JP2004014762A - Carbon material for electric double layered capacitor and its manufacturing method - Google Patents

Carbon material for electric double layered capacitor and its manufacturing method Download PDF

Info

Publication number
JP2004014762A
JP2004014762A JP2002165465A JP2002165465A JP2004014762A JP 2004014762 A JP2004014762 A JP 2004014762A JP 2002165465 A JP2002165465 A JP 2002165465A JP 2002165465 A JP2002165465 A JP 2002165465A JP 2004014762 A JP2004014762 A JP 2004014762A
Authority
JP
Japan
Prior art keywords
pore volume
carbon material
activated carbon
primary
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002165465A
Other languages
Japanese (ja)
Other versions
JP4313547B2 (en
Inventor
Toshiharu Nonaka
野中 俊晴
Toshio Saotome
五月女 敏男
Kazuyuki Murakami
村上 一幸
Hidetoshi Morotomi
諸富 秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2002165465A priority Critical patent/JP4313547B2/en
Publication of JP2004014762A publication Critical patent/JP2004014762A/en
Application granted granted Critical
Publication of JP4313547B2 publication Critical patent/JP4313547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide active carbon for the electrode of an electric double layered capacitor, which is high in volume capacitance and capable of restraining the electrode from increasing in volume when it is used as active carbon for the electrode of an electric double layered capacitor by controlling the crystal structure of carbide material and activating it under an optimal condition. <P>SOLUTION: The active carbon has a pore volume of 0.9 to 1.5 cc/g obtained through a nitrogen adsorption isotherm in electrode at a temperature of 77 K, and the volume ratio of pores 15 Å or below in size to all the pores is set at 30 to 50:100 in the active carbon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層コンデンサーの電極用炭素材料およびその製造方法に関する。
【0002】
【従来の技術】
従来、易黒鉛化性炭素材料からなる炭化物(以下「原料炭化物」という)を、アルカリ賦活した炭素材料(以下「活性炭」という)を電極材料として用いた電気二重層コンデンサーは、体積当たりの静電容量が高く、その実用化の目処が付き始めている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の原料炭化物をアルカリ賦活して得られる活性炭は、電気二重層コンデンサーの電極として用いた場合、充放電時に電極の体積が2〜3倍に膨張することがあるため、積層型や巻回型の電気二重層コンデンサーにおいては、ケース内に前記体積膨張量に見合う空間を設けるか、ケース強度を強めるかの対策が必要となり、その結果、コンデンサーが大きくなり、コストアップに繋がるという問題がある。
【0004】
本発明は、原料炭化物の結晶構造を制御し、それを最適な条件で賦活することにより、体積容量が高く、電気二重層コンデンサーの電極用活性炭として使用した場合、該電極の体積膨張を抑えることができる電気二重層コンデンサーの電極用活性炭を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的は以下の本発明によって達成される。すなわち、本発明は、77Kでの窒素吸着等温線から求められる全細孔容積が0.9〜1.5cc/gであり、15Å以下の細孔容積の全細孔容積に占める割合(15Å以下の細孔容積/全細孔容積×100)が30〜50%であることを特徴とする電気二重層コンデンサー用活性炭を提供する。該活性炭は、X線回折測定から求められるd002が、0.380〜0.415nmであることが好ましい。
【0006】
また、本発明は、X線回折測定から求められるd002の、活性炭と原料炭化物との比(活性炭d002/原料炭化物d002)(以下「R」という)が1.04〜1.20であり、かつ77Kでの窒素吸着等温線から求められる全細孔容積が0.9〜1.5cc/gであり、15Å以下の細孔容積の全細孔容積に占める割合(15Å以下の細孔容積/全細孔容積×100)が30〜50%であることを特徴とする電気二重層コンデンサー用活性炭を提供する。
【0007】
また、本発明は、1次QIの含有量が0.1〜10質量%である軟化点50〜120℃のコールタールピッチを、窒素ブロー下で熱処理し、該熱処理物を不融化および炭化して、該炭化物のX線回折測定から求められるd002を0.347〜0.360nmの範囲とし、その後該炭化物をアルカリ金属水酸化物で賦活することを特徴とする前記何れかの活性炭の製造方法を提供する。
【0008】
また、本発明は、1次QIの含有量が0〜6質量%である軟化点50〜120℃のコールタールピッチを、エアーブロー下で熱処理し、該熱処理物を不融化および炭化して、該炭化物のX線回折測定から求められるd002を0.349〜0.363nmの範囲とし、その後該炭化物をアルカリ金属水酸化物で賦活することを特徴とする前記何れかの活性炭の製造方法を提供する。
【0009】
【発明の実施の形態】
次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。
本発明の請求項1の活性炭は、下記のa及びbの構成を有することを特徴とする。
a.77Kでの窒素吸着等温線から求められる全細孔容積が0.9〜1.5cc/gであること。
b.15Å以下の細孔容積の全細孔容積に占める割合(15Å以下の細孔容積/全細孔容積×100)が30〜50%であること。
本発明の請求項3の活性炭は、前記のaおよびbの構成に加えて下記構成cを有することを特徴とする。
c.X線回折測定から求められるd002の、活性炭と原料炭化物との比(活性炭d002/原料炭化物d002)が1.04〜1.20であること。
【0010】
前記構成aについては、全細孔容積が0.9cc/g未満であると、該活性炭を電気二重層コンデンサーの電極として用いた場合、充放電時に電極の体積が150%以上に膨張する。一方、全細孔容積が1.5cc/gを越えると、電極に用いた場合、電極の嵩密度が上がらず、電極の体積容量が小さくなり、何れにしても本発明の目的が達成されない。
【0011】
前記構成bについては、15Å以下の細孔容積の全細孔容積に占める割合(15Å以下の細孔容積/全細孔容積×100)が30%未満であると、該活性炭を電気二重層コンデンサーの電極として用いた場合、体積容量が上がらず、一方、50%を越えると、充放電時に電極の体積が150%以上に膨張し、何れにしても本発明の目的が達成されない。
【0012】
前記構成cについては、Rが1.04より小さい値である活性炭を電気二重層コンデンサーの電極として用いた場合、充放電時に電極の体積が150%以上に膨張する場合がある。一方、Rが1.20よりも大きな値であると、電極の導電性が悪くなり、電極の内部抵抗が高くなる場合があるので、何れにしても本発明において好ましくはない。
【0013】
一般に原料炭化物のアルカリ賦活による活性炭の細孔形成は、炭素のガス化反応によるメソポアの生成と、積層した芳香族平面の面間に賦活剤であるアルカリ金属が侵入することでミクロ細孔が発達すると言われている。アルカリ金属の侵入によるミクロ細孔の発達により、積層した芳香族平面が乱れ、前記Rの値が変化する。すなわち、Rの値が小さすぎると、前記の通り充放電時に電極の体積膨張が大きく、一方、Rの値が大きすぎると電極として不適当になる。すなわち、本発明で使用する原料炭化物は、その結晶構造が適度に乱れていた方が、賦活して得られる活性炭からなる電極の体積膨張を緩和するために好ましいものと推測される。
【0014】
上記本発明の活性炭を製造する好ましい第1の製造方法は、1次QI(キノリン不溶分)の含有量が0.1〜10質量%でありかつ軟化点50〜120℃のコールタールピッチを、窒素ブロー下で熱処理し、該熱処理物を不融化および炭化して、該炭化物のX線回折測定から求められるd002を0.347〜0.360nmの範囲とし、その後該炭化物をアルカリ金属水酸化物で賦活する方法である。この方法により、前記a〜cの構成を有する本発明の活性炭が得られる。
【0015】
一般にコールタールピッチの1次QIの含有量を制御することで、原料炭化物の結晶構造を制御することが可能である。ここで、1次QIとは、ピッチ中に微量に含まれるカーボンブラック状の微小球状物質が集合したものである。元来、コールタールピッチにはコークス乾留過程で生成した炭素含有率の高い成分から構成される1次QIが存在する。その含有率はコークス炉の乾留条件や使用する石炭によって異なるが、一般に数質量%から十数質量%含有するとされている。
【0016】
本発明の上記第1の方法では、この1次QIの含有量を0.1〜10質量%に制御する必要がある。1次QIの含有量が0.1質量%未満では、原料となる炭化物の結晶構造が高度に発達し、賦活処理において原料炭化物の賦活が困難になり、そのため、賦活剤としてのアルカリ金属水酸化物が多量に必要となり、得られる活性炭のコストアップの要因となる。また、少量のアルカリ金属水酸化物を用いると、得られる活性炭の細孔があまり発達せず、この活性炭は静電容量は高いが、該活性炭からなる電気二重層コンデンサーの電極の充放電時における体積膨張が大きくなる。
【0017】
本発明で用いるピッチの1次QIの含有量が10質量%を超える場合には、沈降分離、遠心分離あるいは濾過などの公知の分離技術で、1次QIの含有量を前記の範囲とすればよい。一方、1次QIの含有量が0または痕跡程度である場合には、カーボンブラックなどの1次QIをピッチに添加して前記の範囲とすることができる。
【0018】
また、上記本発明方法では、上記1次QIを含有するピッチの軟化点は、50〜120℃であり、好ましくは70〜100℃である。軟化点が50℃未満では、後の熱処理において揮発する成分が多くあるため、1次QIの含有率が上昇してしまい、本発明の効果が得られない。一方、軟化点が120℃を超えるとピッチの熱重合による2次QIが発生するため、1次QIの定量が困難になる。
【0019】
上記本発明の方法においては、上記の1次QIの含有量および軟化点を有するピッチを、窒素ブロー下で熱処理し、該熱処理物を不融化および炭化処理して原料炭化物を得る。上記熱処理は350〜450℃の温度、好ましくは380℃〜450℃の温度で1〜13時間行ない、ピッチの軟化点を200〜375℃、好ましくは250〜375℃とする。熱処理温度が350℃よりも低いとピッチの軟化点が上昇するのに時間がかかり、コスト的に好ましくない。一方、熱処理温度が450℃よりも高いと、熱処理中においてコーキングが起こり、熱処理物の反応器からの抜き出しがスムースに行われないので好ましくない。
【0020】
上記不融化処理は、前記熱処理した軟化点250〜375℃のピッチを微細に粉砕した後、その粉砕形状を保つために行なう。この不融化処理は200〜350℃、好ましくは250〜300℃で0.5〜10時間程度酸化ガスフロー下で行う。さらに炭化処理は、500〜1,000℃、好ましくは600〜800℃の温度で1〜10時間不活性ガス雰囲気下で行い、原料炭化物の結晶性の制御を行う。上記温度が500℃よりも低いと、炭化に長時間を要しコスト的に不利であり、一方、上記処理温度が1,000℃を超える温度であると、後のアルカリ賦活が殆ど進行しないので好ましくない。このようにして得られる原料炭化物のX線回折測定から求められるd002は0.347〜0.360nmである。
【0021】
上記で得られた原料炭化物を賦活処理することにより、本発明の活性炭が得られる。賦活処理自体は従来公知の方法でよく、例えば、賦活剤としては水酸化ナトリウムや水酸化カリウムなどアルカリ金属の水酸化物が用いられるが、得られる活性炭にミクロ細孔からメソ細孔にシャープな細孔径分布を与える水酸化カリウムが好ましい。賦活剤の使用量は原料炭化物の質量の2〜4倍であり、賦活温度は500〜1,000℃、好ましくは500〜800℃であり、賦活時間は30分〜10時間、好ましくは30分〜4時間である。この賦活処理は不活性ガス雰囲気下に行う。
【0022】
上記賦活処理は、結晶性が比較的高い原料炭化物を用いた場合には、上記範囲内において比較的高温および長時間行い、結晶性が比較的低い原料炭化物を用いた場合には、上記範囲内において比較的低温および短時間行うことが好ましい。所定の温度および時間で賦活処理した後、約100℃で水蒸気を吹き込み、アルカリ金属を失活させてアルカリ金属水酸化物に戻し、得られた活性炭を濾過し、エタノール/水混合溶媒中で−0.1MPaまで真空脱気を行い、ガスが出なくなったことを確認後、酸洗い、超音波洗浄を繰り返す。水洗後、濾液が中性であることを確認し、熱風乾燥および真空乾燥を行い、本発明の活性炭が得られる。このようにして得られる本発明の活性炭のX線回折測定から求められるd002は0.380〜0.415nmである。
【0023】
本発明の好ましい第2の製造方法は、1次QIの含有量が0〜6質量%である軟化点50〜120℃のコールタールピッチを、エアーブロー下で熱処理し、該熱処理物を不融化および炭化して、該炭化物のX線回折測定から求められるd002を0.349〜0.363nmの範囲とし、その後該炭化物をアルカリ金属水酸化物で賦活する方法である。この方法により、前記a〜cの構成を有する本発明の活性炭が得られる。なお、この方法では、エアの吹き込みにより、炭化物結晶構造内にエーテル結合が形成され、原料炭化物の結晶の発達が制御されるものと思われる。
【0024】
上記方法におけるピッチの1次QIの含有量の調整は、前記第1の方法と同様に行うことができ、ピッチの軟化点は前記第1の方法と同様である。熱処理は250〜350℃の温度で1〜12時間行ない、ピッチの軟化点を前記の第1の方法と同様の軟化点とする。熱処理温度が250℃よりも低いと、ピッチの軟化点が上昇するのに時間がかかり、コスト的に好ましくない。一方、熱処理温度が350℃よりも高いと、熱処理中においてピッチとエアとの反応でピッチが発火する危険性があり好ましくない。なお、上記第2の方法における不融化、炭化、賦活などの条件およびそれらの数値の意義は前記第1の方法の場合と同様である。
【0025】
以上の如き本発明の方法によって得られる本発明の活性炭は、電気二重層コンデンサーの電極材料として使用した場合、体積容量が高く、充放電時において電極の膨張が充分に抑えられている。従って本発明の活性炭は、電気二重層コンデンサーの電極用活性炭として有用である。
【0026】
なお、電気二重層コンデンサーの充放電時における電極の膨張の原理は完全には明らかにされていないが、原料炭化物を温和な条件でアルカリ賦活した、比表面積の比較的小さい活性炭で顕著に起る現象である。この現象は電界賦活と呼ばれているが、電解液中のイオンが上記活性炭の細孔をこじ開けるようにして静電容量を発現するため、電極が膨張することは不可避である。
【0027】
本発明は、上記の如き課題を、前記説明の通り、原料炭化物の結晶構造をピッチ中のQIの含有量により調整するとともに、該炭化物の賦活条件の組み合わせを最適化することで解決したものである。
【0028】
【実施例】
次に実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、本発明は下記の実施例によって何ら制限されるものではない。
<実施例1>
タールピッチ(軟化点:52℃、1次QI:0.1質量%)を窒素ガス吹込み下、450℃で13時間加熱を行い、軟化点375℃の1次QI低濃度の高軟化点ピッチを得た。このピッチを平均粒径30μmに粉砕し、空気気流下280℃で30分間不融化処理を行い、次いで700℃で2時間窒素気流下で炭化処理した。この原料炭化物に重量比で3倍のKOHを混練後、800℃で1時間窒素ガスフロー下で賦活を行った後、常法に従いKOHを除去して本発明の活性炭を得た。
【0029】
<実施例2>
タールピッチ(軟化点:110℃、1次QI:6質量%)に4質量%のカーボンブラックを150℃で加熱攪拌し均一に分散させる。得られた1次QI添加ピッチの軟化点は119℃、1次QIの含有量は10質量%であった。熱処理、不融化、炭化までを実施例1と同様の操作で行い、KOH比2倍、700℃で1時間窒素フロー下で賦活を行なった以外は実施例1と同様にして本発明の活性炭を得た。
【0030】
<実施例3>
タールピッチ(軟化点:119℃、1次QI:6質量%)を熱処理、不融化、炭化までを実施例1と同様の操作で行い、KOH比3倍、800℃で1時間窒素フロー下で賦活を行なった以外は実施例1と同様にして本発明の活性炭を得た。
【0031】
<実施例4>
タールピッチ(軟化点:110℃、1次QI:6質量%)に3倍量のキノリンを加え、150℃で加熱攪拌してピッチを溶解させる。ピッチ溶液を濾過し、濾液を減圧下(50mmHg約6.5Kpa)、150〜200℃に加熱してキノリンを除去する。得られた1次QI除去ピッチの軟化点は113℃、1次QIの含有量は2質量%であった。熱処理、不融化、炭化までは実施例1と同様の操作で行い、KOH比2.5倍、800℃で1時間、窒素ガスフロー下で賦活を行なった以外は実施例1と同様にして本発明の活性炭を得た。
【0032】
<実施例5>
タールピッチ(軟化点:80℃、1次QI:0質量%)を空気バブリング下、250℃で10時間熱処理を行った。不融化は250℃で4時間、炭化は700℃で1時間行い、KOH比3倍、750℃で1時間窒素フロー下で賦活を行なった以外は実施例1と同様にして本発明の活性炭を得た。
【0033】
<実施例6>
タールピッチ(軟化点:45℃、1次QI:0.1質量%)に等量のキノリンを加え、150℃で加熱攪拌しピッチを溶解させる。ピッチ溶液を濾過し、濾液を減圧下(50mmHg約6.5Kpa)、150〜200℃に加熱してキノリンを除去する。得られた1次QI除去ピッチの軟化点は51℃、1次QIの含有量は痕跡程度であった。このピッチをエアーブロー下で350℃で4時間熱処理を行った。このピッチを250℃で2時間不融化、700℃で2時間炭化を行った。KOH比3倍、800℃で1時間窒素フロー下で賦活を行なった以外は実施例1と同様にして本発明の活性炭を得た。
【0034】
<実施例7>
タールピッチ(軟化点:119℃、1次QI:6質量%)をエアーブロー下320℃で3時間熱処理を行った。このピッチを280℃で0.5時間不融化、700℃で2時間炭化を行った。KOH比3倍、800℃で1時間窒素フロー下で賦活を行なった以外は実施例1と同様にして本発明の活性炭を得た。
【0035】
<比較例1>
タールピッチ(軟化点:80℃、1次QI:0質量%)を窒素ブロー下、450℃で13時間熱処理を行い、軟化点375℃の熱処理ピッチを得た。280℃で0.5時間不融化、700℃で2時間炭化後、KOH比3倍、800℃で1時間、窒素フロー下で賦活を行って比較例の活性炭を得た。
【0036】
<比較例2>
タールピッチ(軟化点:110℃、1次QI:6質量%)に2質量%のカーボンブラックを150℃で溶融混合した。得られたピッチは軟化点121℃、1次QI8質量%であった。250℃で12時間エアーブロー下で熱処理を行い、軟化点250℃のピッチを得た。このピッチを平均粒径30μmに粉砕後、250℃で4時間不融化、700℃で2時間炭化を行った。KOH比3倍、800℃で1時間、窒素フロー下で賦活を行って比較例の活性炭を得た。
【0037】
<比較例3>
タールピッチ(軟化点:50℃、1次QI:0.1質量%)に等量のキノリンを加え、150℃で加熱攪拌しピッチを溶解させる。ピッチ溶液を濾過し、濾液を減圧下(50mmHg約6.5Kpa)、150〜200℃に加熱してキノリンを除去する。得られた1次QI除去ピッチの軟化点は52℃、1次QIの含有量は0.05質量%であった。エアーブロー下での熱処理を360℃で3時間で行い、平均粒径30μmに粉砕後、280℃で0.5時間不融化、700℃で2時間炭化後、KOH比3倍、800℃で1時間賦活を行って比較例の活性炭を得た。
【0038】
上記実施例および比較例において用いたピッチの1次QIの含有量、軟化点(℃)、熱処理、不融化、炭化および賦活条件などを下記表1に示した。

Figure 2004014762
【0039】
前記実施例および比較例で得られた活性炭の物性およびキャパシタ特性を下記表2に示した。上記物性およびキャパシタ特性は下記の方法で測定した。
・細孔容積の測定
装置はマイクロメリティックス(株)社製のTristar 3000を使用し、77Kでの窒素吸着等温線よりBJH法で求めた。
・静電容量などの測定
活性炭:バインダー:導電材=95:3:2の質量割合で混練後、圧延して電極シートを作成した。2枚の電極シートを図1に示すビーカーセル中の0.8Mのテトラエチルアンモニウムテトラフルオロボレート[(CNBF]中に含浸した。このセルを変位測定装置に固定した。変位測定装置はフレーム固定台、シャフト固定台およびセル固定台からなり、変位センサー取付アームに変位センサーが取り付けてある。電極はサンプル押えブロックで押さえられ、充放電時に正負両極合計の膨張が観測される。膨張率は初期の電極厚み(電極2枚分)を100%として示し、膨張が安定する20サイクル後の値を示した。静電容量は3サイクル目の放電曲線から計算した。内部抵抗はIRドロップから算出した。
【0040】
・R値の測定(d002の解析)
理学電機製のRU−300を用いて広角法(線源CuKr線、管電圧40KV、管電流300mA)による測定を行い計算した。活性炭と原料炭化物のd002の測定をそれぞれ行い、その比(R=活性炭のd002/原料炭化物のd002)を求めた。
以上の結果を下記表2に示す。
【0041】
Figure 2004014762
【0042】
【発明の効果】
以上説明したように、本発明によれば、原料炭化物の結晶構造を、ピッチ中の一次QIの含有量で制御し、それを最適な条件で賦活することにより、体積容量が高く、膨張を抑えた電気二重層コンデンサーの電極用活性炭を提供することができる。
【図面の簡単な説明】
【図1】実施例で使用した変位測定装置を説明する図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon material for an electrode of an electric double layer capacitor and a method for producing the same.
[0002]
[Prior art]
Conventionally, an electric double layer capacitor using a carbon material (hereinafter, referred to as “raw carbon”) made of easily graphitizable carbon material as an electrode material and an alkali-activated carbon material (hereinafter, referred to as “activated carbon”) as an electrode material has an electrostatic capacitance per volume. The capacity is high and the prospect of its practical use is beginning to appear.
[0003]
[Problems to be solved by the invention]
However, when activated carbon obtained by conventional alkali activation of a raw material carbide is used as an electrode of an electric double layer capacitor, the volume of the electrode may expand two to three times during charging and discharging. In a round-type electric double layer capacitor, it is necessary to provide a space in the case corresponding to the volume expansion amount or to increase the strength of the case, and as a result, the capacitor becomes large, leading to an increase in cost. is there.
[0004]
The present invention controls the crystal structure of a raw material carbide and activates it under optimal conditions, so that the volume capacity is high, and when used as activated carbon for an electrode of an electric double layer capacitor, the volume expansion of the electrode is suppressed. It is an object of the present invention to provide an activated carbon for an electrode of an electric double layer capacitor that can be used.
[0005]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, in the present invention, the total pore volume determined from the nitrogen adsorption isotherm at 77K is 0.9 to 1.5 cc / g, and the ratio of the pore volume of 15 ° or less to the total pore volume (15 ° or less) (Pore volume / Total pore volume × 100) is 30 to 50%. The activated carbon preferably has a d 002 obtained from X-ray diffraction measurement of 0.380 to 0.415 nm.
[0006]
Further, the present invention relates to the use of d 002 obtained by X-ray diffraction measurement, the ratio of the activated carbon and the raw material carbides (activated carbon d 002 / feedstock carbide d 002) (hereinafter referred to as "R") is at 1.04 to 1.20 And the total pore volume determined from the nitrogen adsorption isotherm at 77 K is 0.9 to 1.5 cc / g, and the ratio of the pore volume of 15 ° or less to the total pore volume (pores of 15 ° or less) Volume / total pore volume × 100) of 30 to 50%.
[0007]
Further, the present invention provides a heat treatment of a coal tar pitch having a softening point of 50 to 120 ° C. having a primary QI content of 0.1 to 10% by mass under nitrogen blow to infusibilize and carbonize the heat treated product. Te, the d 002 obtained by X-ray diffraction measurement of the carbide in the range of 0.347~0.360Nm, production of the any of the activated carbon then the carbide characterized by activation with an alkali metal hydroxide Provide a method.
[0008]
The present invention also provides a coal tar pitch having a primary QI content of 0 to 6% by mass and a softening point of 50 to 120 ° C., which is heat-treated under air blowing to infusibilize and carbonize the heat-treated product. the d 002 obtained by X-ray diffraction measurement of the carbide in the range of 0.349~0.363Nm, a manufacturing method of the any of the activated carbon then the carbide characterized by activation with an alkali metal hydroxide provide.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail with reference to preferred embodiments.
The activated carbon of claim 1 of the present invention is characterized by having the following configurations a and b.
a. The total pore volume determined from the nitrogen adsorption isotherm at 77K is 0.9 to 1.5 cc / g.
b. The ratio of the pore volume of 15 ° or less to the total pore volume (pore volume of 15 ° or less / total pore volume × 100) is 30 to 50%.
The activated carbon according to claim 3 of the present invention is characterized in that it has the following configuration c in addition to the above configurations a and b.
c. Things d 002 obtained by X-ray diffraction measurement, the ratio of the activated carbon and the raw material carbides (activated carbon d 002 / feedstock carbide d 002) is 1.04 to 1.20.
[0010]
Regarding the configuration a, when the total pore volume is less than 0.9 cc / g, when the activated carbon is used as an electrode of an electric double layer capacitor, the volume of the electrode expands to 150% or more during charging and discharging. On the other hand, when the total pore volume exceeds 1.5 cc / g, when used for an electrode, the bulk density of the electrode does not increase and the volume capacity of the electrode decreases, and in any case, the object of the present invention is not achieved.
[0011]
Regarding the configuration b, when the ratio of the pore volume of 15 ° or less to the total pore volume (pore volume of 15 ° or less / total pore volume × 100) is less than 30%, the activated carbon is transferred to the electric double layer capacitor. When used as an electrode, the volume capacity does not increase. On the other hand, when it exceeds 50%, the volume of the electrode expands to 150% or more during charge and discharge, and the object of the present invention is not achieved in any case.
[0012]
Regarding the configuration c, when activated carbon having a value of R smaller than 1.04 is used as an electrode of an electric double layer capacitor, the volume of the electrode may expand to 150% or more during charging and discharging. On the other hand, if R is a value larger than 1.20, the conductivity of the electrode is deteriorated, and the internal resistance of the electrode may be increased.
[0013]
In general, the formation of pores in activated carbon by alkali activation of raw material carbides is caused by the formation of mesopores by the gasification reaction of carbon and the development of micropores by the penetration of alkali metal, an activator, between the planes of the stacked aromatic planes. It is said that. The development of micropores due to the intrusion of the alkali metal disturbs the stacked aromatic planes and changes the value of R. That is, if the value of R is too small, the volume expansion of the electrode during charge / discharge is large as described above, while if the value of R is too large, it becomes unsuitable as an electrode. That is, it is presumed that the raw material carbide used in the present invention preferably has an appropriately disordered crystal structure in order to reduce the volume expansion of the electrode made of activated carbon obtained by activation.
[0014]
A preferred first production method for producing the activated carbon of the present invention is a method for producing coal tar pitch having a primary QI (quinoline insoluble matter) content of 0.1 to 10% by mass and a softening point of 50 to 120 ° C, A heat treatment is performed under a nitrogen blow to infusibilize and carbonize the heat-treated material so that d 002 obtained from X-ray diffraction measurement of the carbide is in a range of 0.347 to 0.360 nm. It is a method of activating with a substance. According to this method, the activated carbon of the present invention having the above-described structures a to c is obtained.
[0015]
Generally, by controlling the primary QI content of the coal tar pitch, it is possible to control the crystal structure of the raw material carbide. Here, the primary QI is an aggregate of carbon black-like microspheres contained in a minute amount in the pitch. Originally, the coal tar pitch has a primary QI composed of a component having a high carbon content generated in the coke carbonization process. Although its content varies depending on the conditions of carbonization of the coke oven and the coal used, it is generally said that the content is from several mass% to more than ten mass%.
[0016]
In the first method of the present invention, it is necessary to control the content of the primary QI to 0.1 to 10% by mass. When the content of the primary QI is less than 0.1% by mass, the crystal structure of the carbide as the raw material is highly developed, and it becomes difficult to activate the raw material carbide in the activation treatment. A large amount of the material is required, which increases the cost of the obtained activated carbon. In addition, when a small amount of an alkali metal hydroxide is used, the pores of the obtained activated carbon do not develop much, and this activated carbon has a high capacitance, but during charging and discharging of the electrodes of an electric double layer capacitor made of the activated carbon. The volume expansion increases.
[0017]
When the content of the primary QI of the pitch used in the present invention exceeds 10% by mass, the content of the primary QI should be within the above range by a known separation technique such as sedimentation, centrifugation or filtration. Good. On the other hand, when the content of the primary QI is 0 or a trace, a primary QI such as carbon black can be added to the pitch to make the pitch fall within the above range.
[0018]
In the method of the present invention, the softening point of the pitch containing the primary QI is 50 to 120 ° C, preferably 70 to 100 ° C. When the softening point is lower than 50 ° C., many components are volatilized in the subsequent heat treatment, so that the content of the primary QI increases, and the effect of the present invention cannot be obtained. On the other hand, if the softening point exceeds 120 ° C., secondary QI occurs due to thermal polymerization of the pitch, and it becomes difficult to determine the primary QI.
[0019]
In the method of the present invention, the pitch having the above-mentioned primary QI content and softening point is heat-treated under nitrogen blow, and the heat-treated product is infusibilized and carbonized to obtain a raw material carbide. The heat treatment is performed at a temperature of 350 to 450 ° C, preferably 380 to 450 ° C for 1 to 13 hours, and the softening point of the pitch is set to 200 to 375 ° C, preferably 250 to 375 ° C. If the heat treatment temperature is lower than 350 ° C., it takes time to increase the softening point of the pitch, which is not preferable in terms of cost. On the other hand, if the heat treatment temperature is higher than 450 ° C., coking occurs during the heat treatment, and the heat-treated product is not smoothly extracted from the reactor, which is not preferable.
[0020]
The infusibilization treatment is performed to finely pulverize the heat-treated softening point having a softening point of 250 to 375 ° C. and then maintain the pulverized shape. This infusibilization treatment is performed at 200 to 350 ° C., preferably 250 to 300 ° C., for about 0.5 to 10 hours under an oxidizing gas flow. Further, the carbonization treatment is performed at a temperature of 500 to 1,000 ° C., preferably 600 to 800 ° C. for 1 to 10 hours under an inert gas atmosphere to control the crystallinity of the raw material carbide. If the above temperature is lower than 500 ° C., carbonization takes a long time, which is disadvantageous in cost. On the other hand, if the above treatment temperature is higher than 1,000 ° C., the subsequent alkali activation hardly proceeds. Not preferred. The d 002 obtained from the X-ray diffraction measurement of the raw material carbide thus obtained is 0.347 to 0.360 nm.
[0021]
The activated carbon of the present invention can be obtained by activating the raw material carbide obtained above. The activation treatment itself may be a conventionally known method, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used as the activator, but the obtained activated carbon has a sharp from micropores to mesopores. Potassium hydroxide which gives a pore size distribution is preferred. The amount of the activator used is 2 to 4 times the mass of the raw material carbide, the activation temperature is 500 to 1,000 ° C, preferably 500 to 800 ° C, and the activation time is 30 minutes to 10 hours, preferably 30 minutes. ~ 4 hours. This activation treatment is performed in an inert gas atmosphere.
[0022]
The activation treatment is performed at a relatively high temperature and for a long time within the above range when using a raw material carbide having relatively high crystallinity, and within the above range when using a raw material carbide having relatively low crystallinity. At a relatively low temperature for a short time. After activation treatment at a predetermined temperature and time, steam is blown at about 100 ° C. to deactivate the alkali metal and return it to an alkali metal hydroxide, and the obtained activated carbon is filtered and mixed in an ethanol / water mixed solvent. Vacuum degassing is performed to 0.1 MPa, and after confirming that no gas is generated, pickling and ultrasonic cleaning are repeated. After washing with water, it is confirmed that the filtrate is neutral, and hot air drying and vacuum drying are performed to obtain the activated carbon of the present invention. D 002 obtained by X-ray diffraction measurement of the activated carbon of the present invention thus obtained is 0.380~0.415Nm.
[0023]
In a preferred second production method of the present invention, a coal tar pitch having a primary QI content of 0 to 6% by mass and a softening point of 50 to 120 ° C. is heat-treated under air blowing to make the heat-treated product infusible. And carbonizing to set d 002 obtained by X-ray diffraction measurement of the carbide to a range of 0.349 to 0.363 nm, and thereafter activating the carbide with an alkali metal hydroxide. According to this method, the activated carbon of the present invention having the above-described structures a to c is obtained. In this method, it is considered that the blowing of air forms an ether bond in the carbide crystal structure, thereby controlling the development of the crystal of the raw material carbide.
[0024]
The adjustment of the primary QI content of the pitch in the above method can be performed in the same manner as in the first method, and the softening point of the pitch is the same as in the first method. The heat treatment is performed at a temperature of 250 to 350 ° C. for 1 to 12 hours, and the softening point of the pitch is set to the same softening point as in the first method. If the heat treatment temperature is lower than 250 ° C., it takes time to increase the softening point of the pitch, which is not preferable in terms of cost. On the other hand, if the heat treatment temperature is higher than 350 ° C., the pitch may be ignited by the reaction between the pitch and the air during the heat treatment, which is not preferable. The conditions of infusibilization, carbonization, activation and the like in the second method and the significance of the numerical values are the same as in the case of the first method.
[0025]
When the activated carbon of the present invention obtained by the method of the present invention as described above is used as an electrode material of an electric double layer capacitor, the activated carbon has a high volume capacity, and the expansion of the electrode during charge and discharge is sufficiently suppressed. Therefore, the activated carbon of the present invention is useful as an activated carbon for an electrode of an electric double layer capacitor.
[0026]
Although the principle of electrode expansion during charge and discharge of an electric double layer capacitor is not completely clarified, it occurs remarkably in activated carbon with a relatively small specific surface area, where the raw material carbide has been alkali-activated under mild conditions. It is a phenomenon. Although this phenomenon is called electric field activation, since the ions in the electrolytic solution pry open the pores of the activated carbon to develop a capacitance, it is inevitable that the electrodes expand.
[0027]
The present invention solves the above-mentioned problems by adjusting the crystal structure of the raw material carbide by the content of QI in the pitch and optimizing the combination of the activation conditions of the carbide, as described above. is there.
[0028]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited by the following examples.
<Example 1>
Tar pitch (softening point: 52 ° C., primary QI: 0.1 mass%) is heated at 450 ° C. for 13 hours under nitrogen gas blowing, and the primary QI low concentration high softening point pitch having a softening point of 375 ° C. Got. This pitch was pulverized to an average particle size of 30 μm, subjected to an infusibilization treatment at 280 ° C. for 30 minutes in an air stream, and then carbonized at 700 ° C. for 2 hours in a nitrogen stream. After kneading three times the weight ratio of KOH to this raw material carbide, activation was performed at 800 ° C. for 1 hour under a nitrogen gas flow, and then KOH was removed according to a conventional method to obtain an activated carbon of the present invention.
[0029]
<Example 2>
4% by mass of carbon black is heated and stirred at 150 ° C. in a tar pitch (softening point: 110 ° C., primary QI: 6% by mass) to be uniformly dispersed. The softening point of the obtained primary QI-added pitch was 119 ° C., and the content of the primary QI was 10% by mass. Activated carbon of the present invention was treated in the same manner as in Example 1 except that heat treatment, infusibilization, and carbonization were performed in the same manner as in Example 1, and activation was performed at 700 ° C. for 1 hour under a nitrogen flow at twice the KOH ratio. Obtained.
[0030]
<Example 3>
A tar pitch (softening point: 119 ° C., primary QI: 6% by mass) is subjected to heat treatment, infusibilization, and carbonization in the same manner as in Example 1, and the KOH ratio is 3 times, at 800 ° C. for 1 hour under a nitrogen flow. An activated carbon of the present invention was obtained in the same manner as in Example 1 except that activation was performed.
[0031]
<Example 4>
Three times the amount of quinoline is added to the tar pitch (softening point: 110 ° C., primary QI: 6% by mass), and the pitch is dissolved by heating and stirring at 150 ° C. The pitch solution is filtered, and the filtrate is heated to 150-200 ° C. under reduced pressure (50 mmHg about 6.5 Kpa) to remove quinoline. The softening point of the obtained primary QI removal pitch was 113 ° C., and the content of the primary QI was 2% by mass. Heat treatment, infusibilization, and carbonization were performed in the same manner as in Example 1. The procedure was the same as in Example 1 except that activation was performed under a nitrogen gas flow at a KOH ratio of 2.5 times at 800 ° C. for 1 hour. The activated carbon of the invention was obtained.
[0032]
<Example 5>
The tar pitch (softening point: 80 ° C, primary QI: 0% by mass) was heat-treated at 250 ° C for 10 hours under air bubbling. Activated carbon of the present invention was prepared in the same manner as in Example 1 except that infusibilization was performed at 250 ° C. for 4 hours, carbonization was performed at 700 ° C. for 1 hour, and KOH ratio was tripled and activation was performed at 750 ° C. for 1 hour under nitrogen flow. Obtained.
[0033]
<Example 6>
An equivalent amount of quinoline is added to tar pitch (softening point: 45 ° C, primary QI: 0.1% by mass), and the mixture is heated and stirred at 150 ° C to dissolve the pitch. The pitch solution is filtered, and the filtrate is heated to 150-200 ° C. under reduced pressure (50 mmHg about 6.5 Kpa) to remove quinoline. The softening point of the obtained primary QI removal pitch was 51 ° C., and the content of the primary QI was about a trace. This pitch was heat-treated at 350 ° C. for 4 hours under air blow. The pitch was made infusible at 250 ° C. for 2 hours and carbonized at 700 ° C. for 2 hours. Activated carbon of the present invention was obtained in the same manner as in Example 1 except that activation was performed at 800 ° C. for 1 hour under a nitrogen flow at a KOH ratio of 3 times.
[0034]
<Example 7>
The tar pitch (softening point: 119 ° C, primary QI: 6% by mass) was heat-treated at 320 ° C for 3 hours under air blowing. The pitch was infusibilized at 280 ° C. for 0.5 hour and carbonized at 700 ° C. for 2 hours. Activated carbon of the present invention was obtained in the same manner as in Example 1 except that activation was performed at 800 ° C. for 1 hour under a nitrogen flow at a KOH ratio of 3 times.
[0035]
<Comparative Example 1>
The tar pitch (softening point: 80 ° C., primary QI: 0 mass%) was heat-treated at 450 ° C. for 13 hours under nitrogen blow to obtain a heat-treated pitch having a softening point of 375 ° C. After infusibilizing at 280 ° C. for 0.5 hour and carbonizing at 700 ° C. for 2 hours, activation was performed at a KOH ratio of 3 and at 800 ° C. for 1 hour under a nitrogen flow to obtain activated carbon of a comparative example.
[0036]
<Comparative Example 2>
2% by mass of carbon black was melt-mixed at 150 ° C. with tar pitch (softening point: 110 ° C., primary QI: 6% by mass). The obtained pitch had a softening point of 121 ° C. and a primary QI of 8% by mass. Heat treatment was performed at 250 ° C. for 12 hours under air blowing to obtain a pitch having a softening point of 250 ° C. This pitch was pulverized to an average particle size of 30 μm, infusibilized at 250 ° C. for 4 hours, and carbonized at 700 ° C. for 2 hours. Activation was performed at 800 ° C. for 1 hour under a nitrogen flow at a KOH ratio three times to obtain activated carbon of a comparative example.
[0037]
<Comparative Example 3>
An equal amount of quinoline is added to tar pitch (softening point: 50 ° C, primary QI: 0.1% by mass), and the mixture is heated and stirred at 150 ° C to dissolve the pitch. The pitch solution is filtered, and the filtrate is heated to 150-200 ° C. under reduced pressure (50 mmHg about 6.5 Kpa) to remove quinoline. The softening point of the obtained primary QI removal pitch was 52 ° C., and the content of the primary QI was 0.05% by mass. Heat treatment under air blow was performed at 360 ° C for 3 hours, pulverized to an average particle size of 30 µm, infusibilized at 280 ° C for 0.5 hour, carbonized at 700 ° C for 2 hours, KOH ratio 3 times, and 800 ° C for 1 hour. Activation was performed for a time to obtain activated carbon of Comparative Example.
[0038]
Table 1 below shows the primary QI content, softening point (° C.), heat treatment, infusibility, carbonization and activation conditions of the pitch used in the above Examples and Comparative Examples.
Figure 2004014762
[0039]
Table 2 below shows the physical properties and capacitor characteristics of the activated carbons obtained in the above Examples and Comparative Examples. The above physical properties and capacitor characteristics were measured by the following methods.
The pore volume was measured by a BJH method using a nitrogen adsorption isotherm at 77 K using a Tristar 3000 manufactured by Micromeritics Co., Ltd.
Measurement of capacitance and the like Activated carbon: binder: conductive material = kneaded at a mass ratio of 95: 3: 2, and then rolled to prepare an electrode sheet. Two electrode sheets were impregnated in 0.8 M tetraethylammonium tetrafluoroborate [(C 2 H 5 ) 4 NBF 4 ] in the beaker cell shown in FIG. This cell was fixed to a displacement measuring device. The displacement measuring device comprises a frame fixing stand, a shaft fixing stand and a cell fixing stand, and a displacement sensor is attached to a displacement sensor attaching arm. The electrodes are held down by the sample holding block, and the expansion of the positive and negative electrodes is observed during charge and discharge. The expansion rate is shown as a value after 20 cycles when the initial electrode thickness (for two electrodes) is 100% and the expansion is stabilized. The capacitance was calculated from the discharge curve at the third cycle. The internal resistance was calculated from the IR drop.
[0040]
Measurement of R value (d 002 analysis)
Using RU-300 manufactured by Rigaku Denki, measurement was performed by a wide-angle method (CuKr line source, tube voltage 40 KV, tube current 300 mA) and calculation was performed. Performs each measured d 002 of activated carbon and the raw material carbides was determined (d 002 of d 002 / feedstock carbide R = activated carbon) the ratio.
The above results are shown in Table 2 below.
[0041]
Figure 2004014762
[0042]
【The invention's effect】
As described above, according to the present invention, the crystal structure of the raw material carbide is controlled by the content of the primary QI in the pitch, and activated under optimal conditions, thereby increasing the volume capacity and suppressing the expansion. Activated carbon for an electrode of an electric double layer capacitor.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a displacement measuring device used in an embodiment.

Claims (6)

77Kでの窒素吸着等温線から求められる全細孔容積が0.9〜1.5cc/gであり、15Å以下の細孔容積の全細孔容積に占める割合(15Å以下の細孔容積/全細孔容積×100)が30〜50%であることを特徴とする電気二重層コンデンサー用炭素材料。The total pore volume determined from the nitrogen adsorption isotherm at 77 K is 0.9 to 1.5 cc / g, and the ratio of the pore volume of 15 ° or less to the total pore volume (pore volume of 15 ° or less / total (Pore volume x 100) of 30 to 50%. X線回折測定から求められるd002が、0.380〜0.415nmである請求項1に記載の炭素材料。Carbon material according to claim 1 d 002 obtained by X-ray diffraction measurement, it is 0.380~0.415Nm. X線回折測定から求められるd002の、賦活後炭素材料と賦活前炭素材料との比(賦活後炭素材料d002/賦活前炭素材料d002)が1.04〜1.20であり、かつ77Kでの窒素吸着等温線から求められる全細孔容積が0.9〜1.5cc/gであり、15Å以下の細孔容積の全細孔容積に占める割合(15Å以下の細孔容積/全細孔容積×100)が30〜50%であることを特徴とする電気二重層コンデンサー用炭素材料。Of d 002 obtained by X-ray diffraction measurement, the ratio of the activated after the carbon material and activated before the carbon material (activated after the carbon material d 002 / activated before carbon material d 002) is 1.04 to 1.20, and The total pore volume determined from the nitrogen adsorption isotherm at 77 K is 0.9 to 1.5 cc / g, and the ratio of the pore volume of 15 ° or less to the total pore volume (pore volume of 15 ° or less / total (Pore volume x 100) of 30 to 50%. 1次QIの含有量が0.1〜10質量%である軟化点50〜120℃のコールタールピッチを、窒素ブロー下で熱処理し、該熱処理物を不融化および炭化して、該炭化物のX線回折測定から求められるd002を0.347〜0.360nmの範囲とし、その後該炭化物をアルカリ金属水酸化物で賦活することを特徴とする請求項1〜3の何れか1項に記載の炭素材料の製造方法。A coal tar pitch having a softening point of 50 to 120 ° C. having a primary QI content of 0.1 to 10% by mass is heat-treated under nitrogen blow, and the heat-treated product is rendered infusible and carbonized to form X of the carbide. the d 002 determined from ray diffraction measurement in a range of 0.347~0.360Nm, then the carbon product according to any one of claims 1 to 3, characterized in that activated with an alkali metal hydroxide Manufacturing method of carbon material. 1次QIの含有量が0〜6質量%である軟化点50〜120℃のコールタールピッチを、エアーブロー下で熱処理し、該熱処理物を不融化および炭化して、該炭化物のX線回折測定から求められるd002を0.349〜0.363nmの範囲とし、その後該炭化物をアルカリ金属水酸化物で賦活することを特徴とする請求項1〜3の何れか1項に記載の炭素材料の製造方法。A coal tar pitch having a softening point of 50 to 120 ° C. having a primary QI content of 0 to 6% by mass is heat-treated under air blowing, the heat-treated material is rendered infusible and carbonized, and X-ray diffraction of the carbide is performed. the d 002 obtained from the measurement in the range of 0.349~0.363Nm, carbon material according to any one of claims 1 to 3, then the carbide characterized by activation with an alkali metal hydroxide Manufacturing method. 請求項1〜3の何れか1項に記載の炭素材料からなる電極を有することを特徴とする電気二重層コンデンサー。An electric double layer capacitor comprising an electrode made of the carbon material according to claim 1.
JP2002165465A 2002-06-06 2002-06-06 Method for producing carbon material for electric double layer capacitor Expired - Fee Related JP4313547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165465A JP4313547B2 (en) 2002-06-06 2002-06-06 Method for producing carbon material for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165465A JP4313547B2 (en) 2002-06-06 2002-06-06 Method for producing carbon material for electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2004014762A true JP2004014762A (en) 2004-01-15
JP4313547B2 JP4313547B2 (en) 2009-08-12

Family

ID=30433299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165465A Expired - Fee Related JP4313547B2 (en) 2002-06-06 2002-06-06 Method for producing carbon material for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4313547B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131461A (en) * 2004-11-08 2006-05-25 Japan Organo Co Ltd Activated carbon, its manufacturing method, and renal disease therapeutic drug
JP2006286923A (en) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2009253255A (en) * 2008-04-11 2009-10-29 Mitsubishi Gas Chem Co Inc Method for manufacturing active electrode material for electric double layer capacitor
JP2009260112A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Producing method of positive-electrode active material for electrochemical capacitor
JPWO2008018326A1 (en) * 2006-08-11 2009-12-24 旭硝子株式会社 Non-aqueous electrolyte for electric double layer capacitor and electric double layer capacitor using the same
JP2010067793A (en) * 2008-09-11 2010-03-25 Japan Pionics Co Ltd Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet
JP2010135648A (en) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd Pre-doped power storage device and negative electrode material used therefor
JP2012049389A (en) * 2010-08-27 2012-03-08 Nippon Carbon Co Ltd Method of producing active carbon for capacitor and active carbon
JP5058155B2 (en) * 2006-04-14 2012-10-24 株式会社キャタラー Method for producing carbon material for electrochemical device electrode
KR101835715B1 (en) 2016-12-14 2018-04-19 (주)포스코켐텍 The method of Preparing Porous Carbon using Coal-Tar Materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122407B (en) 2013-03-07 2018-12-25 鲍尔卡本技术有限公司 Activated carbon for electric double layer capacitor electrode and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131461A (en) * 2004-11-08 2006-05-25 Japan Organo Co Ltd Activated carbon, its manufacturing method, and renal disease therapeutic drug
JP4693030B2 (en) * 2004-11-08 2011-06-01 オルガノ株式会社 Method for producing activated carbon
JP2006286923A (en) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd Lithium ion capacitor
JP5058155B2 (en) * 2006-04-14 2012-10-24 株式会社キャタラー Method for producing carbon material for electrochemical device electrode
JPWO2008018326A1 (en) * 2006-08-11 2009-12-24 旭硝子株式会社 Non-aqueous electrolyte for electric double layer capacitor and electric double layer capacitor using the same
JP2009253255A (en) * 2008-04-11 2009-10-29 Mitsubishi Gas Chem Co Inc Method for manufacturing active electrode material for electric double layer capacitor
JP2009260112A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Producing method of positive-electrode active material for electrochemical capacitor
JP2010067793A (en) * 2008-09-11 2010-03-25 Japan Pionics Co Ltd Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet
JP2010135648A (en) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd Pre-doped power storage device and negative electrode material used therefor
JP2012049389A (en) * 2010-08-27 2012-03-08 Nippon Carbon Co Ltd Method of producing active carbon for capacitor and active carbon
KR101835715B1 (en) 2016-12-14 2018-04-19 (주)포스코켐텍 The method of Preparing Porous Carbon using Coal-Tar Materials

Also Published As

Publication number Publication date
JP4313547B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
US7964173B2 (en) Feedstock composition and raw coke for electricity storage carbon material and needle coke
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
KR101553716B1 (en) Active carbon for an electric double layer capacitor electrode and process for manufacturing the same
WO2011081086A1 (en) Activated carbon for electric double-layer capacitor electrode and method for producing the same
JP6380993B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
JP4092344B2 (en) Raw material composition of carbon material for electric double layer capacitor electrode
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
WO2007074939A1 (en) Raw coal for making carbonaceous material for electricity storage or needle coke
US10629387B2 (en) Porous carbon material for electric double-layer capacitor electrode, method of producing the same, and electric double-layer capacitor electrode
KR20120126118A (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2004014762A (en) Carbon material for electric double layered capacitor and its manufacturing method
JP2006295144A (en) Porous carbon material for electric double layer capacitor polarizing electrode
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP2008247627A (en) Method for manufacturing carbon material, carbon material and electric double layer capacitor
JP2008021833A (en) Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor
JP2009234901A (en) Carbon material for electric double layer capacitor electrode and method manufacturing the same
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
US7067051B2 (en) Process for producing carbonized product used for producing activated carbon for electrode of electric double-layer capacitor, and organic material for carbonized product
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2006216748A (en) Carbon composite powder for electrode for electric dipole layer capacitor and manufacturing method for carbon composite powder and electric dipole layer capacitor using carbon composite powder
JP2009253255A (en) Method for manufacturing active electrode material for electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees