JP2007260534A - Method for preparing titanium oxide photocatalyst - Google Patents

Method for preparing titanium oxide photocatalyst Download PDF

Info

Publication number
JP2007260534A
JP2007260534A JP2006087525A JP2006087525A JP2007260534A JP 2007260534 A JP2007260534 A JP 2007260534A JP 2006087525 A JP2006087525 A JP 2006087525A JP 2006087525 A JP2006087525 A JP 2006087525A JP 2007260534 A JP2007260534 A JP 2007260534A
Authority
JP
Japan
Prior art keywords
titanium
titanium oxide
photocatalytic
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087525A
Other languages
Japanese (ja)
Inventor
Yuko Suyasu
祐子 須安
Hironobu Koike
宏信 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006087525A priority Critical patent/JP2007260534A/en
Publication of JP2007260534A publication Critical patent/JP2007260534A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a titanium oxide photocatalyst which can stably provide the titanium oxide photocatalyst with an excellent photocatalytic activity in a high productivity. <P>SOLUTION: The titanium photocatalyst is prepared by sintering a titanium oxide photocatalyst precursor and then cooling the resultant at a cooling speed of 150°C/hr or lower. A preferable embodiment is cooling from a temperature of 300°C or higher to 100°C or lower. The titanium oxide photocatalyst precursor is preferably at least one kind selected from a group consisting of titanium hydroxide, orthotitanic acid, metatitanic acid and titanium nitride. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、優れた光触媒活性を有する光触媒酸化チタンを安定して生産性よく製造する方法に関する。   The present invention relates to a method for stably producing photocatalytic titanium oxide having excellent photocatalytic activity with high productivity.

光触媒酸化チタンは、酸化チタンを主成分とし、光触媒活性を示す物質であり、その光触媒作用は、例えば脱臭や殺菌等を目的とした様々な分野で利用されている。
従来、光触媒酸化チタンの製造方法としては、水酸化チタンのような光触媒酸化チタン前駆体を焼成する方法などが知られている(特許文献1参照)。
Photocatalytic titanium oxide is a substance having titanium oxide as a main component and exhibiting photocatalytic activity, and its photocatalytic action is used in various fields for the purpose of deodorization and sterilization, for example.
Conventionally, as a method for producing photocatalytic titanium oxide, a method of firing a photocatalytic titanium oxide precursor such as titanium hydroxide is known (see Patent Document 1).

特開2001−302241号公報JP 2001-302241 A

しかしながら、従来の製造方法においては、製造時に得られる触媒の一部もしくは全部に充分な光触媒活性が付与されず、活性が不充分であったり、活性にばらつきが生じたりすることがあった。そのような触媒は通常不良品として処分されることになり、その量が多いと生産性を大きく損なうことがあった。   However, in the conventional production method, sufficient photocatalytic activity is not imparted to part or all of the catalyst obtained at the time of production, and the activity may be insufficient or the activity may vary. Such a catalyst is usually disposed of as a defective product, and if the amount is large, productivity may be greatly impaired.

そこで、本発明の課題は、優れた光触媒活性を有する光触媒酸化チタンを安定して生産性よく得ることができる光触媒酸化チタンの製造方法を提供することにある。   Then, the subject of this invention is providing the manufacturing method of the photocatalytic titanium oxide which can obtain the photocatalytic titanium oxide which has the outstanding photocatalytic activity stably with sufficient productivity.

本発明者らは、上記課題を解決するべく鋭意研究を重ねた結果、光触媒酸化チタン前駆体を焼成して光触媒酸化チタンを製造するにあたり、焼成後の冷却速度が光触媒活性に影響を及ぼすことを突き止め、焼成後の冷却速度を特定範囲に調整することによって、前記課題を一挙に解決しうることを見出し、本発明を完成させるに至った。   As a result of intensive research to solve the above-mentioned problems, the inventors of the present invention have shown that the photocatalytic titanium oxide precursor is calcined to produce photocatalytic titanium oxide, and that the cooling rate after firing affects the photocatalytic activity. Ascertaining and adjusting the cooling rate after firing to a specific range has found that the above-mentioned problems can be solved at once, and the present invention has been completed.

すなわち、本発明は以下の構成からなる。
(1)光触媒酸化チタン前駆体を焼成したのち、冷却速度150℃/時間以下で冷却する、ことを特徴とする光触媒酸化チタンの製造方法。
(2)300℃以上の温度から100℃以下の温度にまで冷却する、前記(1)記載の光触媒酸化チタンの製造方法。
(3)前記光触媒酸化チタン前駆体は、水酸化チタン、オルトチタン酸、メタチタン酸および窒化チタンからなる群から選ばれる少なくとも1種である、前記(1)または(2)記載の光触媒酸化チタンの製造方法。
That is, the present invention has the following configuration.
(1) A method for producing a photocatalytic titanium oxide, comprising calcining a photocatalytic titanium oxide precursor and then cooling at a cooling rate of 150 ° C./hour or less.
(2) The method for producing photocatalytic titanium oxide according to (1), wherein the cooling is performed from a temperature of 300 ° C. or higher to a temperature of 100 ° C. or lower.
(3) The photocatalytic titanium oxide precursor is the photocatalytic titanium oxide according to (1) or (2), which is at least one selected from the group consisting of titanium hydroxide, orthotitanic acid, metatitanic acid, and titanium nitride. Production method.

本発明によれば、製造時において充分に高い光触媒活性が付与された触媒を安定して生産性よく得ることができる、という効果がある。それによって、触媒の活性が不充分であったり、活性にばらつきが生じたりするという従来の問題を容易に回避することができる。   According to the present invention, there is an effect that a catalyst to which a sufficiently high photocatalytic activity is imparted during production can be stably obtained with high productivity. Thereby, it is possible to easily avoid the conventional problem that the activity of the catalyst is insufficient or the activity varies.

本発明の光触媒酸化チタンの製造方法(以下「本発明の製造方法」と称することもある。)は、光触媒酸化チタン前駆体を焼成したのち、特定の冷却速度で冷却する方法である。
本発明の製造方法において原料とする光触媒酸化チタン前駆体は、焼成することにより光触媒活性を示す酸化チタンに導かれる化合物であればよく、例えば、以下のチタン含有無機化合物やチタン含有有機化合物等が挙げられる。
The photocatalytic titanium oxide production method of the present invention (hereinafter sometimes referred to as “the production method of the present invention”) is a method in which the photocatalytic titanium oxide precursor is baked and then cooled at a specific cooling rate.
The photocatalytic titanium oxide precursor used as a raw material in the production method of the present invention may be any compound that can be led to titanium oxide that exhibits photocatalytic activity by firing. For example, the following titanium-containing inorganic compounds and titanium-containing organic compounds include: Can be mentioned.

チタン含有無機化合物としては、例えば、窒化チタン、ホウ化チタン、臭化チタン、炭化チタン、水素化チタン、ヨウ化チタン、水酸化チタン、セレン化チタン、硫化チタン、テルル化チタン、硫酸チタン〔Ti(SO42・mH2O、0≦m≦20〕、オキシ硫酸チタン〔TiOSO4・nH2O、0≦n≦20〕、三塩化チタン〔TiCl3〕、四塩化チタン〔TiCl4〕、オキシ塩化チタン〔TiOCl2〕、四臭化チタン〔TiBr4〕、シュウ酸チタンアンモニウム、シュウ酸チタンバリウム、オルトチタン酸、メタチタン酸などが挙げられる。チタン含有有機化合物としては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトライソプロポキシチタン、テトラ−n−ブトキシチタン、テトライソブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−t−ブトキシチタン、テトラキス−2−エチルヘキシロキシチタン、テトラステアリロキシチタンのようなテトラアルコキシチタン化合物、ジイソプロポキシビス(アセチルアセトナト)チタン、ジイソプロポキシビス(トリエタノールアミナト)チタン、ジ−n−ブトキシビス(トリエタノールアミナト)チタン、ジ(2−エチルヘキシロキシ)ビス(2−エチル−1,3−ヘキサンジオラト)チタン、イソプロポキシ(2−エチルヘキサンジオラト)チタン、テトラアセチルアセトネートチタン、ヒドロキシビス(ラクタト)チタンのようなチタンキレート化合物などが挙げられる。これらチタン含有無機化合物やチタン含有有機化合物は、一部が加水分解されていてもよいし、一部が結晶性酸化チタンに結晶化していてもよい。 Examples of the titanium-containing inorganic compound include titanium nitride, titanium boride, titanium bromide, titanium carbide, titanium hydride, titanium iodide, titanium hydroxide, titanium selenide, titanium sulfide, titanium telluride, titanium sulfate [Ti (SO 4 ) 2 · mH 2 O, 0 ≦ m ≦ 20], titanium oxysulfate [TiOSO 4 .nH 2 O, 0 ≦ n ≦ 20], titanium trichloride [TiCl 3 ], titanium tetrachloride [TiCl 4 ] , Titanium oxychloride [TiOCl 2 ], titanium tetrabromide [TiBr 4 ], titanium ammonium oxalate, barium titanium oxalate, orthotitanic acid, metatitanic acid and the like. Examples of the titanium-containing organic compound include tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetraisopropoxy titanium, tetra-n-butoxy titanium, tetraisobutoxy titanium, tetra-sec-butoxy titanium, tetra- Tetraalkoxy titanium compounds such as t-butoxy titanium, tetrakis-2-ethylhexyloxy titanium, tetrastearyloxy titanium, diisopropoxybis (acetylacetonato) titanium, diisopropoxybis (triethanolaminato) titanium, di -N-butoxybis (triethanolaminato) titanium, di (2-ethylhexyloxy) bis (2-ethyl-1,3-hexanediolato) titanium, isopropoxy (2-ethylhexanediolato) titanium, tetraacetyl A Tonetochitan, hydroxy bis (lactato) titanium chelate compounds such as titanium and the like. These titanium-containing inorganic compounds and titanium-containing organic compounds may be partly hydrolyzed or partly crystallized into crystalline titanium oxide.

前記光触媒酸化チタン前駆体は、上記のチタン含有無機化合物やチタン含有有機化合物の中でも特に、水酸化チタン、オルトチタン酸、メタチタン酸および窒化チタンからなる群から選ばれる少なくとも1種であることが好ましい。   The photocatalytic titanium oxide precursor is preferably at least one selected from the group consisting of titanium hydroxide, orthotitanic acid, metatitanic acid, and titanium nitride, among the titanium-containing inorganic compounds and titanium-containing organic compounds. .

前記光触媒酸化チタン前駆体は、焼成することにより、通常、アナターゼ型の酸化チタンに遷移する。本発明の製造方法において、焼成条件は特に制限されるものではないが、例えば、焼成温度は、通常、好ましくは200〜800℃、より好ましくは300〜600℃とするのがよく、焼成に要する時間は、通常、0.1時間〜30時間程度とすることが好ましい。また、焼成に用いられる装置は、特に制限はないが、例えば、熱風循環式焼成炉、静置式焼成炉、トンネル炉、ロータリーキルン、遠赤外線炉、マイクロ波加熱炉等を使用することができる。   The photocatalytic titanium oxide precursor usually transitions to anatase-type titanium oxide by firing. In the production method of the present invention, the firing conditions are not particularly limited. For example, the firing temperature is usually preferably 200 to 800 ° C., more preferably 300 to 600 ° C., which is necessary for firing. Usually, the time is preferably about 0.1 to 30 hours. The apparatus used for firing is not particularly limited. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like can be used.

焼成後の冷却に際しては、冷却速度を特定範囲に制御することが重要である。すなわち、冷却速度は150℃/時間以下でなければならず、好ましくは5〜150℃/時間、より好ましくは10〜100℃/時間、さらに好ましくは10〜50℃/時間で冷却するのがよい。冷却速度が150℃/時間を超えると、良好な光触媒活性が均一に安定して付与できない。また、冷却速度が5℃/時間を下回ると、冷却に時間がかかりすぎて生産性が低下するので好ましくない。   When cooling after firing, it is important to control the cooling rate within a specific range. That is, the cooling rate must be 150 ° C./hour or less, preferably 5 to 150 ° C./hour, more preferably 10 to 100 ° C./hour, and still more preferably 10 to 50 ° C./hour. . When the cooling rate exceeds 150 ° C./hour, good photocatalytic activity cannot be imparted uniformly and stably. On the other hand, if the cooling rate is less than 5 ° C./hour, it takes too much time for cooling and the productivity is lowered.

冷却に際しては、300℃以上の温度から100℃以下の温度にまで冷却することが好ましい。すなわち、前記冷却速度での冷却の開始温度は300℃以上であることが好ましく、前記冷却速度での冷却の終了温度が100℃以下であることが好ましいのである。前記冷却速度での冷却の開始温度が300℃未満であったり、前記冷却速度での冷却の終了温度が100℃を超える温度であると、充分な触媒活性が発現されない恐れがある。   In cooling, it is preferable to cool from a temperature of 300 ° C. or higher to a temperature of 100 ° C. or lower. That is, the cooling start temperature at the cooling rate is preferably 300 ° C. or higher, and the cooling end temperature at the cooling rate is preferably 100 ° C. or lower. If the cooling start temperature at the cooling rate is less than 300 ° C. or the cooling end temperature at the cooling rate is higher than 100 ° C., sufficient catalytic activity may not be exhibited.

本発明の製造方法においては、前記焼成の際には、光触媒酸化チタン前駆体(以下「被焼成物」と称することもある)が水と接触することのないように焼成を行ない、かつ、前記冷却の際には、温度が100〜600℃の範囲となっている間に前記被焼成物を水分と接触させる、ことが好ましい。このような態様によれば、より一層光触媒活性を向上させることができる。   In the production method of the present invention, during the firing, firing is performed so that the photocatalytic titanium oxide precursor (hereinafter sometimes referred to as “substance to be fired”) does not come into contact with water, and During cooling, it is preferable to bring the object to be fired into contact with moisture while the temperature is in the range of 100 to 600 ° C. According to such an embodiment, the photocatalytic activity can be further improved.

焼成の際に、前記被焼成物が水と接触することのないようにするには、例えば、実質的に水蒸気を含まない乾燥状態の雰囲気中(具体的には、水蒸気濃度が2vol%未満、より好ましくは1vol%以下、さらに好ましくは0vol%である雰囲気中)で焼成を行なうようにすればよい。
なお、焼成を行なう際の雰囲気ガスは、大気であってもよいし、アルゴンなどの希ガスや窒素ガスなどの不活性ガスであってもよい。
In order to prevent the material to be fired from coming into contact with water during firing, for example, in a dry atmosphere substantially free of water vapor (specifically, the water vapor concentration is less than 2 vol%, More preferably, the firing may be performed in an atmosphere of 1 vol% or less, more preferably 0 vol%.
In addition, the atmospheric gas at the time of baking may be air, or may be a rare gas such as argon or an inert gas such as nitrogen gas.

冷却の際に、温度が100〜600℃の範囲となっている間に前記被焼成物を水分と接触させるには、通常、雰囲気中の水蒸気濃度を2〜80vol%、好ましくは60vol%以下とすればよい。ここで、水蒸気濃度を上記範囲にするには、例えば、炉内に水蒸気(スチーム)を雰囲気ガスとともに吹き込み、置換すればよい。前記被焼成物を水分と接触させる際の時間は、通常、0.1時間〜1時間程度とすればよい。冷却の際に、被焼成物と水分とを接触させる場合、冷却前後の温度差は、通常30〜200℃、好ましくは50〜200℃となるようにするのがよい。
なお、冷却する際の雰囲気ガスは、大気であってもよいし、アルゴンなどの希ガスや窒素ガスなどの不活性ガスであってもよい。
In order to bring the object to be fired into contact with moisture while the temperature is in the range of 100 to 600 ° C. during cooling, the water vapor concentration in the atmosphere is usually 2 to 80 vol%, preferably 60 vol% or less. do it. Here, in order to bring the water vapor concentration into the above range, for example, water vapor (steam) may be blown into the furnace together with the atmospheric gas and replaced. The time for bringing the object to be fired into contact with moisture is usually about 0.1 hour to 1 hour. When the object to be fired and moisture are brought into contact with each other during cooling, the temperature difference before and after cooling is usually 30 to 200 ° C, preferably 50 to 200 ° C.
The atmosphere gas for cooling may be air, or may be a rare gas such as argon or an inert gas such as nitrogen gas.

本発明の製造方法においては、焼成に供する前の光触媒酸化チタン前駆体もしくは焼成後の酸化チタンに対して、洗浄を施すことが好ましい。さらには、洗浄を施した後には、乾燥を行なうことが好ましく、例えば洗浄した光触媒酸化チタン前駆体は、乾燥後に焼成に供することが好ましい。ここで、乾燥は、通常、好ましくは10〜200℃、より好ましくは70〜150℃の温度で行われる。乾燥時間は、乾燥温度に応じて適宜設定すればよいのであるが、通常、1〜24時間が好ましく、より好ましくは5〜24時間である。   In the production method of the present invention, it is preferable to wash the photocatalytic titanium oxide precursor before being subjected to calcination or the titanium oxide after calcination. Furthermore, it is preferable to dry after washing, for example, the washed photocatalytic titanium oxide precursor is preferably subjected to firing after drying. Here, drying is usually performed at a temperature of preferably 10 to 200 ° C, more preferably 70 to 150 ° C. The drying time may be appropriately set according to the drying temperature, but is usually preferably 1 to 24 hours, and more preferably 5 to 24 hours.

本発明の製造方法においては、必要に応じて、得られた光触媒酸化チタンに対して、酸性金属酸化物および/または塩基性金属化合物を表面被覆する処理(表面被覆処理)を施してもよいし、解砕処理を施してもよい。
本発明の製造方法により得られた光触媒酸化チタンは、製造時において充分に高い光触媒活性が付与されたものであり、極めて優れた光触媒活性を示す。
In the production method of the present invention, if necessary, the obtained photocatalytic titanium oxide may be subjected to a surface coating treatment (surface coating treatment) with an acidic metal oxide and / or a basic metal compound. A crushing treatment may be performed.
The photocatalytic titanium oxide obtained by the production method of the present invention is imparted with sufficiently high photocatalytic activity at the time of production, and exhibits extremely excellent photocatalytic activity.

以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、得られた光触媒酸化チタンの光触媒活性は以下の方法で評価した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to a following example.
The photocatalytic activity of the obtained photocatalytic titanium oxide was evaluated by the following method.

<光触媒活性>
直径8cm、高さ10cm、容量約0.5L(500cm3)の密閉式ガラス製反応容器内に、直径5cmのガラス製シャーレを載置し、その上に試料とする光触媒酸化チタン0.3gを載せ、反応容器内を酸素/窒素混合ガス(酸素/窒素=1:4(体積比))で満たし、さらにアセトアルデヒド13.4μモルを封入したのち、反応容器の外側から可視光を照射した。可視光は、500Wキセノンランプ(ウシオ電機社製「ランプUXL−500SX」)を取付けた光源装置(ウシオ電機社製「オプティカルモジュレックスSX−U1500XQ」)から、波長430nm以下の紫外線を遮蔽する紫外線カットフィルター(旭テクノガラス社製「Y−45」)を通して照射した。可視光を照射している間、反応容器内の二酸化炭素の濃度を光音響マルチガスモニタ(INNOVA社製「1213型」)により測定し、光触媒酸化チタン1gあたりの二酸化炭素生成速度を求めた。この二酸化炭素生成速度が大きいほど、光触媒活性が高いと言える。
<Photocatalytic activity>
A glass petri dish with a diameter of 5 cm is placed in a sealed glass reaction vessel having a diameter of 8 cm, a height of 10 cm, and a capacity of about 0.5 L (500 cm 3 ), and 0.3 g of photocatalytic titanium oxide as a sample is placed thereon. The reaction vessel was filled with an oxygen / nitrogen mixed gas (oxygen / nitrogen = 1: 4 (volume ratio)), and 13.4 μmol of acetaldehyde was further sealed, and then visible light was irradiated from the outside of the reaction vessel. Visible light is cut from ultraviolet light with a wavelength of 430 nm or less from a light source device (USHIO ELECTRIC "Optical Modlex SX-U1500XQ") equipped with a 500W xenon lamp (USHIO ELECTRIC "LAMP UXL-500SX"). Irradiated through a filter ("Y-45" manufactured by Asahi Techno Glass). During irradiation with visible light, the concentration of carbon dioxide in the reaction vessel was measured with a photoacoustic multigas monitor (“1213 type” manufactured by INNOVA) to determine the carbon dioxide production rate per gram of photocatalytic titanium oxide. It can be said that the higher the carbon dioxide production rate, the higher the photocatalytic activity.

(製造例−光触媒酸化チタン前駆体の製造)
オキシ硫酸チタン(添川理化学社製)90gを純水360gに溶解させて水溶液とし、氷冷下に撹拌しながら25%アンモニア水(和光純薬工業社製;試薬1級品)104gを5mL/分の添加速度で加えることによりオキシ硫酸チタンを加水分解させて、スラリーを得た。このスラリーを濾過して固形分を得、温水で洗浄したのち100℃で乾燥して、光触媒酸化チタン前駆体としての水酸化チタン粉末を得た。
(Production Example-Production of Photocatalytic Titanium Oxide Precursor)
90 g of titanium oxysulfate (manufactured by Soekawa Rikagaku) was dissolved in 360 g of pure water to obtain an aqueous solution, and 104 g of 25% aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd .; reagent grade 1 product) was stirred at 5 mL / min while stirring under ice cooling. The slurry was obtained by hydrolyzing the titanium oxysulfate by adding at an addition rate of. This slurry was filtered to obtain a solid content, washed with warm water, and then dried at 100 ° C. to obtain titanium hydroxide powder as a photocatalytic titanium oxide precursor.

(実施例1)
製造例で得られた水酸化チタン粉末を炉内に入れ、200℃/時間の昇温速度で300℃まで昇温し、同温度で1時間保持することにより焼成した。焼成は、水蒸気濃度0vol%の乾燥大気中で行った。その後、炉内に水蒸気濃度30vol%の大気を導入して炉内を置換し、15℃/時間の冷却速度で30℃まで冷却して、粉末状の光触媒酸化チタンを得た。得られた光触媒酸化チタンの光触媒活性を評価したところ、二酸化炭素生成速度は1gあたり16.4μモル/時間であった。
Example 1
The titanium hydroxide powder obtained in the production example was placed in a furnace, heated to 300 ° C. at a temperature increase rate of 200 ° C./hour, and calcined by holding at that temperature for 1 hour. Firing was performed in a dry atmosphere with a water vapor concentration of 0 vol%. Then, the atmosphere with a water vapor concentration of 30 vol% was introduced into the furnace to replace the inside of the furnace, and cooled to 30 ° C. at a cooling rate of 15 ° C./hour to obtain powdery photocatalytic titanium oxide. When the photocatalytic activity of the obtained photocatalytic titanium oxide was evaluated, the carbon dioxide production rate was 16.4 μmol / hour per gram.

(比較例1)
製造例で得られた水酸化チタン粉末を炉内に入れ、200℃/時間の昇温速度で300℃まで昇温し、同温度で1時間保持することにより焼成した。焼成は、水蒸気濃度0vol%の乾燥大気中で行った。その後、炉内に水蒸気濃度30vol%の大気を導入して炉内を置換し、600℃/時間の冷却速度で30℃まで冷却して、粉末状の光触媒酸化チタンを得た。得られた光触媒酸化チタンの光触媒活性を評価したところ、二酸化炭素生成速度は1gあたり9.5μモル/時間であった。
(Comparative Example 1)
The titanium hydroxide powder obtained in the production example was placed in a furnace, heated to 300 ° C. at a temperature increase rate of 200 ° C./hour, and calcined by holding at that temperature for 1 hour. Firing was performed in a dry atmosphere with a water vapor concentration of 0 vol%. Then, the atmosphere with a water vapor concentration of 30 vol% was introduced into the furnace to replace the inside of the furnace, and cooled to 30 ° C. at a cooling rate of 600 ° C./hour to obtain powdery photocatalytic titanium oxide. When the photocatalytic activity of the obtained photocatalytic titanium oxide was evaluated, the carbon dioxide production rate was 9.5 μmol / hour per gram.

Claims (3)

光触媒酸化チタン前駆体を焼成したのち、冷却速度150℃/時間以下で冷却する、ことを特徴とする光触媒酸化チタンの製造方法。   A method for producing photocatalytic titanium oxide, comprising calcining a photocatalytic titanium oxide precursor and then cooling at a cooling rate of 150 ° C./hour or less. 300℃以上の温度から100℃以下の温度にまで冷却する、請求項1記載の光触媒酸化チタンの製造方法。   The manufacturing method of the photocatalytic titanium oxide of Claim 1 cooled from the temperature of 300 degreeC or more to the temperature of 100 degrees C or less. 前記光触媒酸化チタン前駆体は、水酸化チタン、オルトチタン酸、メタチタン酸および窒化チタンからなる群から選ばれる少なくとも1種である、請求項1または2記載の光触媒酸化チタンの製造方法。
The method for producing photocatalytic titanium oxide according to claim 1 or 2, wherein the photocatalytic titanium oxide precursor is at least one selected from the group consisting of titanium hydroxide, orthotitanic acid, metatitanic acid, and titanium nitride.
JP2006087525A 2006-03-28 2006-03-28 Method for preparing titanium oxide photocatalyst Pending JP2007260534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087525A JP2007260534A (en) 2006-03-28 2006-03-28 Method for preparing titanium oxide photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087525A JP2007260534A (en) 2006-03-28 2006-03-28 Method for preparing titanium oxide photocatalyst

Publications (1)

Publication Number Publication Date
JP2007260534A true JP2007260534A (en) 2007-10-11

Family

ID=38634057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087525A Pending JP2007260534A (en) 2006-03-28 2006-03-28 Method for preparing titanium oxide photocatalyst

Country Status (1)

Country Link
JP (1) JP2007260534A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043775A (en) * 1996-07-16 1998-02-17 Iskra Ind Co Ltd Decomposing method of organic matter in water by photocatalyst
JP2005296473A (en) * 2004-04-15 2005-10-27 Toyobo Co Ltd Air purifier
JP2006008475A (en) * 2004-06-29 2006-01-12 Sumitomo Chemical Co Ltd Method for manufacturing photocatalyst titanium oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043775A (en) * 1996-07-16 1998-02-17 Iskra Ind Co Ltd Decomposing method of organic matter in water by photocatalyst
JP2005296473A (en) * 2004-04-15 2005-10-27 Toyobo Co Ltd Air purifier
JP2006008475A (en) * 2004-06-29 2006-01-12 Sumitomo Chemical Co Ltd Method for manufacturing photocatalyst titanium oxide

Similar Documents

Publication Publication Date Title
CN1210100C (en) Method for preparing titanium dioxide
CN106179316B (en) A kind of preparation method and application of titanate nanotube array
JP2001031422A (en) Mesoporous titanium oxide form and its production
KR20020011069A (en) Titanium oxide production process
US20020132734A1 (en) Titanium hydroxide, photocatalyst obtainable from the same and coating agent comprising the same
JP4735871B2 (en) Method for producing nitrogen-introduced metal oxide and method for producing photocatalyst using the same
JP2001354422A (en) Method for manufacturing titanium oxide
JP2001278627A (en) Method of producing titanium oxide
JP2007222725A (en) Method for improving activity of photocatalytic titanium oxide and method for manufacturing high-activity photocatalytic titanium oxide
JP4736361B2 (en) Method for producing photocatalytic titanium oxide
JP4078479B2 (en) Method for producing titanium oxide
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP2007260534A (en) Method for preparing titanium oxide photocatalyst
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
JP2001278625A (en) Method of producing titanium oxide
JP2001278626A (en) Method of producing titanium oxide
JP2001302241A (en) Method for producing titanium oxide
JP3940393B2 (en) Method for producing photocatalytic titanium oxide
RU2565193C1 (en) Method of producing nanosized titanium dioxide
KR100884571B1 (en) Nano sized titania photocatalysts manufacturing method by solvent-polymerizing method
RU2561614C1 (en) Method of producing ultra-dispersed titanium carbide powder
Ono et al. An aqueous synthesis of photocatalyst by selective dissolution of titanium oxide/hydroxyapatite composite
JP4598704B2 (en) Method for producing titanium oxide precursor and method for producing titanium oxide
CN107486229A (en) A kind of mesopore surfaces defect Mn-N-TiO2Microballoon catalysis material and preparation method thereof
JP2008169058A (en) Method for producing titanium oxide precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321