JP2006008475A - Method for manufacturing photocatalyst titanium oxide - Google Patents

Method for manufacturing photocatalyst titanium oxide Download PDF

Info

Publication number
JP2006008475A
JP2006008475A JP2004190896A JP2004190896A JP2006008475A JP 2006008475 A JP2006008475 A JP 2006008475A JP 2004190896 A JP2004190896 A JP 2004190896A JP 2004190896 A JP2004190896 A JP 2004190896A JP 2006008475 A JP2006008475 A JP 2006008475A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
photocatalytic
cooling
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004190896A
Other languages
Japanese (ja)
Other versions
JP4736361B2 (en
Inventor
Yuko Yoshida
祐子 吉田
Hironobu Koike
宏信 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004190896A priority Critical patent/JP4736361B2/en
Publication of JP2006008475A publication Critical patent/JP2006008475A/en
Application granted granted Critical
Publication of JP4736361B2 publication Critical patent/JP4736361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which is capable of manufacturing a photocatalyst titanium oxide without causing the dispersion among the photocatalyst activities. <P>SOLUTION: This manufacturing method is characterized by baking a photocatalyst titanium oxide precursor without contacting with water and thereafter by contacting it with water at 100°C-600°C. The photocatalyst titanium oxide precursor is titanium hydroxide, orthotitanic acid, metatitanic acid, titanium oxide, or titanium nitride. The contacting with water is carried out preferably while cooling. The cooling is performed by a temperature difference of 30°C or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光触媒酸化チタンの製造方法に関し、詳しくは光触媒酸化チタン前駆体を焼成して光触媒酸化チタンを製造する方法に関する。 The present invention relates to a method for producing photocatalytic titanium oxide, and more particularly to a method for producing photocatalytic titanium oxide by firing a photocatalytic titanium oxide precursor.

光触媒酸化チタンは、酸化チタンを主成分とし、光触媒活性を示す物質であり、例えば鏡などの表面にコートして親水化し、水滴の付着を防止するためなどに用いられている〔特許文献1:特開平9−57912号公報〕。かかる光触媒酸化チタンの製造方法としては、光触媒酸化チタン前駆体を焼成する方法が知られている〔特許文献2:特開2001−302241号公報〕。 The photocatalytic titanium oxide is a substance mainly composed of titanium oxide and exhibiting photocatalytic activity. For example, the photocatalytic titanium oxide is used to coat a surface of a mirror or the like to make it hydrophilic and prevent adhesion of water droplets [Patent Document 1: JP-A-9-57912]. As a method for producing such photocatalytic titanium oxide, a method of firing a photocatalytic titanium oxide precursor is known [Patent Document 2: JP 2001-302241 A].

しかし、従来の製造方法で光触媒酸化チタンを製造すると、得られる酸化チタンの光触媒活性がばらつき易いという問題があることが分かった。 However, it has been found that when photocatalytic titanium oxide is produced by a conventional production method, the photocatalytic activity of the resulting titanium oxide tends to vary.

特開平9−57912号公報JP-A-9-57912 特開2001−302241号公報JP 2001-302241 A

そこで本発明者は、光触媒活性のばらつきを招くことなく、高い活性の光触媒酸化チタンを製造し得る方法を開発するべく鋭意検討した結果、光触媒酸化チタン前駆体を水分と接触させることなく焼成した後、100℃〜600℃の温度にて水分と接触させることにより、高活性の光触媒酸化チタンを安定的に製造し得ることを見出し、本発明に至った。 Therefore, the present inventor has eagerly studied to develop a method capable of producing a highly active photocatalytic titanium oxide without causing a variation in photocatalytic activity. The present inventors have found that a highly active photocatalytic titanium oxide can be stably produced by bringing it into contact with moisture at a temperature of 100 ° C. to 600 ° C., leading to the present invention.

すなわち本発明は、光触媒酸化チタン前駆体を水分と接触させることなく焼成したのち、100℃〜600℃にて水分と接触させることを特徴とする光触媒酸化チタンの製造方法を提供するものである。 That is, this invention provides the manufacturing method of the photocatalytic titanium oxide characterized by making a photocatalyst titanium oxide precursor contact with a water | moisture content at 100 to 600 degreeC after baking without making it contact with a water | moisture content.

本発明の製造方法によれば、活性のばらつきを招くことなく、安定して高活性の光触媒酸化チタンを製造することができる。 According to the production method of the present invention, highly active photocatalytic titanium oxide can be produced stably without causing variations in activity.

本発明の製造方法で使用される光触媒酸化チタン前駆体は、焼成により光触媒活性を示す酸化チタンに導かれる化合物であって、例えば窒化チタン、ホウ化チタン、臭化チタン、炭化チタン、水素化チタン、ヨウ化チタン、水酸化チタン、酸化チタン、セレン化チタン、硫化チタン、テルル化チタン、硫酸チタン〔Ti(SO42・mH2O、0≦m≦20〕、オキシ硫酸チタン〔TiOSO4・nH2O、0≦n≦20〕、三塩化チタン〔TiCl3〕、四塩化チタン〔TiCl4〕、オキシ塩化チタン〔TiOCl2〕、四臭化チタン〔TiBr4〕、シュウ酸チタンアンモニウム、シュウ酸チタンバリウム、オルトチタン酸、メタチタン酸などのチタン含有無機化合物、
テトラメトキシチタン、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトライソプロポキシチタン、テトラ−n−ブトキシチタン、テトライソブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−t−ブトキシチタン、テトラキス−2−エチルヘキシロキシチタン、テトラステアリロキシチタンのようなテトラアルコキシチタン化合物、
ジイソプロポキシビス(アセチルアセトナト)チタン、ジイソプロポキシビス(トリエタノールアミナト)チタン、ジ−n−ブトキシビス(トリエタノールアミナト)チタン、ジ(2−エチルヘキシロキシ)ビス(2−エチル−1,3−ヘキサンジオラト)チタン、イソプロポキシ(2−エチルヘキサンジオラト)チタン、テトラアセチルアセトネートチタン、ヒドロキシビス(ラクタト)チタンのようなチタンキレート化合物などのようなチタン含有有機化合物を主成分とするものが挙げられる。また、上記したチタン含有無機化合物およびチタン含有有機化合物は、一部が加水分解されていてもよいし、一部が結晶性酸化チタンに結晶化していてもよい。中でも、水酸化チタン、オルトチタン酸、メタチタン酸、酸化チタン、窒化チタンを主成分が好ましい。
The photocatalytic titanium oxide precursor used in the production method of the present invention is a compound that is led to titanium oxide that exhibits photocatalytic activity by firing. For example, titanium nitride, titanium boride, titanium bromide, titanium carbide, titanium hydride , Titanium iodide, titanium hydroxide, titanium oxide, titanium selenide, titanium sulfide, titanium telluride, titanium sulfate [Ti (SO 4 ) 2 .mH 2 O, 0 ≦ m ≦ 20], titanium oxysulfate [TiOSO 4 NH 2 O, 0 ≦ n ≦ 20], titanium trichloride [TiCl 3 ], titanium tetrachloride [TiCl 4 ], titanium oxychloride [TiOCl 2 ], titanium tetrabromide [TiBr 4 ], titanium ammonium oxalate, Titanium-containing inorganic compounds such as barium oxalate, orthotitanic acid, metatitanic acid,
Tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetraisopropoxy titanium, tetra-n-butoxy titanium, tetraisobutoxy titanium, tetra-sec-butoxy titanium, tetra-t-butoxy titanium, tetrakis-2- Tetraalkoxytitanium compounds such as ethylhexyloxytitanium, tetrastearyloxytitanium,
Diisopropoxybis (acetylacetonato) titanium, diisopropoxybis (triethanolaminato) titanium, di-n-butoxybis (triethanolaminato) titanium, di (2-ethylhexyloxy) bis (2-ethyl-) Mainly titanium-containing organic compounds such as titanium chelate compounds such as 1,3-hexanediolato) titanium, isopropoxy (2-ethylhexanediolato) titanium, tetraacetylacetonate titanium, hydroxybis (lactato) titanium The thing made into a component is mentioned. Moreover, a part of the above-described titanium-containing inorganic compound and titanium-containing organic compound may be hydrolyzed, or a part thereof may be crystallized into crystalline titanium oxide. Of these, titanium hydroxide, orthotitanic acid, metatitanic acid, titanium oxide, and titanium nitride are preferred as main components.

前駆体の焼成は、水分と接触させることなく行われ、具体的には水蒸気濃度2vol%未満、好ましくは1vol%以下、さらに好ましくは水蒸気濃度が0vol%で実質的に水蒸気を含まない乾燥状態の雰囲気中で行われる。焼成する際の雰囲気ガスは、大気であってもよいし、アルゴンなどの希ガス、窒素ガスなどの不活性ガスであってもよい。焼成温度は通常100℃、好ましくは120℃以上、さらに好ましくは150℃以上、通常は800℃以下、好ましくは600℃以下であり、焼成に要する時間は通常0.1時間〜30時間程度である。 The precursor is calcined without contact with moisture, specifically, a water vapor concentration of less than 2 vol%, preferably 1 vol% or less, more preferably a water vapor concentration of 0 vol% and in a dry state substantially free of water vapor. Performed in an atmosphere. The atmosphere gas at the time of firing may be air, or may be a rare gas such as argon, or an inert gas such as nitrogen gas. The firing temperature is usually 100 ° C., preferably 120 ° C. or more, more preferably 150 ° C. or more, usually 800 ° C. or less, preferably 600 ° C. or less. The time required for firing is usually about 0.1 to 30 hours. .

焼成により、光触媒酸化チタン前駆体は通常、アナターゼ型の酸化チタンに遷移する。焼成により得られた酸化チタンは、冷却することなく、そのまま直ちに本発明で規定する温度にて水分と接触させてよいし、一旦冷却した後、再び加熱して、本発明で規定する温度にて水分と接触させてもよい。 By firing, the photocatalytic titanium oxide precursor usually transitions to anatase-type titanium oxide. The titanium oxide obtained by firing may be immediately contacted with moisture at a temperature specified in the present invention without cooling, or once cooled and then heated again at a temperature specified in the present invention. It may be brought into contact with moisture.

水分と接触させるには、通常、雰囲気中の水蒸気濃度を2vol%〜80volo%、好ましくは60vol%以下として、この濃度範囲の水蒸気と接触させる。水分と接触させる際の雰囲気ガスは大気であってもよいし、アルゴンなどの希ガス、窒素ガスなどの不活性ガスであってもよい。水蒸気濃度を上記範囲とするには、例えば炉内に水蒸気(スチーム)を雰囲気ガスと共に吹き込み、置換すればよい。水分と接触させる時間は通常0.1時間〜1時間程度である。 In order to contact with moisture, the water vapor concentration in the atmosphere is usually set to 2 vol% to 80 vol%, preferably 60 vol% or less, and the water vapor is brought into contact with this concentration range. The atmosphere gas when contacting with moisture may be air, or may be a rare gas such as argon, or an inert gas such as nitrogen gas. In order to set the water vapor concentration within the above range, for example, water vapor (steam) may be blown into the furnace together with the atmospheric gas and replaced. The time of contact with moisture is usually about 0.1 hour to 1 hour.

水分との接触は、冷却しながら行われることが好ましい。冷却しながら水分と接触させる場合、冷却前後の温度差は通常30℃以上、好ましくは50℃以上であり、通常は200℃以下である。 The contact with moisture is preferably performed while cooling. When contacting with moisture while cooling, the temperature difference before and after cooling is usually 30 ° C. or more, preferably 50 ° C. or more, and usually 200 ° C. or less.

水分と接触させたのち、更に冷却して、目的の光触媒酸化チタンを得る。本発明の製造方法により得られた光触媒酸化チタンは、ばらつきなく高い光触媒活性を示す。 After contacting with moisture, it is further cooled to obtain the desired photocatalytic titanium oxide. The photocatalytic titanium oxide obtained by the production method of the present invention exhibits high photocatalytic activity without variation.

以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

なお、各実施例で得た光触媒酸化チタンの光触媒活性は、以下の方法で評価した。
(1)光触媒活性
直径8cm、高さ10cm、容量約0.5L(500cm3)の密閉式ガラス製反応容器内に、直径5cmのガラス製シャーレを載置し、その上に、光触媒酸化チタン0.3gを載せ、反応容器内を酸素/窒素比が1:4(体積比)の混合ガスで満たし、更にアセトアルデヒド13.4μモルを封入し、反応容器の外側から可視光を照射する。可視光は、500Wキセノンランプ〔ウシオ電機社製、「ランプUXL−500SX」〕を取付けた光源装置〔ウシオ電機社製、「オプティカルモジュレックスSX−U1500XQ」〕から、波長430nm以下の紫外線を遮蔽する紫外線カットフィルター〔旭テクノガラス社製、「Y−45」〕を通して照射する。可視光を照射している間、反応容器内の二酸化炭素の濃度を光音響マルチガスモニタ〔INNOVA社製、「1213型」〕により測定して、光触媒酸化チタン1gあたりの二酸化炭素生成速度を求める。二酸化炭素生成速度が高いほど、光触媒活性が高い。
(2)BET比表面積
窒素吸着法により測定した。
In addition, the photocatalytic activity of the photocatalytic titanium oxide obtained in each Example was evaluated by the following method.
(1) A glass petri dish having a diameter of 5 cm is placed in a closed glass reaction vessel having a photocatalytic activity diameter of 8 cm, a height of 10 cm, and a capacity of about 0.5 L (500 cm 3 ). .3 g is placed, the inside of the reaction vessel is filled with a mixed gas having an oxygen / nitrogen ratio of 1: 4 (volume ratio), 13.4 μmol of acetaldehyde is further sealed, and visible light is irradiated from the outside of the reaction vessel. Visible light shields UV light with a wavelength of 430 nm or less from a light source device (USHIO INC., “Optical Modlex SX-U1500XQ”) equipped with a 500 W xenon lamp (USHIO INC., “LAMP UXL-500SX”). Irradiate through an ultraviolet cut filter [Asahi Techno Glass, "Y-45"]. While irradiating visible light, the carbon dioxide concentration in the reaction vessel is measured by a photoacoustic multi-gas monitor (“INNOVA, Model 1213”) to determine the carbon dioxide production rate per gram of photocatalytic titanium oxide. The higher the carbon dioxide production rate, the higher the photocatalytic activity.
(2) The BET specific surface area was measured by a nitrogen adsorption method.

参考例1〔光触媒酸化チタン前駆体の製造〕
オキシ硫酸チタン〔添川理化学社製〕90gを純水360gに溶解させて水溶液とし、氷冷下に撹拌しながら25%アンモニア水〔和光純薬工業社製、試薬1級〕104gを5mL/分の添加速度で加えて、オキシ硫酸チタンを加水分解させて、スラリーを得た。このスラリーを濾過して固形分を得、温水で洗浄し、100℃で乾燥して、水酸化チタンの粉末を得た。
Reference Example 1 [Production of photocatalytic titanium oxide precursor]
90 g of titanium oxysulfate (manufactured by Soekawa Richemical Co., Ltd.) was dissolved in 360 g of pure water to obtain an aqueous solution, and 104 g of 25% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) 104 g was stirred at 5 mL / min. It was added at an addition rate to hydrolyze titanium oxysulfate to obtain a slurry. This slurry was filtered to obtain a solid, washed with warm water, and dried at 100 ° C. to obtain a titanium hydroxide powder.

上記で得た水酸化チタン粉末を炉内で200℃/時間の昇温速度で340℃まで昇温し、同温度で1時間保持して焼成した。焼成は水蒸気濃度0%の乾燥大気中で行った。その後、同じ雰囲気下に200℃/時間の冷却速度で80℃まで冷却して、粉末状の酸化チタンを得た。 The titanium hydroxide powder obtained above was heated to 340 ° C. at a temperature increase rate of 200 ° C./hour in a furnace, and held at the same temperature for 1 hour for firing. Firing was performed in a dry atmosphere with a water vapor concentration of 0%. Then, it cooled to 80 degreeC by the cooling rate of 200 degreeC / hour under the same atmosphere, and obtained the powdery titanium oxide.

実施例1
参考例1で得た酸化チタンを炉内で水蒸気濃度0%の大気中、再び200℃/時間の昇温速度で340℃まで昇温し、同温度を1時間保持した後、同じ雰囲気下で200℃/時間の冷却速度で冷却を開始した。300℃まで冷却した時点で、炉内に水蒸気濃度3.3vol%の大気を導入して炉内を置換し、更に200℃まで冷却した時点で、再び水蒸気濃度0vol%の大気を炉内に導入して置換した。50℃まで冷却した後、酸化チタン粉末を取り出し、二酸化炭素生成速度を求めたところ、1gあたり6.6μモル/時間であった。また、BET比表面積は91m2/gであった。
Example 1
In the furnace, the titanium oxide obtained in Reference Example 1 was heated to 340 ° C. again at a rate of temperature increase of 200 ° C./hour in the atmosphere with a water vapor concentration of 0%. Cooling was started at a cooling rate of 200 ° C./hour. At the time of cooling to 300 ° C., the atmosphere with a water vapor concentration of 3.3 vol% was introduced into the furnace to replace the inside of the furnace, and when it was further cooled to 200 ° C., the air with a water vapor concentration of 0 vol% was again introduced into the furnace. And replaced. After cooling to 50 ° C., the titanium oxide powder was taken out and the carbon dioxide production rate was determined to be 6.6 μmol / hour per gram. The BET specific surface area was 91 m 2 / g.

実施例2
参考例1で得た酸化チタン粉末を炉内で水蒸気濃度0%の大気中、200℃/時間の昇温速度で350℃まで昇温し、同温度を1時間保持した後、200℃/時間の冷却速度で50℃まで冷却した。冷却開始時に炉内に水蒸気濃度11vol%の大気を導入して置換し、更に275℃まで冷却した時点で、再び水蒸気濃度0vol%の大気を炉内に導入した。冷却後の酸化チタン粉末の二酸化炭素生成速度は1gあたり7.6μモル/時間であった。また、BET比表面積は60m2/gであった。
Example 2
The titanium oxide powder obtained in Reference Example 1 was heated to 350 ° C. at a rate of temperature increase of 200 ° C./hour in an oven with a water vapor concentration of 0% in the furnace, held at that temperature for 1 hour, and then 200 ° C./hour. It cooled to 50 degreeC with the cooling rate of. At the start of cooling, an atmosphere with a water vapor concentration of 11 vol% was introduced into the furnace for replacement, and when it was further cooled to 275 ° C., an air with a water vapor concentration of 0 vol% was again introduced into the furnace. The carbon dioxide production rate of the titanium oxide powder after cooling was 7.6 μmol / hour per gram. The BET specific surface area was 60 m 2 / g.

比較例1
参考例1で得た酸化チタンは光触媒活性を示し、二酸化炭素生成速度は1gあたり5.6μモル/時間であった。
Comparative Example 1
The titanium oxide obtained in Reference Example 1 showed photocatalytic activity, and the carbon dioxide production rate was 5.6 μmol / hour per gram.

比較例2
参考例1で得た水酸化チタン粉末を炉内で200℃/時間の昇温速度で340℃まで昇温し、同温度で1時間保持して焼成した。焼成は水蒸気濃度3.3%の大気中で行った。その後、同じ雰囲気下に200℃/時間の冷却速度で80℃まで冷却して、粉末状の酸化チタンを得た。得られた媒酸化チタンの二酸化炭素生成速度は、光触媒活性を示し、二酸化炭素生成速度は1gあたり5.1μモル/時間であった。
Comparative Example 2
The titanium hydroxide powder obtained in Reference Example 1 was heated in a furnace to 340 ° C. at a temperature increase rate of 200 ° C./hour, and held at that temperature for 1 hour for firing. Firing was performed in an atmosphere having a water vapor concentration of 3.3%. Then, it cooled to 80 degreeC by the cooling rate of 200 degreeC / hour under the same atmosphere, and obtained the powdery titanium oxide. The carbon dioxide production rate of the obtained titanium oxide showed photocatalytic activity, and the carbon dioxide production rate was 5.1 μmol / hour per gram.

Claims (4)

光触媒酸化チタン前駆体を水分と接触させることなく焼成したのち、100℃〜600℃にて水分と接触させることを特徴とする光触媒酸化チタンの製造方法。 A method for producing photocatalytic titanium oxide, comprising calcining a photocatalytic titanium oxide precursor without bringing it into contact with moisture, and then bringing the precursor into contact with moisture at 100 to 600 ° C. 光触媒酸化チタン前駆体が水酸化チタン、オルトチタン酸、メタチタン酸、酸化チタンまたは窒化チタンである請求項1に記載の製造方法。 The production method according to claim 1, wherein the photocatalytic titanium oxide precursor is titanium hydroxide, orthotitanic acid, metatitanic acid, titanium oxide, or titanium nitride. 冷却しながら水分と接触させる請求項1に記載の製造方法。 The manufacturing method of Claim 1 which makes it contact with a water | moisture content while cooling. 30℃以上の温度差で冷却する請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein cooling is performed at a temperature difference of 30 ° C. or more.
JP2004190896A 2004-06-29 2004-06-29 Method for producing photocatalytic titanium oxide Expired - Fee Related JP4736361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190896A JP4736361B2 (en) 2004-06-29 2004-06-29 Method for producing photocatalytic titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190896A JP4736361B2 (en) 2004-06-29 2004-06-29 Method for producing photocatalytic titanium oxide

Publications (2)

Publication Number Publication Date
JP2006008475A true JP2006008475A (en) 2006-01-12
JP4736361B2 JP4736361B2 (en) 2011-07-27

Family

ID=35776123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190896A Expired - Fee Related JP4736361B2 (en) 2004-06-29 2004-06-29 Method for producing photocatalytic titanium oxide

Country Status (1)

Country Link
JP (1) JP4736361B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260534A (en) * 2006-03-28 2007-10-11 Sumitomo Chemical Co Ltd Method for preparing titanium oxide photocatalyst
US7641890B2 (en) 2006-03-20 2010-01-05 Fujifilm Corporation Inorganic fine particle and method for producing the same using microchannel
JP2011016062A (en) * 2009-07-08 2011-01-27 Fukuoka Univ Method of producing photocatalyst of nonmetallic-element-doped titanium oxide
CN114797943A (en) * 2022-06-08 2022-07-29 重庆工商大学 Oxygen-rich vacancy and nitrogen-doped TiO 2 Preparation method of catalyst, product and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192140A (en) * 1992-09-15 1994-07-12 Inst Fr Petrole Method of isomerization of olefin
JPH08510472A (en) * 1994-03-01 1996-11-05 アンスティテュ フランセ デュ ペトロール Olefin isomerization method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192140A (en) * 1992-09-15 1994-07-12 Inst Fr Petrole Method of isomerization of olefin
JPH08510472A (en) * 1994-03-01 1996-11-05 アンスティテュ フランセ デュ ペトロール Olefin isomerization method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641890B2 (en) 2006-03-20 2010-01-05 Fujifilm Corporation Inorganic fine particle and method for producing the same using microchannel
JP2007260534A (en) * 2006-03-28 2007-10-11 Sumitomo Chemical Co Ltd Method for preparing titanium oxide photocatalyst
JP2011016062A (en) * 2009-07-08 2011-01-27 Fukuoka Univ Method of producing photocatalyst of nonmetallic-element-doped titanium oxide
CN114797943A (en) * 2022-06-08 2022-07-29 重庆工商大学 Oxygen-rich vacancy and nitrogen-doped TiO 2 Preparation method of catalyst, product and application thereof

Also Published As

Publication number Publication date
JP4736361B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
US6827922B2 (en) Process for producing titanium oxide
KR100763226B1 (en) Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material
AU781450B2 (en) Titanium oxide production process
EP1219569A2 (en) Titanium hydroxide, photocatalyst obtainable from the same and coating agent comprising the same
JP4736361B2 (en) Method for producing photocatalytic titanium oxide
JP4269621B2 (en) Method for producing titanium oxide
JP2001354422A (en) Method for manufacturing titanium oxide
JP3993956B2 (en) Method for producing spherical titanium oxide fine particles
JP4078479B2 (en) Method for producing titanium oxide
KR20020021605A (en) Process for producing titanium oxide
JP2001278627A (en) Method of producing titanium oxide
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
JP2007222725A (en) Method for improving activity of photocatalytic titanium oxide and method for manufacturing high-activity photocatalytic titanium oxide
JP2001278625A (en) Method of producing titanium oxide
JP2007136394A (en) Manufacturing method of sulfur-doped titanium oxide
RU2520100C1 (en) Method of preparing titanium oxide photocatalyst active in visible spectrum
JP2007260534A (en) Method for preparing titanium oxide photocatalyst
JP4625942B2 (en) Visible light responsive titanium oxide powder photocatalyst and process for producing the same
JP3940393B2 (en) Method for producing photocatalytic titanium oxide
RU2565193C1 (en) Method of producing nanosized titanium dioxide
JP4598704B2 (en) Method for producing titanium oxide precursor and method for producing titanium oxide
JP2006306694A (en) Titanium oxide precursor
JP2008169058A (en) Method for producing titanium oxide precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees