JP3940393B2 - Method for producing photocatalytic titanium oxide - Google Patents

Method for producing photocatalytic titanium oxide Download PDF

Info

Publication number
JP3940393B2
JP3940393B2 JP2003375286A JP2003375286A JP3940393B2 JP 3940393 B2 JP3940393 B2 JP 3940393B2 JP 2003375286 A JP2003375286 A JP 2003375286A JP 2003375286 A JP2003375286 A JP 2003375286A JP 3940393 B2 JP3940393 B2 JP 3940393B2
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
aqueous solution
oxide precursor
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003375286A
Other languages
Japanese (ja)
Other versions
JP2005137986A (en
Inventor
佳己 岡田
裕明 西島
正一 安保
弘己 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2003375286A priority Critical patent/JP3940393B2/en
Publication of JP2005137986A publication Critical patent/JP2005137986A/en
Application granted granted Critical
Publication of JP3940393B2 publication Critical patent/JP3940393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

この発明は、光触媒として用いられる酸化チタンの製造方法に係り、特にアナタース型結晶とルチル型結晶との比率が制御された光触媒酸化チタンを容易に製造することができる光触媒酸化チタンの製造方法に関する。 The present invention relates to a method for producing titanium oxide used as a photocatalyst, and more particularly to a method for producing photocatalytic titanium oxide that can easily produce photocatalytic titanium oxide in which the ratio of anatase type crystals and rutile type crystals is controlled .

近年、空気中に飛散する悪臭や有害物質を分解して除去したり、あるいは、排水処理や浄水処理等を行うための環境浄化材料として、更には、種々の基材の表面に優れた親水性を付与するための親水性付与剤として、温度、pH値、ガス雰囲気、毒性等の反応条件の制約が少なく、しかも、高活性で取扱が容易であることから、光触媒活性を有する酸化チタン(チタニア)が着目されており、例えば、アルデヒド、メルカプタン、アンモニア、各種のアミン類等の悪臭物質の分解脱臭、NOX、SOX、PCB、ダイオキシン、有機ハロゲン化合物、有機リン化合物、界面活性剤等の有害物質の分解除去、各種の菌類や藻類等の殺菌・藻処理等の用途を始め、建築材料や土木材料等の親水性処理等の多くの用途に応用されている。 In recent years, as an environmental purification material for decomposing and removing bad odors and harmful substances scattered in the air, or for performing wastewater treatment, water purification treatment, etc., it has excellent hydrophilicity on the surface of various substrates. Titanium oxide (titania) with photocatalytic activity as a hydrophilicity-imparting agent for imparting photocatalytic activity because it has few restrictions on reaction conditions such as temperature, pH value, gas atmosphere and toxicity, and is highly active and easy to handle. ) are focused, for example, aldehydes, mercaptans, ammonia, decomposition deodorizing malodorous substances such as various amines, NO X, SO X, PCB, dioxins, organic halogen compounds, organic phosphorus compounds, such as a surfactant It has been applied to many uses such as decomposing and removing harmful substances, sterilizing various kinds of fungi and algae and treating algae, and hydrophilic treatments such as building materials and civil engineering materials.

そして、このような酸化チタンを工業的に製造する方法については、大別すると、精製した四塩化チタンの水溶液を高温(800〜1,000℃)の酸素雰囲気下に噴霧して四塩化チタンを酸化し、酸化チタン粒子を得る気相法と、水酸基を有する酸化チタン前駆体を製造してこの酸化チタン前駆体を熱処理する液相法とが知られている(清野 学著技報堂出版発行「酸化チタン−物性と応用技術」pp18-27(1991.6.25))。   And about the method of manufacturing such a titanium oxide industrially, if it divides roughly, the aqueous solution of refined titanium tetrachloride will be sprayed in a high-temperature (800-1,000 degreeC) oxygen atmosphere, and titanium tetrachloride will be oxidized. The vapor phase method for obtaining titanium oxide particles and the liquid phase method for producing a titanium oxide precursor having a hydroxyl group and heat-treating the titanium oxide precursor are known (Titanium oxide- Physical properties and applied technology "pp18-27 (1991.6.25)).

しかしながら、前者の気相法においては、得られる製品が既に酸化チタン粒子であることから、光触媒として利用する際にその目的に応じて種々の剤形や形態に加工する、いわゆる二次加工が比較的し難いという問題があり、また、液相法においては、酸化チタン前駆体の状態で種々の剤形や形態に加工することができ、二次加工が比較的容易ではあるが、500℃以上の高温で焼成する際には酸化チタン前駆体における酸化チタンの結晶形態が比較的光触媒活性の高いアナタース型から比較的光触媒活性の低いルチル型に転移し、これらアナタース型結晶とルチル型結晶の存在比率が変化し、焼成時に光触媒活性が低下するという問題がある。   However, in the former gas phase method, the product obtained is already titanium oxide particles, so when using it as a photocatalyst, so-called secondary processing, which is processed into various dosage forms and forms according to its purpose, is compared. In the liquid phase method, it can be processed into various dosage forms and forms in the state of a titanium oxide precursor, and secondary processing is relatively easy, but 500 ° C. or higher. When firing at a high temperature, the crystal form of titanium oxide in the titanium oxide precursor transitions from the anatase type with relatively high photocatalytic activity to the rutile type with relatively low photocatalytic activity, and the presence of these anatase type crystals and rutile type crystals There is a problem that the ratio changes and the photocatalytic activity decreases during firing.

ところで、酸化チタンが高い光触媒活性を発現する原因については必ずしも明らかではないが、純粋なアナタース型の酸化チタンと純粋なルチル型の酸化チタンとを用い、それぞれの混合割合を変えて触媒組成物を調製し、光触媒活性を評価した結果、アナタース型酸化チタンとルチル型酸化チタンとが混在し、その混合状態が光触媒活性を支配する重要な因子になっていることが報告されている(触媒 Vol.45, No.1, pp35-37(2003))。
しかしながら、アナタース型結晶とルチル型結晶の比率が制御された酸化チタンを湿式法で工業的に製造するための方法については知られていない。
By the way, the cause of the high photocatalytic activity of titanium oxide is not necessarily clear, but pure anatase-type titanium oxide and pure rutile-type titanium oxide were used, and the mixing ratio was changed for each catalyst composition. As a result of preparing and evaluating photocatalytic activity, it has been reported that anatase-type titanium oxide and rutile-type titanium oxide are mixed, and the mixed state is an important factor governing photocatalytic activity (Catalyst Vol. 45, No. 1, pp35-37 (2003)).
However, there is no known method for industrially producing titanium oxide with a controlled ratio of anatase type crystal and rutile type crystal by a wet method.

清野 学著技報堂出版発行「酸化チタン−物性と応用技術」pp18-27(1991.6.25)Manabu Seino, published by Gihodo Publishing, "Titanium Oxide-Physical Properties and Applied Technology" pp18-27 (1991.6.25) 触媒 Vol.45, No.1, pp35-37(2003)Catalyst Vol.45, No.1, pp35-37 (2003)

そこで、本発明者らは、種々の剤形や形態に加工する際の二次加工が比較的容易であり、しかも、500℃以上の温度で焼成した場合であってもアナタース型結晶とルチル型結晶との比率が制御された光触媒酸化チタンを容易に製造することができる手段について鋭意検討した結果、チタン含有酸性水溶液に塩基性水溶液を添加して水酸基を有する酸化チタン前駆体を析出させた後、得られた酸化チタン前駆体スラリー中に、酸性の原料水溶液を添加してpH値を酸化チタン前駆体の溶解領域に降下させると共に原料を追加投入する操作と、この操作で得られたチタン含有酸性水溶液に塩基性水溶液を添加してpH値を酸化チタン前駆体の析出領域に上昇させる操作とからなるpHスイング操作を少なくとも3回以上繰り返すことにより、単に二次加工が容易なだけでなく、500℃以上の高温で焼成した際にアナタース型結晶とルチル型結晶との比率が制御された酸化チタンを容易に製造することができる酸化チタン前駆体が得られることを見出し、本発明を完成した。   Therefore, the present inventors are relatively easy to perform secondary processing when processing into various dosage forms and forms, and even when firing at a temperature of 500 ° C. or higher, anatase type crystals and rutile types As a result of intensive investigations on means for easily producing photocatalytic titanium oxide with a controlled ratio to the crystal, after adding a basic aqueous solution to a titanium-containing acidic aqueous solution to precipitate a titanium oxide precursor having a hydroxyl group In the obtained titanium oxide precursor slurry, an operation of adding an acidic raw material aqueous solution to lower the pH value to the dissolution region of the titanium oxide precursor and adding the raw material, and the titanium content obtained by this operation By repeating a pH swing operation consisting of adding an aqueous basic solution to an acidic aqueous solution and raising the pH value to the precipitation region of the titanium oxide precursor at least three times, In addition to easy secondary processing, a titanium oxide precursor capable of easily producing titanium oxide in which the ratio of anatase type crystal and rutile type crystal is controlled when baked at a high temperature of 500 ° C. or higher is obtained. The present invention has been completed.

従って、本発明の目的は、光触媒として用いる際に要求される種々の剤形や形態に二次加工することが容易であって、500℃以上の高温で焼成してアナタース型結晶とルチル型結晶との比率が制御された光触媒酸化チタンを製造することができる光触媒酸化チタンの製造方法を提供することにある。 Therefore, an object of the present invention is to easily perform secondary processing into various dosage forms and forms required when used as a photocatalyst, and calcinate at a high temperature of 500 ° C. or higher to form anatase type crystals and rutile type crystals It is an object of the present invention to provide a photocatalytic titanium oxide production method capable of producing a photocatalytic titanium oxide with a controlled ratio.

また、本発明の他の目的は、上記の光触媒酸化チタンを製造するに際し、酸化チタン前駆体がその焼成前に光触媒として利用するのに必要な形状に二次加工される光触媒酸化チタンの製造方法を提供することにある。 Another object of the present invention is to produce a photocatalytic titanium oxide in which the titanium oxide precursor is secondarily processed into a shape necessary for use as a photocatalyst before firing when producing the photocatalytic titanium oxide. Is to provide.

すなわち、本発明は、チタン含有酸性水溶液に塩基性水溶液を添加して水酸基を有する酸化チタン前駆体を製造し、次いでこの酸化チタン前駆体を高温で焼成して光触媒酸化チタンを製造するに際し、上記酸化チタン前駆体の製造時には、チタン含有酸性水溶液に塩基性水溶液を添加して水酸基を有する酸化チタン前駆体を析出させた後、得られた酸化チタン前駆体スラリー中に、酸性の原料水溶液を添加してpH値を酸化チタン前駆体の溶解領域に降下させると共に原料を追加投入する操作と、この操作で得られたチタン含有酸性水溶液に塩基性水溶液を添加してpH値を酸化チタン前駆体の析出領域に上昇させる操作とからなるpHスイング操作を少なくとも3回以上7回以下の範囲で繰り返し、また、上記酸化チタン前駆体の焼成時には焼成温度500℃以上600℃以下の条件下に行い、上記酸化チタン前駆体製造時のpHスイング操作の回数と酸化チタン前駆体焼成時の温度及び時間とを制御することにより、アナタース型結晶(An)とルチル型結晶(Ru)との比率(An/Ru)が1.7〜11.5の範囲内であって、BET表面積が42m 2 /g以上である光触媒酸化チタンを製造することを特徴とする光触媒酸化チタンの製造方法である。 That is, the present invention provides a titanium oxide precursor having a hydroxyl group by adding a basic aqueous solution to a titanium-containing acidic aqueous solution, and then calcining the titanium oxide precursor at a high temperature to produce a photocatalytic titanium oxide. At the time of manufacturing the titanium oxide precursor, a basic aqueous solution is added to the titanium-containing acidic aqueous solution to precipitate a titanium oxide precursor having a hydroxyl group, and then the acidic raw material aqueous solution is added to the obtained titanium oxide precursor slurry. Then, the pH value is lowered to the dissolution region of the titanium oxide precursor and an additional raw material is added, and a basic aqueous solution is added to the titanium-containing acidic aqueous solution obtained by this operation to change the pH value of the titanium oxide precursor. the pH swing operation consisting of operations and to increase the deposition region at least repeated 3 times or more and 7 times or less in the range and, during firing of the titanium oxide precursor Anatase-type crystals (AnT) are produced by controlling the number of times of pH swing operation during the production of the titanium oxide precursor and the temperature and time during the firing of the titanium oxide precursor, under the conditions of a firing temperature of 500 ° C. to 600 ° C. ) And rutile-type crystals (Ru) (An / Ru) in the range of 1.7 to 11.5, and a photocatalytic titanium oxide having a BET surface area of 42 m 2 / g or more is produced. This is a method for producing photocatalytic titanium oxide .

また、本発明は、上記の光触媒酸化チタンを製造するに際し、酸化チタン前駆体がその焼成前に光触媒として利用するのに必要な形状に二次加工される光触媒酸化チタンの製造方法である。 In addition, the present invention is a method for producing photocatalytic titanium oxide, in which the titanium oxide precursor is secondarily processed into a shape necessary for use as a photocatalyst before firing when producing the photocatalytic titanium oxide .

更に、本発明は、上記の光触媒酸化チタンを製造するに際し、酸化チタン前駆体の製造時に、pH値を溶解領域に降下させる際の値が3.5以下であり、酸化チタン前駆体の析出領域のpH値が7以上として合成される光触媒酸化チタンの製造方法である。 Further, in the production of the photocatalytic titanium oxide , the present invention has a value of 3.5 or less when the pH value is lowered to the dissolution region during the production of the titanium oxide precursor, and the precipitation region of the titanium oxide precursor. Is a method for producing photocatalytic titanium oxide synthesized with a pH value of 7 or more .

本発明において、酸化チタン前駆体を製造する際に用いられるチタン原料については、特に制限は無く、例えば、チタンの塩化物、弗化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、燐酸塩、ホウ酸塩、蓚酸塩、フッ酸塩、ケイ酸塩、ヨウ素酸塩等のチタン塩、チタン酸、チタンのオキソ酸塩及びチタンのアルコキシド類等を挙げることができ、好ましいものとしては、例えば、四塩化チタン、硫酸チタン、硫酸チタニル、三塩化チタン、チタンメトキシド、チタンエトキシド、チタンプロポキシド、チタンイソプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、オルトチタン酸、メタチタン酸、四臭化チタン、四弗化チタン、三弗化チタン、チタン酸カリウム、チタン酸ナトリウム、チタン酸バリウム等を挙げることができる。これらのチタン原料は、その1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。   In the present invention, the titanium raw material used for producing the titanium oxide precursor is not particularly limited. For example, titanium chloride, fluoride, bromide, iodide, nitrate, sulfate, carbonate, acetate , Phosphates, borates, oxalates, fluorides, silicates, iodates, and other titanium salts, titanic acid, titanium oxoacid salts, and titanium alkoxides. For example, titanium tetrachloride, titanium sulfate, titanyl sulfate, titanium trichloride, titanium methoxide, titanium ethoxide, titanium propoxide, titanium isopropoxide, titanium tetraisopropoxide, titanium tetrabutoxide, orthotitanic acid, metatitanium Acid, titanium tetrabromide, titanium tetrafluoride, titanium trifluoride, potassium titanate, sodium titanate, barium titanate It can be mentioned. These titanium raw materials can be used alone or in a mixture of two or more.

また、この酸化チタン前駆体の製造に用いる酸性水溶液や塩基性水溶液としては、例えば、四塩化チタン、硫酸チタン、硫酸チタニル、三塩化チタン、四臭化チタン、四弗化チタン、三弗化チタン等の他に、硝酸、塩酸、硫酸等の酸性水溶液や、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の塩基性水溶液を挙げることができ、これらの酸性水溶液及び塩基性水溶液についても、その1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。これらの酸性水溶液及び塩基性水溶液は、上記のチタン原料のみでは所定のpH値に制御できない場合には、チタン原料と共に用いて、pH値を最適に制御することにも用いられる。   Examples of the acidic aqueous solution and basic aqueous solution used for the production of the titanium oxide precursor include titanium tetrachloride, titanium sulfate, titanyl sulfate, titanium trichloride, titanium tetrabromide, titanium tetrafluoride, titanium trifluoride. In addition to acid aqueous solutions such as nitric acid, hydrochloric acid, sulfuric acid, etc., basic aqueous solutions such as ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc. can be mentioned, These acidic aqueous solutions and basic aqueous solutions can also be used alone or in a mixture of two or more. These acidic aqueous solution and basic aqueous solution are used together with the titanium raw material to optimally control the pH value when the above-mentioned titanium raw material alone cannot be controlled to a predetermined pH value.

更に、酸化チタン前駆体を製造する際に用いる溶媒は、基本的には水であるが、特に制限されるものではなく、例えば、メタノール、エタノール、プロパノール、テトラヒドロフラン、アセトン、ジオキサン等の水溶性有機溶剤の水溶液等を用いることもできる。   Furthermore, the solvent used in producing the titanium oxide precursor is basically water, but is not particularly limited, and examples thereof include water-soluble organic substances such as methanol, ethanol, propanol, tetrahydrofuran, acetone, and dioxane. An aqueous solution of a solvent can also be used.

ここで、この酸化チタン前駆体を製造する際の反応条件については、製造時の水系溶媒中におけるチタン濃度が酸化チタン換算で通常0.1〜15wt%、好ましくは0.5〜10wt%であるのがよく、また、反応温度が常温から300℃、好ましくは常温から180℃、より好ましくは常温から100℃であり、また、反応圧力は原則的に常圧(0MPa)であり、使用する溶媒系と反応温度の条件下で液相を維持する圧力があれば十分である。   Here, regarding the reaction conditions for producing the titanium oxide precursor, the titanium concentration in the aqueous solvent at the time of production is usually 0.1 to 15 wt%, preferably 0.5 to 10 wt% in terms of titanium oxide. In addition, the reaction temperature is from room temperature to 300 ° C., preferably from room temperature to 180 ° C., more preferably from room temperature to 100 ° C., and the reaction pressure is basically normal pressure (0 MPa), and the solvent used It is sufficient to have a pressure that maintains the liquid phase under the conditions of the system and reaction temperature.

本発明においては、チタン含有酸性水溶液に塩基性水溶液を添加して水酸基を有する酸化チタン前駆体を析出させた後、得られた酸化チタン前駆体スラリー中に、酸性水溶液を添加してpH値を酸化チタン前駆体の溶解領域に降下させると共に原料を追加投入する操作とこの操作で得られたチタン含有酸性水溶液に塩基性水溶液を添加してpH値を酸化チタン前駆体の析出領域に上昇させる操作とからなるpHスイング操作を少なくとも3回以上、好ましくは5回以上、より好ましくは7回以上繰り返す必要がある。このpHスイングの繰返し回数が多いほど、500℃以上で焼成した際のアナタース型結晶からルチル型結晶への転移が抑制され、得られた光触媒酸化チタンにおけるアナタース型結晶(An)とルチル型結晶(Ru)との比率(An/Ru)が大きくなり、また、粒子サイズが大きくなって細孔容積が大きくなる傾向がある。   In the present invention, after adding a basic aqueous solution to a titanium-containing acidic aqueous solution to precipitate a titanium oxide precursor having a hydroxyl group, the acidic aqueous solution is added to the resulting titanium oxide precursor slurry to adjust the pH value. An operation of lowering the titanium oxide precursor to the dissolution region and adding an additional raw material and an operation of adding a basic aqueous solution to the titanium-containing acidic aqueous solution obtained by this operation to raise the pH value to the precipitation region of the titanium oxide precursor It is necessary to repeat the pH swing operation consisting of: at least 3 times or more, preferably 5 times or more, more preferably 7 times or more. As the number of repetitions of this pH swing increases, the transition from the anatase type crystal to the rutile type crystal when fired at 500 ° C. or higher is suppressed, and the anatase type crystal (An) and the rutile type crystal ( The ratio (An / Ru) to Ru) increases, and the particle size tends to increase and the pore volume tends to increase.

ここで、具体的なpHスイング操作の方法は、チタン含有酸性水溶液に塩基性水溶液を添加して水酸基を有する酸化チタン前駆体を析出させ、得られた酸化チタン前駆体スラリー中に、酸性水溶液の添加と塩基性水溶液の添加とを交互に行って、酸化チタン前駆体の溶解領域であるpH3.5以下、好ましくは0.5≦pH≦2.0と酸化チタン前駆体の析出領域であるpH7以上、好ましくは7.0≦pH≦8.5との間をスイングさせるものである。また、酸性水溶液の添加後には微細な粒子が溶解消失するに十分な時間、通常3〜60分、好ましくは5〜20分間保持し、塩基性水溶液の添加後には粒子成長に十分な熟成時間、通常3〜30分、好ましくは5〜15分間保持して熟成時間を設けるのがよい。   Here, a specific method of pH swing operation is to add a basic aqueous solution to a titanium-containing acidic aqueous solution to precipitate a titanium oxide precursor having a hydroxyl group, and in the obtained titanium oxide precursor slurry, The addition of the basic aqueous solution and the addition of the basic aqueous solution are alternately performed to have a pH of 3.5 or less, preferably 0.5 ≦ pH ≦ 2.0, which is a dissolution region of the titanium oxide precursor, and a pH of 7 which is a precipitation region of the titanium oxide precursor. As mentioned above, Preferably it is made to swing between 7.0 <= pH <= 8.5. Also, after the addition of the acidic aqueous solution, it is held for a time sufficient for dissolution and disappearance of fine particles, usually 3 to 60 minutes, preferably 5 to 20 minutes, and after the addition of the basic aqueous solution, an aging time sufficient for particle growth, Usually, the aging time is set by holding for 3 to 30 minutes, preferably 5 to 15 minutes.

本発明の酸化チタン前駆体は、上記のpHスイング操作によって得られた酸化チタン前駆体スラリーをろ過し、必要により脱水・乾燥し、また、必要により洗浄して得られるものであり、この際に、酸化チタン前駆体を固形物基準で含水量10〜200wt%、好ましくは50〜100wt%にまで脱水あるいは乾燥され、必要により洗浄を行う場合は、湿潤ケーキを再度水に分散して濾過する操作を繰り返すことによって洗浄することができる。洗浄の際は、この操作を好ましくは1〜3回繰り返すことで合成時に生じた水酸化チタン以外の化合物を除去することができる。こうして得られた酸化チタン前駆体は、次いで光触媒として用いる際に要求される種々の剤形や形態に二次加工される。   The titanium oxide precursor of the present invention is obtained by filtering the titanium oxide precursor slurry obtained by the above pH swing operation, dehydrating and drying if necessary, and washing if necessary. When the titanium oxide precursor is dehydrated or dried to a water content of 10 to 200 wt%, preferably 50 to 100 wt% on a solid basis, and if necessary, the wet cake is dispersed again in water and filtered. Can be washed by repeating the above. In washing, this operation is preferably repeated 1 to 3 times to remove compounds other than titanium hydroxide produced during the synthesis. The titanium oxide precursor thus obtained is then subjected to secondary processing into various dosage forms and forms required for use as a photocatalyst.

この酸化チタン前駆体の二次加工については、特に制限されるものではなく、例えば、湿潤ケーキのまま所望の形状に成形して焼成する方法や、湿潤ケーキを所望の濃度に水等の溶媒中に分散させて塗布した後に焼成する方法等を例示することができ、これらの使用形態は応用される製品の必要に応じて様々な形態で利用することが可能である。   The secondary processing of the titanium oxide precursor is not particularly limited. For example, the wet cake is molded into a desired shape and fired, or the wet cake is dissolved in a solvent such as water to a desired concentration. Examples of the method of firing after being dispersed and applied can be exemplified, and these usage forms can be used in various forms according to the needs of the products to be applied.

このように二次加工して得られた光触媒用酸化チタン前駆体は、次に、更に温度40〜350℃、好ましくは80〜120℃で0.5〜24時間、好ましくは0.5〜5時間乾燥した後、温度120〜1,000℃、好ましくは500〜800℃で0.5〜48時間、好ましくは1〜5時間焼成され、光触媒として用いる酸化チタンとされる。この焼成温度については、高くなればなるほどアナタース型結晶(An)がルチル型結晶(Ru)に転移し、アナタース型結晶(An)とルチル型結晶(Ru)との比率(An/Ru)が低下する傾向があるので、光触媒酸化チタンとして望まれるアナタース型結晶(An)とルチル型結晶(Ru)との比率(An/Ru)に応じて、適当な焼成温度と時間を選択するのがよい。   The titanium oxide precursor for photocatalyst thus obtained by secondary processing is then further heated at a temperature of 40 to 350 ° C., preferably 80 to 120 ° C. for 0.5 to 24 hours, preferably 0.5 to 5 After drying for a period of time, it is calcined at a temperature of 120 to 1,000 ° C., preferably 500 to 800 ° C. for 0.5 to 48 hours, preferably 1 to 5 hours, to obtain titanium oxide used as a photocatalyst. About this firing temperature, the higher the anatase type crystal (An), the more the anatase type crystal (An) is transferred to the rutile type crystal (Ru), and the lower the ratio (An / Ru) of the anatase type crystal (An) to the rutile type crystal (Ru). Therefore, it is preferable to select an appropriate firing temperature and time according to the ratio (An / Ru) of anatase type crystal (An) and rutile type crystal (Ru) desired as photocatalytic titanium oxide.

本発明により、アナタース型結晶(An)とルチル型結晶(Ru)との比率(An/Ru)が50%以上で高い光触媒活性を有する酸化チタンを製造する場合には、pHスイングの繰返し数を5回以上、好ましくは7回以上とするのがよく、また、焼成温度については更に好ましくは550〜800℃とするのがよい。   According to the present invention, when producing titanium oxide having a high photocatalytic activity at a ratio (An / Ru) of anatase type crystal (An) to rutile type crystal (Ru) of 50% or more, the number of repetitions of pH swing is set. 5 times or more, preferably 7 times or more, and the firing temperature is more preferably 550 to 800 ° C.

本発明の光触媒酸化チタンの製造方法によれば、光触媒として用いる際に要求される種々の剤形や形態に二次加工することが容易であるだけでなく、その製造時のpHスイング操作の繰返し数と、500℃以上の高温で焼成する際の温度によってアナタース型結晶とルチル型結晶との比率が制御された光触媒酸化チタンを工業的に容易に製造することができ、ひいては所望の光触媒活性を有する酸化チタンを工業的に容易に製造することができる。 According to the manufacturing method of the titanium oxide photocatalyst of the present invention, not only it is easy to be fabricated into a variety of dosage forms and forms are required when used as a photocatalyst, the repetition of pH swing operation at the time of manufacture The photocatalytic titanium oxide in which the ratio of the anatase type crystal and the rutile type crystal is controlled according to the number and the temperature when firing at a high temperature of 500 ° C. or higher can be easily produced industrially, and thus has a desired photocatalytic activity. The titanium oxide having it can be easily produced industrially.

以下、実施例(実験例及び試験例)に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described based on examples (experimental examples and test examples).

〔実験例1〜27〕
純水で製造した氷を粉砕して容器に入れ、この容器内に四塩化チタン(TiCl4)500gを添加して粉砕した氷と混合し、更に容器内に純水を添加して溶液全体を1,000mlとし、四塩化チタン水溶液(溶液A)を調製した。
また、28wt%-アンモニア水を同量の純水で希釈し、14wt%-アンモニア水(溶液B)を調製した。
[Experimental Examples 1 to 27]
Ice made with pure water is crushed and placed in a container, 500 g of titanium tetrachloride (TiCl 4 ) is added to this container and mixed with crushed ice, and pure water is further added to the container to complete the entire solution. The solution was made up to 1,000 ml, and an aqueous titanium tetrachloride solution (solution A) was prepared.
Further, 28 wt% -ammonia water was diluted with the same amount of pure water to prepare 14 wt% -ammonia water (solution B).

次に、35Lの反応容器に純水20Lを入れて75℃まで加熱し、更に撹拌下に上記溶液Aの500mlを添加して混合した。得られた溶液のpH値は1.1であった。
続いて、反応容器中には撹拌下に上記溶液Bの710mlを一度に添加した。得られた溶液はpH値8.5となり、この操作により溶液中に酸化チタン前駆体が析出し、溶液はスラリー状になった。
Next, 20 L of pure water was put into a 35 L reaction vessel and heated to 75 ° C., and 500 ml of the above solution A was added and mixed with stirring. The pH value of the obtained solution was 1.1.
Subsequently, 710 ml of the above solution B was added to the reaction vessel at a time with stirring. The resulting solution had a pH value of 8.5. By this operation, a titanium oxide precursor was precipitated in the solution, and the solution became a slurry.

このようにして得られた酸化チタン前駆体スラリーに、撹拌下に500mlの溶液Aを添加し、pH値を1.1に低下させて5分間保持し、次いで撹拌下に720mlの溶液Bを添加し、pH値を8.5に上昇させて5分間保持するpHスイング操作を表1に示す回数だけ繰り返し、酸化チタン前駆体スラリーを得た。   To the titanium oxide precursor slurry thus obtained, 500 ml of solution A is added under stirring, the pH value is lowered to 1.1 and held for 5 minutes, and then 720 ml of solution B is added under stirring. Then, the pH swing operation in which the pH value was raised to 8.5 and held for 5 minutes was repeated as many times as shown in Table 1 to obtain a titanium oxide precursor slurry.

各実験例1〜27の酸化チタン前駆体スラリーを濾過し、酸化チタン前駆体の湿潤ケーキを得た後、各湿潤ケーキをそれぞれ20Lの純水中に分散させて30分間撹拌した後再び濾過する洗浄操作を3回実施し、湿潤ケーキ中に残存する塩化アンモニウムを除去した。
得られた各実験例1〜27の湿潤ケーキを120℃で3時間乾燥し、各実験例1〜27の酸化チタン前駆体を得た。
The titanium oxide precursor slurry of each experimental example 1 to 27 was filtered to obtain a wet cake of the titanium oxide precursor, then each wet cake was dispersed in 20 L of pure water, stirred for 30 minutes, and then filtered again. The washing operation was performed three times to remove ammonium chloride remaining in the wet cake.
The obtained wet cakes of Experimental Examples 1 to 27 were dried at 120 ° C. for 3 hours to obtain titanium oxide precursors of Experimental Examples 1 to 27.

〔試験例1〕
上記実験例1〜27で得られた各酸化チタン前駆体について、空気流通下にそれぞれ表1に示す温度及び時間の条件で焼成し、冷却した後に粉砕して酸化チタン粉末を得た。
[Test Example 1]
About each titanium oxide precursor obtained in the said Experimental Examples 1-27, it baked on the conditions of the temperature and time which are respectively shown in Table 1 under air circulation, cooled, and it grind | pulverized, and obtained titanium oxide powder.

得られた各実験例1〜27の光触媒酸化チタンについて、窒素吸着によりBET表面積(m2/g)を測定すると共に、水銀圧入法ポロシメトリーにより細孔分布測定〔細孔容積(cc/g)及び平均細孔径(nm)〕を行い、更にX線回折計(PHLIPS社製XPERT SYSTEM/APD-1700)を用いてX線回折(XRD)パターンを測定し、各酸化チタン粉末中におけるアナタース型結晶(An)の最強干渉ピークの強度IAnとルチル型結晶(Ru)の最強干渉ピークの強度IRuから、一般的に用いられる次の(1)式からアナタース型結晶の含有量(重量%)を求め、アナタース型結晶の含有量とルチル型結晶の含有量の和を100としてルチル型結晶の含有量を求めた。またこれらから、アナタース型結晶の比率(An/Ru)を計算した。
アナタース型結晶含有率(重量%)=100/[1+1.265(IRu/IAn)]……(1)
これらの結果を表1に示す。これより、120℃乾燥品及び400℃焼成品についてはルチル型結晶がみられないが、500℃以上の焼成温度ではルチル型結晶が検出されることがわかる。
The obtained photocatalytic titanium oxides of Experimental Examples 1 to 27 were measured for BET surface area (m 2 / g) by nitrogen adsorption and pore distribution measurement by mercury porosimetry (pore volume (cc / g)). And the average pore diameter (nm)], and then measuring the X-ray diffraction (XRD) pattern using an X-ray diffractometer (XPERT SYSTEM / APD-1700 manufactured by PHLIPS), and anatase crystals in each titanium oxide powder the content of anatase-type crystal from the strongest interference intensity peak I Ru intensity I an and rutile-type crystal of the strongest interference peaks (Ru), typically from the following used (1) of the (an) (wt%) The content of the rutile crystal was determined by taking the sum of the content of the anatase crystal and the content of the rutile crystal as 100. From these, the ratio of anatase type crystals (An / Ru) was calculated.
Anatase type crystal content (wt%) = 100 / [1 + 1.265 (I Ru / I An )] …… (1)
These results are shown in Table 1. From this, it can be seen that no rutile crystals are observed in the 120 ° C. dried product and the 400 ° C. fired product, but the rutile crystals are detected at a firing temperature of 500 ° C. or higher.

〔試験例2〕
〔3時間焼成時の500℃及び600℃におけるスイング回数による結晶転移の抑制効果〕
図1にスイング回数を7回(実験例22)、10回(実験例23)、及び15回(実験例24)として合成した前駆体ゲルの500℃、3時間焼成時のX線回折パターンを示す。スイング回数が多くなるにつれてルチル型結晶のピーク強度が小さくなり、結晶転移が抑制されていることがわかる。また、図2にこれらの前駆体ゲル〔スイング回数が7回(実験例25)、10回(実験例26)、及び15回(実験例27)〕を600℃、3時間焼成した場合のX線回折パターンを示す。図1の500℃焼成の場合と同様にスイング回数が多くなるにつれてルチル型結晶のピーク強度が小さくなり、結晶転移が抑制されていることがわかるが、焼成温度が600℃で500℃に比べて高温のため、ルチル型結晶のピーク強度が図1に比べて大きくなっていることが観察される。
[Test Example 2]
[Suppression effect of crystal transition due to the number of swings at 500 ° C. and 600 ° C. during firing for 3 hours]
FIG. 1 shows the X-ray diffraction pattern of the precursor gel synthesized with the number of swings of 7 times (Experimental Example 22), 10 times (Experimental Example 23), and 15 times (Experimental Example 24) at 500 ° C. for 3 hours. Show. As the number of swings increases, the peak intensity of the rutile crystal decreases, indicating that the crystal transition is suppressed. FIG. 2 shows X when the precursor gels were baked at 600 ° C. for 3 hours (7 swings (Experiment 25), 10 (Experiment 26), and 15 (Experiment 27)). A line diffraction pattern is shown. As in the case of 500 ° C. firing in FIG. 1, the peak intensity of the rutile crystal decreases as the number of swings increases, and the crystal transition is suppressed, but the firing temperature is 600 ° C. compared to 500 ° C. It is observed that the peak intensity of the rutile crystal is higher than that in FIG. 1 due to the high temperature.

〔試験例3〕
〔40時間焼成時の600℃におけるスイング回数による結晶転移の抑制効果〕
図3にスイング回数を3回(実験例19)、5回(実験例20)、7回(実験例21)として合成した前駆体ゲルの600℃、40時間焼成時のX線回折パターンを示す。40時間焼成した場合でも3回または5回のスイングによって合成した前駆体に比べて7回スイングによって合成した前駆体は、アナタース型結晶のピークが大きく残留しており、結晶転移が抑制されていることがわかる。
[Test Example 3]
[Suppression effect of crystal transition due to the number of swings at 600 ° C. during firing for 40 hours]
FIG. 3 shows an X-ray diffraction pattern of the precursor gel synthesized with 3 swings (Experimental Example 19), 5 (Experimental Example 20), and 7 (Experimental Example 21) when calcined at 600 ° C. for 40 hours. . Even when it is baked for 40 hours, the precursor synthesized by the 7th swing compared with the precursor synthesized by the 3rd or 5th swing has a large anatase-type crystal peak, and the crystal transition is suppressed. I understand that.

〔試験例4〕
〔2-プロパノール光触媒分解反応試験(液相試験)〕
また、上記各酸化チタン粉末について、下記の2-プロパノール光触媒分解反応試験(液相試験)を行い、光触媒活性を調べた。
耐熱性と光透過性に優れた直径2cm×長さ20cmの大きさの石英ガラス製反応セル内に上記各実験例1〜21の光触媒酸化チタン50mgと2-プロパノール水溶液又は2-ヘキサノール水溶液25ml(65μmol)を入れ、酸素を30分間バブリングした後(酸素雰囲気下)、撹拌して懸濁させながら室温下に1時間光照射し、2-プロパノールの減少率(%)を求めた。この際に、反応セルにはその上部にラバーセプタム(直径2.1cm)を取り付け、また、光照射は、光源の高圧水銀灯(100W)を反応セルから約6cm離して〔デジタル照度計(東京光電社製LX-1330)を高圧水銀灯に対して平行に設置して測定した時の照度が約6150Lux〕行った。
表1に反応開始1時間後における2-プロパノールの分解率(%)を示す。
[Test Example 4]
[2-propanol photocatalytic degradation test (liquid phase test)]
Moreover, about each said titanium oxide powder, the following 2-propanol photocatalytic decomposition reaction test (liquid phase test) was done, and photocatalytic activity was investigated.
In a quartz glass reaction cell having a diameter of 2 cm and a length of 20 cm excellent in heat resistance and light transmittance, 50 mg of the photocatalytic titanium oxide of each of the above experimental examples 1 to 21 and 25 ml of 2-propanol aqueous solution or 2-hexanol aqueous solution 65 μmol) was added, and oxygen was bubbled for 30 minutes (in an oxygen atmosphere), followed by light irradiation at room temperature for 1 hour while stirring and suspending to determine the reduction rate (%) of 2-propanol. At this time, a rubber septum (diameter 2.1 cm) is attached to the top of the reaction cell, and light irradiation is performed by separating a high-pressure mercury lamp (100 W) as a light source from the reaction cell [Digital illuminometer (Tokyo Kodensha LX-1330) manufactured in parallel with a high-pressure mercury lamp, and the illuminance when measured was about 6150 Lux].
Table 1 shows the decomposition rate (%) of 2-propanol one hour after the start of the reaction.

〔試験例5〕
〔NO光触媒分解反応試験(気相試験)〕
また、上記各酸化チタン粉末について、下記のNO光触媒分解反応試験(気相試験)を行い、光触媒活性を調べた。
上記と同様の反応セル(容量:73.3cm3)内に上記各実験例1〜21の光触媒酸化チタン100mgを入れ、大気中で吸着水の多くが脱離する523Kまで徐々に昇温させ、更に723Kまで昇温させた後、同温度で3時間排気させた。酸素処理は液体窒素トラップで精製した酸素を接触部に20Torr以上導入し、723Kで2時間行った。その後、室温に戻し、再びゆっくりと473Kまで昇温させ、同温度で2時間排気した。
[Test Example 5]
[NO photocatalytic decomposition reaction test (gas phase test)]
Moreover, about the said each titanium oxide powder, the following NO photocatalyst decomposition reaction test (gas phase test) was done, and photocatalytic activity was investigated.
In a reaction cell similar to the above (capacity: 73.3 cm 3 ), 100 mg of the photocatalytic titanium oxide of each of the above experimental examples 1 to 21 was gradually heated up to 523 K from which most of the adsorbed water was desorbed in the atmosphere. The temperature was raised to 723 K, and then evacuated at the same temperature for 3 hours. Oxygen treatment was performed at 723 K for 2 hours by introducing 20 Torr or more of oxygen purified by a liquid nitrogen trap into the contact portion. Thereafter, the temperature was returned to room temperature, the temperature was slowly raised again to 473 K, and evacuation was performed at the same temperature for 2 hours.

以上の前処理をした後、反応セル内に反応ガスであるNOを5Torrの圧になるまで導入し、275Kで光触媒酸化チタンに紫外光(UV-27フィルター使用;λ>270nm)を照射し、未反応物のNOや反応生成物であるN2Oを液体窒素でトラップしてガスクロマトグラフィー(島津製作所社製GC-12A,14A;Porapack Q+S,2m+2m)で定性及び定量し、また、トラップされない反応生成物のN2とO2をガスクロマトグラフィー(島津製作所社製GC-12A,14A;モレキュラーシーブ5A,6m)で定性及び定量し、1μmol中に生成したN2とN2Oの量を求めた。
結果を表1に示す。
After the above pretreatment, NO, which is a reaction gas, is introduced into the reaction cell until a pressure of 5 Torr is reached, and photocatalytic titanium oxide is irradiated with ultraviolet light (using a UV-27 filter; λ> 270 nm) at 275K. Unreacted NO and reaction product N 2 O are trapped with liquid nitrogen and qualitatively and quantified by gas chromatography (Shimadzu Corporation GC-12A, 14A; Porapack Q + S, 2m + 2m) Further, N 2 and O 2 of the reaction product which is not trapped are qualitatively and quantitatively analyzed by gas chromatography (GC-12A, 14A, manufactured by Shimadzu Corporation; molecular sieve 5A, 6m), and N 2 and N 2 produced in 1 μmol. The amount of O was determined.
The results are shown in Table 1.

Figure 0003940393
Figure 0003940393

〔試験例6〕
実験例3及び7の各酸化チタン前駆体から得られた酸化チタン粉末を用い、上記2-プロパノール光触媒分解反応試験(液相試験)において2-プロパノールが完全に炭酸ガス(CO2)に分解されるまでの経時変化を測定し、市販の光触媒酸化チタン粉末〔JRC-TIO-4(P-25)〕(比較例1)と比較した。
結果を図4〜図6に示す。
[Test Example 6]
Using the titanium oxide powder obtained from each titanium oxide precursor of Experimental Examples 3 and 7, 2-propanol was completely decomposed into carbon dioxide (CO 2 ) in the 2-propanol photocatalytic decomposition reaction test (liquid phase test). The time-dependent change until this time was measured and compared with a commercially available photocatalytic titanium oxide powder [JRC-TIO-4 (P-25)] (Comparative Example 1).
The results are shown in FIGS.

表1に示す結果から明らかなように、pHスイングの繰返し回数が多くなればなるほど、500℃以上で焼成して得られる光触媒酸化チタンにおけるアナタース型結晶(An)とルチル型結晶(Ru)との比率(An/Ru)が大きくなり、比較的高い光触媒活性が発現する。また、焼成温度が高くなるにつれてアナタース型結晶(An)がルチル型結晶(Ru)に転移してルチル型結晶の比率が高くなり、光触媒活性も低下する傾向がある。   As is clear from the results shown in Table 1, as the number of repetitions of the pH swing increases, the anatase type crystal (An) and the rutile type crystal (Ru) in the photocatalytic titanium oxide obtained by baking at 500 ° C. or higher are obtained. The ratio (An / Ru) increases and a relatively high photocatalytic activity is exhibited. Further, as the firing temperature is increased, the anatase type crystal (An) is transferred to the rutile type crystal (Ru), the ratio of the rutile type crystal is increased, and the photocatalytic activity tends to be decreased.

本発明の光触媒酸化チタンの製造方法によれば、単に光触媒として用いる際に要求される種々の剤形や形態に二次加工することが容易であるばかりでなく、500℃以上の高温で焼成してアナタース型結晶とルチル型結晶との比率が制御され、結果として光触媒活性が制御された光触媒酸化チタンを工業的に容易に製造することができる。 According to the method for producing photocatalytic titanium oxide of the present invention, it is not only easy to secondary-process into various dosage forms and forms required when used as a photocatalyst, but also calcined at a high temperature of 500 ° C. or higher. Thus, the ratio of the anatase type crystal to the rutile type crystal is controlled, and as a result, the photocatalytic titanium oxide with controlled photocatalytic activity can be easily produced industrially.

図1は、実験例22、実験例23、及び実験例24の前駆体ゲルを500℃、3時間の条件で焼成した時のX線回折パターンである。FIG. 1 is an X-ray diffraction pattern when the precursor gels of Experimental Example 22, Experimental Example 23, and Experimental Example 24 were baked at 500 ° C. for 3 hours.

図2は、実験例25、実験例26、及び実験例27の前駆体ゲルを600℃、3時間の条件で焼成した時のX線回折パターンである。FIG. 2 is an X-ray diffraction pattern when the precursor gels of Experimental Example 25, Experimental Example 26, and Experimental Example 27 were baked at 600 ° C. for 3 hours.

図3は、実験例19、実験例20、及び実験例21の前駆体ゲルを600℃、40時間の条件で焼成した時のX線回折パターンである。FIG. 3 is an X-ray diffraction pattern when the precursor gels of Experimental Example 19, Experimental Example 20, and Experimental Example 21 were baked at 600 ° C. for 40 hours.

図4は、実験例3の酸化チタン前駆体から得られた酸化チタン粉末を用いて行った2-プロパノール光触媒分解反応試験(液相試験)において、2-プロパノールが完全に炭酸ガス(CO2)に分解されるまでの経時変化を示すグラフ図である。FIG. 4 shows that in 2-propanol photocatalytic decomposition reaction test (liquid phase test) conducted using the titanium oxide powder obtained from the titanium oxide precursor of Experimental Example 3, 2-propanol is completely carbon dioxide (CO 2 ). It is a graph which shows a time-dependent change until it decomposes | disassembles into.

図5は、実験例7の酸化チタン前駆体から得られた酸化チタン粉末を用いて行った図4と同様のグラフ図である。FIG. 5 is a graph similar to FIG. 4 that was obtained using the titanium oxide powder obtained from the titanium oxide precursor of Experimental Example 7.

図6は、比較例1の市販の光触媒酸化チタン粉末〔JRC-TIO-4(P-25)〕を用いて行った図4と同様のグラフ図である。FIG. 6 is a graph similar to FIG. 4 which was obtained using the commercially available photocatalytic titanium oxide powder [JRC-TIO-4 (P-25)] of Comparative Example 1.

Claims (6)

チタン含有酸性水溶液に塩基性水溶液を添加して水酸基を有する酸化チタン前駆体を製造し、次いでこの酸化チタン前駆体を高温で焼成して光触媒酸化チタンを製造するに際し、上記酸化チタン前駆体の製造時には、チタン含有酸性水溶液に塩基性水溶液を添加して水酸基を有する酸化チタン前駆体を析出させた後、得られた酸化チタン前駆体スラリー中に、酸性の原料水溶液を添加してpH値を酸化チタン前駆体の溶解領域に降下させると共に原料を追加投入する操作と、この操作で得られたチタン含有酸性水溶液に塩基性水溶液を添加してpH値を酸化チタン前駆体の析出領域に上昇させる操作とからなるpHスイング操作を少なくとも3回以上7回以下の範囲で繰り返し、また、上記酸化チタン前駆体の焼成時には焼成温度500℃以上600℃以下の条件下に行い、上記酸化チタン前駆体製造時のpHスイング操作の回数と酸化チタン前駆体焼成時の温度及び時間とを制御することにより、アナタース型結晶(An)とルチル型結晶(Ru)との比率(An/Ru)が1.7〜11.5の範囲内であって、BET表面積が42m2/g以上である光触媒酸化チタンを製造することを特徴とする光触媒酸化チタンの製造方法 When a basic aqueous solution is added to a titanium-containing acidic aqueous solution to produce a titanium oxide precursor having a hydroxyl group, and then the titanium oxide precursor is calcined at a high temperature to produce a photocatalytic titanium oxide, the above titanium oxide precursor is produced. sometimes, oxidized after precipitation of the titanium oxide precursor having a hydroxyl group by adding a basic aqueous solution to a titanium-containing acidic aqueous solution, titanium oxide precursor slurry obtained, the pH value by adding the raw material acid aqueous solution An operation of lowering the titanium precursor to the dissolution region and adding an additional raw material, and an operation of adding a basic aqueous solution to the titanium-containing acidic aqueous solution obtained by this operation to raise the pH value to the precipitation region of the titanium oxide precursor repeated at least 3 times more than 7 times the range of the pH swing operation consisting of, also, at the time of calcination of the titanium oxide precursor firing temperature 500 ° C. or less Performed under the conditions of 600 ° C. or less, by controlling the temperature and time during the count and the titanium oxide precursor firing pH swing operation when the titanium oxide precursor prepared, anatase type crystal (An) and rutile-type crystal (Ru) and the ratio of (an / Ru) is in the range of 1.7 to 11.5, photocatalyst titanium oxide BET surface area is characterized by producing the titanium oxide photocatalyst is 42m 2 / g or more Manufacturing method . 酸化チタン前駆体は、その焼成前に光触媒として利用するのに必要な形状に二次加工される請求項1に記載の光触媒酸化チタンの製造方法 The method for producing photocatalytic titanium oxide according to claim 1, wherein the titanium oxide precursor is secondarily processed into a shape necessary for use as a photocatalyst before firing . 酸化チタン前駆体の製造時に、pH値を溶解領域に降下させる際の値が3.5以下であり、酸化チタン前駆体の析出領域のpH値が7以上として合成される請求項1又は2に記載の光触媒酸化チタンの製造方法 In the production of the titanium oxide precursor, the value when the pH value is lowered to the dissolution region is 3.5 or less, and the pH value of the precipitation region of the titanium oxide precursor is 7 or more. The manufacturing method of the photocatalytic titanium oxide of description . チタン含有酸性水溶液が四塩化チタン水溶液である請求項1〜3のいずれかに記載の光触媒酸化チタンの製造方法 The method for producing photocatalytic titanium oxide according to any one of claims 1 to 3, wherein the titanium-containing acidic aqueous solution is a titanium tetrachloride aqueous solution . チタン含有酸性水溶液に添加してpH値を酸化チタン前駆体の析出領域に上昇させる際の塩基性水溶液がアンモニア水溶液である請求項1〜4のいずれかに記載の光触媒酸化チタンの製造方法 The method for producing photocatalytic titanium oxide according to any one of claims 1 to 4, wherein the basic aqueous solution used to increase the pH value in the titanium oxide precursor precipitation region by adding to the titanium-containing acidic aqueous solution is an aqueous ammonia solution . pHスイング操作の繰返し回数が5回以上7回以下の範囲であり、製造される光触媒酸化チタンはそのアナタース型結晶の比率が50%以上である請求項1〜5のいずれかに記載の光触媒酸化チタンの製造方法 The photocatalytic oxidation according to any one of claims 1 to 5, wherein the number of repetitions of the pH swing operation is in the range of 5 to 7 and the ratio of the anatase-type crystal in the produced photocatalytic titanium oxide is 50% or more. A method for producing titanium .
JP2003375286A 2003-11-05 2003-11-05 Method for producing photocatalytic titanium oxide Expired - Lifetime JP3940393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375286A JP3940393B2 (en) 2003-11-05 2003-11-05 Method for producing photocatalytic titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375286A JP3940393B2 (en) 2003-11-05 2003-11-05 Method for producing photocatalytic titanium oxide

Publications (2)

Publication Number Publication Date
JP2005137986A JP2005137986A (en) 2005-06-02
JP3940393B2 true JP3940393B2 (en) 2007-07-04

Family

ID=34686697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375286A Expired - Lifetime JP3940393B2 (en) 2003-11-05 2003-11-05 Method for producing photocatalytic titanium oxide

Country Status (1)

Country Link
JP (1) JP3940393B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904293A4 (en) * 2019-02-19 2022-03-16 Showa Denko K.K. Titanium oxide production method
CN110482598A (en) * 2019-05-31 2019-11-22 天津科技大学 A kind of out-phase knot titanium dioxide process that crystal phase ratio is controllable

Also Published As

Publication number Publication date
JP2005137986A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3076844B1 (en) Mesoporous titanium oxide porous body and method for producing the same
JP2011031139A (en) Photocatalyst material and method for manufacturing the same
WO2003048048A1 (en) Titanium dioxide photocatalyst and a method of preparation and uses of the same
JP4783315B2 (en) Photocatalyst dispersion
WO2011071213A1 (en) Phosphor-titanium dioxide nanocomposite useful as photocatalyst and method for preparation thereof
JP2002126517A (en) Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
JP2009178636A (en) Titanium oxide photocatalyst showing high photocatalytic activity under visible light, and its manufacturing method
JP5129894B2 (en) Tungsten oxide photocatalyst modified with copper ion and method for producing the same
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
JP3940393B2 (en) Method for producing photocatalytic titanium oxide
JP2006015325A (en) Visible light-activated photocatalyst and its manufacturing method
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP2008093630A (en) Method of manufacturing photocatalyst dispersion
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
KR100404449B1 (en) The manufacturing method of titanium oxide powder by dropping precipitant
JP3908717B2 (en) How to remove air pollutants
JP3944152B2 (en) Method for removing water pollutant organic substances
JP4763492B2 (en) Photocatalyst dispersion and method for producing the same
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
JP4386788B2 (en) Method for producing titanium oxide photocatalyst
US8852548B2 (en) Method of preparing high crystalline nanoporous titanium dioxide at room temperature
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP4484195B2 (en) Method for producing titanium oxide
KR20030028325A (en) Process for Preparing Activated Carbon Having Nano-structure Photocatalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250