from the total charge / discharge current and the sum W of the weights of the positive and negative sheet electrodes inserted in the test cell.
The capacitance was obtained by the following equation as the capacitance C (unit: farad) based on the electrode active material.
C = actual discharge current * (T2-T1) / (V1-V2) /0.8
V1: A value that is 80% of the charging voltage (unit: V)
V2: Value that is 40% of the charging voltage (unit: V)
T1: Time at V1 (unit: sec)
T2: Time in V2 (unit: sec)
Actual discharge current: Unit A
The capacitance F per weight was determined by dividing C by W. In addition, the current density at this time is 100 (mA / g-electrode sheet).

セル組み前の両極のシート電極の厚みの和(D1)を予め測定した後、上記条件でテストセルの充放電を行い、5回目の充電後に、充電状態のままテストセルを分解して両極の電極厚みの和(D2)を測定し、電極膨張率(単位%)を、100*(D2−D1)/D1の式から求めた。厚みの測定はマイクロメーターを使用した。   After measuring the sum of the thicknesses (D1) of the sheet electrodes of both electrodes before assembling the cell in advance, the test cell is charged and discharged under the above conditions. After the fifth charge, the test cell is disassembled in the charged state, The sum of electrode thicknesses (D2) was measured, and the electrode expansion coefficient (unit%) was determined from the equation 100 * (D2-D1) / D1. The thickness was measured using a micrometer.

(充電時の膨張率と最大電圧との比)
電極の充電膨張率と充電時の最大電圧(本実施例では2.5V)から、充電時の膨張率と最大電圧との比(%/V)を求めた。
(Ratio of expansion rate and maximum voltage during charging)
From the charge expansion coefficient of the electrode and the maximum voltage during charging (2.5 V in this example), the ratio (% / V) between the expansion coefficient during charging and the maximum voltage was determined.

(静電容量の電流密度依存性)
重量あたりの静電容量Fの電流密度依存性は、次式でFの差分をIの差分で割って求めた。単位はファラッド/Aとした。
I=100(mA/g−電極シート)での静電容量 F(100)
I=300(mA/g−電極シート)での静電容量 F(300)
−dF/dI=1000*[F(300)−F(100)]/(300−100)
(Dependence of capacitance on current density)
The current density dependence of the capacitance F per weight was obtained by dividing the difference of F by the difference of I in the following equation. The unit was Farad / A.
Capacitance at I = 100 (mA / g-electrode sheet) F (100)
Capacitance at I = 300 (mA / g-electrode sheet) F (300)
-DF / dI = 1000 * [F (300) -F (100)] / (300-100)

実施例−2
クエン酸マグネシウムと石炭系ピッチの質量比を70:30とした以外は実施例―1に従い、BET比表面積、細孔分布、電気化学特性を、上記条件で測定した。平均細孔径は6nmであった。
Example-2
The BET specific surface area, pore distribution, and electrochemical properties were measured under the above conditions in accordance with Example-1, except that the mass ratio of magnesium citrate to coal pitch was 70:30. The average pore diameter was 6 nm.

実施例−3
クエン酸マグネシウムの代わりにグルコン酸マグネシウム(東京化成(株)製)を用いた以外は実施例―1に従い、BET比表面積、細孔分布、電気化学特性を、上記条件で測定した。平均細孔径は3nmであった
Example-3
The BET specific surface area, pore distribution, and electrochemical characteristics were measured under the above conditions in accordance with Example-1, except that magnesium gluconate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of magnesium citrate. The average pore diameter was 3 nm

実施例-4
実施例―1で得た厚み100μmのシート電極を、10cm角の正方形に切り、120℃で8時間減圧乾燥した。ついで、シートを白金メッシュに押し付け、テフロン(テフロンは登録商標)樹脂板2枚で固定した。
(テストセルの調製)
シート電極を作用極、銀/塩化銀電極を参照極、白金板を対極とし、電解質液は、1モル硫酸水溶液を用いて3極セルを組み、充放電を行った。電解液には窒素ガスを吹き込み、溶存酸素を除去した。
(充放電測定)
充放電測定は、東陽テクニカ社製1280Z型電気化学測定システムを用いた。電位は、0〜1.0Vとし、電圧0.2V〜0.8V間の充放電結果から、静電容量を求めた。電流密度は20〜1000mA/gとした。静電容量は、3極セルでの測定値を記載した。
Example-4
The sheet electrode having a thickness of 100 μm obtained in Example-1 was cut into a 10 cm square and dried under reduced pressure at 120 ° C. for 8 hours. Next, the sheet was pressed against a platinum mesh and fixed with two Teflon (Teflon is a registered trademark) resin plates.
(Preparation of test cell)
The sheet electrode was the working electrode, the silver / silver chloride electrode was the reference electrode, the platinum plate was the counter electrode, and the electrolyte solution was charged and discharged by assembling a three-electrode cell using a 1 molar aqueous sulfuric acid solution. Nitrogen gas was blown into the electrolyte to remove dissolved oxygen.
(Charge / discharge measurement)
The charge / discharge measurement was performed using a 1280Z type electrochemical measurement system manufactured by Toyo Technica. The electric potential was set to 0 to 1.0 V, and the capacitance was obtained from the charge / discharge result between voltages 0.2 V to 0.8 V. The current density was 20 to 1000 mA / g. For the capacitance, a measured value in a triode cell is described.

比較例−1
石炭系ピッチに代えて市販のポリビニルアルコール樹脂を用い、また、クエン酸マグネシウムに代えて酢酸マグネシウム(関東化学(株)製)を用い、両者の質量比を70:30とした以外は実施例―1に従い、BET比表面積、細孔分布、電気化学特性を、上記条件で測定した。平均細孔径は13nmであった。
Comparative Example-1
A commercially available polyvinyl alcohol resin was used instead of the coal-based pitch, and magnesium acetate (manufactured by Kanto Chemical Co., Ltd.) was used instead of magnesium citrate, and the mass ratio between the two was set to 70:30. 1, the BET specific surface area, pore distribution, and electrochemical characteristics were measured under the above conditions. The average pore diameter was 13 nm.

比較例−2
クエン酸マグネシウムと石炭系ピッチの代わりに市販の水蒸気賦活炭を用いた以外は実施例―1に従い、BET比表面積、細孔分布、電気化学特性を、上記条件で測定した。細孔径はミクロ孔からマクロ孔まで分布したが、平均細孔径は1nm以下であった。
Comparative Example-2
The BET specific surface area, pore distribution, and electrochemical properties were measured under the above conditions in accordance with Example-1, except that commercially available steam activated coal was used instead of magnesium citrate and coal-based pitch. The pore diameter was distributed from micropores to macropores, but the average pore diameter was 1 nm or less.

比較例−3
多孔質炭素材料の代わりに市販の水蒸気賦活炭を用いた以外は実施例―4に従い、充放電を行った。
Comparative Example-3
Charging / discharging was performed according to Example-4 except that a commercially available steam activated charcoal was used instead of the porous carbon material.

実施例1〜3および比較例1、2のBET比表面積、細孔分布、電気化学特性の結果をまとめて表1に示す。また、実施例4および比較例3の水系で、電流密度を変えて充放電を行った結果を図―1に示す。   Table 1 summarizes the results of BET specific surface area, pore distribution, and electrochemical characteristics of Examples 1 to 3 and Comparative Examples 1 and 2. Further, FIG. 1 shows the results of charging / discharging by changing the current density in the aqueous systems of Example 4 and Comparative Example 3.

Figure 2008021833
Figure 2008021833

実施例4および比較例3の充放電性能を示す図である。It is a figure which shows the charging / discharging performance of Example 4 and Comparative Example 3.

Claims (6)

金属化合物と石炭系ピッチまたは石油系ピッチを混合した後、炭化し、次いで該金属化合物を溶解可能な溶剤で炭化物を洗浄することを特徴とする電気二重層キャパシタ用多孔質炭素材料の製造方法。   A method for producing a porous carbon material for an electric double layer capacitor, comprising mixing a metal compound and a coal-based pitch or a petroleum-based pitch, followed by carbonization, and then washing the carbide with a solvent capable of dissolving the metal compound. 前記石炭系ピッチまたは石油系ピッチの一次キノリン不溶分が2質量%以下であることを特徴とする請求項1記載の電気二重層キャパシタ用多孔性炭素材料の製造方法。   The method for producing a porous carbon material for an electric double layer capacitor according to claim 1, wherein a primary quinoline insoluble content of the coal-based pitch or the petroleum-based pitch is 2% by mass or less. 前記金属化合物がマグネシウムの有機酸塩であることを特徴とする請求項1記載の電気二重層キャパシタ用多孔性炭素材料の製造方法。   2. The method for producing a porous carbon material for an electric double layer capacitor according to claim 1, wherein the metal compound is an organic acid salt of magnesium. 混合する前記金属化合物と石炭系ピッチまたは石油系ピッチの質量比が95:5〜5:95であることを特徴とする請求項1記載の電気二重層キャパシタ用多孔性炭素材料の製造方法。   2. The method for producing a porous carbon material for an electric double layer capacitor according to claim 1, wherein the mass ratio of the metal compound to be mixed and the coal-based pitch or the petroleum-based pitch is 95: 5 to 5:95. 請求項1〜4のいずれか1項に記載の電気二重層キャパシタ用多孔性炭素材料の製造方法により製造される多孔性炭素材料であって、
該多孔性炭素材料の平均細孔直径が1nm〜10nmであることを特徴とする電気二重層キャパシタ用多孔性炭素材料。
A porous carbon material produced by the method for producing a porous carbon material for an electric double layer capacitor according to any one of claims 1 to 4,
The porous carbon material for an electric double layer capacitor, wherein the porous carbon material has an average pore diameter of 1 nm to 10 nm.
請求項1〜4のいずれか1項に記載の電気二重層キャパシタ用多孔性炭素材料の製造方法により製造される多孔性炭素材料を電極活物質に用いる非水系電気二重層キャパシタであって、
充電したときの、充電膨張率と最大電圧の比が4%/V以下であり、且つ、静電容量Fの電流密度I依存性が、0<−dF/dI(F/A)<1.0であることを特徴とする非水系電気二重層キャパシタ。
A non-aqueous electric double layer capacitor using a porous carbon material produced by the method for producing a porous carbon material for an electric double layer capacitor according to any one of claims 1 to 4 as an electrode active material,
The ratio of the charge expansion coefficient to the maximum voltage when charging is 4% / V or less, and the current density I dependency of the capacitance F is 0 <−dF / dI (F / A) <1. A non-aqueous electric double layer capacitor characterized by being zero.
JP2006192582A 2006-07-13 2006-07-13 Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor Withdrawn JP2008021833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192582A JP2008021833A (en) 2006-07-13 2006-07-13 Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192582A JP2008021833A (en) 2006-07-13 2006-07-13 Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2008021833A true JP2008021833A (en) 2008-01-31

Family

ID=39077587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192582A Withdrawn JP2008021833A (en) 2006-07-13 2006-07-13 Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2008021833A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065484A1 (en) * 2009-11-30 2011-06-03 独立行政法人産業技術総合研究所 Nitrogen-containing porous carbon material, method for producing same, and electric double layer capacitor using the nitrogen-containing porous carbon material
JP2012009474A (en) * 2010-06-22 2012-01-12 Mitsubishi Gas Chemical Co Inc Method for producing activated carbon for electric double layer capacitor electrode
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor
KR20180086050A (en) * 2017-01-20 2018-07-30 재단법인 한국환경산업연구원 Carbon structure comprising Transition metal from peat and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065484A1 (en) * 2009-11-30 2011-06-03 独立行政法人産業技術総合研究所 Nitrogen-containing porous carbon material, method for producing same, and electric double layer capacitor using the nitrogen-containing porous carbon material
JP2011111384A (en) * 2009-11-30 2011-06-09 National Institute Of Advanced Industrial Science & Technology Nitrogen-containing porous carbon material, process for producing the same, and electric double layer capacitor using the nitrogen-containing porous carbon material
CN102741160A (en) * 2009-11-30 2012-10-17 独立行政法人产业技术综合研究所 Nitrogen-containing porous carbon material, method for producing same, and electric double layer capacitor using the nitrogen-containing porous carbon material
US9281135B2 (en) 2009-11-30 2016-03-08 National Institute Of Advanced Industrial Science And Technology Nitrogen-containing porous carbon material and method of producing the same, and electric double-layer capacitor using the nitrogen-containing porous carbon material
JP2012009474A (en) * 2010-06-22 2012-01-12 Mitsubishi Gas Chemical Co Inc Method for producing activated carbon for electric double layer capacitor electrode
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor
KR20180086050A (en) * 2017-01-20 2018-07-30 재단법인 한국환경산업연구원 Carbon structure comprising Transition metal from peat and method of manufacturing the same
KR101886164B1 (en) 2017-01-20 2018-08-07 재단법인 한국환경산업연구원 Carbon structure comprising Transition metal from peat and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
WO2011081086A1 (en) Activated carbon for electric double-layer capacitor electrode and method for producing the same
WO2010116612A1 (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
JPH09275042A (en) Activated charcoal for organic solvent-based electric double layer capacitor
JP2009260177A (en) Activated charcoal for electric double-layer capacitor electrode and manufacturing method thereof
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
KR20120126118A (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP2007001784A (en) Stock oil composition of carbon material for electric double-layer capacitor electrode
JP2007186411A (en) Activated carbon, process of making the same and use of the same
JP2008021833A (en) Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor
JP2006295144A (en) Porous carbon material for electric double layer capacitor polarizing electrode
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP2008135587A (en) Method for manufacturing electrode active material for electric double layer capacitor and the electric double layer capacitor
JP2017135154A (en) Active carbon and method for manufacturing the same
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2004014762A (en) Carbon material for electric double layered capacitor and its manufacturing method
WO2021241334A1 (en) Electrochemical device
JP5242216B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP2008021876A (en) Porous carbon material for non-aqueous electric double layer capacitor, manufacturing method thereof and non-aqueous electric double layer capacitor
CN115668420A (en) Electrode for electrochemical device and electrochemical device
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2008108979A (en) Electrode material for electric double layer capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006