JP2007305696A - 位置決め装置の精度測定方法 - Google Patents

位置決め装置の精度測定方法 Download PDF

Info

Publication number
JP2007305696A
JP2007305696A JP2006130813A JP2006130813A JP2007305696A JP 2007305696 A JP2007305696 A JP 2007305696A JP 2006130813 A JP2006130813 A JP 2006130813A JP 2006130813 A JP2006130813 A JP 2006130813A JP 2007305696 A JP2007305696 A JP 2007305696A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
wafer
adjustment
alignment
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006130813A
Other languages
English (en)
Inventor
Tei Goto
禎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006130813A priority Critical patent/JP2007305696A/ja
Publication of JP2007305696A publication Critical patent/JP2007305696A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】半導体ウェハに形成されたアライメントマークを利用して、半導体ウェハを移動させるための移動テーブルを高精度に位置決めすること。
【解決手段】グローバルアライメント調整用マークD、Eを使用してグローバルアライメントされた調整用ウェハ18Aがウェハチャック36に保持された状態で第1のスライダ26をX軸方向へ移動したとき、及び、第2のスライダ30をY軸方向へ移動したときのラインL1、L2の位置の変化をアライメントユニット50により、検出した結果に基づき、グローバルアライメント誤差及びステップ送り誤差の情報を得て、必要に応じて補正を施すことによりワークステージ34を高精度に位置決めする。
【選択図】図1

Description

本発明は、半導体ウェハ上に形成されたアライメントマークに光を照射してその反射光を入射してアライメントマークを撮像し、当該撮像による撮像データを画像処理して、アライメントマークを算出し、この算出結果を基に半導体ウェハ搬送用移動テーブルの位置を制御するための位置決め装置に関するものである。
従来、例えば、半導体露光装置、イオン注入装置、組立・検査装置、精密工作機械等に用いられる位置決め装置としては、高精度に位置決め可能なテーブルに位置決め対象物を載置(保持)し、位置決めが行われる。半導体露光装置、イオン注入装置等では、位置決め対象物である半導体ウェハを1区画(1チップ)毎に所定のパターンのマスクを施し、作業するようになっている。
このような場合、従来、半導体ウェハを搬送するために真空チャンバ内に配置されたウェハテーブルにミラーをセットし、真空チャンバ外にはレーザー干渉計などを配置し、レーザー干渉計でウェハテーブルの直角度や位置決め精度を測定したり、直角定規とダイヤルゲージを用いてウェハテーブルの直角度を測定したりする方法が採用されていた。
ウェハテーブルの直角度や位置決め精度を測定するのに、レーザー干渉計などを用いる方法では、装置によっては、ミラーや直角定規を真空チャンバ内に設置できないことがある。また、カメラテーブルをウェハテーブルの移動に合わせることが困難な場合もある。
本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、調整用ウェハに形成された調整用マークを利用して、半導体ウェハを移動させるための移動テーブルを高精度に位置決めすることにある。
前記目的を達成するために、本発明は、半導体ウェハを搭載して二次元方向に移動する移動テーブルと、前記半導体ウェハのファインアライメントマークに向けて光を照射する照明手段と、前記照明手段から前記半導体ウェハのファインアライメントマークに照射された光の反射光を入射して、前記半導体ウェハ上に形成された前記ファインアライメントマークを撮像する撮像手段と、前記撮像手段の撮像による撮像データを画像処理して前記アライメントマークの二次元座標系における位置を算出する算出手段と、前記算出手段の算出結果を基に前記移動テーブルの位置を制御する位置制御手段と、を備えてなる位置決め装置の精度測定方法において、前記半導体ウェハと同サイズで、表面に直線状のパターンが所定間隔毎に設けられた調整用ウェハを前記移動テーブルにより移動させ前記撮像手段により、前記調整用ウェハの各直線状パターンを撮像しその結果に基づき、前記位置決め装置の精度を測定することを特徴とする。
上記構成によれば、調整用ウェハの各直線状パターンを基準として前記撮像手段を用いて位置決め装置の精度測定が行えるようにしたため、半導体ウェハを収納する容器(真空チャンバ)内に測定器具を配置することなく、移動テーブルの位置決め精度を求めその結果に基づき位置決め装置の調整を行うことにより、位置決め精度を高めることができる。また、装置を組み付けた後でも、移動テーブルの位置決め精度を測定することもできる。
また、本発明においては、記アライメントマークは、グローバルアライメント調整用マークと、前記グローバルアライメント調整用マークよりも位置決め精度の高いファインアライメントマークと、フォーカス調整用マークを含んで構成することができる。さらに、前記ファインアライメントマークは、形状の相異なる複数のマークで構成され、前記複数のファインアライメントマークは、前記半導体ウェハのうち前記撮像手段の撮像領域の周囲に分散して配置されてなる構成とすることができる。
本発明によれば、半導体ウェハを収納する容器(真空チャンバ)内に測定器具を配置することなく、移動テーブルの位置決め精度を高めることができる。また、装置を組み付けた後でも、移動テーブルの位置決め精度を測定することもできる。
図1には、本実施の形態に係る半導***置決め装置(以下、単に位置決め装置という)10が示されている。位置決め装置10は、定盤12に対して支柱14が立設され、支柱14の上端には、天板16が取付けられ、位置決め装置10の筐体を構成している。位置決め装置10は、半導体ウェハ18を対象として、当該半導体ウェハ18を位置決めする役目を有している。また、本実施の形態の半導体ウェハは、およそ30mm×30mmのパターンの領域がマトリクス状に配されてなるものとする。位置決め装置10の定盤12上には、ワーク位置決めステージ部20と、マスクステージ部22と、が設置されている。
ワーク位置決めステージ部20は、ベース24と、ベース24上に設けられて第1のスライダ26をX軸方向に摺動可能に支持するX軸方向摺動装置28及び第1のスライダ26をX軸方向に駆動するX軸方向駆動装置29とを備えている。また、第1のスライダ26上には第2のスライダ30が設けられ、この第2のスライダ30は、Y軸方向摺動装置32により、Y軸方向に摺動可能に支持され、図示しないY軸方向駆動装置によりY軸方向に駆動される。また、第2のスライダ30には、X軸方向及びY軸方向に位置決めされる半導体ウェハ18等の試料ベースとしてのワークステージ34が支持されている。ワークステージ34には、半導体ウェハ18を保持するウェハチャック36が取付けられている。
半導体ウェハ18は、このウェハチャック36に支持された状態で固定されるようになっている。なお、ウェハチャック36は、ワークステージ34に設けられチャックした半導体ウェハ18の6自由度(X、Y、Z軸方向及び各軸周りの回動)の微調整が可能な機構(位置制御手段)を有している。
上記構成のワーク位置決めステージ部20により、ウェハチャック36は、XY平面内のステップ送り及び6自由度の微小な位置及び姿勢の調整が可能となる。
すなわち、ワーク位置決めステージ部20は、ワークステージ34を二次元方向(X、Y方向)にステップ送り移動させる手段として、第1のスライダ26、X軸方向摺動装置28、X軸方向駆動装置29、第2のスライダ30、Y軸方向摺動装置32およびY軸方向駆動装置を備えるとともに、ウェハチャック36の6自由度での微調整を行う位置制御手段を備えて構成されている。
ワークステージ34よりも上方には、マスクステージ部22の一部を構成するマスクチャック38が、第2のステージ30に対向配置されている。マスクチャック38は、ウェハチャック36と対向面にマスク40を保持している。また,マスクチャック38は、マスクθ軸ベース42に支持されておりθ軸方向の(XY平面内の回転方向)の調整が可能となっている。また、マスクθ軸ベース42は、マスクZ軸方向移動機構44に支持されている。さらにマスクZ軸方向移動機構44は、マスク用X−Yテーブル46に支持されている。なお、マスク用X−Yテーブル46は、ワーク位置決めステージ部20と同様の構成であるため、構成の説明は省略する。このマスクステージ部22により、マスク40は、X−Y−Z−θの各軸方向への調整が可能となっている。
位置決め装置10の筐体を構成する天板16は、その中央部(半導体ウェハ18が位置決めされる基準となる軸周り)に開口部16Aが設けられている。天板16には、半導体ウェハ18に設けたファインアライメントマーク(図5参照)などを検出するためのアライメントユニット50が取付けられている。図1では1組のみ示しているが、それぞれのファインアライメントマークA、B、Cに対応し、1組ずつ、計3組のアライメントユニット50が配されている。また、本実施の形態では、アライメントユニット50は位置決め装置10の位置決め精度の測定の際にも利用される。
また、天板16上の開口部16Aとは離間した位置にはグローバルアライメントを行うための図示しないグローバルアライメントカメラが2台設けられている。これらを用いて、それぞれ検出用マークを備えてなる半導体ウェハ18及びマスク40のマーク検出が別々に行われる。検出結果に基づき、半導体ウェハ18の場合は前記位置決め制御手段により、マスク40の場合はX−Yテーブル46及びマスクθ軸ベース42のθ軸方向調整機構により、グローバルアライメントが行われる。本実施の形態では、位置決め装置10の精度測定等を行うために専用の調整用ウェハを使用する。図2にはこの調整用ウェハ18Aを示す。なお、調整用ウェハ18Aの材質や寸法は被処理ウェハである半導体ウェハ18と同じである。但し、調整用ウェハ18Aの表面には位置決め装置10の精度測定等のための基準として使用するパターンが形成されている。これらのパターンは図示しない高精度描画機により作成されたもので、後述のような、各種測定を行うのに十分な精度で描かれたものである。以下、具体的に調整用ウェハ18Aのパターンについて説明する。
調整用ウェハ18Aの表面には、例えば、60mm×60mm程度の単位となる同一のパターン領域18a〜18eが形成されている。各パターン領域18a〜18eには、ラインL1がX軸方向(水平方向)に15mmピッチで形成され、ラインL2がY軸方向(鉛直方向)に15mmピッチで形成され、各ラインL1、L2の交点を結ぶ斜め方向のラインL3が等ピッチで形成されているとともに、3個のファインアライメントマークA、B、C、2個のグローバルアライメント調整マークD、Eと8組のフォーカス調整用マークF、G、Hがシリコン酸化膜によって形成されている。各ラインL1、L2、L3のうち、それぞれ、1本ずつは調整用ウェハ18Aの中心(パターン18cの中心O)を通るように設定されている。調整用ウェハ18Aの中心を通るラインL1を挟む最寄の2本のラインL1、及び、調整用ウェハ18Aの中心を通るラインL2を挟む最寄の2本のラインL2は、向きを合わせて重ねたときに、それぞれ半導体ウェハ18上の各パターン領域の境界線と一致するように設定されており、したがって、これらを基準に1本置き(30mmピッチ)のラインL1、L2も同様となる。
2個のグローバルアライメント調整マークD、Eは、図3に示すように、2mm×2mm程度の領域に形成されて複数の四角形のマークなどで構成され、Y軸方向に沿って40mmピッチで形成されている。ファインアライメントマークA、B、Cは、図4に示すように、各パターン領域18a〜18eの中心(注入中心)Oから一定の距離の部位であって、ファインアライメントマークAは、中心Oを通るラインL2と重なり、かつ、中心Oに対して15mm離間したラインL1と交差し、ファインアライメントマークBは、中心Oを通るラインL1と重なり、かつ、中心Oに対して15mm離間したラインL2と交差し、ファインアライメントマークCは中心Oを通るラインL3と重なり、かつ中心Oに対して15mm離間したラインL1、L2、が互いに交差する点でこれらと交差するように形成されている。
これらファインアライメントマークA,B,Cは、半導体ウェハ18のファインアライメントマークA'、B‘、C'と対応するように設けられている。すなわち、ファインアライメントマークAと交差するラインL1、ファインアライメントマークBと交差するラインL2、及びファインアライメントマークL3と交差するラインL1、L2で囲まれる正方形の領域の中心に半導体ウェハ18のひとつのパターン領域の中心が一致し、かっ、向きが合うように重ねた場合に、ファインアライメントマークAとA'、BとB’、CとC'がそれぞれちょうど重なるように設定されている。図5(a)〜(c)に半導体ウェハ18のファインアライメントマークA'、B‘、C'を示す。
ファインアライメントマークA'は、図5(a)に示すように、基準点O1を基準に、Y軸方向(鉛直方向)に沿って上下に60μmずつ直線状に形成されている。ファインアライメントマークB'は、図5(b)に示すように、基準点O2を基準に、X軸方向(水平方向)に沿って左右に60μmずつ直線状に形成されている。ファインアライメントマークC'は、図5(c)に示すように、基準点O3を基準に、X軸に対して45度傾斜した方向に沿って、60μmずつ直線状に形成されている。
さらに、調整用ウェハ18AのファインアライメントマークA、B、Cには、図6に示すように、CCDカメラ54をXY方向に移動させるためのカメラ用X−Yテーブル74の位置決め精度を規定するための補助ファインアライメントマークA1(B1、C1)が0.1μmピッチで形成されている。
一方、フォーカス用アライメントマークF、G、Hは、各パターン領域18a〜18eのうちラインL1とラインL2で囲まれた格子状の領域(15mm×15mm)内に形成されている。フォーカス用アライメントマークFは、図7に示すように、格子状の領域(15mm×15mm)のうち5mm×5mm程度の領域に5μm幅の長方形パターンが5個Y軸方向に沿って形成されたマークとして構成され、フォーカス用アライメントマークGは、格子状の領域(15mm×15mm)のうち5mm×5mm程度の領域に5μm幅の長方形パターンが5個X軸方向に沿って形成されたマークとして構成され、フォーカス用アライメントマークHは、格子状の領域(15mm×15mm)のうち5mm×5mm程度の領域に5μm幅の台形パターンが6個、Y軸またはX軸に対して45度傾斜した方向に沿って形成されたマークとして構成されている。シリコン酸化膜の部分は、周囲のシリコンの部分と比べて反射率が低く、暗いため、各アライメントマークA〜Hは観測可能である。
なお、各アライメントマークA〜Hは、シリコン酸化膜を周囲の部分と面一あるいは僅かに***した状態とすることで得ることができるが、この代わりに、半導体ウェハ18上にシリコン酸化膜のパターンを突出させるパターンとしてもよい。あるいは逆に各アライメントマークA〜Hをシリコンとしてその周囲をシリコン酸化膜で囲むようにしてもよい。
アライメントユニット50では、後述のように調整用ウェハ18AのラインL1、L2、L3や各アライメントマークA〜Hの検出結果に基づき位置決め補正を実行するデータを生成したりグローバルアライメントで調整の基準位置の調整やCCDカメラ54の位置調整等を行ったりする。
なお、図1に示される如く、天板16上の撮像部56は、カメラ用X−Yテーブル74に支持されている。なお、カメラ用X−Yテーブル74は、前述した位置決めステージ部20(図1参照)と同様の構成であるため、構成の説明は省略する。
図1に示される如く、アライメントユニット50は、発光ダイオード(LED)LDを光源とする照明光源部52と、複数のレンズからなる結像光学系53、CCDカメラ54を備えた撮像部56とによって構成される。3台のアライメントユニット50は、それぞれの照明光源部52の光軸及びCCDカメラ54の光軸を含む平面が、対応するファインアライメントマークの延伸する方向と平行になるような向きに設置されている。すなわち、ファインアライメントマークAに対応するアライメントユニット50は照明光源部52の光軸及びCCDカメラ54の光軸を含む平面がY軸方向と平行になる向きに、ファインアライメントマークBに対応するアライメントユニット50は照明光源部52の光軸及びCCDカメラ54の光軸を含む平面がX軸方向と平行になる向きに、ファインアライメントマークCに対応するアライメントユニット50は照明光源部52の光軸及びCCDカメラ54の光軸を含む平面がX軸方向及びY軸方向に対して45度傾いた向きに、設置されている。
なお、センサとしてはCCDに限らず、公知の画像処理を行える撮像データの得られるセンサを備えたカメラであれば、これに代えてもよい。照明光源部52の光軸と、撮像部56のCCDカメラ54の光軸とを半導体ウェハ18のファインアライメントマークA、グローバルアライメント調整用マークD、Eやフォーカス用アライメントマークFの面の法線に対して左右対称となるように配置し、照明光源部52から出射した照明光がファインアライメントマークA、グローバルアライメント調整用マークD、Eやフォーカス用アライメントマークFで反射して撮像部56のCCDカメラ54の入射光となるようにしている。なお、ファインアライメントマークB、C、フォーカス用アライメントマークH、Gについては、上記と同様の構成(すなわち、計3組のアライメントユニット50がファインアライメントマークA、B、Cに対応して、天板16上に配置されている。)であるので、構成の説明は省略する。
図1に示される如く、発光ダイオードLDから照射される光(通常は拡散光)は、照射光として、当該照射方向に配設された複数のレンズや、均一な明るさでより広い範囲を照明するためのガラス製のロッドなどからなる照明光学系78を経由し、各パターン領域18a〜18eを含む領域をほぼ均一に照明する。
以下に、本実施の形態の作用を説明する。調整用ウェハ18Aによる位置決め装置10の評価について説明する。仮にグローバルアライメントが正しく行われ、かつ、ワークステージ34をステップ送りする手段の位置決め精度が理想的(誤差なし)であるとする。この場合、調整用ウェハ18Aを被処理半導体ウェハ18の場合と同じ要領でウェハチャック36に保持させてグローバルアライメントを行い、ワークステージ34を開口部16Aと対向する位置に移動させたとき、調整用ウェハ18AのラインL1はX軸方向に平行となり、ラインL2はY軸方向と平行になるはずである。さらに、例えば、ファインアライメントマークAを撮像するCCDカメラ54の視野内にラインL1が位置する状態で、ワークステージ34をX軸方向に移動させた場合、移動中、ラインL1の上下方向位置は視野内で変化しないはずである。同様に、ファインアライメントマークBを撮像するCCDカメラ54の視野内にラインL2が位置する状態で、ワークステージ34をY軸方向に移動さ:せた場合、移動中、ラインL2の上下方向位置は視野内で変化しないはずである。一方、グローバルアライメントが完全でない場合、または、ワークステージ34の移動に真直度等の誤差が含まれる場合では、これらのラインの上下方向位置が変動する。
また、例えば、ファインアライメントマークAを撮像するCCDカメラ54の視野内にL2が視野の水平方向中央に位置する状態(図8参照)から、ワークステージ34をX軸方向に15mmステップ送りした場合、隣接するラインL2が視野の水平方向中央に位置する状態となるはずである。水平方向中央に来ない場合は、ステップ送り方向のX軸方向送り量が誤差を含んでいることになる。同じ要領で、ラインL1を用いて、Y軸方向のステップ送り量の誤差も知ることができる。以上を踏まえ、グローバルアライメントの誤差及びステップ送り誤差の評価を行い、必要に応じて修正を施す。具体的には、例えば、ワークステージ34をX軸方向に移動させてラインL1の上下方向位置の変動のデータを得て、その結果から例えば最小二乗法等の利用によりグローバルアライメント誤差(XY平面内の傾き誤差)、ワークステージ34のX軸方向駆動装置29による移動時の真直度等の誤差及び15mm毎のステップ送り量の誤差を得る。
図示しないグローバルアライメントカメラはY軸方向に40mm離間して2台設けられており、それぞれのグローバルアライメントの基準位置(例えば、各々のグローバルアライメントカメラの視野の中心位置)同士を結ぶ直線はY軸方向と平行でなければならない。グローバルアライメントに誤差があるということは、実際は、Y軸方向に対して、2箇所あるグローバルアライメントの基準位置同士を結ぶ直線の方向が傾いていることを意味する。そこで、得られた結果に基づき、グローバルアライメントカメラの位置調整を行うことにより、グローバルアライメント誤差の解消を図る。ワークステージ34の移動時の真直度等の誤差やステップ送り誤差は、半導体ウェハ18のファインアライメントが不可能になるような極端な場合等、必要に応じ、ワークステージ34のX軸方向駆動装置、Y軸方向駆動装置による補正動作、または、ウェハチャック36の6軸微動機構による補正動作を行うことにより対応する。ファインアライメントマークA、B、Cはアライメント動作の確認のために利用できる。すなわち、半導体ウェハ18の場合と同様に、アライメント調整を行い正常に行えるかどうかを調べる。
ファインアライメントマ一クA、B、Cと対応するマスク40の図示しないマスクマークとの相対的な位置ずれ(視野内の水平方向のずれ)をアライメントユニット50により検出し、その結果に基づきX軸方向、Y軸方向及びXY平面内の回動方向のアライメント補正量を算出し、ウェハチャック36を6自由度微動機構によりアライメント補正を実行する。補正後、再度アライメントユニット50によりファインアライメントマークA、B、Cと対応するマスク40の図示しないマスクマークとの相対的な位置ずれ量を測定することによりファインアライメントが正常に行われているかどうかをチェックする。
補正動作後でも位置ずれが十分に解消されない場合は、アライメントユニット50による検出誤差、あるいは6自由度微動機構の位置決め精度等に問題がある可能性があるので確認する。また、補助ファインアライメントマークA1(B1、C1)は、CCDカメラ54の画素分解能の算出や画面上の寸法の校正等に利用することができる。フォーカス用アライメントマークF、G、Hは、例えば、CCDカメラ54の合焦位置調整や回転方向位置合わせ、レンズの歪みチェック等に利用できる。これを使用したチェック時は、マスク40は邪魔になるのでマスク40をはずした状態とするか、あるいはマスクステージ部22を開口部16Aと対向しない位置に退避した状態で行う。
ファインアライメントマークA用のCCDカメラ54のチェックはフォーカス用アライメントマークFを使用し、ファインアライメントマークB用のCCDカメラ54のチェックはフォーカス用アライメントマークGを使用し、ファインアライメントマークC用のCCDカメラ54のチェックはフォーカス用アライメントマークHを使用する。回転方向位置合わせについては、パターンの方向とCCDカメラ54の視野の上下方向ができるだけ平行になるようにCCDカメラ54の向きをパターンの検出結果に基づき調整する。
その他、例えば、調整用ウェハ18Aの中心(パターン18cの中心O)を通るラインL1、L2、又はL3を利用して、ウェハチャック36に図示しない搬送ロボットにより搬送・保持された状態での半導体ウェハ18の中心位置と6自由度微動機構によるXY平面内の回動の中心位置とのずれ量を調べることができる。まず、X軸方向駆動装置29又はY軸方向駆動装置によりワークステージ34を移動し、いずれかのCCDカメラ54の視野内に調整用ウェハ18Aの中心が位置するように位置決めする。次いで6自由度微動機構によりXY平面内でウェハチャック36を所定角度回動させた場合の調整用ウェハ18Aの中心位置(ラインL1、L2、及びL3の交点)の位置の変化を調べる。
このとき6自由度微動機構による回動中心と調整用ウェハ18Aの中心位置とが完全に一致している場合は、ウェハチャック36の回動により調整用ウェハ18Aの中心位置は動くことはない。調整用ウェハ18Aの中心位置が変化する場合は、その量に応じ、調整用ウェハ18Aの中心位置と6自由度微動機構による回動中心とのずれ量を知ることができる。ウェハチャック36に半導体ウェハが保持された状態での半導体ウェハ18の中心位置と6自由度微動機構によるXY平面内の回動中心位置とはできるだけ一致させるのが好ましい。したがって、ずれ量の測定結果に基づき、必要に応じ、搬送ロボットによるウェハの搬入位置の微調整を行う。
以下に、位置決め装置10による半導体ウェハ18の位置決めについて説明する。予め調整用ウェハ18を、ウェハ18Aを用いて上記のような各種誤差の測定及び必要に応じCCDカメラ54の位置調整や各種補正値取得をしておく。試料としての半導体ウェハ18に露光やイオン注入などの処理を施す際は、塵埃を嫌うなどのため、真空中での作業が多い。このため、本実施の形態の位置決め装置10も真空中での作業を前提としている。
まず、図示しない搬送ロボットにより搬送された位置決め用の半導体ウェハ18をウェハチャック36により保持した状態でワークステージ34に載置される。次に図示しないグローバルアライメントカメラにより半導体ウェハ18のグローバルアライメントを行う。
次に、ワークステージ34は、第1のスライダ26をX軸方向へ移動し、第2のスライダ30をY軸方向へ移動することで、例えばイオン注入処理を施すパターン領域の中心が注入中心に対向するように位置決めする。この場合、予め調整用ウェハ18Aのグローバルアライメント調整用マークD,EやラインL1、L2を用いてグローバルアライメント精度向上及びワークステージ34の位置決めの補正のためのデータが得られているため半導体ウェハ18は、精度よく位置決めが可能となる。
次に、3台のアライメントユニット50により、ファインアライメントマークA'、B'、C'及びそれぞれに対応するマスク40のファインアラメントマークをそれぞれ撮像して撮像データを生成するとともに、各撮像データの画像を処理して、ファインアライメントマークA'、B'、C'を認識し、この認識結果からファインアライメントマークA'、B'、C'の位置と基準値とのずれ量を算出する。この後、各ずれ量をゼロに補正するために、6自由度微動機構により半導体ウェハ18とマスク40とを高精度にファインアラメントする。この場合、予め調整用ウェハ18AのファインアライメントマークA、B、Cやフォーカス用アライメントマークF,G,H等による3台のアライメントユニット50の回転方向位置の微調整や、位置ずれ量等の検出値の校正が行われていることにより、高精度な位置合わせが可能で、ファインアラメントのリトライ回数も削減することができる。
ワークステージ34および半導体ウェハ18を高精度に位置決めした後は、露光装置を作動させて(感光材料を塗布した)半導体ウェハ18に露光潜像を形成する。ステップ送り、上記のこのような位置合わせ、及び露光を半導体ウェハ18上の全てのパターン領域について行った後に半導体ウェハ18は露光装置から搬出され、現像、エッチングなどを行って半導体ウェハ18に所望のパターンを形成する。イオン注入の場合にも、同様のプロセスによって半導体ウェハ18とワークステージ34に関する位置決めを実行することができる。
本実施例によれば、半導体ウェハ18を移動させるためのワークステージ34の位置を制御するに際して、予め調整用ウェハ18AアライメントマークD,EやラインL1、L2、L3を用いた上記のような測定結果の利用によりグローバルアライメントやワークステージ34のステップ送りの高精度化を図った上でワークステージ34を順次移動して、ワークステージを位置決めするようにしたため、半導体ウェハ18を収納する容器である真空チャンバ内に測定器具を配置することなく、半導体ウェハ18とワークステージ34の位置決め精度を高めることができる。また、装置を組み付けた後でも、半導体ウェハ18とワークステージ34の位置決め精度を測定することもできる。
また、予め、調整用ウェハ18AのファイアライメントマークA、B、C、補助ファインアライメントマークA1、B1、C1及びフォーカス用アライメントマーク、F、G、Hを用いた測定やその結果に基づくCCDカメラ54の調整やファインアライメントの校正により、マスク40と半導体ウェハ18とのファインアライメントのリトライ回数の削減が可能となる。
本発明の実施の形態に係る位置決め装置を示す正面図である。 調整用ウェハの平面図である。 グローバルアライメント調整用マークの平面図である。 調整用ウェハのファインアライメントマークと注入中心との関係を説明するための平面図である。 (a)〜(c)は、被処理半導体ウェハの3種類のファインアライメントマークの構成を説明するための平面図である。 調整用ウェハのファインアライメントマークの要部を拡大した状態を示す要部拡大平面図である。 フォーカス用アライメントマークの平面図である。 CCDカメラの視野領域の平面図である。
符号の説明
A、B、C 調整用ウェハのファインアライメントマーク
D、E グローバルアライメント調整用マーク
F、G、H フォーカス用アライメントマーク
LD 発光ダイオード
10 半導***置決め装置
12 定盤
14 支柱
16 天板
16A 開口部
18 半導体ウェハ
20 移動ステージ部
22 マスクステージ部
24 ベース
26 第1のスライダ
28 X軸方向摺動装置
30 第2のスライダ
32 Y軸方向摺動装置
34 ワークステージ
36 ウェハチャック
50 アライメントユニット
52 照明光源部
54 CCDカメラ
54A 視野領域
74 カメラ用XーYテーブル(撮像素子用テーブル)
76 筐体
78 照明光学系
80 集光レンズ

Claims (3)

  1. 半導体ウェハを搭載して二次元方向に移動する移動テーブルと、前記半導体ウェハのファインアライメントマークに向けて光を照射する照明手段と、前記照明手段から前記半導体ウェハのファインアライメントマークに照射された光の反射光を入射して、前記半導体ウェハ上に形成された前記ファインアライメントマークを撮像する撮像手段と、前記撮像手段の撮像による撮像データを画像処理して前記アライメントマークの二次元座標系における位置を算出する算出手段と、前記算出手段の算出結果を基に前記移動テーブルの位置を制御する位置制御手段と、を備えてなる位置決め装置の精度測定方法において、前記半導体ウェハと同サイズで、表面に直線状のパターンが所定間隔毎に設けられた調整用ウェハを前記移動テーブルにより移動させ前記撮像手段により、前記調整用ウェハの各直線状パターンを撮像しその結果に基づき、前記位置決め装置の精度を測定することを特徴とする位置決め装置の精度測定方法。
  2. 前記調整用ウェハは、グローバルアライメント調整用マークと、前記グローバルアライメント調整用マークよりも位置決め精度の高いファインアライメント調整用マークと、フォーカス調整用マークを含んで構成されてなることを特徴とする請求項1に記載の位置決め装置の精度測定方法。
  3. 前記ファインアライメント調整用マークは、形状の相異なる複数のマークで構成され、前記複数のファインアライメントマークは、前記半導体ウェハのうち前記撮像手段の撮像領域の周囲に分散して配置されてなることを特徴とする請求項1または2に記載の位置決め装置の精度測定方法。
JP2006130813A 2006-05-09 2006-05-09 位置決め装置の精度測定方法 Pending JP2007305696A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006130813A JP2007305696A (ja) 2006-05-09 2006-05-09 位置決め装置の精度測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130813A JP2007305696A (ja) 2006-05-09 2006-05-09 位置決め装置の精度測定方法

Publications (1)

Publication Number Publication Date
JP2007305696A true JP2007305696A (ja) 2007-11-22

Family

ID=38839396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130813A Pending JP2007305696A (ja) 2006-05-09 2006-05-09 位置決め装置の精度測定方法

Country Status (1)

Country Link
JP (1) JP2007305696A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528766A (ja) * 2014-09-09 2017-09-28 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 焦点合わせと傾斜補正のデザインを有するマーク及びそのアラインメント方法
CN108305848A (zh) * 2018-01-12 2018-07-20 昆山成功环保科技有限公司 一种晶圆自动定位***及包括它的装载机
KR102188569B1 (ko) * 2019-07-02 2020-12-08 세메스 주식회사 기판정렬카메라 얼라인시스템
CN115031607A (zh) * 2022-04-27 2022-09-09 中国第一汽车股份有限公司 一种汽车底盘焊装精***具精度检测装置
CN117012689A (zh) * 2023-09-26 2023-11-07 天津中科晶禾电子科技有限责任公司 一种晶圆对准装置及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528766A (ja) * 2014-09-09 2017-09-28 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 焦点合わせと傾斜補正のデザインを有するマーク及びそのアラインメント方法
CN108305848A (zh) * 2018-01-12 2018-07-20 昆山成功环保科技有限公司 一种晶圆自动定位***及包括它的装载机
KR102188569B1 (ko) * 2019-07-02 2020-12-08 세메스 주식회사 기판정렬카메라 얼라인시스템
CN115031607A (zh) * 2022-04-27 2022-09-09 中国第一汽车股份有限公司 一种汽车底盘焊装精***具精度检测装置
CN117012689A (zh) * 2023-09-26 2023-11-07 天津中科晶禾电子科技有限责任公司 一种晶圆对准装置及方法
CN117012689B (zh) * 2023-09-26 2023-12-15 天津中科晶禾电子科技有限责任公司 一种晶圆对准装置及方法

Similar Documents

Publication Publication Date Title
KR100240371B1 (ko) 면위치검출방법 및 이것을 이용한 주사노광방법
JP3203719B2 (ja) 露光装置、その露光装置により製造されるデバイス、露光方法、およびその露光方法を用いたデバイス製造方法
KR100471524B1 (ko) 노광방법
US8017424B2 (en) Dual-sided substrate measurement apparatus and methods
JPWO2007043535A1 (ja) 光学特性計測方法、露光方法及びデバイス製造方法、並びに検査装置及び計測方法
US9639008B2 (en) Lithography apparatus, and article manufacturing method
US6219442B1 (en) Apparatus and method for measuring distortion of a visible pattern on a substrate by viewing predetermined portions thereof
KR20180132104A (ko) 투영식 노광 장치 및 방법
TW201530264A (zh) 曝光裝置及曝光方法、以及元件製造方法
JP2006300676A (ja) 平坦度異常検出方法及び露光装置
US20230333492A1 (en) Exposure control in photolithographic direct exposure methods for manufacturing circuit boards or circuits
JP2007305696A (ja) 位置決め装置の精度測定方法
TWI795563B (zh) 檢查治具及檢查方法
US20100261106A1 (en) Measurement apparatus, exposure apparatus, and device fabrication method
TWI794438B (zh) 晶片位置測定裝置
JPS5918950A (ja) 加工片上へのマスクの投影転写装置およびその調整方法
JP6706164B2 (ja) アライメント装置、露光装置、およびアライメント方法
JP2012133122A (ja) 近接露光装置及びそのギャップ測定方法
JP2007299805A (ja) ギャップ検出値の校正方法
JPH104055A (ja) 自動焦点合わせ装置及びそれを用いたデバイスの製造方法
JP3204253B2 (ja) 露光装置及びその露光装置により製造されたデバイス、並びに露光方法及びその露光方法を用いてデバイスを製造する方法
JPS59161815A (ja) 投影露光装置
US11982948B2 (en) Method for determining a center of a radiation spot, sensor and stage apparatus
JP2007086684A (ja) 露光装置
JP3919689B2 (ja) 露光方法、素子の製造方法および露光装置