JP2007511278A - 眼科用両眼波面測定システム - Google Patents

眼科用両眼波面測定システム Download PDF

Info

Publication number
JP2007511278A
JP2007511278A JP2006539585A JP2006539585A JP2007511278A JP 2007511278 A JP2007511278 A JP 2007511278A JP 2006539585 A JP2006539585 A JP 2006539585A JP 2006539585 A JP2006539585 A JP 2006539585A JP 2007511278 A JP2007511278 A JP 2007511278A
Authority
JP
Japan
Prior art keywords
eye
wavefront
light
pupil
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006539585A
Other languages
English (en)
Other versions
JP2007511278A5 (ja
JP4668204B2 (ja
Inventor
ウォーデン、ローレンス
ドレハー、アンドレアス、ダブリュ.
ミルズ、ゲーリー、ディー.
ライ、シュイ、ティー.
フット、ウィリアム、ジー.
サンドラー、デビッド、ジー.
Original Assignee
オフソニックス・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/971,769 external-priority patent/US7425067B2/en
Priority claimed from US10/971,937 external-priority patent/US20050105044A1/en
Application filed by オフソニックス・インコーポレーテッド filed Critical オフソニックス・インコーポレーテッド
Publication of JP2007511278A publication Critical patent/JP2007511278A/ja
Publication of JP2007511278A5 publication Critical patent/JP2007511278A5/ja
Application granted granted Critical
Publication of JP4668204B2 publication Critical patent/JP4668204B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • G01M11/0235Testing optical properties by measuring refractive power by measuring multiple properties of lenses, automatic lens meters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Eye Examination Apparatus (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】 広汎な患者に緊張なく適用可能で、正確に眼の測定を実行するための診断装置、システム及び方法の提供。
【解決手段】 患者の眼に関する波面分析を実行するための両眼波面測定システムは、第1光路に沿って第1の眼に1つの像を供給し及び第2光路に沿って第2の眼に1つの像を供給する光学システム;及び前記第1光路の一部を介した第1の眼の波面測定を実行するための第1モードにおいて作動可能に構成されかつ前記第2光路の一部を介した第2の眼の波面測定を実行するための第2モードにおいて作動可能に構成されたセンサシステムを有する。
【選択図】 図1−A

Description

関連出願
本出願は、米国仮特許出願第60/520,294号、出願日2003年11月14日及び米国仮特許出願第60/581,127号(米国代理人整理番号OPH.026PR)、出願日2004年6月18日、米国特許出願第 号(米国代理人整理番号OPH.026A)、出願日2004年10月22日、表題「レンズメータ及び波面センサ及び収差測定方法(Lensometers and Wavefront Sensors and Methods of Measuring Aberration)」及び米国特許出願第 号(米国代理人整理番号OPH.024A)、出願日2004年10月22日、表題「眼科診断装置(Ophthalmic Diagnostic Instrument)」に基づく優先権の利益を主張する。なお、これら出願の内容は引用を以って本書に繰り込みここに記載されているものとする。
本発明は、一般に、眼に関する測定を実行するためのシステム及び方法に関する。より詳しくは、本発明は、眼の波面測定を実行するためのシステム及び方法に関する。
眼のすべての収差を定量化するための方法(プロセス)の1つは、波面分析として知られている。一般に、波面分析は、(1つの)眼を光ビームで照明し、該眼から反射された光を収集し、該収集された光の所定の波面の性質を分析して該眼の収差(複数)を求めること、を伴う。波面分析の利点は眼の高次の収差を測定する能力であるが、波面の測定は、例えば眼の調節(ないし順応)(accommodation)状態等を含む多くの態様で不利な影響を受け得る。眼の精密な波面測定を行う場合、被験者の眼が安定的(不動的)であること、調節ないし眼球運動に応じたエラーを低減ないし最小化する自然で安楽な状態にあることが望ましい。被験者を確実に安楽かつリラックスさせる方法の1つは、(1つの)像を眼に供給し被験者の視線を特定の対象に固定することである。この像を眺める場合、被験者の視力(視覚)は、被験者が対象に視線を固定できる程度にまで補正(矯正)されていることが好ましい。例えば、被験者は、処方箋が作成される所望の距離において自然なシーンを眺めている間に測定されるのが好ましい。眼の(視力)検査では、このことは、被験者から凡そ16フィート以上離れて位置する視力検査表又はシーン画像を眺めることを意味する。しかしながら、16フィートという(大きな)被験者対対象間距離のため、空間的制約に基づき検査場所に関し問題が生じる。
伝統的な波面測定装置(例えばNidek, Tracy, and Wavefront Sciences社から入手可能なものを含む)としては、単眼装置がある。波面測定法の中には、接眼波面センサ装置において通常使用されている標準的なシャック−ハートマンセンサを使用するものもある。シャック−ハートマン法は、波面を異常(aberrated)瞳から複数のより小さな非重畳的(互いに重ならない)副瞳に分割するためのレンズレット(lenslet)アレーのような光学素子を使用し、共通の像面においてすべてのサブアパーチャからの合焦スポットのアレーを生成する。この方法は、概念的には幾何光学に根ざしているが、ダイナミックレンジ、線形性の限界、サブアパーチャの配列問題、及び通常の低次のゼルニケ(Zernike)モードより大きい高次の収差の測定に使用される多数のサブアパーチャから生じる複雑性の増大等に関する幾つかの周知の問題を伴い得る。他の問題としては、典型的な波面測定システムでは、波面測定(結果)の収集に要する時間の長さに応じ、患者は強度な自縛(緊張)が強いられるという問題がある。そのような不自然な自縛が患者の不快感に加わり、その結果、不快感の増大と共に眼球運動も増大する。更に、眼球測定に使用される可視光も患者の不快感を増大する。
視力を測る際の他の問題は、例えば子供又は老齢者のようなある種の患者は、個々の患者に対し最良の視力を生じさせる処方箋のもとになるデータを患者の自覚的(主観的)決定に委ねざるを得ない視力検査に臨む上で困難な時間を過さざるを得ないことがあり得ることである。患者の反応が不適切であると、処方箋も不正確になることが有り得、患者にも検査を行う技師にもフラストレーションが溜まることがあり得る。更に、典型的には、波面システムでは、「良好な」波面測定(結果)を得るために、熟練技師が、患者を適切な位置に配置しかつ波面センサをXYZ(座標空間)に適切に配置しなければならない。測定誤差を引き起こし得る要因としては、例えば、センサの不適切なXYZ位置決め、眼球運動、涙膜、瞬き、睫毛、グリント(光輝)、偽(仮性)(spurious)又は不制御(uncontrolled)調節等が該当する。波面システムを効果的に使用しかつこの技術の広範な使用を容易にするために、多少の負担が技師及び患者の自覚的(主観的)所為に課されることもあるであろうし、また、より洗練された技法がこれら要因の検出及び制御するために使用されることもあるであろう。典型的には、技師は、何度か測定を行い、どの測定(結果)が次の使用に有効であるかを決める必要がある。どの画像又は処理結果が類似し、どの異常値(outlier)が後に排除(破棄)されるべきかを決定するためのある種の方法は、波面測定プロセスの有効性を増大し得る。
それゆえ、1又は2以上の上述の問題及びこの分野におけるその他の欠点を克服しかつ極めて広範な種類の患者群に対して使用可能にする波面測定システムが必要とされている。
本発明の一実施形態(第1の視点)では、患者の眼に関する波面分析を実行するための両眼波面測定システムが提供される。この両眼波面測定システムは、第1光路に沿って第1の眼に(1つの)像を供給し及び第2光路に沿って第2の眼に(1つの)像を供給する光学システム;及び前記第1光路の一部を介した第1の眼の波面測定を実行するための第1モードにおいて作動可能に構成されかつ前記第2光路の一部を介した第2の眼の波面測定を実行するための第2モードにおいて作動可能に構成されたセンサシステムを有することを特徴とする。このシステムは、更に、前記第1モードにおいて前記第1の眼からの光を受光しかつ前記第2モードにおいて前記第2の眼からの光を受光するよう前記センサシステムを位置調整するステージシステムを有し得る。幾つかの実施形態では、センサシステムは、例えば、ハートマン−シャック(Hartman-Shack)型波面センサ又は光線追跡(ray tracing)波面センサであり得る。
幾つかの実施形態では、前記光学システムは、第1内部ターゲット;第2内部ターゲット;及び前記第1内部ターゲットを前記第1光路内にかつ前記第2内部ターゲットを前記第2光路内に位置付けるための第1モードと、前記第1内部ターゲットを前記第1光路外にかつ前記第2内部ターゲットを前記第2光路外に位置付けるための第2モードとを有する経路切換器を含むと共に、前記経路切換器が前記第1モードにセットされると、前記第1及び第2光路が両眼波面測定システムの外部の位置へ延在(到達)するよう構成されることができる。幾つかの実施形態では、前記第1及び第2内部ターゲットは、ステレオ像対(stereoscopic image pair)である。他の実施形態では、前記第1内部ターゲット及び前記第2内部ターゲットの位置は、両眼視覚光学システムを介して該第1内部ターゲット及び該第2内部ターゲットを見る際に、眼の調節(accommodation)を刺激するよう、調整可能である。
他の実施形態では、両眼波面測定システムの光学システムは、更に、内部ターゲット(複数)を照明するためのターゲット光システムを有する。幾つかの実施形態では、前記ターゲット光システムの照明(光)の強度は、内部ターゲット(複数)の可変的照明を生成するよう制御可能に構成することができる。幾つかの実施形態では、前記ターゲット光システムは、例えば昼光(白昼)、タングステン、蛍光、月光及び/又は夜間運転時等の、1又は2以上の異なる照明(明るさ)状態(ないし条件)をシミュレートする照明を生成する。
他の実施形態では、両眼波面測定システムは、更に、前記センサシステム及び前記ターゲット光システムに接続されるコンピュータを含むと共に、前記コンピュータは、1つの眼の瞳径を求めかつ該瞳径に基づいて前記光源の照明強度を制御するよう構成される。
他の実施形態では、患者の眼(複数)に対し波面分析を実行するための両眼波面測定システムは、ビームスプリッタと患者の眼との間に配置され、特定の輻輳角(convergence angle)をシミュレートするプリズム(複数)を含む。例えば、両眼波面測定システムは、前記第1及び第2光路の少なくとも1つからの像を前記第1及び第2の眼の少なくとも1つに供給して該眼の輻輳調節状態(convergence accommodation state)を引き起こすように配設される輻輳(convergence)装置を有することができる。幾つかの実施形態では、前記輻輳装置は、少なくとも1つのローアングルプリズムを含む。
両眼波面測定システムの他の実施形態では、該システムは、患者の眼(複数)に存在する収差(複数)を補償する要素を含む。例えば、前記光学システムは、第1の眼における収差(複数)を調整するべく構成される光学要素(複数)の第1セット;及び第2の眼における収差(複数)を調整するべく構成される光学要素(複数)の第2セットを含むことができる。他の実施形態では、前記光学システムは、可動ミラー面を有する少なくとも1つの適応制御(adaptive)光学ミラーを有し、前記少なくとも1つの適応制御光学ミラーは、前記第1及び第2光路の一方に配され、及び前記少なくとも1つの適応制御光学ミラーは、前記可動ミラー面を調整することにより、収差を補正するよう構成される。多くの実施形態では、前記収差は、球面収差、非点収差、及び/又はコマ収差を含み得る。
他の実施形態では、両眼波面測定システムのセンサシステムは、光源光路に沿って光ビームを放射する光源;阻止(ブロッキング)部を有する遮断要素であって、該阻止部を前記光源光路に配することにより前記光ビームの中央部を遮断して(1つの)眼の網膜を照明するための環状光ビームを生成するよう構成される遮断要素;前記(環状光ビームによって照明された)眼から反射されて来る光ビームの光路に配される変調(モジュレーション)パターン要素;及び前記変調パターン要素を貫通通過する前記光ビームの少なくとも一部を受光して前記眼の波面収差を検出するよう配されるセンサを含む。幾つかの実施形態では、前記光源は、凡そ2〜3mmのビーム径を有する光(ビーム)を生成する。幾つかの実施形態では、前記遮断要素の前記阻止部は、直径凡そ1.5〜2.5mmである。幾つかの実施形態では、前記放射される光ビームは、コリメートされた光ビームである。
他の実施形態では、両眼波面測定システムのセンサシステムは、光源光路に沿って(1つの)眼に光を供給する光源であって、該光源から放射され該眼の網膜によって反射される光が第1方向に進行しかつ該光源から放射され該眼の角膜によって反射される光が第2方向に進行すると共に、該光源光路に対する該第1方向の角度(なす角)が該光源光路に対する該第2方向の角度(なす角)と異なることにより、該第2方向に進行する光がセンサシステム内の光を受光するための光路に入射しないように、該眼に対して配置される光源;前記第1方向に反射される光を受光するよう配される変調パターン要素;及び前記眼の波面収差を検出するためのセンサであって、前記変調パターン要素を貫通通過する光の少なくとも一部を受光するよう配されるセンサを含む。幾つかの実施形態では、前記波面センサシステムは、更に、前記眼の網膜における前記光のスポット径を減少するように、前記光源光路に沿って配される1又は2以上の光学要素を含む。多くの実施形態では、前記網膜における前記光の前記スポット径は、凡そ1ミリメートル未満、凡そ600マイクロメートル未満、及び/又は凡そ400マイクロメートル未満であり得る。
本発明は、更に、患者の眼(複数)の収差(複数)を検出する方法を含む(第2の視点)。この方法は、以下のステップ:患者の第1の眼に1つの像を供給しかつ患者の第2の眼に1つの像を供給するよう両眼光学システムを患者の眼(複数)に対して位置調整すること;前記第1の眼の網膜から反射されて来る光を受光するよう波面センサを位置調整すること;前記第1の眼の網膜を光源で照明すること;患者が前記第1の眼で前記像を眺めている間に、該第1の眼の網膜から反射されてきた光を検出器において受光すること;及び前記第1の眼の波面収差を前記検出器によって検出すること、を含む。或る実施形態では、前記第1及び第2の眼の調節に影響を及ぼすよう前記両眼光学システムを制御することを更に含むことができる。幾つかの実施形態では、1又は2以上の収差変形像(収差付与された像:aberrated image)を前記患者の第1の眼及び前記患者の第2の眼に供給することを含む。多くの実施形態では、1又は2以上の収差変形像の供給は、前記眼の調節(ないし順応)状態を引き起こす。例えば、これには、1又は2以上の収差変形像の供給は、前記眼の距離(遠近)調節状態を引き起こす像の供給を含むこと、及び/又は1又は2以上の収差変形像の供給は、前記眼の読取(reading)調節状態を引き起こす像の供給を含むこと、が含まれ得る。
患者の眼(複数)の収差(複数)を検出する方法の他の実施形態では、該方法は、前記第2の眼の網膜から反射されて来る光を受光するよう前記波面センサを位置調整すること;前記第2の眼の網膜を前記光源によって照明すること;患者が前記第2の眼によって前記像を眺めている間に、前記第2の眼の網膜から反射されて来た光を前記検出器において受光すること;及び前記第2の眼の波面収差を前記検出器で検出することを含む。
本発明の他の一実施形態(第3の視点)は、患者の眼の収差を同定する方法を含む。この方法は、以下のステップ:光源光路に沿って光ビームを放射するよう光源を位置調整すること;前記光ビームの中央部分を遮断して(1つの)眼の網膜を照明するための環状光ビームを生成するよう、前記光源光路に配され阻止部を有する遮断要素を位置調整すること;前記眼を前記光源によって照明すること;前記網膜から反射されて来る光を検出器において受光すること;前記眼の波面を前記検出器によって検出すること;及び前記検出された波面に基づいて前記眼における収差を同定すること、を含む。
本発明の他の一実施形態(第4の視点)は、波面センサシステムを用いて患者の眼の少なくとも一方における収差(複数)を測定する方法を含む。この方法は、以下のステップ:第1の眼が両眼光学システムの第1光路に位置付けられかつ第2の眼が両眼光学システムの第2光路に位置付けられるように、両眼光学システムを前記眼(複数)に対して位置調整すること;光源から放射され前記第1の眼の網膜によって反射される光が第1方向に進行しかつ光源から放射され前記第1の眼の角膜によって反射される光が第2方向に進行すると共に、光源光路に対する該第1方向の角度(なす角)が該光源光路に対する該第2方向の角度(なす角)と異なることにより、該第2方向に進行する光がセンサシステム内の光を受光するための光路に入射しないように、光源を前記第1の眼に対して位置調整すること;前記第1の眼の前記網膜を前記光源によって照明すること;前記第1光路の一部を介して、第1方向において前記網膜から反射されて来る光を受光すること、該光は前記第1の眼の収差を示す波面を含むこと;及び前記受光された波面に基づいて前記第1の眼の収差を同定すること、を含む。
本発明の他の一実施形態(第5の視点)では、波面システムにおいて、患者の眼の瞳の位置に基づいて、患者の照明された眼から到来する光を受光するための波面センサを位置調整する方法が提供される。この方法は、以下のステップ:前記眼を光源によって照明すること;1つの眼によって反射される光が受光するための波面センサの光路に沿って伝播するように、波面センサシステムを、第1位置において、該眼の瞳に対し位置調整すること;前記眼によって反射された光を前記波面センサにおいて検出すること;前記検出された光に基づいて、前記眼の前記瞳の位置を求めること;及び前記瞳の前記求められた位置に基づいて、前記波面センサを、第2位置において、前記眼の前記瞳に対し位置調整すること、該第2位置は前記眼の波面測定の実行のために所望の位置であること、を含む。
本発明の更に他の一実施形態(第6の視点)において、波面センサシステムは、分析されるべき光の経路に配され、2次元の正弦波パターンを有する変調(モジュレーション)要素;及び前記変調要素を貫通通過する光の少なくとも一部を受光するよう配置される検出器であって、該変調要素に対し回折性自己(結)像(自己像生成)面(diffraction self-imaging plane)に実質的に配される検出器を有するセンサシステムを含み、該センサシステムは、前記検出器によって受光される光に基づいて、(1つの)信号を出力可能に構成される。本発明の更に他の一実施形態(第7の視点)において、波面センサシステムは、分析されるべき光の経路に配され、2次元のチェッカーボード(checkerboard)パターン(市松模様状パターン)を有する変調要素;及び前記変調要素を貫通通過する光の少なくとも一部を受光するよう配置される検出器であって、該変調要素に対し回折性自己結像面に実質的に配される検出器を有するセンサシステムを含み、前記センサシステムは、前記検出器によって受光される光に基づいて、(1つの)信号を出力可能に構成される。
本発明の他の一実施形態(第8の視点)において、反射性又は内部反射性対象系における収差(複数)を求める方法が提供される。この方法は、以下のステップ:タルボ面(Talbot plane)において近視野(ニアフィールド)回折パターンを生成するよう、(1つの)対象系から反射されて来る光を2次元正弦波パターンを有する変調要素を貫通通過させること;前記タルボ面において前記近視野回折パターンの信号(複数)を検出すること;及び前記検出された信号(複数)を用いて、反射性又は内部反射性対象系における収差の(1つの)測定(結果)を出力すること、を含む。
本発明の更に他の一実施形態(第9の視点)において、反射性又は内部反射性対象系における収差を求める方法が提供される。この方法は、以下のステップ:タルボ面(Talbot plane)において近視野回折パターンを生成するよう、(1つの)対象系から反射されて来る光を2次元チェッカーボードパターンを有する変調要素を貫通通過させること;前記タルボ面において前記近視野回折パターンの信号(複数)を検出すること;及び前記検出された信号(複数)を用いて、反射性又は内部反射性対象系における収差の(1つの)測定(結果)を出力すること、を含む。
他の一実施形態では、眼の内部における光伝播をシミュレートする方法及びシステム(第11の視点)が提供される。一実施形態(第10の視点)において、この方法は、以下のステップ:光をチャンバの前方に配されたレンズを貫通通過させること;前記レンズと前記チャンバの結像面との間の距離を調整することにより、前記光を該結像面に合焦すること;前記結像面を回転すること;及び前記チャンバの中から前記レンズを介して、前記結像面から光を反射すること、を含む。他の一実施形態(第11の視点)において、波面センサシステムを検査するための眼シミュレーションシステムは、光をチャンバに入射可能にする開口を有するチャンバを有するハウジング;前記チャンバ内に配され、既知の屈折率を有する流動体;前記チャンバの開口に入射する光が当該レンズを貫通通過するよう前記ハウジングに対して配置されるレンズ;及び前記レンズを貫通通過する光が前記流動体の内部を伝播しかつ当該回動可能な結像面に入射するよう前記チャンバ内に配置される回動可能な結像面を含むこと。
更に他の一実施形態(第12の視点)では、両眼波面測定システムを用いて瞳距離(瞳孔間距離)を測定する方法によって瞳距離が求められる。この方法は、以下のステップ:波面センサシステムの光路と、第1位置における第1の瞳とをアライメント(整列)すること;前記波面センサによって受光した前記第1の瞳からの光を分析し、前記第1位置に対する該第1の瞳の位置情報を求めること;前記波面センサの前記光路と、第2位置における第2の瞳とをアライメント(整列)すること;前記波面センサによって受光した前記第2の瞳からの光を分析し、前記第2位置に対する該第2の瞳の位置情報を求めること;前記第1位置及び前記第2位置に基づいて、かつ前記第1位置に対する前記第1の瞳の前記位置情報及び前記第2位置に対する前記第2の瞳の前記位置情報に基づいて、瞳距離を求めること、を含む。
本発明の更に他の一実施形態(第13の視点)では、患者の眼の収差(複数)を同定する方法が提供される。この方法は、以下のステップ:第1照明状態(ないし条件)を生成するよう構成された光源によって第1ターゲットを照明すること;患者の第1の眼の瞳に対し、該第1の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第1波面測定を実行すること;第2照明状態を生成するよう構成された光源によって前記第1ターゲットを照明すること;前記第1の眼の前記瞳に対し、該第1の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第2波面測定を実行すること;及び前記第2[第1の誤記]の眼の前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第1の眼の前記瞳の反応を求めること、を含む。幾つかの実施形態では、この方法は、更に、以下のステップ:第1照明状態を生成するよう構成された光源によって第2ターゲットを照明すること;患者の第2の眼の瞳に対し、該第2の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第2ターゲットを眺めている間に、第1波面測定を実行すること;第2照明状態を生成するよう構成された光源によって前記第2ターゲットを照明すること;前記第2の眼の前記瞳に対し、該第2の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記第2ターゲットを眺めている間に、第2波面測定を実行すること;及び前記第2の眼の前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第2の眼の前記瞳の反応を求めること、を含む。
他の一実施形態(第14の視点)では、特定の照明状態に対する患者の眼の瞳の反応を求めるための波面測定システムが提供される。このシステムは、第1照明状態を生成するよう構成された第1光源によって第1ターゲットを照明する手段;患者の第1の眼の瞳に対し、該第1の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第1波面測定を実行する手段;第2照明状態を生成するよう構成された光源によって前記第1ターゲットを照明する手段;前記第1の眼の前記瞳に対し、該第1の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第2波面測定を実行する手段;及び前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第1の眼の前記瞳の反応を求める手段を有する。或る実施形態では、この方法[システムの誤記]は、更に、第1照明状態を生成するよう構成された光源によって第2ターゲットを照明する手段;患者の第2の眼の瞳に対し、該第2の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第2ターゲットを眺めている間に、第1波面測定を実行する手段;第2照明状態を生成するよう構成された光源によって前記第2ターゲットを照明する手段;第2の眼の前記瞳に対し、該第2の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記[第2]ターゲットを眺めている間に、第2波面測定を実行する手段;及び前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第2の眼の前記瞳の反応を求める手段を有する。
他の一実施形態(第15の視点)は、患者の眼の光学収差(複数)を補正するための情報を生成する方法を提供する。この方法は、以下のステップ:第1光路及び第2光路を有する両眼視覚光学システムに対し、第1の眼の視線が該第1光路にアライメント(整列)されかつ第2の眼の視線が該第2光路にアライメント(整列)されるよう、患者の両眼を位置調整すること;前記第1の眼に前記第1光路を介して(1つの)像を供給し、かつ前記第2の眼に前記第2光路を介して(1つの)像を供給すること;波面センサを、前記第1の眼の網膜から反射されて来る光を受光可能にすること;光源によって第1の眼の網膜を照明すること;前記第1の眼の網膜から反射されて来る光を前記波面センサで受光すること;前記第1の眼からの受光された光から、該第1の眼の波面収差を測定すること;前記測定された波面収差に基づいて前記第1の眼の少なくとも1つの波面収差を同定すること;及び患者の前記第1の眼の前記少なくとも1つの光学収差を補正するプロセスにおいて使用するため、前記少なくとも1つの光学収差に関する情報を生成すること、を含む。幾つかの実施形態では、前記プロセスは、前記同定された光学収差の補正のためのレンズの生成を含む。他の一実施形態では、前記プロセスは、前記同定された光学収差の補正のための外科的プロセスを介した前記第1又は第2の眼の光学的特性の改変を含む。
本発明の他の一実施形態(第16の視点)では、患者の眼(複数)の調節範囲を評価する方法を提供する。この方法は、以下のステップ:前記眼(複数)における複数の調節状態を惹起する両眼光学システムを介して、該眼(複数)に複数の像を供給すること;前記惹起された調節状態にある前記眼(複数)の少なくとも1つの特徴を表す波面信号(複数)を受信すること;及び前記波面信号から、複数の惹起された調節状態における前記眼の前記少なくとも1つの特徴に基づいて前記眼の前記調節範囲を求めること、を含む。
本発明の更に他の一実施形態(第17の視点)では、光学的に制御された収差変形像(収差付与された像:aberrated image)(複数)を患者の眼(複数)に供給する方法が提供される。この方法は、以下のステップ:両眼光学システムを介して、第1の眼及び第2の眼に像(複数)を供給すること;前記第1及び第2の眼に関する少なくとも1つの収差を表す波面信号(複数)を受信すること;前記波面信号(複数)に基づいて前記第1の眼の(1つの)収差及び前記第2の眼の(1つの)収差を同定すること;前記第1の眼の前記同定された収差の補正及び前記第2の眼の前記同定された収差の補正を決定する(求める)こと;及び前記決定された(求められた)補正に基づいた前記両眼光学システムの調整を、該調整された両眼光学システムを介して前記眼(複数)に供給された像(複数)が前記収差(複数)に対し光学的に補償されるように、実行すること、を含む。幾つか実施形態では、前記収差は、球面収差、非点収差、及び/又はコマ収差を含む。
本発明の他の一実施形態(第18の視点)では、光学的に制御された収差変形像(aberrated image)(複数)を患者の眼(複数)に供給するシステムが提供される。このシステムは、両眼光学システムを介して、第1の眼及び第2の眼に像(複数)を供給する手段;前記第1及び第2の眼に関する少なくとも1つの収差を表す波面信号(複数)を受信する手段;前記波面信号(複数)に基づいて前記第1の眼の(1つの)収差及び前記第2の眼の(1つの)収差を同定する手段;前記第1の眼の前記同定された収差の補正及び前記第2の眼の前記同定された収差の補正を決定する(求める)手段;及び前記決定された(求められた)補正に基づいた前記両眼光学システムの調整を、該調整された両眼光学システムを介して前記眼(複数)に供給された像(複数)が前記収差(複数)に対し光学的に補償されるように、実行する手段を有する。
本発明の更に他の一実施形態(第19の視点)では、患者の眼の収差(複数)を同定する方法が提供される。この方法は、以下のステップ:患者の眼(複数)に対する両眼光学システムの位置調整を、第1の眼が該両眼光学システムの第1光路に沿って位置調整されかつ第2の眼が該両眼光学システムの第2光路に沿って位置調整されるように、実行すること;前記第1光路の一部を介して、前記第1の眼の(1つの)収差を表す第1波面を受け取ること;及び前記受け取られた第1波面に基づいて前記第1の眼の(1つの)収差を同定すること、を含む。幾つかの実施形態では、この方法は、更に、以下のステップ:波面センサを第1位置に位置付けて、前記第1光路の一部を介して前記第1の眼からの第1波面を受け取ること;前記波面センサを第2位置に位置付けて、前記第2光路を介して前記第2の眼からの第2波面を受け取ること;前記第2光路の一部を介して前記第2の眼の(1つの)収差を表す第2波面を受け取ること;及び前記受け取った第2波面に基づいて前記第2の眼の(1つの)収差を同定すること、を含む。
本発明の他の一実施形態では、以下のステップ:前記第1波面像群中の1つの画像を分析し、該画像中における前記瞳の第1位置求めること、但し、該画像は、該瞳に対し第1位置に配される波面センサを用いて生成されたものであること;前記瞳の前記第1位置と所定の位置とを対比すること;及び前記瞳の前記第1位置が前記所定の位置と所定量だけ異なる場合、次の画像が第2位置における前記瞳を描写するよう、前記瞳に対する第2位置に前記波面センサを移動すること、但し、前記瞳の前記第2位置は、該瞳の前記第1位置よりも前記所定位置により近いこと、を含む方法が提供される。幾つか実施形態では、この方法は、更に、以下のステップ:前記第2波面像が生成された後に生成される複数の波面画像を記憶すること;前記記憶された画像(複数)を組合せて、平均画像を生成すること;及び前記平均画像から波面測定(結果)を求めること、を含む。他の一実施形態では、この方法は、更に、以下のステップ:平均画像からそれぞれ求められる個々の波面測定(結果)から構成される一組の波面測定(結果)を生成すること;前記一組の波面測定(結果)を対比して、前記複数の波面測定(結果)における異常(ないし差異)(anomalies)(複数)を同定すること;及び前記同定された異常(ないし差異)(複数)に基づいて前記対象の収差(複数)の補正を規定する1又は2以上の波面測定(結果)を、前記一組の波面測定(結果)において同定すること、を含む。
本発明の上記及び他の視点、特徴及び利点は、添付の各図と組合せて解釈されるべき後述する詳細な説明を参酌することによってよりよく理解できるであろう。
本発明の実施例を図面を参照して説明する。なお、以下の説明及び図面に関し、同じ図面参照符号は同じ要素を示す。以下の実施例の記載において使用する用語は、単に本発明の実施例を詳細に説明するために使用しているのであって、如何なる意味においても、限定的ないし制限的に解釈すべきことを意図していない。更に、本発明の実施例(複数)は、複数の新規な特徴を含み得るが、それらのうちどの1つも、単独では、その所望の特性の原因ではなく又は本書に記載の発明(複数)の実施に本質的ではない。
図1−A及び図1−Bに示しかつ以下に記載する眼科装置10の一実施例は、眼球医療専門家による使用のための、眼球波面測定システムの要求基準(使用)を満たすことができると同時に、価格的にも妥当であるので、世界中の多くのOD及びMD診療所で採用することができるものである。更には、少数の専門家の手によるいわば秘儀であったものが、いまや、広く使用される技術となって眼球医療に利益をもたらすことができる。とりわけ、装置の構成をできるだけ単純に維持しかつ患者の快適さの問題を十分に考慮することにより、本書に記載の装置の一実施例は、視覚(視力)問題及び子供の異常の診断を含む、極めて広範な(世代、種類の)患者群に対して使用可能なように構成される。
一実施例の眼科装置10は、両眼視覚光学系12と波面センサアセンブリ14とを含む。両眼条件で得られる眼の測定結果(値)は、単眼条件下で得られる測定結果(値)よりも一般的により正確であるため、好ましい。更なる一実施例の眼科装置10は、視覚光学系12及び/又は波面センサアセンブリ14に接続されるコンピュータ51を含むことができる。
図1−Aは、上記眼科装置10の側面図であり、対象系(例えば眼ないし眼球:object system)18から視覚光学系12を介して外部ターゲット70に至る右側可視(visible)光路16を示す。用語「対象系」は、本書においては、両眼視覚光学系12を貫通通過する左側又は右側の光路にアライメント(整列)され得る対象をいうものとする。アライメントされると、波面センサアセンブリ14による波面測定が実行可能になる。なお、このとき、波面センサアセンブリ14もまた、所望の左側又は右側光路の一部及び当該対象にアライメントされる。本書では一般的に、対象のことを、以下、眼ないし眼球と称するが、「対象」又は「対象系」は、眼ないし眼球に限定して解すべきではない。というのは、その他の種類の適切な対象(例えば、モデル眼(模型眼球)又は波面測定に適切なその他の任意の装置)も存在するからである。
図1−Bは、上記眼科装置10の平面図であり、右側対象系ないし眼18のための右側可視光路16と、左側対象系ないし眼18’のための左側可視光路16’を示す。右側可視光路16と左側可視光路16’は、類似の光学要素を含み、類似の態様で作動する。右側可視光路16についてのみ図1−Aに図示しかつ以下に説明するが、その説明は左側可視光路16’についても同様に当て嵌まる。
図1−Aに示すように、視覚光学系12は、右側眼球18に前置される赤外(IR)/可視ビームスプリッタ20を含み得る。この実施例では、IR/可視ビームスプリッタ20は、波面センサアセンブリ14の光軸22に対し凡そ45°の角度をなすよう配向される面を有する。なお、この場合、波面センサアセンブリ14(の光軸22)は、右眼18にアライメントされたものとして示されている。IR/可視ビームスプリッタ20の反射面は、右側可視光路16に沿って右眼18に指向するよう配向され、可視光を右眼18に向かって反射する。しかしながら、IR/可視ビームスプリッタ20の反射面は、波面測定の実行中、眼18を照明するために眼科装置10において使用可能な選択されたIR波長に対し実質的に(ほぼ完全に)透過性である。1又は2以上のプリズム49は、眼18とIR/可視ビームスプリッタ20との間の右側可視光路に配置され、物体(例えばターゲット)に対する輻輳角(convergence angle)をシミュレートする。
視覚光学系12は、更に、それぞれ右側可視光路16に沿って配置される定置レンズ24、反転プリズム26、及び可動レンズアセンブリ28を含む。定置レンズ24は、IR/可視ビームスプリッタ20と反転プリズム26との間に配置されると共に、IR/可視ビームスプリッタ20から反射されて右眼18に向かって伝播する光中に(例えば外部ターゲット70の)像を眼18が知覚できるように、反転プリズム26からの光を合焦する。可動レンズアセンブリ28は、眼18の収差(例えば球面収差)を補正するために可視光路16に沿って位置調整可能に構成された1セットの1又は2以上のレンズを含む。このレンズセットは、眼18に特定の知覚距離にある物体を凝視させてその調節(状態)を既知の状態におくことができるよう、眼調節(eye accommodation)を制御するように位置調整することも可能である。幾つかの実施例では、可動レンズアセンブリ28は、非点収差を補正するための1セットのレンズ(例えば1又は2以上のレンズ)を含む。幾つかの実施例では、球面補正レンズと組合せて使用可能な2つのシリンダ(円柱)レンズを含む。この2つのシリンダレンズは、同じ度ないし度数(power)を有することができ、更に、手動又はコンピュータ制御モータ(複数)、コンピュータ51及び光学系コントロールモジュール53を用いて、可視光軸(光路)16の周りで(互いに)独立に回動可能に構成することも可能である。このような実施例では、眼18が非点収差補正を必要としない場合、2つのシリンダレンズは、互いに対し90°の角度をなすよう位置調整して、個々のレンズの効果を相殺することも可能である。眼の非点収差を補正するために、(2つのシリンダレンズの)個々のレンズは、互いに対し特定の軸位置に位置付けて、所要の軸において所与の度(数)の非点収差補正を達成することも可能である。他の実施例では、可動レンズアセンブリ28は、コマ収差の補正のため主光軸32から軸外に位置調整可能な球面レンズを含むことができる。非点収差の補正のための1又は2以上のレンズを含む可動レンズアセンブリ28を含んで構成される視覚光学系12は、ホロプタ(phoroptor)システムとして使用することも可能である。可動レンズシステム28をコマ収差補正のためのレンズ又はレンズセットによって構成することにより、ホロプタでは達成することができない眼18の補正が可能になる。反転プリズム26は、像を反転(invert)・転倒(flip)する(例えば、可視光路16を貫通する光軸32に直交する面内の直交するx軸及びy軸の周りで像を回転する)よう配置される複数の反射面を有する。幾つかの実施例では、反転プリズム26は、左右の眼の間の種々の瞳距離に対応(適合)するために、水平方向に摺動することができる。
視覚光学系12は、可動レンズアセンブリ28と、視覚光学系12の開口33との間に配置される経路切換器34を含む。なお、開口33は、適切に位置調整された外部ターゲット70が当該開口33を介して患者の視野内で観察可能であるように構成されている。経路切換器34は、内部ターゲット36が可視光路16に含まれる(差込入射される)よう被験者の視野を切り替えるように、可視光路16に交差するよう任意に位置調整することができる。図1−Aに示した経路切換器34は、視野を切り替えるためのミラーを有する。他の実施例では、経路切換器は、可視光路16を変化する他の光学要素(複数)、例えばプリズム又はビームスプリッタを含むことができる。また、視覚光学系12は、内部ターゲット36、及び経路切換器34と内部ターゲット36との間に配置されるターゲットレンズ38を含むことができる。ターゲットレンズ38は、眼18によって観察されるような所望の知覚像距離で内部ターゲット36の像を位置調整するために使用することができる。幾つかの実施例では、視覚光学系12は、互いに異なる距離ないし互いに異なる知覚距離で配置され、眼18に遠近両ターゲット像を供給する複ターゲット(不図示)を含むことができる。視覚光学系12の構成は、左右の可視光路16をそれぞれ規定する光学要素(複数)に、類似のターゲットレンズ38を含むことができる。或いは、その代わりに、視覚光学系12の構成は、個々の眼18に対しそれぞれ異なる知覚距離を生成するための左右の可視光路をそれぞれ規定する光学要素(複数)に、それぞれ異なる焦点距離を有する2つの異なるレンズ38又はレンズセットを含むことができる。幾つかの実施例では、内部ターゲット(複数)は、3次元的効果を生成し、所望の知覚像深度(距離)をビジュアル的に増強するステレオスコピックターゲットとして構成することも可能である。
視覚光学系12は、更に、内部ターゲット36を照明するターゲット光源40を含むことができる。このターゲット光源40は、個々の実施例に応じて種々異なるタイプの光源を用いて内部ターゲット36の照明を行うことができる。例えば、ターゲット光源40は、発光ダイオード(LED)、白熱灯、蛍光灯、及び/又は眼18が内部ターゲット36知覚できるように内部ターゲット36に対する適切な照明を生成することが可能なその他の任意のタイプの光源を含むことができる。多くの実施例では、ターゲット光源40は、ターゲット光源40の強度を制御する伝統的な光制御電子装置41に接続される。更に、ターゲット光源40からの光は、例えば夜間運転時、オフィス内又は昼色光(白昼)のような現実世界の状態を表す特定の照明状態(ないし条件:lighting conditions)を考慮するために、制御システムによって変化することができる。
代替的一実施例では、視覚光学系12の像反転プリズム26の複数の面の1つの代わりに、適応制御光学ミラー(不図示)を使用することができる。可動の球面収差及び非点収差補正光学系を設けることに加えて、適応制御光学ミラーを可視光路16に用いて、高次の補正(上記合焦(フォーカス)及び非点収差)を行うことができる。適応制御光学ミラーは、例えば反復プロセスにおける波面センサアセンブリ14からの測定結果(値)に基づいてソフトウェアを介して制御することができる。適応制御光学ミラーは、眼18の収差(複数)を補正するが、可動レンズアセンブリにおける合焦(フォーカス)及び非点収差補正レンズと組合せて使用して収差(複数)を補正することもできる。球面収差及び非点収差補正レンズを適応制御光学ミラーと組合せて使用することにより、価格もより低くストロークもより短い適応制御光学ミラーを使用することができる。適切な適応制御光学ミラーは、例えば、ボストン・マイクロマシーンズ・コーポレーション(Boston Micromachines Corporation)、ウォータータウン、マサチューセッツ州、及びフレキシブル・オプチカル(Flexible Optical)B.V.、デルフト(Delft)、オランダから入手することができる。
更に図1−A及び図1−Bを参照すると、眼科装置10は、例えば自己(結)像(自己像生成)回折性光学センサ(self imaging diffractive optic sensor)、シャック−ハートマン(Shack-Hartmann)又は光線追跡システム(ray tracing system)のような波面センサアセンブリ14も含む。一実施例では、波面センサアセンブリ14は、眼18を照明するための右側差込入射経路68に沿って光ビームを供給する照明光学系66を含む。照明光学系66は、眼(照明用)光源58を含む。眼光源58は、レーザダイオード等の種々の適切な光源であり得る。幾つかの実施例では、光源58は、赤外光源であるが、例えば、一実施例に応じ、赤外レーザダイオード又はスーパールミネッセントダイオード(いわゆる“SLD”)である。照明光学系66は、眼光源58から眼18に伝播する光が沿う差込入射経路68に沿って配置されるピンホール光学要素62も含む。照明光学系66は、更に、差込入射経路66に沿ってピンホール62と眼光源58との間に配置される合焦光学系60を含む。ピンホール光学要素62と合焦光学系60は、眼光源58がSLDとして構成される実施例のための照明光学系66に含まれる。他の実施例では、照明光学系66は、眼光源58として種々のタイプのレーザを含み得る。眼光源58がレーザとして構成される多くの実施例では、レーザは、実質的にコリメートされた細いビームを生成することができる。幾つかの実施例では、従って、コリメートレンズのようなコリメート光学系は必ずしも必要はない。他のタイプの発光ダイオードを含む他のタイプの眼光源58を、照明光学系66において使用することも可能である。眼光源58がレーザダイオード又はSLDとして構成される実施例では、眼光源58は、ファイバ光学系に合焦され、合焦レンズ(不図示)によって細径ビームにコリメートされる。ファイバ光学系の出力(端)は、細径コリメートビームを眼に供給するマイクロレンズ(micro-lens)に結合される。
波面センサアセンブリ14は、波面光路56と差込入射経路68の両方に配置され、光軸22に沿ってアライメントされ、かつ光軸22に対し45°の角度をなすよう位置調整されたビームスプリッタ64も含む。幾つかの実施例では、ビームスプリッタ64は、入射する光の90%を反射しかつ10%を透過する90%/10%ビームスプリッタ(以下、「90/10ビームスプリッタ64」という。)として構成される。照明光学系から差込入射経路68に沿って90/10ビームスプリッタ64に伝播する眼光源58からの光ビームが、90/10ビームスプリッタ64の反射面で反射され、波面センサアセンブリ14の光軸22に沿ってプリズム44[49の誤記]を介して眼18に伝播するように、90/10ビームスプリッタ64は配置される。80/20、70/30等のような90/10以外の他の組合せの反射対透過比を使用することも可能である。
眼18に指向される光ビームは実質的に(十分に)細径であることが好ましい。多くの実施例では、眼18に伝播するビームの発散は十分に小さく、眼18に向かって伝播する方向に直交するビーム横断面において測定される光ビームの断面の寸法(例えば、直径ないし幅)が眼18の瞳の寸法よりも小さくなるほどに光ビームは十分に細い。眼18に入射する光ビームは、瞳の平均径よりも本質的に(十分に)より小さい直径ないし幅のような断面寸法を有するのが好ましい。例えば、瞳は、典型的には、円形であり、凡そ4〜8ミリメートル、例えば6ミリメートルの平均幅を有する。多くの実施例では、瞳を介して案内される光ビームの直径は、凡そ幅1ミリメートル未満であるが、凡そ200〜600マイクロメートル(μm)、例えば400μmであり得る。光ビームは、眼18の収差の当該光ビームに対する効果(作用)を低減するほどに細いと有利である。更に、光ビームは、眼18の角膜における収差が眼18に入射する光ビームを変化せずかつ光ビームが網膜に入射する際に生成される光スポットの寸法増大ないし変形を引き起こさない程十分に細い。好ましくは、網膜に生成される光スポットは(例えば水晶体及び角膜に対し)本質的に(十分に)小さくかつ点光源に近い。
多くの実施例では、照明光学系66からの光ビームは、光軸22に沿って伝播せず、その代わりに、光軸22から逸らされる。例えば、図10に示すように、眼18に向かって伝播する光ビーム270の中心は、波面センサアセンブリ14の光軸22に対して平行であるが、横方向(直交方向)に変位(オフセット)される(平行移動される)。光ビーム270の中心は、角膜272の(例えば光軸22が角膜272と交差する位置である)頂部274からオフセット距離273だけずれた位置で角膜272に入射する。図10に示したように、眼218に入射する光ビームの横方向オフセットにより、(反射光線276及び276’で示した)角膜272から反射された光は、光軸22に対し複数の角度で方向付けられる。この結果、角膜272の表面から光軸22に沿って引き返し波面光路56を介して波面センサ44に到達する光ビーム270の反射部分は減少する。従って、角膜272からの逆反射光(反射戻り光)によって引き起こされる波面測定の妨害(ノイズ)も低減される。
幾つかの実施例では、眼光源58からのビームは、波面センサアセンブリ14の光軸22の(図示)直下にずらされて眼18に入射する。中央遮断(遮光)部282を有する光学要素280(図11及び図12)を、ビーム284の進路に挿入配置することにより、中央食部288を有する環状ないしドーナッツ状断面286を有するビーム(図13)を生成することも可能である。例えば、光学要素280は、照明光学系66と90/10ビームスプリッタ64の間の差込入射経路68に配置することができる(図1-A)。光学要素280によって生成される環状ビームは、眼球18の頂部274から中心逸れした角膜290の領域(複数)と交差する(に入射する)ことができ、その結果、光は、光軸22に沿って引き返す方向以外の方向に角膜から反射される。この実施例では、図10に示したような入射ビームをオフセットする場合と比べて、眼218に入射される光の量を増加し、かつ光軸22に沿って直接波面センサアセンブリ14に入射する角膜290による反射光292の部分を減少し、波面測定の逆反射妨害を減少することができる。幾つかの実施例では、ビームは、直径2〜3mmでありかつ直径1.5〜2.5mmの阻止部分(暗部分)を有することができる。ビームは、眼に入射される際、コリメートされていると好ましい。更に他の一実施例では、ビームは、被験者眼の球面収差を補償し、網膜におけるスポット径を最小化するために、1又は2以上の定置又は可動光学系を用いて発散又は集束することができる。
図1−Aに示したように、波面センサアセンブリ14は、光軸35に直交配置される変調(モジュレーション)装置42に眼18から放射された光を入射させるよう構成される光学リレーレンズシステム(レンズの組合せ列)48を含むこともできる。光学リレーシステム48は、眼18から放射され90/10ビームスプリッタ64を貫通通過した光が、光学リレーレンズシステム48に入射した後、該システム48によって変調装置42に合焦されるように、波面光路56の部分として配置される。一実施例によれば、リレーレンズシステム48は、2つのレンズ50、52を含む。この2つのレンズ50、52の間に配置される1又は2以上の偏向(fold)ミラー54によって、波面センサアセンブリ14の全体構造はよりコンパクトにされる。
波面センサアセンブリ14は、自己(結)像面(self-image plane)又はタルボ面(Talbot plane)に結像される周期的パターンを有する1又は2以上の変調装置42を使用する。タルボ自己(結)像(自己像生成:self-imaging)の原理は、干渉及び波動光学に関する文献、例えば、Joseph W. Goodman著、Introduction to Fourier Optics、The McGraw-Hill Companies, Inc.社において論じられている。この文献の内容は引用を以って本書に繰り込みここに記載されているものとする。波面センサアセンブリ14は、ハートマン−シャックその他の方法に関連する諸問題を克服するために、純粋なタルボ効果を利用することもある。タルボ効果は、ある種の周期的強度変調パターンがシステムの光学瞳に配されると、該変調パターンが、伝播経路に沿った予測可能な軸方向位置(タルボ面)に再び現れるという事実に基づいている。従って、瞳は、「自己結像」され、変調パターンは、タルボ面の位置に配置された検出器によって記録することができる。光学系が波面収差を含む場合は、変調パターンは周期的変調要素に対して歪められるであろう。周期的「キャリア(搬送波)(carrier)」強度パターンの歪みは、像強度値に適用されるコンピュータアルゴリズム(複数)を介して抽出(除去)することができる。コンピュータアルゴリズム(複数)は、像のフーリエ変換を行い、引き続き、キャリア信号から収差情報を抽出する。
センサ44は、変調装置42の自己像面ないしタルボ面に配置される。波面センサアセンブリ14の光軸22が眼球18にアライメントされ、眼18が照明光学系66によって照明されると、眼18から放射された光は、光軸22に沿って伝播し、IR/可視ビームスプリッタ20及び90/10ビームスプリッタ64を介し、波面光路56に沿ってリレーレンズシステム48及び変調装置42を介してセンサ44に到達する。センサ44は、変調装置42によって変調された光を検出する。波面センサ44としては、種々の適切なセンサを使用することができるが、センサのタイプは、使用される光源58のタイプに応じて選択することができる。幾つかの実施例では、センサ44は、適切な解像度及び感度を有するデジタルカメラである。種々異なる解像度を有するセンサ(複数)を使用することができるが、変調パターンの少なくとも幾つかのオーバーサンプリングが好ましい。幾つかの実施例では、センサの解像度は、周期的素子ピッチ当り凡そ4ピクセルである。幾つかの実施例では、ノイズ耐性の改善のためパターン信号がオーバーサンプリングされることを保証するために、周期的素子ピッチ当り凡そ8ピクセルの解像度が好ましい。変調装置42は、2次元パターン、例えばチェッカーボード(市松模様状)パターン又は正弦波パターンを含むことができる。この2次元パターンに関しては、多くの実施例に基づき、図7及び図8を参酌して以下により詳細に説明する。
図2及び図3は、それぞれ、眼科装置10の一実施例の斜視図を示す。図2は、眼科装置10を前方から見た斜視図であり、図3は、眼科装置10を後方から見た斜視図である。図2及び図3の両方に示されているように、視覚光学系12は、ビジブルルックスルー(visible look-through)モジュールとも称されるが、眼科装置10の上端部に配設される。図2に示されているように、反転プリズム26は、ロータリーベアリング27に配設されて、眼球18間の異なる瞳距離を補償する。波面センサアセンブリ14は、レール47a、47b、47c上で運動することにより左右の眼球と各眼球に対応する光学系とのアライメントをするよう構成されたステージ46に配設される。図3は、更に、図1−A及び図1−Bに示した眼科装置10の一実施例を示す。図3は、例えば、内部ターゲット36、はね下げ式(flip-down)経路(光路)インバータ34、及び可動レンズキャリッジ72を含む可動レンズアセンブリ28を示す。
図4−A及び図4−Bは、それぞれ、視覚光学系12内の装置(複数)の模式的正面図及び平面図(側面図)である。図4−A及び図4−Bに示されているように、視覚光学系12は、左右の眼のための接眼系ないし眼球光学系70、70’を含む。左右の像反転プリズム26、26’は、反転プリズムリンクギア78(、78’)によって結合され、互いに対する反転運動を制御することができる。波面センサステージ46(図2)は、横方向に(side-to-side)スライド運動することにより、所望の接眼系70、70’を介して、波面センサアセンブリ14(図2)と波面光路56(図1)とを適切にアライメントすることができるが、アライメントされると、可視光路16(図1)及び波面光路56(図1)は、これら接眼系70、70’を貫通通過することができる。反転プリズム26(図4−B)は、可動レンズアセンブリ28の光軸32の周りで回動可能に構成されることにより、異なる患者における異なる瞳距離(例えば2つの眼18の瞳孔間の距離)を補償することができると好ましい。幾つかの実施例では、モータによって、反転プリズム26の回動が駆動可能に構成される。尤も、反転プリズム26は、代替的に、可動レンズと共に水平方向に(例えばx方向に平行に)摺動することにより、被験者の瞳距離を補償するよう構成することも可能である。可動レンズアセンブリ28は、光軸32に沿って軸方向に摺動可能に構成された可動マウントによって担持されるのが好ましい。
図4−Bから明らかなとおり、幾つかの実施例では、接眼系70(、70’)間の距離は、異なる患者の異なる瞳距離を補償するために変化可能に構成できる。瞳距離調整モータ74は、接眼系70、70’を水平方向に運動させて、各患者の特定の瞳距離を補償するために使用することができる。可動レンズアセンブリ28は、1つのレンズ又はレンズセットを保持可能に構成される可動レンズキャリッジ72を含む。可動レンズキャリッジ72は、光軸32(図1−A)に沿って軸方向に摺動可能に構成される。幾つかの実施例では、可動レンズキャリッジ72の位置は、コンピュータ51(図1−A)の光学系制御モジュール53によって制御可能に構成される。幾つかの実施例では、可動レンズアセンブリ28の一方又は両方が、横方向に(side-to-side)スライド運動することにより、異なる瞳距離を補償することができる。このスライド運動は、手動で又はコンピュータ51(図1−A)の光学系制御モジュール53によって制御可能に構成されるモータ駆動によって制御することができる。幾つかの実施例では、モータによって、可動レンズキャリッジ72は運動可能に構成される。例えば、レンズモータ76を使用することによって、可動レンズキャリッジ72をレンズレール73に沿って運動させることができる。1つのモータ又は複数のモータを使用することにより、接眼系70(、70’)及び可動レンズキャリッジ72を運動させることができる。例えば、幾つかの実施例では、接眼系70(、70’)の各々が、別々のモータ(不図示)によって運動されるが、この(運動)方向は、光軸22(図1−A)に直交する面に沿った横方向(side-to-side)であるのが好ましい。幾つかの実施例では、ただ1つのモータによって、接眼系70(、70’)と可動レンズキャリッジ72との間の距離調整が実行可能に構成される。
幾つかの実施例では、左右の眼のそれぞれの光路16(、16’)間のなす角は、レンズアセンブリ28の一方又は両方が運動されることにより、変化可能に構成される。ローアングルプリズム49(図1−A)は、IR/可視ビームスプリッタ20、20’と患者の2つの眼18、18’との間の可視光路16、16’の各々に配置することができる。ローアングルプリズム49の位置を調整することにより、可視光路16、16’の注視角(gaze angle)、即ち輻輳(convergence)、を変更して、特定の所望距離、例えば16インチ(40.64mm)の読取距離(reading distance)に適合する(マッチする)輻輳角(convergence angle)を生成する。
再び図1−Aに戻ると、幾つかの実施例では、波面センサアセンブリ14は、患者の左右の眼の何れかと波面センサアセンブリ14との3次元的位置調整のための可動XYZステージ46に配される。幾つかの実施例では、波面センサアセンブリ14の3次元位置調整は、コンピュータ51のステージ制御モジュール55によって制御される。この実施例では、ステージ制御モジュール55は、ユーザ又は例えば瞳追跡モジュール又は画像処理モジュール等の他のソフトウェアから位置調整データを受け取り、XYZステージ46を制御して、波面センサアセンブリを位置調整し、患者が視覚光学系12を介してターゲットを眺めているときに左眼又は右眼を測定する。例えば、コンピュータ51に含まれる画像処理モジュール57によって、眼の瞳のエッジ、中心、及び寸法を求めることができる。この実際の瞳位置情報に基づいて、ステージ制御モジュール55は、瞳が(例えば画像フレーム内で中心に配された)所望のXY位置に存在するよう波面センサアセンブリ14を位置調整することができる。幾つかの実施例では、図14に関して後述するように、ステージは、瞳の像の合焦のために、Z方向に自動的に位置調整されるように構成することも可能である。他の実施例では、XYZステージ46は、波面センサアセンブリ14を3次元(XYZ)で位置調整するために、手動で調整されるように構成することも可能である。異なる照明状態(複数)の瞳の拡大(拡張)に対する効果は、画像処理モジュール57を用いて求めることも可能である。例えば、瞳の寸法(例えば直径)は、瞳にターゲット光源40からの種々のレベル(明るさ)の照明を適用している間に、測定・分析することができ、また、瞳の寸法は、そのような種々のレベルの照明の各々に対して求めることもできる。
更に図1−Aによれば、眼18の波面測定(結果)を求める(得る)ために、波面センサアセンブリ14の照明光学系66は、差込入射光路68に沿って光ビームを供給する。この光ビームは、90/10ビームスプリッタによって反射・偏向され、眼18に入射する。眼18に入射する光の一部は、網膜によって反射ないし散乱され、眼18から放射される。この放射光の一部は、光軸22の方向に沿って波面センサアセンブリ14に伝播し、IR/可視ビームスプリッタ20及び90/10ビームスプリッタ64を貫通通過し、波面光軸56に沿って進行し、変調パターン要素42を貫通通過し、センサ44に入射する。センサ44は、この入射光を検出し、該入射光に関連するデータをコンピュータ51に供給する。そして、コンピュータ51は、その波面分析(測定)モジュール59を用いて、波面測定(結果)に基づいて収差(複数)を求める。
眼18の波面測定(複数)の実行中、選択された眼球調節状態及び瞳状態において特定の波面測定が実行可能であるように眼の調節状態を変化するために、視覚光学系12において種々の調整を実行可能に構成することができる。例えば、患者の眼によって知覚されるターゲットの照明は、患者の瞳の寸法に影響を及ぼすことができる。ターゲット光源40のための照明の強度は、内部ターゲット36を所定の照明で照らすために制御することができる。幾つかの実施例では、光源40は、例えば屋内照明状態、屋外自然照明状態、オフィス内照明状態、夜間照明状態、及び/又は夜間運転時照明状態をシミュレートするために、光の色度及び/又は強度を変化することにより、特定の環境をシミュレートする光によって内部ターゲット36を照明するために制御することができる。種々の照明状態に対する瞳の反応を求めるために、波面センサアセンブリ14は、所望の照明レベル(複数)において瞳を測定することができ、画像処理ソフトウェア57は、該瞳の結果寸法(resulting size)を求めることができる。瞳の寸法は、種々の照明状態に対する瞳の反応を求めるために瞳を測定している間にターゲット36を見るために使用される照明と関係付けられることができる。
眼18の波面測定は、眼18が外部ターゲット70又は内部ターゲット36を知覚したときに実行することができる。眼科装置10の1つのモード、例えば「外部ターゲット」モードは、被験者の視覚を、可動レンズアセンブリ28を介して、眼科装置10から外部に所定の距離だけ離隔した位置、例えば凡そ16フィート(4.8m)離隔した位置に配置された外部ターゲット70に向ける。可動レンズアセンブリ28は、被験者が外部ターゲット70を適切に眺めることができるように被験者の視覚(視力)を補正(矯正)するのに好適な光学要素を含んで構成することも可能である。例えば、可動レンズアセンブリ28は、球面収差、非点収差、及びコマ収差を補正するための光学系を含むことができる。この外部ターゲットモードのために、経路切換器34は、眼球18が視覚光学系12を介して外部ターゲット70を眺めることができるように可視光路16の視野から外に回動(枢動)又は運動する。また、眼科装置10は、他のモード、例えば被験者が内部ターゲット36を眺めるための「内部ターゲット」モードを提供することができる。内部ターゲットモードでは、経路切換器34は、視覚光路16に交差(介入)して可視光路16(の視覚)を内部ターゲット36に向けるように、患者の視野内に回動(枢動)又は運動される。内部ターゲットモードは、例えば外部ターゲットまでの16フィートの距離のための十分な広さを有しない狭い部屋に(おいての使用に)有用である。従って、多くの実施例では、視覚光学系12は、外部ターゲット70及び/又は内部ターゲット36を利用可能に構成することができる。
図1−Aは、視覚光学系12の右側可視光路16及びその関連光学要素を示す。図1−Aは、更に、経路切換器34が、視覚光学系12内の、可動レンズアセンブリ28と視覚光学系12の開口部33との間に配置されている様子も示している。経路切換器34は、例えば当該経路切換器34の枢動、回動又は摺動によって可視光路16の内外に移動することができる。幾つかの実施例では、可視光路16の中に移動する場合、経路切換器34は、患者の視覚を一対の内部定置ターゲット36に向けなおす(転ずる)。2つのセットの内部ターゲットが、視覚光学系12に組み込まれ、そのうち、一方のセットがシミュレートされた読取距離(reading distance)に(1つの)像を生成し、他方のセットが相対的により遠くに距離に(1つの像を)生成するのが好ましい。幾つかの実施例では、経路切換器34及びターゲット36は、三位置レバー73(図3)によって作動される。第1位置では、経路切換器34は、被験者が眼科装置10の後部の外側にある外部ターゲットを見ることができるように上方に位置する。第2位置では、経路切換器34は下方に移動され、1つのターゲット又はターゲットセット36が12インチ(30.48mm)での読取りのために、ターゲット位置レンズ38までの所定の距離に表示される。第3位置では、経路切換器34は、更に降下され、第2ターゲット又はターゲットセットが所定の知覚距離、例えば凡そ16フィート(4.8m)に表示される。可視光路16の外に回転された経路切換器34によって、患者は、視覚光学系12を介して、比較的遠距離に位置される実物のターゲット70を見ることができる。幾つかの実施例では、コンピュータ制御アクチュエータによって、経路切換器34を位置調整して、所望のターゲット又はターゲットセットを患者に表示することができる。そのようなアクチュエータは、コンピュータ51で実行されるソフトウェア、例えばターゲット制御モジュール65を介して制御することができる。幾つかの実施例では、内部ターゲット(複数)間の距離は、両眼視覚光学システムを介して第1内部ターゲットと第2内部ターゲットを眺める際の眼調節をシミュレートするために、手動で又は制御機構を介して調節可能に構成することができる。例えば、ターゲット制御モジュール65は、所望の眼調節を引き起こすよう第1内部ターゲットと第2内部ターゲットとの間の距離を制御するよう構成されることができる。
他の実施例では、経路切換器34は、2つの眼によって共有される視野にただ1つのターゲット(シングルターゲット)を生成するために使用することができる。シングルターゲットが使用される場合、1又は2以上のプリズム49を、視覚光学系12内の、眼18とビームスプリッタ20との間の可視光路16上で位置調整し、近距離ターゲット及び/又は遠距離ターゲットのための輻輳角をシミュレートする距離において個々の眼からの像を集束する(集める)(converge)ことができる。可視光路16をフレキシブルに構成することにより、患者は、測定される焦点(フォーカス)のための前補正後に、ターゲットを見ることが可能になる。眼科装置10は、OD又はMDプロトコル、近距離(near)対遠距離(far)、カブリ(fogging)対内部フォーカシング、前補正又は無補正、及び眼18の測定中に使用するために望ましくあり得るその他の組合せを含むことができる。
患者の左右の眼の測定は、患者が視覚光学系12を用いて内部又は外部ターゲットを眺めている間に、実行することができる。XYZセンサステージ46は、波面センサアセンブリ14が所望の眼の波面測定(結果)を得ることができるように、波面センサアセンブリ14を位置調整する。或る1つの位置では、例えば、XYZセンサステージ46は、波面センサアセンブリ14が右眼にアライメントされ、右眼の(1つの)波面測定(結果)を得ることができるように、波面センサアセンブリ14を位置調整する。XYZセンサステージ46は、波面センサアセンブリ14が左眼にアライメントされ、左眼の(1つの)波面測定(結果)を得ることができるように、波面センサアセンブリ14を別の位置に移動することができる。波面センサステージ46が、波面センサアセンブリ14の3次元的運動を可能にすることにより、波面センサアセンブリ14は、光軸22上において、左眼又は右眼と波面光路56とを整列することが可能になる。更に、センサステージ46は、波面センサアセンブリ14を、一方の眼から他方の眼に移動させる。波面センサステージ46の位置を制御するためにコンピュータ51が使用される場合、眼球位置モジュール61を用いることにより、波面センサアセンブリ14に対する眼18の位置を分析し、波面センサステージ46を移動するための情報を生成して、波面センサアセンブリ14と個々の眼18の光学中心をアライメントすることができる。
図1−Aにより、患者が視覚光学系12を介して(1つの)ターゲットを眺めているとき、可動レンズアセンブリ28中の光学要素(例えば1つのレンズ又はレンズセット)は、眼の球面収差補正を可能にする可視光路16に沿った(1つの)位置に移動することができる。反転プリズム26は、患者がターゲットを適正な配向で見ることができるように、ターゲットの像を上下左右反転する。可動レンズアセンブリ28は、更に、複数のレンズ及びその他の光学要素を含むことができる。例えば、可動レンズアセンブリ28は、球面収差及び非点収差の両者を補正可能にするため、2つの可動及び回動シリンダ(円柱)レンズを含むことができる。可動レンズアセンブリ28は、例えばコマ収差の補正のために主光軸32から軸外れの位置に配置される球面レンズ(不図示)のような、複数の屈折性光学要素又は他の高次の収差を同時に補正可能なその他の光学系を含むことができる。大多数の患者に対しては、波面測定の実行中、患者が外部ターゲット70及び/又は内部ターゲット36に十分に(視線を)集中することができるためには、球面(収差)補正で十分である。
一実施例では、眼科装置10は、光学系及びステージ46(図2)を位置調整するための6個のモータを含む。6個のモータを使用するこの実施例では、一対のモータ(不図示)が、可動レンズアセンブリ28、28’(図4−B)のレンズキャリッジ72、72’を運動させることができ、瞳距離モータ(74)(図4−B)が瞳距離を制御するために反転プリズム26、26’を回動し、3つのモータ(不図示)がXYZステージ46の運動を3次元で制御する。他の一実施例では、更に、4つの付加的モータを使用して、非点収差を補正するために光学要素(複数)を運動させることができる。眼科装置10は、可動レンズアセンブリ28の光学要素、XYZステージ46及び/又はターゲット36の位置調整のためのフィードバックを生成するための複数のセンサを含むことも可能である。
図1−Aにより、幾つかの実施例では、眼科装置10は、眼科装置10の機能を制御しかつ波面測定データを分析するためのソフトウェアを含んで構成可能なコンピュータ51を含むことができる。コンピュータ51は、例えば波面像、光学系、ステージ位置、画像処理内部及び外部ターゲット、眼球位置、波面測定、照明、画像モニタリングに関するデータ、信号及び情報、及び波面測定(結果)を得るためのプロセスに関連し又は制御するその他のデータを送受信するため、波面アセンブリ14及び視覚光学系12とデータ通信する。
コンピュータ51は、任意の適切なデータプロセッサ制御装置、例えばペンティアム(登録商標)系パーソナルコンピュータであり得るが、レンズ及びステージ位置調整モータの運動制御、ターゲット光源40及び眼球光源58のオン/オフ及び強度制御を実行する1又は2以上の電子制御回路基板及びソフトウェアモジュール、及び眼科装置全体にわたって配設されるセンサを含むことができる。一実施例では、眼科装置10は、光学系位置調整モジュール53、ステージ位置調整モジュール55、画像処理モジュール57、波面測定モジュール59、眼球位置調整モジュール61、光制御モジュール63、ターゲットモジュール65、及び画像モニタリングモジュール67を含むコンピュータ51を含む。他の実施例では、コンピュータ51は、より少ない又は付加的なモジュールを有することができる。コンピュータ51は、更に、キーボード、マウス、タッチパッド、ジョイスティック、ペン入力パッド、カメラ、ビデオカメラ等のような1又は2以上の入力装置を有することができる。また、コンピュータ51は、ビジュアルディスプレイ及びオーディオ出力のような出力装置を有することも可能である。幾つかの実施例では、ビジュアルディスプレイは、コンピュータディスプレイ又は制御システム500(図5)のディスプレイ81であり得る。
更に、コンピュータ51は、ランダムアクセスメモリ(RAM)、電気的消去可能書込可能読み出し専用メモリ(EEPROM)、書込可能読み出し専用メモリ(PROM)、消去可能書込可能読み出し専用メモリ(EPROM)、ハードディスク、フロッピィディスク、レーザディスクプレイヤ、デジタルビデオ装置ないしDVD、コンパクトディスク、ビデオテープ、オーディオテープ、磁気記録トラック、電子ネットワークのようなアドレス(指定)可能記憶媒体又はコンピュータアクセス可能媒体、及び例えばプログラム及びデータのような電子的コンテンツの伝達又は記憶のためのその他の装置を含むことができる。一実施例では、コンピュータ51は、ネットワークインターフェースカード、モデム、又は通信ネットワークに接続しかつ眼科装置10から他の装置への電子的情報の供給に適するその他のネットワーク接続装置のようなネットワーク通信装置を備える。更に、コンピュータ51では、リナックス、ユニックス、マイクロソフトウィンドウズ(登録商標)、アップルMacOS、IBM OS/2又はその他のオペレーティングシシテムのような適切なオペレーティングシステムが動作することができる。適切なオペレーティングシステムは、ネットワークを介して通過されるすべての送受信メッセージトラフィックを処理する通信プロトコルインプリメンテーションを含むことができる。他の一実施例では、オペレーティングシステムはコンピュータのタイプに応じて異なり得るが、オペレーティングシステムは、ネットワークとの通信リンクを確立する適切な通信プロトコルを生成し続ける。
コンピュータ51に含まれるモジュールは、1又は2以上のスブシステム又は(サブ)モジュールを含むことができる。当業者であれば理解できるように、そのようなモジュールは、何れも、ハードウェア又はソフトウェアにより実現することができ、また、種々のサブルーチン、プロシージャ、定義(definitional)ステートメント、及びある種のタスクを実行するマクロを含むことができる。従って、個々のモジュールの呼称は、眼科装置10におけるコンピュータ51の機能を説明するために便宜上使用されている。ソフトウェア実現の場合は、モジュールはすべて典型的には別々にコンパイルされ、単一の実行可能プログラムにリンクされる。個々のモジュールによって経られるプロセス(複数)は、他のモジュールの1つに任意に再配分され、単一モジュールにおいて一緒に結合され、又は例えば共用可能ダイナミックリンクライブラリにおいて利用可能にされることができる。これらのモジュールは、アドレス(指定)可能記憶媒体に常駐するよう構成すること、及び1又は2以上のプロセスにおいて動作するよう構成することができる。従って、1つのモジュールが、例えば、他のサブシステム(複数)、ソフトウェアコンポーネント(複数)、オブジェクト指向ソフトウェアコンポーネント(複数)、クラスコンポーネント(複数)及びタスクコンポーネント(複数)のようなコンポーネント(複数)、プロセス(複数)、関数(複数)、属性(複数)、プロシージャ(複数)、サブルーチン(複数)、プログラムコードのセグメント(複数)、ドライバ(複数)、ファームウェア、マイクロコード、回路、データ、データベース(複数)、データ構造(複数)、ラベル(複数)、配列(複数)、及び変数(複数)を含むことができる。
コンピュータ51の種々のコンポーネントは、例えばプロセス間通信、遠隔(リモート)プロシージャコール、分散型オブジェクトインターフェース、及びその他の多くのプログラムインターフェースのようなメカニズムを介して、互いに及び他の複数のコンポーネントと通信することができる。更に、コンポーネント(複数)、モジュール(複数)、サブシステム(複数)及びデータベース(複数)において提供される機能は、組合せてより少ないコンポーネント、モジュール、サブシステム又はデータベースにすること、又は更に分離して付加的なコンポーネント、モジュール、サブシステム又はデータベースを生成することもできる。更に、コンポーネント、モジュール、サブシステム又はデータベースは、1又は2以上のコンピュータ51で動作するよう実現することも可能である。
図5は、眼科装置10のための制御システム500のハウジングの一例を示す。制御システム500は、波面センサアセンブリ14を位置調整するため、コンピュータ51と相互作用するために使用されるが、この場合、制御システム500を用いた位置調整は、ビデオゲームのそれに類似するコンピュータ操舵(フライバイワイヤ)ジョイスティック80を介して実行される。ジョイスティック80は、3つのモータを制御することにより、左右の眼の間での波面センサ14の運動に必要な3つの自由度を生成し、かつ波面センサ14を個々の眼18とアライメントすることができる。図5に示されているように、眼科装置10は、患者及び検者のエルゴノミックスを考慮して設計することができるが、これは、患者をリラックスさせることに貢献することができる。また、眼科装置10は、例えば瞳及び/又は波面測定の結果の表示に使用可能なディスプレイスクリーン81を有することができる。他の実施例では、波面センサ(例えば図2)は、コンピュータ化されたマイクロプロセッサ又は電子制御システム、例えばコンピュータ51を用いて位置調整することができる。
図1−Aに示されるように、波面センサアセンブリ14は、1又は2以上の変調装置42(これは変調要素ということもある。)を含むことができる。変調装置42は、当該変調要素42を貫通通過する光から自己像(self-image)面ないしタルボ(Talbot)面に自己像を生成する周期的な特徴を有することができる。眼18の収差、とりわけ角膜及び水晶体における収差は、変調装置42の自己像にコード化され、センサ44(図1−A)によって記録される。センサ44は、例えば、デジタルカメラで使用されるものと同様のCMOSセンサであり得る。次に、記録された像の収差情報は、コンピュータ51によって実行されるアルゴリズムに基づいたフーリエ変換によって抽出される。多くの実施例では、変調装置42は、1又は2以上の回折格子を含むことができ、又は変調装置42は、光が適切に貫通通過する1つの素子に構成されることも可能である。幾つかの実施例では、変調装置42は、精細ピッチ2次元繰返しx−yパターンを含むことができる。
パターン42の一例を図6−A〜図6−Cに示す。図6−Aは、一実施例に基づく、波面光路56に直交するよう当該波面光路56において位置調整可能な変調装置42を概略的に示す。図6−Bは、該変調装置42の側面図を示す。変調装置42は、眼18から放射され、波面光路56を介して変調装置42に伝播する光から生成された波面を変調する周期的特徴を含む。図6−Cは、図6−Aの細部Aの詳細図である。一実施例では、変調装置の寸法(図6−AのAとB)は、凡そ1cm×1cmであるが、カメラの画像エリアの寸法に、各辺の凡そ2mmのバッファエリアを加えたものに相当する。変調された波面は、波面光路56に沿って数ミリメートル伝播し、そこで、周期的特徴を有する(変調)要素の(1つの)像が自己結像されかつセンサ44(図1−A)によって検出される。自己像面ないしタルボ面で像を検出するセンサ44の例は、米国特許出願第10/014,037号、表題「波面測定のためのシステム及び方法(Systems and Methods for Wavefront Measurement)」、出願日2001年12月10日、米国特許出願第10/314,906号、表題「波面測定のためのシステム及び方法(Systems and Methods for Wavefront Measurement)」、出願日2002年12月9日に開示されている。これら出願は引用を以って本書に繰り込みそれらの全内容がここに記載されているものとする。
波面センサアセンブリ14は、例えば、4mmの瞳にわたって300×300より多い測定点による超高解像度波面情報を生成することができる。通常のゼルニケモード記述(Zernike mode description)を遥かに凌駕しかつ比較的スムーズなフェーズエラー(位相誤差)に好適な情報を得ることができる。波面センサアセンブリ14は、好ましくは、瞳内部で比較的シャープなフェーズエラーの測定に十分な解像度を提供し、かつ先行する外科的処置によって生起し得る高周波波面エラーを処理することができる。波面データを収集し分析した後、波面分析結果は、装置付近のスクリーン、例えばジョイスティック制御システム500(図5)のスクリーン81、又はコンピュータディスプレイ装置に表示することも可能である。また、結果は、バーコードフォーマットにコード化したり、インターネットのような電子的手段を介して他の位置に伝送したりすることも可能である。波面又はゼルニケデータは、例えば患者ID、左眼/右眼のような他の情報と共に、バーコードにコード化することも可能であり、ラボに伝送して波面補正要素を含み得るレンズの製造に使用することも可能である。
眼科装置10を用いた検査中、患者の最初の1回のアライメントのみを伴う1つのセッティングにおいて、一連の短時間露出が実行されるのが好ましい。得られた複数の画像は、例えば眼からの不所望の反射によって生成される高周波ノイズの結果として生じ得るアーチファクトが予め排除されてから処理されるのが好ましい。このプロセス中、患者は、ほんの数分間ただ椅子に座っているだけでよく、結果は、ものの1分もかからないうちに検者に表示することも可能である。測定は迅速に終了するので、眼球検査中、患者を強度に拘束する必要はない。患者の快適さの程度は、眼球光源58として不可視の近赤外線レーザを使用することによって高められる。一実施例では、近赤外線レーザは、凡そ850nmの波長を有し得る。波面センサアセンブリ14による光学的測定は効率がよいので、網膜を照明するために、本質的に低パワー(出力)の光ビームを使用することができる。このパワー(出力)は、従来の他の波面装置と比べると、凡そ4〜7のファクタだけ低下することができる。赤外光とパワーレベルのより低い照明とを組合せて使用することにより、患者の快適さと安全性は向上する。
本発明の多くの実施例では、高次の収差を極めて正確に測定する能力を導入するために、正弦波状(sinusoidal)強度変調パターンを有する光学変調要素を使用することができる。正弦波状強度変調は、正弦波状タルボ像を生成するが、例えばキャリア(搬送波)信号は正弦波状である。この方法は、所望の収差情報をフーリエ変換によって正確に抽出できる上、光学要素回折パターンと高次収差との間の高次の干渉によって引き起こされる情報の喪失が殆どない、という特性を有する。一般的な光学用語でいうと、この方法は、任意の非正弦波状強度パターン中のシャープなエッジによって生成される「リンギング(ringing)」を除去する;従って、高次情報は、高次のローブ(lobes)へと「回折的に消え去る(diffract away)」ことはない。原理的には、正弦波状光学要素は、補正(矯正)装置によって20/20視力を回復するのに必要とされ得る極高次収差情報の測定を可能にする。
この方法を実行するために、純粋な正弦波透過(伝達)要素の良好な近似を使用することができる。適切に構成された位相変調要素は、所望の強度変調を生成するために使用することが可能である。強度変調のために、好ましい透過(伝達)関数は、図7に示すような連続的(グレースケール)2次元正弦関数を含む。この2次元パターンの透過τ(x,y)は、以下の式で表すことができる:
Figure 2007511278
ここに、x及びyはパターン上における位置を定義する座標であり、Pは正弦波変調の周期に相当する。
透過型回折格子を製造するための現在の技術は、グレースケール透過関数を生成する能力が限定されていることがあり、実現可能な透過関数は所与の離散的エリアにおける透過が0又は1のいずれかである2値パターンに限定されることがある。この理由のため、好ましくは理想正弦関数を適切に近似する2値透過関数を採用することができる。
一実施例によれば、好ましい2値近似は、連続正弦関数のスレショルディング(2つの値0又は1への切り上げ/切り捨て)を行い、図8に示されているような回転されたチェッカーボードパターン(即ちダイヤモンド形状からなる格子)のようなチェッカーボードパターンに類似するパターンを生成することによって得ることができる。この2次元パターンの透過τ(x,y)は、例えば、以下の式で表される:
Figure 2007511278
連続及び2値周期パターン(複数)が無収差波面によって変調され、センサ面に数値的に伝播され、そして残留位相(フェーズ)誤差(エラー)に関する分析が実行されるコンピュータモデリングが実行された。2値周期パターンの残留位相誤差は、連続正弦波状周期要素の残留位相誤差に実質的に(ほぼ)マッチしていた。また、この2つの周期要素のフーリエ変換の試験は、周期パターンの基本周波数の近傍におけるエラーが低減又は最小化されていることが示された。周期要素は、空間周波数スペクトルが理想周期パターンの基本空間周波数の近傍において維持されるので有利である。基本(周波数)の近傍のスペクトルは、2値周期要素の高調波成分によって損なわれない。回転されたチェッカーボードパターンは、連続正弦波状要素の実現可能かつ正確な近似であり、費用がかさまない製造技術を用いて作成することができる。
多くの実施例では、その他のタイプのレチクル(reticles)、パターン、又は周期要素も使用することができる。連続2次元正弦波パターンに近似する又はしない正弦波又は非正弦波パターンを生成するその他の方法も同様に使用することができる。
図9−A〜図9−Dは、眼科装置10の検査に使用可能な「モデル眼(模型眼球)」100を示す。モデル眼100は、例えば鉱油のような液体又は溶液を含有することができるチャンバ112を有するアセンブリ110を含む。好ましくは、チャンバ内の液体又は溶液又はその他の成分は、明確に定義された既知の屈折率を有する。チャンバ112はアパーチャ114を有し、アパーチャ114の前方には、レンズ116、例えばハードコンタクトレンズを配して、チャンバ112の一方の端部を閉鎖することができる。チャンバ112には、イメージング面を有する回動イメージングディスク118が配される。イメージングディスク118は、種々の適切な材料、例えばアルミニウムから作成することができる。イメージングディスクの(表面)形状は、平面状又は球面状であり得る。モデル眼100の光路は、レンズ116からイメージングディスク118の回動可能面まで延在し、モデル眼100に供給される光はこの光路に沿って進行する。回動可能イメージングディスク118は、軸受ブロック124の軸受122によって所定位置に保持されうる回動可能シャフト120に配設される。モデル眼100は、回動可能シャフト120をチャンバ112の部分を密閉し、流動体がチャンバ112から漏出するのを阻止するシール部材117を含むことも可能である。回動可能シャフト120は、シャフトを貫通する縦軸の周りで、該シャフト120を回転的に駆動するモータ126に結合可能である。イメージングディスク118をレンズ116に対して位置調整するためにシャフト120及びシャフトに取り付けられたイメージングディスク118の回動面を移動することができるように、軸受ブロック124に配されたシャフト120を、マイクロメータ(微動)ステージ128に配することも可能である。
モデル眼では、レンズ116は、角膜に相当する。イメージングディスクの回動可能面は網膜に相当する。モデル眼100は、眼科装置10を用いて人眼の測定を実行する際に人眼18が位置し得る位置と同等の位置に配置することができる。とりわけ、眼科装置10からの光は、モデル眼100に向けられ、レンズ116及びアパーチャ114を貫通通過し、モデル眼100の内から外に向かって反射され、眼科診断装置10に引き返す。より詳しくは、モデル眼100のレンズ116を貫通通過した光は好ましくはイメージングディスク118の回動可能面に入射する。この光は、好ましくは、反射されてチャンバ112の中からレンズ116を介して引き返し、光学波面アセンブリ14(図1−A)のセンサ44に到達する。イメージングディスク118のイメージング面の回動は、イメージングディスク118の表面のスクラッチ傷のような特徴やレーザスペックル(小斑点)の出現を排除する。これらは、排除されなければ、センサ44(図1−A)に結像されて、波面の特徴付けに使用される計算を妨害し得るものである。回動は、ぼけ(blurring)を導入し、このような混乱を引き起こす特徴の細部を消し去る。チャンバ112内の流動体は、好ましくは、モデル眼100の光学的特性の計算を支援するために、既知の屈折率を有する。この流動体は、反射を低減することもできる。マイクロメータ128は、レンズ116とイメージングディスク118のイメージング面とを所望の距離離隔するよう位置調整するように、調整可能に構成することも可能である。好ましくは、マイクロメータ128は、レンズ116を貫通伝播する光ビームがイメージングディスク118の回動反射面上に形成される一点に実質的に合焦(集光)されるように、レンズ116と回動反射面との間の距離を設定する。
モデル眼100は、有利には、可動かつ回動可能な模擬網膜背面焦点距離を有する。モータ126は、照明ビームの散乱のための平均面(averaging surface)として作動するイメージングディスク118を回転する。モータ速度とカメラセンサ44の積分(集積)時間に応じて、この(平均)面は、実質的にランベルト源[lambertian sourceないしランベルト面]として現れることができる。
多くの実施例では、流動体チャンバ112は、眼球18の組成溶液にほぼマッチする溶液によって充填することができる。また、付加的な検査のために、レンズ116を除去して、他のレンズを代わりに配置することも可能である。モデル眼、及び眼球18内を伝播する光をシミュレートする方法の他の実施例も採用することができる。
本発明の他の実施例では、1つのプロセスは、波面測定システムによって生成される画像のリアルタイム又は準リアルタイム分析を使用して、該画像中の問題を同定(特定)し、位置情報の閉ループフィードバックをXYZステージに供給してイメージフレーム内で瞳の中心合せを行い、Zフォーカスを設定し、取り込んだ画像又は画像セットを分析して異常値(outlier)を求めた後平均化を行う。図14のフローチャートは、眼科装置10のような波面測定システムによって生成される画像をモニタリングするための方法(複数)を示す。これらの方法は、画像をモニタリングするための単一の方法として、又は1又は2以上の別々の方法として実施・使用することができる。一実施例では、波面の計算に使用されるべき画像を決定する方法は、コンピュータ51(図1−A)の画像モニタリングモジュール67において実行される。
図14では、状態(ステップ)1405において、プロセスは、処理のための入力として画像(複数)を受け取る。例えば、この画像(複数)は、波面センサアセンブリ14(図1−A)又は例えばコンピュータ記録媒体(例えばテープ、CD、DVD、その他の光学ディスク、磁気ディスク、又はRAM)に記録された画像(複数)等の他のソースからコンピュータ51(図1−A)に供給することができる。状態1410においては、プロセスは、画像(複数)のリアルタイム又は準リアルタイム統計モニタリングを実行し、画像中における瞳の位置、瞳径、及び画像の質を求める。統計モニタリングプロセスは、センサの不正確なXYZ位置調整、眼球運動、涙膜、瞬き、まつげ、グリント(光輝)、アーチファクト、及び偽(仮性)又は不制御調節によって引き起こされる過誤結果を検出するための種々の画像処理技術を含む。
一実施例では、統計的モニタリング中に、プロセスは、ヒストグラム法を用いて(1つの)波面画像をセグメント化して、該画像のバックグラウンド(背景)から瞳を同定する。プロセスは、画像の特性、例えば瞳の直径、画像フレーム内における瞳の位置、及び画像が飽和スポット、ブライトスポット又はグリント(波面分析に有害であり得る不所望の画像特性)であるかを表す値を記憶する。状態1415においては、プロセスは、状態1410の生成結果を評価して、画像が有効画像又は無効画像であるかを決定する。例えば、画像が飽和スポット、ブライトリターン又はグリントを含む場合、又はその他の態様で画像の質が低い場合、画像は無効画像であり得る。画像が無効画像である場合、プロセスは、状態1420に進み、その画像を分析から破棄(除外)する。状態1420から、プロセスは、状態1410に進み、上述のように続行する。
状態1415において画像が有効であるか否かをプロセスが評価した後、プロセスは、状態1430に進み、瞳の位置及び画像のフォーカス(合焦状態ないしピント)をチェックする。一実施例では、プロセスは、画像内の予め定められた所望の瞳位置(通常はその画像の中心又はその近傍)と、評価されるべき画像の実際の瞳位置(例えば状態1410において求められる瞳のXY座標)とを対比することによって瞳位置を求める。画像内における瞳の実際位置及び画像内における瞳の所望位置を表す値が所定量だけずれていると、プロセスは、状態1425に進み、引き続く画像(複数)において瞳が画像「フレーム」の中心のより近くに又はその中心に存在するように、ステージ46(図1−A)に新たなX及び/又はY位置に移動するよう命令する。プロセスは、ステージの新たな位置に次の画像を生成し、画像を本書に記載したように処理する。画像内の瞳の位置が画像の中心から過度にずれていて、その結果、この瞳が波面測定(結果)を求めるためには使用不能である場合(例えば瞳が画像内に完全には存在しない場合)、ステージは、状態1425において、再位置調整され、この画像は破棄され、プロセスは状態1410に進み、そこで入力されてくる画像(複数)のモニタリングを続行する。画像内における瞳の位置が、当該画像が使用不能とされる量ほどずれていない場合、プロセスは、必要に応じ、状態1425においてステージを再位置調整することができる。この画像は破棄されず、プロセスは状態1435に進む。
一実施例では、プロセスは、画像モニタリングモジュール63(図1−A)において実行されるアルゴリズムを介して画像のフォーカス(合焦状態ないしピント)を制御する。プロセスは、種々の画像処理技術を使用して、例えば画像中の高周波空間成分を分析して、結像された瞳のシャープネスを求めることにより、第1画像の焦点が合焦状態にあるか(ピントが合っているか)否かをチェックすることによって、フォーカス(合焦状態)を制御する。第1画像が合焦状態にない(ピントが合っていない)場合、プロセスは、波面センサステージ46(図2)のZ軸を少量だけ1つの方向に移動して新たなZ位置を生成する。この新たなZ位置に第2画像が生成されるが、プロセスは、この画像を分析して、第2画像のシャープネスがより大きくなったか又はより小さくなったかを求める。第2画像のシャープネスがより大きい場合、ステージ46は従前と同じ方向に運動し続け、引き続く画像(複数)が、シャープネスに関し、1つの画像のシャープネスが所定のシャープネス閾値を通過するまで分析される。ステージ運動後に第2画像のシャープネスより小さくなるか、非合焦状態になる(ピントが外れる)場合、プロセスは、ステージの方向を変化させ、ステージはこの新たな方向に移動し、その間、次の画像(複数)が生成される。ステージは、次の画像(複数)のピントが合うまで、例えばシャープネス閾値を通過するまで移動し続ける。代替的に、波面センサステージ46の2つのZ軸位置に2つの画像を生成した後、これらの画像を対比して何れがよりシャープであるかを求めることも可能である。この対比に続いて、プロセスは、よりシャープな画像の方向にステージを移動している間に、別の画像(複数)を生成するが、これは、プロセスが、これら画像がフォーカス又はシャープネス閾値を通過することを確認するまで行なわれる。最初のステージ運動の後、画像のピント外れ(ピンぼけ)が一層悪化する場合、ステージは方向を変更し、次の画像(複数)のピントが合うまで運動し続ける。正確な波面測定の計算に画像を使用できないほどの所定量だけ画像のピントが外れている場合、この画像は破棄され、プロセスは状態1410に進み、上述のように続行する。
状態1430において有効画像のフォーカス(ピント)が許容されると、プロセスは、状態1435に進み、そこで1つの瞳の1又は2以上の画像、例えば一連の画像が、「画像スタック」としての、画像記憶バッファに記憶される。画像スタックは、眼の連続的な一連の画像であることも可能であるが、例えば無効画像が所々存在することによる眼の不連続的な一連の画像であることも可能である。状態1440では、プロセスは、患者が瞬き(blink)した後所定期間の間に生成された画像(複数)を除去することによって、患者の瞬きを補償する。この補償は、波面測定に使用される画像の品質を改善することができる。患者が瞬きした時点の検出及び瞬きを補償するための適切な画像収集タイミングの決定は、上記プロセスの出力に基づいて達成することができる。状態1440では、プロセスは、(1つの)瞬き後の同じ時点(所定時間経過時点)から画像(複数)を取り込むための瞬き検出タイミングを実行する。患者が瞬きすると、画像に品質は悪くなる。なぜなら、瞳が目蓋によって部分的に又は完全に遮蔽され、その結果、画像は、例えば、上述のプロセスによって無効と判断されるからである。瞬き後のあまりにも短い時点又はあまりにも長い時点に撮像される瞳の波面画像にも、エラーは存在し得る。波面測定のエラーの原因となるものの一例としては、眼の涙膜があるが、これは典型的には瞬き後時間を経るに従って減弱し干上がる。瞬き後適切な遅延時間経過後に画像が撮像される場合、眼は安定化される機会を得る。この遅延時間は、涙膜が乾燥又は崩壊し始めるほどに長いものであるべきではない。瞬きの補償の間、プロセスは、眼が瞬きする時点間の経過時間をモニタし、眼が安定した後であってかつ干上がる前に生成された画像(複数)を選択する。
一実施例では、眼が瞬きする間に目蓋によって少なくとも部分的に遮蔽される瞳を表す画像を同定(特定)するために、一連の波面画像が分析される。この分析は、有効画像を求めるために実行される分析の一部とすることも可能であり、また、別の1つの適切な画像分析処理によって実行することも可能である。次に、この一連の波面画像は、眼が瞬きを完結した後に生成され、その結果非遮蔽瞳を表す別の1つの画像を同定(特定)するために、更に分析される。幾つかの実施例では、同定(特定)された画像は、一連の画像中の、少なくとも部分的に遮蔽された瞳を表す画像に続いて生成される非遮蔽瞳を表す第1(最初の)画像である。非遮蔽瞳を表すこの画像(例えば有効画像)、及び/又はこの第1画像に続いて生成される有効画像を記憶し、後続の処理(例えば画像間での過剰運動の決定、画像の後分析検定(post-analysis qualification of images)、画像の平均化、及び波面測定の決定)のために使用することができる。
幾つかの実施例では、プロセスは、瞬き後の予め設定された時間間隔に基づいて更なる処理のために記憶されるべき画像を決定する。例えば、眼が瞬きしている間に撮影された一連の波面画像中に非遮蔽瞳を表す有効画像を同定(特定)した後に、タイマをスタートすることができ、この同定(特定)された画像に続いて生成される1又は2以上の画像が、瞬きが行われた後所定時間にバッファに記憶される。例えば、時間間隔は、例えば10秒未満とすることができ、又は0.10−0.20、0.20−0.30、0.30−0.40、0.40−0.50、0.50−0.60、0.60−0.70、0.70−0.80、0.80−0.90、0.90−1.00、1.00−1.10、1.10−1.20、1.20−1.30、1.30−1.40、1.40−1.50、1.50−1.60、1.60−1.70、1.70−1.80、1.80−1.90、1.90−2.00、2.00−2.10、2.10−2.20、2.20−2.30、2.30−2.40、2.40−2.50、2.50−2.60、2.60−2.70、2.70−2.80、2.80−2.90、2.90−3.00、3.00−3.10、3.10−3.20、3.20−3.30、3.30−3.40、3.04[3.40]−3.50、3.50−3.60、3.60−3.70、3.70−3.80、3.80−3.90、3.90−4.00(単位:秒)に等しいか、又はそれらの間とすることができ、又は4.00秒よりも長くすることもできる。好ましい一実施例では、時間間隔は、凡そ1.00秒である。このプロセスの実行によって、患者は波面測定装置を覗き込みつつ普段どおりに瞬きすることができるが、データを汚染する可能性のある瞬き中、又はその直後に画像を取り込む可能性は排除される。従って、分析のために同定(特定)される画像は、常に、瞬き後のほぼ同じ時点からのものである。タイミング基準に適合しない画像は、この分析から破棄することができる。代替的一実施例では、プロセスは、1つの画像が非遮蔽瞳を表すことを求めた(確認した)後に生成される画像の数に基づいて、更なる処理のために記憶されるべき画像を決定する。
状態1445に進むと、プロセスは、連続する画像中の瞳の運動が所定の基準を超えているか否かを決定するために画像(複数)を分析する。瞳は衝動性運動又は他の眼球運動に応じて運動し得る。過度の瞳運動は波面測定を損なうこともある。一実施例では、プロセスは、関連画像(複数)の記憶されたスタックの個々の画像における瞳の記憶されたXY位置を分析することにより瞳の運動の量を求め、その運動が基準を超えているか否かを求める。状態1445においてプロセスが瞳の過大な運動の存在を求める(確認する)と、プロセスは状態1450に進み、そこで、その画像は分析から破棄され、関連画像のスタック中の次の画像が分析される。状態1445において、プロセスが、瞳の運動が過大でないことを求める(確認する)と、その画像は、更なる処理(眼球の収差(複数)の波面測定を求めることを含む)のために使用することができる。そして、プロセスは、状態1455に進む。
状態1455では、プロセスは、更なる処理のために使用されるべき画像(複数)を画像セット又はスタックとしてのバッファに記憶するが、これらの画像は、「平均」画像を生成するために結合されるべきか否かを決定するために更に評価される。プロセスは、続いて、平均化画像から1つの波面測定(結果)を求める。画像ノイズ、例えばカメラノイズの除去に役立つよう複数の画像が平均化される。状態1455において、プロセスは、画像セット中の画像(複数)が、状態1470において平均化される前に、「同等の」画像(複数)であるか否かを求めるために、画像(複数)の更なる分析を実行する。例えば、プロセスは、瞳が円形であるか否か、又は結像された瞳中にまつ毛又は垂れ下がった目蓋のような大きな介在物が存在するか否かを決定するために、ブロブ(blob)分析を実行することができる。白内障、飛蚊症等のような画像中の不透明な異常も、画像処理技術を使用して同定(特定)することができ、次いで、これら異常を、平均化画像の生成に影響を及ぼさないようにするために、マスキング除去することができる。また、同定(特定)された異常(の存在)を検者に提示して、患者の眼に何等かの状態が存在することを検者及び患者に警告することができる。例えば、眼科装置10は、白内障の早期発見に使用することができる。この場合、白内障は、検者に表示される画像中に暗いスポットとして現れ、及び/又は白内障は、画像処理ソフトウェアにより、更なる検査を必要とする異常として同定(特定)される。
画像検定(qualification)の次に、プロセスは、状態1460に進み、そこで、1つのセット中の記憶された画像(複数)が平均化に対し適格性を有するか否かを決定する。画像が適格性を有する場合、プロセスは、状態1470に進み、そこで、画像(複数)の平均化が行われ、そして、プロセスは、結果として生じた画像を波面測定モジュール59(図1)に供給する。一実施例では、画像の平均化は、画像セット中の個々の画像の同等のピクセル(例えば同じ眼球位置に対応するピクセル)の値を加え合わせ、画像の数で除算することによって行われる。プロセスが、状態1460において、画像のセットが平均化に対して適格性を有しないことを求める(確認する)と、プロセスは、状態1465に進み、そこで、その画像スタックが更なる処理から破棄(除外)され、次いで、プロセスは、別の一連の画像を処理するために、状態1440に戻る。
状態1475において、プロセスは、平均化プロセスから得られた画像を波面測定モジュール59に供給する。状態1480では、波面測定モジュール59は、タルボ像の処理のための当業者に既知の方法、例えばホルビッツ(Horwitz)に付与された米国特許第6,781,681号、表題“System and Method for Wavefront Measurement”を用いて、波面測定(結果)を求める。
状態1485では、プロセスは、波面処理画像シーケンス相関を実行する。この場合、プロセスは、(例えば2又は3以上の画像セットからの)2又は3以上の平均画像の波面同士で対比を行い、これらの波面が互いにどの程度類似しているかを求め、先行のプロセスでは同定(特定)されなかった異常を同定(特定)する。例えば、偽(仮性)調節、涙膜、及び注視角に関連する問題は、画像シーケンス相関によって求めることができる。一実施例では、波面処理画像シーケンス相関は、複数の画像スタックの各々を波面処理を介して完全に分析し、波面(複数)又はゼルニケ多項式を対比することによって実行することができる。代替的一実施例では、波面処理画像シーケンス相関は、画像の処理を行うためのフーリエ空間ステージのような、任意の中間ステージにおいて部分的に処理された画像のシーケンスに対して実行することができる。例えば、波面データを迅速に処理して、高速フーリエ変換FFT(複数)を求めることができるが、このFFT(複数)は、波面の類似性を求めるために互いに対比することができる。2又は3以上の波面の相関をとった後、状態1490において、プロセスは、例えば、波面データにより同定(特定)された収差を補正するために、レンズ作製又は眼球手術のための使用のために波面データを供給する。
以上、本発明の特定の実施例について詳細に説明した。しかしながら、本発明を文章によって上述のように詳細に説明したが、本発明は多くの態様で実施可能であると解すべきである。上述したように、本発明の特定の特徴又は視点(アスペクト)を説明する際の特殊な用語の使用は、当該用語に関連する本発明の特徴又は視点が何れかの特定の性質を含むように限定されるように、当該用語が本書で再定義されている、ということを示唆しているものと解すべきではない。従って、本発明の範囲は、特許請求の範囲(に係る発明)及びその任意の均等(発明)に関連して解釈されるべきである。
眼科装置の一例の模式図。 眼科装置の一例の平面図。 眼科装置の一例の視覚光学系の斜視図。 眼科装置の一例の視覚光学系の他の斜視図。 眼科装置の一例の視覚光学系の一部の正面図。 眼科装置の一例の視覚光学系の一部の側面図(平面図)。 ジョイスティックコントロールシステムを有する光学装置の一例の斜視図。 波面センサの一例の変調要素において使用される2次元x−yパターンの一例。 波面センサの一例の変調要素の側面図。 波面センサの一例の変調要素において使用されるx−yパターンの一例。 連続2次元正弦関数の一例のグラフィック表示。 連続正弦関数の一例を所定の閾値で二値近似して得たパターンのグラフィック表示。 波面センサを検査するためのモデル眼の一例の側面図。 波面センサを検査するためのモデル眼の一例の側面図。 波面センサを検査するためのモデル眼の一例の底面図。 波面センサを検査するためのモデル眼の一例の正面図。 眼の瞳に入射する光軸からオフセットされた(ずらされた)光ビームの一例。 中心遮断要素を有する光学要素の一例の斜視図。 図11の光学要素が眼の瞳に入射する光ビーム内に配されている様子。 図11の光学要素を用いて生成された光ビームの一例の断面の斜視図。 波面画像処理の一例を示すフローチャート。

Claims (65)

  1. 患者の眼に関する波面分析を実行するための両眼波面測定システムであって、
    第1光路に沿って第1の眼に1つの像を供給し及び第2光路に沿って第2の眼に1つの像を供給する光学システム;及び
    前記第1光路の一部を介した第1の眼の波面測定を実行するための第1モードにおいて作動可能に構成されかつ前記第2光路の一部を介した第2の眼の波面測定を実行するための第2モードにおいて作動可能に構成されたセンサシステム
    を有することを特徴とする両眼波面測定システム。
  2. 前記第1モードにおいて前記第1の眼からの光を受光しかつ前記第2モードにおいて前記第2の眼からの光を受光するよう前記センサシステムを位置調整するステージシステムを更に有すること
    を特徴とする請求項1に記載のシステム。
  3. 前記センサシステムは、ハートマン−シャック型波面センサであること
    を特徴とする請求項1に記載のシステム。
  4. 前記センサシステムは、光線追跡波面センサであること
    を特徴とする請求項1に記載のシステム。
  5. 前記像は、前記第1の眼に指示される第1像及び前記第2の眼に指示される第2像を含むこと
    を特徴とする請求項1に記載のシステム。
  6. 前記光学システムは、
    第1内部ターゲット;
    第2内部ターゲット;及び
    前記第1内部ターゲットを前記第1光路内にかつ前記第2内部ターゲットを前記第2光路内に位置付けるための第1モードと、前記第1内部ターゲットを前記第1光路外にかつ前記第2内部ターゲットを前記第2光路外に位置付けるための第2モードとを有する経路切換器
    を含むと共に、
    前記経路切換器が前記第1モードにセットされると、前記第1及び第2光路が両眼波面測定システムの外部の位置へ延在するよう構成されること
    を特徴とする請求項1に記載のシステム。
  7. 前記第1及び第2内部ターゲットは、ステレオ像対であること
    を特徴とする請求項6に記載のシステム。
  8. 前記第1内部ターゲット及び前記第2内部ターゲットの位置は、両眼視覚光学システムを介して該第1内部ターゲット及び該第2内部ターゲットを見る際に、眼の調節を刺激するよう、調整可能であること
    を特徴とする請求項6に記載のシステム。
  9. 前記光学システムは、前記第1及び第2光路の少なくとも1つからの像を前記第1及び第2の眼の少なくとも1つに供給して該眼の輻輳調節状態を引き起こすように配設された輻輳装置を有すること
    を特徴とする請求項1に記載のシステム。
  10. 前記輻輳装置は、少なくとも1つのローアングルプリズムを含むこと
    を特徴とする請求項9に記載のシステム。
  11. 前記光学システムは、
    第1の眼における収差を調整するべく構成される複数の光学要素の第1セット;及び
    第2の眼における収差を調整するべく構成される複数の光学要素の第2セット
    を含むこと
    を特徴とする請求項1に記載のシステム。
  12. 前記収差は、球面収差を含むこと
    を特徴とする請求項11に記載のシステム。
  13. 前記収差は、非点収差を含むこと
    を特徴とする請求項11に記載のシステム。
  14. 前記収差は、コマ収差を含むこと
    を特徴とする請求項11に記載のシステム。
  15. 前記光学システムは、可動ミラー面を有する少なくとも1つの適応制御光学ミラーを有し、
    前記少なくとも1つの適応制御光学ミラーは、前記第1及び第2光路の一方に配されること、及び
    前記少なくとも1つの適応制御光学ミラーは、前記可動ミラー面を調整することにより、収差を補正するよう構成されること
    を特徴とする請求項11に記載のシステム。
  16. 前記光学システムは、更に、内部ターゲット(複数)を照明するためのターゲット光システムを有すること
    を特徴とする請求項1に記載のシステム。
  17. 前記ターゲット光システムからの照明(光)の強度は、制御的に可変であること
    を特徴とする請求項16に記載のシステム。
  18. 前記ターゲット光システムは、複数の異なる照明状態をシミュレートする照明を生成すること
    を特徴とする請求項16に記載のシステム。
  19. 前記複数の異なる照明状態は、昼光、タングステン、蛍光、月光及び夜間運転からなる群から選択されること
    を特徴とする請求項18に記載のシステム。
  20. 更に、前記センサシステム及び前記ターゲット光システムに接続されるコンピュータを含むと共に、
    前記コンピュータは、1つの眼の瞳径を求めかつ該瞳径に基づいて前記光源の照明の強度を制御するよう構成されること
    を特徴とする請求項17に記載の両眼波面測定システム。
  21. 前記センサシステムは、
    光源光路に沿って光ビームを放射する光源;
    阻止部を有する遮断要素であって、該阻止部を前記光源光路に配することにより前記光ビームの中央部を遮断して(1つの)眼の網膜を照明するための環状光ビームを生成するよう構成される遮断要素;
    前記(環状光ビームによって照明された)眼から反射されて来る光ビームの光路に配されるモジュレーションパターン要素;及び
    前記モジュレーションパターン要素を貫通通過する前記光ビームの少なくとも一部を受光して前記眼の波面収差を検出するよう配されるセンサ
    を含むこと
    を特徴とする請求項1に記載のシステム。
  22. 前記光源は、凡そ2〜3mmのビーム径を有する光ビームを生成すること
    を特徴とする請求項21に記載のシステム。
  23. 前記遮断要素の前記阻止部は、直径凡そ1.5〜2.5mmであること
    を特徴とする請求項21に記載のシステム。
  24. 前記放射される光ビームは、コリメートされた光ビームであること
    を特徴とする請求項21に記載のシステム。
  25. 前記センサシステムは、
    光源光路に沿って(1つの)眼に光を供給する光源であって、該光源から放射され該眼の網膜によって反射される光が第1方向に進行しかつ該光源から放射され該眼の角膜によって反射される光が第2方向に進行すると共に、該光源光路に対する該第1方向の角度(なす角)が該光源光路に対する該第2方向の角度(なす角)と異なることにより、該第2方向に進行する光がセンサシステム内の光を受光するための光路に入射しないように、該眼に対して配置される光源;
    前記第1方向に反射される光を受光するよう配される変調パターン要素;及び
    前記眼の波面収差を検出するためのセンサであって、前記変調パターン要素を貫通通過する光の少なくとも一部を受光するよう配されるセンサ
    を含むこと
    を特徴とする請求項1に記載のシステム。
  26. 前記波面センサシステムは、更に、前記眼の網膜における前記光のスポット径を減少するように、前記光源光路に沿って配される1又は2以上の光学要素を含むこと
    を特徴とする請求項25に記載のシステム。
  27. 前記網膜における前記光の前記スポット径は、凡そ1ミリメートル未満であること
    を特徴とする請求項26に記載のシステム。
  28. 前記網膜における前記光の前記スポット径は、凡そ600マイクロメートル未満であること
    を特徴とする請求項26に記載のシステム。
  29. 前記網膜における前記光の前記スポット径は、凡そ400マイクロメートル未満であること
    を特徴とする請求項26に記載のシステム。
  30. 患者の眼の収差を検出する方法であって、以下のステップ:
    患者の第1の眼に1つの像を供給しかつ患者の第2の眼に1つの像を供給するよう両眼光学システムを患者の眼に対して位置調整すること;
    前記第1の眼の網膜から反射されて来る光を受光するよう波面センサを位置調整すること;
    前記第1の眼の網膜を光源で照明すること;
    患者が前記第1の眼で前記像を眺めている間に、該第1の眼の網膜から反射されてきた光を検出器において受光すること;及び
    前記第1の眼の波面収差を前記検出器によって検出すること
    を含むこと
    を特徴とする方法。
  31. 前記第1及び第2の眼の調節に影響を及ぼすよう前記両眼光学システムを制御すること
    を更に含むこと
    を特徴とする請求項30に記載の方法。
  32. 1又は2以上の収差変形像(収差付与した像:aberrated images)を前記患者の第1の眼及び前記患者の第2の眼に供給すること
    を更に含むこと
    を特徴とする請求項30に記載の方法。
  33. 1又は2以上の収差変形像の供給は、前記眼の調節状態を引き起こすこと
    を特徴とする請求項32に記載の方法。
  34. 1又は2以上の収差変形像の供給は、前記眼の距離(遠近)調節状態を引き起こす像の供給を含むこと
    を特徴とする請求項33に記載の方法。
  35. 1又は2以上の収差変形像の供給は、前記眼の読取調節状態を引き起こす像の供給を含むこと
    を特徴とする請求項34に記載の方法。
  36. 前記第2の眼の網膜から反射されて来る光を受光するよう前記波面センサを位置調整すること;
    前記第2の眼の網膜を前記光源によって照明すること;
    患者が前記第2の眼によって前記像を眺めている間に、前記第2の眼の網膜から反射されて来た光を前記検出器において受光すること;及び
    前記第2の眼の波面収差を前記検出器で検出すること
    を更に含むこと
    を特徴とする請求項30に記載の方法。
  37. 患者の眼の収差を同定する方法であって、以下のステップ:
    光源光路に沿って光ビームを放射するよう光源を位置調整すること;
    前記光ビームの中央部分を遮断して(1つの)眼の網膜を照明するための環状光ビームを生成するよう、前記光源光路に配され阻止部を有する遮断要素を位置調整すること;
    前記眼を前記光源によって照明すること;
    前記網膜から反射されて来る光を検出器において受光すること;
    前記眼の波面を前記検出器によって検出すること;及び
    前記検出された波面に基づいて前記眼における収差を同定すること
    を含むこと
    を特徴とする方法。
  38. 波面センサシステムを用いて患者の眼の少なくとも一方における収差を測定する方法であって、以下のステップ:
    第1の眼が両眼光学システムの第1光路に位置付けられかつ第2の眼が両眼光学システムの第2光路に位置付けられるように、両眼光学システムを前記眼に対して位置調整すること;
    当該光源から放射され前記第1の眼の網膜によって反射される光が第1方向に進行しかつ当該光源から放射され前記第1の眼の角膜によって反射される光が第2方向に進行すると共に、光源光路に対する該第1方向の角度(なす角)が該光源光路に対する該第2方向の角度(なす角)と異なることにより、該第2方向に進行する光がセンサシステム内の光を受光するための光路に入射しないように、光源を前記第1の眼に対して位置調整すること;
    前記第1の眼の前記網膜を前記光源によって照明すること;
    前記第1光路の一部を介して、第1方向において前記網膜から反射されて来る光を受光すること、該光は前記第1の眼の収差を示す波面を含むこと;及び
    前記受光された波面に基づいて前記第1の眼の収差を同定すること
    を含むこと
    を特徴とする方法。
  39. 波面システムにおいて、患者の眼の瞳の位置に基づいて、患者の照明された眼から到来する光を受光するための波面センサを位置調整する方法であって、以下のステップ:
    前記眼を光源によって照明すること;
    1つの眼によって反射される光が受光するための波面センサの光路に沿って伝播するように、波面センサシステムを、第1位置において、該眼の瞳に対し位置調整すること;
    前記眼によって反射された光を前記波面センサにおいて検出すること;
    前記検出された光に基づいて、前記眼の前記瞳の位置を求めること;及び
    前記瞳の前記求められた位置に基づいて、前記波面センサを、第2位置において、前記眼の前記瞳に対し位置調整すること、該第2位置は前記眼の波面測定の実行のために所望の位置であること
    を含むこと
    を特徴とする方法。
  40. 波面センサシステムであって、
    分析されるべき光の経路に配され、2次元の正弦波パターンを有する変調要素;及び
    前記変調要素を貫通通過する光の少なくとも一部を受光するよう配置される検出器であって、該変調要素に対し回折性自己結像面に実質的に配される検出器を有するセンサシステム
    を含み、
    前記センサシステムは、前記検出器によって受光される光に基づいて、信号を出力可能に構成されること
    を特徴とするシステム。
  41. 波面センサシステムであって、
    分析されるべき光の経路に配され、2次元のチェッカーボードパターンを有する変調要素;及び
    前記変調要素を貫通通過する光の少なくとも一部を受光するよう配置される検出器であって、該変調要素に対し回折性自己結像面に実質的に配される検出器を有するセンサシステム
    を含み、
    前記センサシステムは、前記検出器によって受光される光に基づいて、信号を出力可能に構成されること
    を特徴とするシステム。
  42. 反射性又は内部反射性対象系における収差を求める方法であって、以下のステップ:
    タルボ面において近視野回折パターンを生成するよう、(1つの)対象系から反射されて来る光を2次元正弦波パターンを有する変調要素を貫通通過させること;
    前記タルボ面において前記近視野回折パターンの信号(複数)を検出すること;及び
    前記検出された信号(複数)を用いて、反射性又は内部反射性対象系における収差の測定(結果)を出力すること
    を含むこと
    を特徴とする方法。
  43. 反射性又は内部反射性対象系における収差を求める方法であって、以下のステップ:
    タルボ面において近視野回折パターンを生成するよう、(1つの)対象系から反射されて来る光を2次元チェッカーボードパターンを有する変調要素を貫通通過させること;
    前記タルボ面において前記近視野回折パターンの信号(複数)を検出すること;及び
    前記検出された信号(複数)を用いて、反射性又は内部反射性対象系における収差の測定(結果)を出力すること
    を含むこと
    を特徴とする方法。
  44. 眼の内部における光伝播をシミュレートする方法であって、以下のステップ:
    光をチャンバの前方に配されたレンズを貫通通過させること;
    前記レンズと前記チャンバの結像面との間の距離を調整することにより、前記光を該結像面に合焦すること;
    前記結像面を回転すること;及び
    前記チャンバの中から前記レンズを介して、前記結像面から光を反射すること
    を含むこと
    を特徴とする方法。
  45. 波面センサシステムを検査するための眼球シミュレーションシステムであって、
    光をチャンバに入射可能にする開口を有するチャンバを有するハウジング;
    前記チャンバ内に配され、既知の屈折率を有する流動体;
    前記チャンバの開口に入射する光が当該レンズを貫通通過するよう前記ハウジングに対して配置されるレンズ;及び
    前記レンズを貫通通過する光が前記流動体の内部を伝播しかつ当該回動可能な結像面に入射するよう前記チャンバ内に配置される回動可能な結像面
    を含むこと
    を特徴とするシステム。
  46. 両眼波面測定システムを用いて瞳距離を測定する方法であって、以下のステップ:
    波面センサシステムの光路と、第1位置における第1の瞳とをアライメントすること;
    前記波面センサによって受光した前記第1の瞳からの光を分析し、前記第1位置に対する該第1の瞳の位置情報を求めること;
    前記波面センサの前記光路と、第2位置における第2の瞳とをアライメントすること;
    前記波面センサによって受光した前記第2の瞳からの光を分析し、前記第2位置に対する該第2の瞳の位置情報を求めること;
    前記第1位置及び前記第2位置に基づいて、かつ前記第1位置に対する前記第1の瞳の前記位置情報及び前記第2位置に対する前記第2の瞳の前記位置情報に基づいて、瞳距離を求めること
    を含むこと
    を特徴とする方法。
  47. 患者の眼の収差を同定する方法であって、以下のステップ:
    第1照明状態を生成するよう構成された光源によって第1ターゲットを照明すること;
    患者の第1の眼の瞳に対し、該第1の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第1波面測定を実行すること;
    第2照明状態を生成するよう構成された光源によって前記第1ターゲットを照明すること;
    前記第1の眼の前記瞳に対し、該第1の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第2波面測定を実行すること;及び
    前記第2[第1の誤記]の眼の前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第1の眼の前記瞳の反応を求めること
    を含むこと
    を特徴とする方法。
  48. 更に、以下のステップ:
    第1照明状態を生成するよう構成された光源によって第2ターゲットを照明すること;
    患者の第2の眼の瞳に対し、該第2の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第2ターゲットを眺めている間に、第1波面測定を実行すること;
    第2照明状態を生成するよう構成された光源によって前記第2ターゲットを照明すること;
    前記第2の眼の前記瞳に対し、該第2の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記第2ターゲットを眺めている間に、第2波面測定を実行すること;及び
    前記第2の眼の前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第2の眼の前記瞳の反応を求めること
    を含むこと
    を特徴とする請求項47に記載の方法。
  49. 特定の照明状態に対する患者の眼の瞳の反応を求めるための波面測定システムであって、
    第1照明状態を生成するよう構成された第1光源によって第1ターゲットを照明する手段;
    患者の第1の眼の瞳に対し、該第1の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第1波面測定を実行する手段;
    第2照明状態を生成するよう構成された光源によって前記第1ターゲットを照明する手段;
    前記第1の眼の前記瞳に対し、該第1の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記第1ターゲットを眺めている間に、第2波面測定を実行する手段;及び
    前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第1の眼の前記瞳の反応を求める手段
    を有すること
    を特徴とするシステム。
  50. 第1照明状態を生成するよう構成された光源によって第2ターゲットを照明する手段;
    患者の第2の眼の瞳に対し、該第2の眼が第1照明状態を生成するよう構成された前記光源によって照明された前記第2ターゲットを眺めている間に、第1波面測定を実行する手段;
    第2照明状態を生成するよう構成された光源によって前記第2ターゲットを照明する手段;
    第2の眼の前記瞳に対し、該第2の眼が第2照明状態を生成するよう構成された前記光源によって照明された前記(第2)ターゲットを眺めている間に、第2波面測定を実行する手段;及び
    前記瞳の前記第1及び第2波面測定に基づいて、前記第2照明状態に対する前記第2の眼の前記瞳の反応を求める手段
    を更に有すること
    を特徴とする請求項49に記載の方法[システムの誤記]。
  51. 患者の眼の光学収差を補正するための情報を生成する方法であって、以下のステップ:
    第1光路及び第2光路を有する両眼視覚光学システムに対し、第1の眼の視線が該第1光路にアライメントされかつ第2の眼の視線が該第2光路にアライメントされるよう、患者の両眼を位置調整すること;
    前記第1の眼に前記第1光路を介して(1つの)像を供給し、かつ前記第2の眼に前記第2光路を介して(1つの)像を供給すること;
    波面センサを、前記第1の眼の網膜から反射されて来る光を受光可能にすること;
    光源によって第1の眼の網膜を照明すること;
    前記第1の眼の網膜から反射されて来る光を前記波面センサで受光すること;
    前記第1の眼からの受光された光から、該第1の眼の波面収差を測定すること;
    前記測定された波面収差に基づいて前記第1の眼の少なくとも1つの波面収差を同定すること;及び
    患者の前記第1の眼の前記少なくとも1つの光学収差を補正するプロセスにおいて使用するため、前記少なくとも1つの光学収差に関する情報を生成すること
    を含むこと
    を特徴とする方法。
  52. 前記プロセスは、前記同定された光学収差の補正のためのレンズの生成を含むこと
    を特徴とする請求項51に記載の方法。
  53. 前記プロセスは、前記同定された光学収差の補正のための外科的プロセスを介した前記第1又は第2の眼の光学的特性の改変を含むこと
    を特徴とする請求項51に記載の方法。
  54. 患者の眼の調節範囲を評価する方法であって、以下のステップ:
    前記眼における複数の調節状態を惹起する両眼光学システムを介して、該眼に複数の像を供給すること;
    前記惹起された調節状態にある前記眼の少なくとも1つの特徴を表す波面信号(複数)を受信すること;及び
    前記波面信号から、複数の惹起された調節状態における前記眼の前記少なくとも1つの特徴に基づいて前記眼の前記調節範囲を求めること
    を含むこと
    を特徴とする方法。
  55. 光学的に制御された収差変形像(複数、収差付与された像:abberated images)を患者の眼に供給する方法であって、以下のステップ:
    両眼光学システムを介して、第1の眼及び第2の眼に像(複数)を供給すること;
    前記第1及び第2の眼に関する少なくとも1つの収差を表す波面信号(複数)を受信すること;
    前記波面信号(複数)に基づいて前記第1の眼の収差及び前記第2の眼の収差を同定すること;
    前記第1の眼の前記同定された収差の補正及び前記第2の眼の前記同定された収差の補正を決定すること;及び
    前記決定された補正に基づいた前記両眼光学システムの調整を、該調整された両眼光学システムを介して前記眼(複数)に供給された像(複数)が前記収差(複数)に対し光学的に補償されるように、実行すること
    を含むこと
    を特徴とする方法。
  56. 前記収差は、球面収差を含むこと
    を特徴とする請求項55に記載の方法。
  57. 前記収差は、非点収差を含むこと
    を特徴とする請求項55に記載の方法。
  58. 前記収差は、コマ収差を含むこと
    を特徴とする請求項55に記載の方法。
  59. 光学的に制御された収差変形像(複数)(収差付与された像:abberated images)を患者の眼に供給するシステムであって、
    両眼光学システムを介して、第1の眼及び第2の眼に像(複数)を供給する手段;
    前記第1及び第2の眼に関する少なくとも1つの収差を表す波面信号(複数)を受信する手段;
    前記波面信号(複数)に基づいて前記第1の眼の収差及び前記第2の眼の収差を同定する手段;
    前記第1の眼の前記同定された収差の補正及び前記第2の眼の前記同定された収差の補正を決定する手段;及び
    前記決定された補正に基づいた前記両眼光学システムの調整を、該調整された両眼光学システムを介して前記眼(複数)に供給された像(複数)が前記収差(複数)に対し光学的に補償されるように、実行する手段
    を有すること
    を特徴とするシステム。
  60. 患者の眼の収差(複数)を同定する方法であって、以下のステップ:
    患者の眼(複数)に対する両眼光学システムの位置調整を、第1の眼が該両眼光学システムの第1光路に沿って位置調整されかつ第2の眼が該両眼光学システムの第2光路に沿って位置調整されるように、実行すること;
    前記第1光路の一部を介して、前記第1の眼の収差を表す第1波面を受け取ること;及び
    前記受け取られた第1波面に基づいて前記第1の眼の収差を同定すること
    を含むこと
    を特徴とする方法。
  61. 更に、以下のステップ:
    波面センサを第1位置に位置付けて、前記第1光路の一部を介して前記第1の眼からの第1波面を受け取ること;
    前記波面センサを第2位置に位置付けて、前記第2光路を介して前記第2の眼からの第2波面を受け取ること;
    前記第2光路の一部を介して前記第2の眼の収差を表す第2波面を受け取ること;及び
    前記受け取った第2波面に基づいて前記第2の眼の収差を同定すること
    を含むこと
    を特徴とする請求項60に記載の方法。
  62. 一連の波面画像を分析する方法であって、以下のステップ:
    第1波面画像群を対象に供給すること、但し、該第1波面画像群の少なくとも1つの波面画像は眼の第1の瞬きの間に少なくとも部分的に遮蔽(obscured)された瞳を表すこと;
    前記第1波面画像群を分析して、眼の第1の瞬きの間に少なくとも部分的に遮蔽された瞳を表す第1波面画像を同定すること;
    前記第1波面画像に引き続いて生成される第2波面画像群を分析して、遮蔽されていない瞳を表す第2波面画像を同定すること;及び
    前記第2波面画像が生成された後に生成され遮蔽されていない瞳を表す少なくとも1つの波面画像を、前記第2波面画像群から求めること、但し、前記少なくとも1つの波面画像を求める操作は、前記瞬きが生起した時点に対し所定の時間間隔で生成された1つの画像の選択に基づくこと
    を含むこと
    を特徴とする方法。
  63. 更に、以下のステップ:
    前記第1波面画像群中の1つの画像を分析し、該画像中における前記瞳の第1位置求めること、但し、該画像は、該瞳に対し第1位置に配される波面センサを用いて生成されたものであること;
    前記瞳の前記第1位置と所定の位置とを対比すること;及び
    前記瞳の前記第1位置が前記所定の位置と所定量だけ異なる場合、次の画像が第2位置における前記瞳を表すよう、前記瞳に対する第2位置に前記波面センサを移動すること、但し、前記瞳の前記第2位置は、該瞳の前記第1位置よりも前記所定位置により近いこと
    を含むこと
    を特徴とする請求項62に記載の方法。
  64. 更に、以下のステップ:
    前記第2波面画像が生成された後に生成される複数の波面画像を記憶すること;
    前記記憶された画像(複数)を組合せて、平均画像を生成すること;及び
    前記平均画像から波面測定(結果)を求めること
    を含むこと
    を特徴とする請求項63に記載の方法。
  65. 更に、以下のステップ:
    平均画像からそれぞれ求められる個々の波面測定(結果)から構成される一組の波面測定(結果)を生成すること;
    前記一組の波面測定(結果)を対比して、前記複数の波面測定(結果)における異常ないし差異(複数)を同定すること;及び
    前記同定された異常ないし差異(複数)に基づいて前記対象の収差の補正を規定する1又は2以上の波面測定(結果)を、前記一組の波面測定(結果)において同定すること
    を含むこと
    を特徴とする請求項64に記載の方法。
JP2006539585A 2003-11-14 2004-10-29 眼科用両眼波面測定システム Active JP4668204B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US52029403P 2003-11-14 2003-11-14
US58112704P 2004-06-18 2004-06-18
US10/971,769 US7425067B2 (en) 2003-11-14 2004-10-22 Ophthalmic diagnostic instrument
US10/971,937 US20050105044A1 (en) 2003-11-14 2004-10-22 Lensometers and wavefront sensors and methods of measuring aberration
PCT/US2004/036306 WO2005048829A2 (en) 2003-11-14 2004-10-29 Ophthalmic binocular wafefront measurement system

Publications (3)

Publication Number Publication Date
JP2007511278A true JP2007511278A (ja) 2007-05-10
JP2007511278A5 JP2007511278A5 (ja) 2008-12-18
JP4668204B2 JP4668204B2 (ja) 2011-04-13

Family

ID=34623984

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006539585A Active JP4668204B2 (ja) 2003-11-14 2004-10-29 眼科用両眼波面測定システム
JP2006539586A Active JP4832310B2 (ja) 2003-11-14 2004-10-29 レンズメータ及び波面センサ及び収差測定方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006539586A Active JP4832310B2 (ja) 2003-11-14 2004-10-29 レンズメータ及び波面センサ及び収差測定方法

Country Status (5)

Country Link
EP (3) EP1691669B1 (ja)
JP (2) JP4668204B2 (ja)
KR (1) KR100992182B1 (ja)
AU (1) AU2004291042B2 (ja)
WO (2) WO2005048829A2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246153A (ja) * 2007-03-30 2008-10-16 Topcon Corp 検眼装置及びその方法
WO2010122973A1 (ja) * 2009-04-24 2010-10-28 株式会社トプコン 眼科装置
JP2010240231A (ja) * 2009-04-08 2010-10-28 Topcon Corp 模型眼
JP2011110253A (ja) * 2009-11-27 2011-06-09 Topcon Corp 眼科装置
JP2011125680A (ja) * 2009-12-18 2011-06-30 Inst Of Optics & Electronics Chinese Academy Of Science 双眼波面補償光学の視知覚の学習訓練法及び学習訓練器具
JP2011125681A (ja) * 2009-12-18 2011-06-30 Inst Of Optics & Electronics Chinese Academy Of Science 人眼自己波面補償光学の視知覚の学習訓練法及び学習訓練器具
JP2015052607A (ja) * 2008-09-29 2015-03-19 サイファイ メドテック エッセ.エッレ.エッレ. カスタマイズされたバイオメトリック眼内レンズを設計および移植するためのシステムおよび方法
JP2018501936A (ja) * 2015-01-09 2018-01-25 スマート ヴィジョン ラブズ インコーポレイテッド オープンフィールドアライメントチャネルを備えた携帯型波面収差計
WO2020250452A1 (ja) * 2019-06-12 2020-12-17 株式会社レクザム レンズ光学特性測定装置、レンズ光学特性測定方法、プログラム、及び、記録媒体

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248492B1 (ko) * 2005-07-29 2013-04-03 알콘 리프랙티브호리존스, 인코포레이티드 안과용 장치의 위치결정 시스템 및 관련 방법
US8820929B2 (en) * 2006-01-20 2014-09-02 Clarity Medical Systems, Inc. Real-time measurement/display/record/playback of wavefront data for use in vision correction procedures
US8506083B2 (en) 2011-06-06 2013-08-13 Clarity Medical Systems, Inc. Compact wavefront sensor module and its attachment to or integration with an ophthalmic instrument
FR2897426B1 (fr) * 2006-02-16 2012-07-27 Onera (Off Nat Aerospatiale) Procede d'analyse de surface d'onde par interferometrie multilaterale a difference de frequences
CA2645670C (en) 2006-03-14 2016-12-06 Amo Manufacturing Usa, Llc Spatial frequency wavefront sensor system and method
JP5608892B2 (ja) * 2008-07-25 2014-10-22 東海光学株式会社 レンズ評価方法
KR100900899B1 (ko) * 2009-03-17 2009-06-03 국방과학연구소 소화기 사격통제용 복합광학계
JP5265425B2 (ja) * 2009-03-19 2013-08-14 オリンパス株式会社 干渉計による2次元位相デ−タのアンラップ方法および装置
JP2010286434A (ja) * 2009-06-15 2010-12-24 Brother Ind Ltd 動的面形状測定装置および動的面形状測定方法
JP5641744B2 (ja) * 2010-02-10 2014-12-17 キヤノン株式会社 撮像装置及びその制御方法
GB2484998B (en) * 2010-10-29 2014-08-20 Lg Display Co Ltd Optical measuring apparatus and measuring method of stereoscopic display device
KR101325988B1 (ko) 2010-10-29 2013-11-07 엘지디스플레이 주식회사 입체 디스플레이의 광학 측정 장치 및 방법
EP2596745B1 (en) * 2011-10-07 2019-06-19 Popovic, Zoran Reference calibration for an adaptive optics system
JP2015511147A (ja) * 2012-02-03 2015-04-16 デジタルビジョン エルエルシーDigitalvision,Llc 比較による視力矯正シミュレータを備えた屈折計
FR2992843B1 (fr) * 2012-07-06 2016-05-06 Essilor Int Dispositif et procede de mesure de refraction oculaire objective et d'au moins un parametre geometrico-morphologique d'un individu
JP6000773B2 (ja) * 2012-09-13 2016-10-05 キヤノン株式会社 収差推定方法、プログラムおよび撮像装置
WO2014083392A1 (en) * 2012-11-28 2014-06-05 Perfect Vision Technology, Ltd. Methods and systems for automated measurement of the eyes and delivering of sunglasses and eyeglasses
CN105578947B (zh) 2013-07-02 2018-10-26 麻省理工学院 确定眼处方的装置和方法
KR102598505B1 (ko) * 2015-05-20 2023-11-06 칼 짜이스 에스엠테 게엠베하 이미징 광학 시스템용 측정 방법 및 측정 배열체
JP6821361B2 (ja) * 2016-09-05 2021-01-27 キヤノン株式会社 計測装置、光学機器の製造方法および光学機器の製造装置
US10595724B2 (en) * 2017-08-04 2020-03-24 Ho Wa LAI Adaptor for an image capture device for fundus photography
FR3082274B1 (fr) 2018-06-06 2021-11-19 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
KR102082747B1 (ko) * 2019-01-23 2020-02-28 연세대학교 산학협력단 초점거리 조절이 가능한 led 어레이 기반 3차원 이미징 장치 및 방법
GB2595188B (en) * 2019-01-24 2022-12-14 6Over6 Vision Ltd Apparatus, system and method of determining one or more parameters of a refractive error of a tested eye
KR20200108666A (ko) 2019-03-11 2020-09-21 삼성전자주식회사 영상의 횡이동이 가능한 디스플레이 장치
CN110274696B (zh) * 2019-06-26 2020-11-06 中国科学院长春光学精密机械与物理研究所 大视场主动光学望远镜的波前传感方法、装置、及***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963300A (en) * 1998-02-17 1999-10-05 Amt Technologies, Corp. Ocular biometer
US20030071969A1 (en) * 2001-08-31 2003-04-17 Levine Bruce M. Ophthalmic instrument with adaptive optic subsystem that measures aberrations (including higher order aberrations) of a human eye and that provides a view of compensation of such aberrations to the human eye

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211504A (en) * 1981-06-24 1982-12-25 Canon Inc Observation member for talbot interferometer
JPH0761312B2 (ja) * 1990-04-27 1995-07-05 キヤノン株式会社 眼屈折計
US5777718A (en) * 1992-12-31 1998-07-07 Canon Kabushiki Kaisha Eye refractometer
EP0663179A1 (en) * 1994-01-12 1995-07-19 Ciba-Geigy Ag Spatial refractometer
US5838424A (en) * 1997-02-26 1998-11-17 Welch Allyn, Inc. View port for eye test apparatus
JP3823266B2 (ja) * 1997-05-13 2006-09-20 株式会社トプコン 光学特性測定装置
US6002484A (en) * 1999-06-18 1999-12-14 Rozema; Jos J. Phase contrast aberroscope
CA2377162A1 (en) * 1999-07-27 2001-02-01 Amt Technologies, Corp. Ocular biometer
US6264328B1 (en) * 1999-10-21 2001-07-24 University Of Rochester Wavefront sensor with off-axis illumination
IL143503A0 (en) * 2001-05-31 2002-04-21 Visionix Ltd Aberration correction spectacle lens
US6781681B2 (en) * 2001-12-10 2004-08-24 Ophthonix, Inc. System and method for wavefront measurement
US6761454B2 (en) * 2002-02-13 2004-07-13 Ophthonix, Inc. Apparatus and method for determining objective refraction using wavefront sensing
US6634752B2 (en) * 2002-03-11 2003-10-21 Alcon, Inc. Dual-path optical system for measurement of ocular aberrations and corneal topometry and associated methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963300A (en) * 1998-02-17 1999-10-05 Amt Technologies, Corp. Ocular biometer
US20030071969A1 (en) * 2001-08-31 2003-04-17 Levine Bruce M. Ophthalmic instrument with adaptive optic subsystem that measures aberrations (including higher order aberrations) of a human eye and that provides a view of compensation of such aberrations to the human eye

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246153A (ja) * 2007-03-30 2008-10-16 Topcon Corp 検眼装置及びその方法
JP2015052607A (ja) * 2008-09-29 2015-03-19 サイファイ メドテック エッセ.エッレ.エッレ. カスタマイズされたバイオメトリック眼内レンズを設計および移植するためのシステムおよび方法
JP2010240231A (ja) * 2009-04-08 2010-10-28 Topcon Corp 模型眼
WO2010122973A1 (ja) * 2009-04-24 2010-10-28 株式会社トプコン 眼科装置
JP2010252994A (ja) * 2009-04-24 2010-11-11 Topcon Corp 眼科装置
JP2011110253A (ja) * 2009-11-27 2011-06-09 Topcon Corp 眼科装置
JP2011125680A (ja) * 2009-12-18 2011-06-30 Inst Of Optics & Electronics Chinese Academy Of Science 双眼波面補償光学の視知覚の学習訓練法及び学習訓練器具
JP2011125681A (ja) * 2009-12-18 2011-06-30 Inst Of Optics & Electronics Chinese Academy Of Science 人眼自己波面補償光学の視知覚の学習訓練法及び学習訓練器具
JP2018501936A (ja) * 2015-01-09 2018-01-25 スマート ヴィジョン ラブズ インコーポレイテッド オープンフィールドアライメントチャネルを備えた携帯型波面収差計
WO2020250452A1 (ja) * 2019-06-12 2020-12-17 株式会社レクザム レンズ光学特性測定装置、レンズ光学特性測定方法、プログラム、及び、記録媒体

Also Published As

Publication number Publication date
WO2005052538A3 (en) 2005-12-01
EP3001945B1 (en) 2021-01-27
JP2007527526A (ja) 2007-09-27
EP1691669A2 (en) 2006-08-23
JP4832310B2 (ja) 2011-12-07
AU2004291042B2 (en) 2010-10-14
JP4668204B2 (ja) 2011-04-13
EP3001945A2 (en) 2016-04-06
WO2005048829A2 (en) 2005-06-02
AU2004291042A1 (en) 2005-06-02
EP1690072A2 (en) 2006-08-16
EP3001945A3 (en) 2016-10-26
EP1691669B1 (en) 2018-03-28
KR20070004550A (ko) 2007-01-09
WO2005048829A3 (en) 2005-08-18
KR100992182B1 (ko) 2010-11-05
WO2005052538A2 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4668204B2 (ja) 眼科用両眼波面測定システム
US7425067B2 (en) Ophthalmic diagnostic instrument
US7659971B2 (en) Lensometers and wavefront sensors and methods of measuring aberration
JP5721291B2 (ja) 視力矯正処置においてリアルタイムのフィードバックを提供するための機器およびその作動方法
JP4171652B2 (ja) 特に眼のための画像形成、刺激、測定及び治療用器具及び方法
JP2003521950A (ja) 視標追跡システム
US11822089B2 (en) Head wearable virtual image module for superimposing virtual image on real-time image
JP2015511147A (ja) 比較による視力矯正シミュレータを備えた屈折計
KR100926200B1 (ko) 개선된 순차적 스캐닝 파면 측정 및 망막 표면 형태
CN100463646C (zh) 眼科双目波前测量***
JP7295960B2 (ja) 仮想現実視覚検査システム
JP7249097B2 (ja) 眼科装置及び検眼システム
Miller A handheld open-field infant keratometer (an american ophthalmological society thesis)
JP7103814B2 (ja) 眼科装置
MXPA06005311A (en) Ophthalmic binocular wafefront measurement system
WO2021256132A1 (ja) 眼科装置、眼科装置の制御方法、及びプログラム
JP2021069714A (ja) 眼底撮像装置および眼疾検査装置
WO2024121350A1 (en) Apparatus and method for determining refraction error of at least an eye of a subject

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100726

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250