JP2007231414A - Method for manufacturing metal/carbon nanotube composite using electroplating - Google Patents

Method for manufacturing metal/carbon nanotube composite using electroplating Download PDF

Info

Publication number
JP2007231414A
JP2007231414A JP2006293550A JP2006293550A JP2007231414A JP 2007231414 A JP2007231414 A JP 2007231414A JP 2006293550 A JP2006293550 A JP 2006293550A JP 2006293550 A JP2006293550 A JP 2006293550A JP 2007231414 A JP2007231414 A JP 2007231414A
Authority
JP
Japan
Prior art keywords
metal
carbon nanotube
nanotube composite
composite material
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006293550A
Other languages
Japanese (ja)
Inventor
Yoon-Chul Son
崙▲チョル▼ 孫
Jung-Joon Yoo
晶竣 柳
Jin Yu
進 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JP2007231414A publication Critical patent/JP2007231414A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing metal/carbon nanotube composite using electroplating in order to solve problems remaining in growth form at the time of high temperature growth taking place through the conventional chemical vapor deposition process. <P>SOLUTION: The method includes a step of immersing carbon nanotubes into an acid solution, a step of subjecting the filtered carbon nanotubes to a heat treatment, a step of adding the heat treated carbon nanotubes and cationic surfactant 16 to the metal plating solution containing metal and metal salt to disperse the carbon nanotube, and a step of disposing a cathode 22 and an anode 20 into an electrolytic cell in which the metal plating solution added with the carbon nanotube and the cationic surfactant 16 is housed, then applying electric current thereto to implement an electroplating process and thereby to obtain the metal/carbon nanotube composite 26 on the cathode 22. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気メッキ方法を利用した金属/炭素ナノチューブ(metal/carbon nanotube)複合材料の製造方法に関する。より詳細には、金属又は金属塩を包含する金属メッキ溶液に炭素ナノチューブとカチオン性界面活性剤を添加した後、電気メッキ法を実施し、陰極で金属/炭素ナノチューブの複合材料を形成させる方法に関する。   The present invention relates to a method for manufacturing a metal / carbon nanotube composite material using an electroplating method. More specifically, the present invention relates to a method of forming a composite material of metal / carbon nanotubes at the cathode by adding a carbon nanotube and a cationic surfactant to a metal plating solution containing a metal or a metal salt and then performing an electroplating method. .

炭素ナノチューブは、電気伝導度と熱伝導度及び強度が優れるので、このような性質が特定金属の特定性質と結合することにより、さらに優秀な物性を現すことが期待されてきた。そのため、炭素ナノチューブが包含された複合材料の開発に係る多くの研究が進められてきた。
特に、金属と炭素ナノチューブの複合材料は、機械的特性の向上を主な目的として研究され、主に塊の形態で作製されてきた。このような形態の複合材料は、多くの場合、主に粉末法及び焼結工程を通じて製造されてきた。
Since carbon nanotubes are excellent in electrical conductivity, thermal conductivity, and strength, it has been expected that such properties combine with specific properties of specific metals to exhibit further excellent physical properties. For this reason, many studies have been conducted on the development of composite materials including carbon nanotubes.
In particular, composite materials of metal and carbon nanotubes have been studied mainly for the purpose of improving mechanical properties, and have been produced mainly in the form of lumps. Such forms of composite materials have often been manufactured primarily through powder processes and sintering processes.

純粋な炭素ナノチューブは、化学気相蒸着方法を通じて600〜1000℃の高温で形成され、その成長方向や成長速度を制御するためには、蒸着方法及び蒸着前表面処理が重要である。即ち、炭素ナノチューブはその成長の時、完全な緻密構造ではなく、炭素ナノチューブの間に空隙が存在することになる。このような成長形態は既存の金属薄膜材料を代替するにおいて、深刻な問題点を残している。今まで、炭素ナノチューブ間の空隙をSiO2などで詰込んで半導体配線などに使用しようとする努力があったが、このような配線などが連結されながら多層になるとき、次の層のための工程を如何にするかについて代案がない状態である。 Pure carbon nanotubes are formed at a high temperature of 600 to 1000 ° C. through a chemical vapor deposition method. In order to control the growth direction and growth rate, the vapor deposition method and the surface treatment before vapor deposition are important. That is, when the carbon nanotubes are grown, they are not completely dense structures, and voids exist between the carbon nanotubes. Such a growth mode leaves a serious problem in replacing the existing metal thin film material. Up to now, there has been an effort to fill the gap between carbon nanotubes with SiO 2 etc. and use it for semiconductor wiring etc., but when such wiring etc. are connected and become multi-layered, for the next layer There is no alternative on how to make the process.

炭素ナノチューブの棒状の特徴的なチューブ構造と、一般的に電荷を帯びない特性のため、今まで電気メッキの方法により、金属/炭素ナノチューブ複合材料を薄膜形態に形成した例はなかった。電気メッキ方法により、金属と炭素ナノチューブを同時に蒸着することになると、純粋な炭素ナノチューブの成長のときとは異なり完全に緻密な構造を得ることができ、望む部分に対して薄膜形態で蒸着が可能であるため、既存の半導体配線を包含する全ての金属薄膜を代替しながら、その電気的、機械的、熱的物性を向上させることができるメリットもある。なお、この電気メッキの方法は既存の半導体配線工程や電子製品の表面処理工程を変えることなく、そのまま適用させることができるため経済的かつ実用性において有用と評価されている。   Due to the characteristic tube-like tube structure of carbon nanotubes and the generally non-charged characteristics, there has been no example of forming a metal / carbon nanotube composite material in the form of a thin film by electroplating. When metal and carbon nanotubes are deposited at the same time by electroplating, a completely dense structure can be obtained unlike the growth of pure carbon nanotubes. Therefore, there is an advantage that the electrical, mechanical, and thermal properties can be improved while replacing all the metal thin films including the existing semiconductor wiring. This electroplating method is evaluated as being economically and practically useful because it can be applied as it is without changing the existing semiconductor wiring process and surface treatment process of electronic products.

本発明の目的は、従来の化学気相蒸着方法を通じてなされる炭素ナノチューブの高温成長の際の成長形態に残存する問題を解決するために、電気メッキ方法を利用する金属/炭素ナノチューブ複合材料の製造方法を提供する。
さらに、本発明は、電気メッキ方法を利用して薄膜形態の金属/炭素ナノチューブ複合材料を製造することができるようにする。
An object of the present invention is to manufacture a metal / carbon nanotube composite material using an electroplating method in order to solve the problem of remaining in a growth form during high temperature growth of carbon nanotubes through a conventional chemical vapor deposition method. Provide a method.
Furthermore, the present invention makes it possible to manufacture a metal / carbon nanotube composite material in the form of a thin film using an electroplating method.

前記目的を達成するために、本発明は、既存の金属又は金属塩を含む金属メッキ溶液に、炭素ナノチューブと、炭素ナノチューブの表面に吸着される、陽電荷を帯びる界面活性剤を添加して金属メッキ溶液を作製し、個々の炭素ナノチューブを互いに完全分離及び分散させた後、電気メッキ法を施すことにより炭素ナノチューブが分子水準に分布/分散されている金属/炭素ナノチューブ複合材料の製造方法を提供する。
即ち、本発明の電気メッキ方法を利用した金属/炭素ナノチューブ複合材料の製造方法は、酸溶液に炭素ナノチューブを浸漬し、ろ過した後、ろ過された炭素ナノチューブに対して熱処理を実施するステップと、金属又は金属塩を含む金属メッキ溶液に、前記の熱処理した炭素ナノチューブとカチオン性界面活性剤を添加して炭素ナノチューブを分散させるステップと、炭素ナノチューブとカチオン性界面活性剤を添加した金属メッキ溶液が収容された電解槽に、陰極と陽極を配設した後、電流を印加して電気メッキ法を実施することにより、陰極で金属/炭素ナノチューブの複合材料を得るステップとを包含する。
In order to achieve the above object, the present invention adds a carbon nanotube and a positively charged surfactant adsorbed on the surface of the carbon nanotube to a metal plating solution containing an existing metal or metal salt. Producing a plating solution, completely separating and dispersing individual carbon nanotubes from each other, and then performing an electroplating method to provide a method for producing a metal / carbon nanotube composite in which carbon nanotubes are distributed / dispersed at the molecular level To do.
That is, the method for producing a metal / carbon nanotube composite material using the electroplating method of the present invention includes immersing the carbon nanotube in an acid solution, filtering, and then performing a heat treatment on the filtered carbon nanotube; Adding a heat-treated carbon nanotube and a cationic surfactant to a metal plating solution containing a metal or a metal salt to disperse the carbon nanotube; and a metal plating solution containing the carbon nanotube and the cationic surfactant. And a step of providing a metal / carbon nanotube composite material at the cathode by disposing an anode and an anode in the accommodated electrolytic cell and then applying an electric current to perform electroplating.

本発明により製造される金属/炭素ナノチューブ複合材料は、電気メッキ方法を利用して薄膜形態の金属/炭素ナノチューブ複合材料を得ることができるので、アルミニウム、銅などの半導体配線材料を包含した電気メッキの可能な全ての金属薄膜材料を代替して使用することができる。
本発明により製造される金属/炭素ナノチューブの複合材料は、純粋な炭素ナノチューブの成長とは異なり完全緻密な構造を有する薄膜形態に成長し、既存の処理工程を変えることなくそのまま使用することができるので経済的である。
また、本発明により製造される金属/炭素ナノチューブ複合材料は、炭素ナノチューブを分子水準に金属基地内に分散させることによって既存の金属薄膜の電気的、機械的、熱的物性の向上を期待することができる。
Since the metal / carbon nanotube composite material produced according to the present invention can obtain a metal / carbon nanotube composite material in the form of a thin film using an electroplating method, electroplating including semiconductor wiring materials such as aluminum and copper All possible metal thin film materials can be used instead.
Unlike the growth of pure carbon nanotubes, the metal / carbon nanotube composite material produced according to the present invention grows into a thin film having a completely dense structure and can be used as it is without changing the existing processing steps. So economical.
In addition, the metal / carbon nanotube composite material produced according to the present invention is expected to improve the electrical, mechanical and thermal properties of existing metal thin films by dispersing carbon nanotubes in the metal matrix at the molecular level. Can do.

以下、本発明を添付した図面を参照して詳細に説明する。
図1は、炭素ナノチューブを酸溶液で精製し、切断するステップを示す概略図である。
即ち、炭素ナノチューブの触媒金属のような不純物を除去して精製し、酸化過程を通じて炭素ナノチューブを分子水準に切断するために、酸溶液に浸漬して炭素ナノチューブの酸処理を行う。図1において、符号10は、炭素ナノチューブ(Carbon Nanotube)を示し、符号12は、酸溶液(H2SO4/HNO33:1 solution)を示す。
前記の酸溶液12は硫酸、硝酸、塩酸の中から選択されるいずれか1種以上でなる溶液を使用することができる。ここで後述する本発明の実施例においては、酸溶液12の混合成分比は硫酸と硝酸が3:1の体積比によってなることが好ましい。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic view showing steps of purifying and cutting carbon nanotubes with an acid solution.
That is, the carbon nanotube is purified by removing impurities such as catalytic metal of the carbon nanotube, and the carbon nanotube is subjected to an acid treatment by being immersed in an acid solution in order to cut the carbon nanotube to a molecular level through an oxidation process. In Figure 1, reference numeral 10 indicates a carbon nanotube (Carbon Nanotube), reference numeral 12 is an acid solution (H 2 SO 4 / HNO 3 3: 1 solution) shows a.
The acid solution 12 may be a solution composed of at least one selected from sulfuric acid, nitric acid, and hydrochloric acid. In the embodiment of the present invention described later, the mixing component ratio of the acid solution 12 is preferably 3: 1 by volume ratio of sulfuric acid and nitric acid.

次いで前記のような酸溶液12に炭素ナノチューブ10を浸漬した後、炭素ナノチューブ10の精製及び切断工程をより効率化するために、所定の処理をさらに実施することができる。このような処理の一例として、前記の酸溶液12において炭素ナノチューブ10を超音波処理、レーザー処理、攪拌機による攪拌処理の中から選択されるいずれか1つ以上の処理を実施することができる。炭素ナノチューブ10を酸溶液12に浸漬した後、前記の1つ以上の処理方法を実施することにより、常用の炭素ナノチューブに存在する触媒成分と、炭素ナノチューブの含有する不純物を除去するとともに、マイクロメーター(μm)長さの炭素ナノチューブをナノメーター(nm)長さの炭素ナノチューブ(CNT)に切断することができる。   Next, after immersing the carbon nanotube 10 in the acid solution 12 as described above, a predetermined treatment can be further performed in order to make the purification and cutting process of the carbon nanotube 10 more efficient. As an example of such a treatment, any one or more treatments selected from ultrasonic treatment, laser treatment, and stirring with a stirrer can be performed on the carbon nanotubes 10 in the acid solution 12 described above. After immersing the carbon nanotube 10 in the acid solution 12, the catalyst component and the impurities contained in the carbon nanotube are removed by performing one or more of the above-described treatment methods, and the micrometer Carbon nanotubes having a length of (μm) can be cut into carbon nanotubes (CNT) having a length of nanometer (nm).

前記において、炭素ナノチューブ10の精製及び切断工程をより効率的に向上させるために実施する前記超音波処理、レーザー処理、高速攪拌機による攪拌処理などは、当該技術分野で通常の知識を有する当業者が適宜選択して実施することができるため、以下、この処理方法に対する詳細な説明は省略する。   In the above, the ultrasonic treatment, the laser treatment, the stirring treatment using a high-speed stirrer, etc. performed to improve the purification and cutting process of the carbon nanotubes 10 more efficiently are those skilled in the art having ordinary knowledge in the technical field. Since it can be selected and implemented as appropriate, a detailed description of this processing method will be omitted below.

前述の酸溶液12において、炭素ナノチューブ10を超音波処理、レーザー処理、高速攪拌機による攪拌処理の中から選択されるいずれか1つ以上の処理を実施した後、同酸溶液12をフィルターでろ過し、ろ過した後の炭素ナノチューブ10に存在する異物質(非晶質炭素など)を除去するために熱処理を実施することになる。
前記における熱処理は、酸溶液12をろ過した後の炭素ナノチューブ10に存在する、非晶質炭素のような異物質が除去されることができる程度の熱処理を実施する。このような熱処理は例えば、200〜500℃で30分〜2時間の間実施する例を挙げることができる。
In the acid solution 12, the carbon nanotube 10 is subjected to at least one treatment selected from ultrasonic treatment, laser treatment, and stirring with a high-speed stirrer, and then the acid solution 12 is filtered with a filter. Then, heat treatment is performed to remove foreign substances (such as amorphous carbon) present in the carbon nanotubes 10 after the filtration.
The heat treatment is performed to such an extent that foreign substances such as amorphous carbon present in the carbon nanotubes 10 after the acid solution 12 is filtered can be removed. For example, such heat treatment can be performed at 200 to 500 ° C. for 30 minutes to 2 hours.

図2は、電気メッキ法を実施するためのメッキ溶液を製造する過程を示す概略図である。
図2において、前記のメッキ溶液は、金属又は金属塩を包含する金属メッキ溶液で、図1の炭素ナノチューブ10と、この炭素ナノチューブ10の表面に吸着される陽電荷を帯びるカチオン性界面活性剤を添加して作製することができる。図2において、符号14は金属塩及び添加剤(Metal salts & Additives)を示し、符号16はカチオン性界面活性剤(Cationic surfactants)を示し、符号10は炭素ナノチューブ(Carbon Nanotube)を示し、符号18は超音波処理(Sonication)の波状の模形を示す。
FIG. 2 is a schematic view illustrating a process of manufacturing a plating solution for performing the electroplating method.
In FIG. 2, the plating solution is a metal plating solution containing a metal or a metal salt. The carbon nanotube 10 of FIG. 1 and a cationic surfactant having a positive charge adsorbed on the surface of the carbon nanotube 10 are used. It can be prepared by adding. In FIG. 2, reference numeral 14 indicates metal salts & additives, reference numeral 16 indicates cationic surfactants, reference numeral 10 indicates carbon nanotubes, and reference numeral 18. Shows a wavy pattern of sonication.

前記のメッキ溶液において、前記陽電荷のカチオン性界面活性剤16は、炭素ナノチューブ10の表面に吸着されるとともに炭素ナノチューブ10を抱え込んで分離させる役割を担うようになる。前記のメッキ溶液に超音波処理、レーザー処理、機械的処理の中から選択されるいずれか1つ以上の処理方法を実施することにより、炭素ナノチューブ10を分離させて溶液中にまんべんなく円滑に分散させることができる。この時の機械的処理は、攪拌機によりメッキ溶液を攪拌することによって炭素ナノチューブ10の分散を円滑にする有効な分散法である。   In the plating solution, the positively charged cationic surfactant 16 is adsorbed on the surface of the carbon nanotube 10 and has a role of holding and separating the carbon nanotube 10. By carrying out any one or more treatment methods selected from ultrasonic treatment, laser treatment, and mechanical treatment on the plating solution, the carbon nanotubes 10 are separated and smoothly dispersed evenly in the solution. be able to. The mechanical treatment at this time is an effective dispersion method for smoothly dispersing the carbon nanotubes 10 by stirring the plating solution with a stirrer.

前記の金属メッキ溶液は金属又は金属塩14を包含する。
既存金属メッキ溶液中の1成分である金属は、電気メッキすることのできる全ての金属を使用することができ、本発明の実施形態において、このような金属を列挙すれば、銅、ニッケル、クロム、亜鉛、カドミウム、錫、金、銀、ロジウムであり、この中から選択されるいずれか1種以上の金属を使用することができる。また、金属塩は、前述の金属が含有された塩を使用することができる。本発明の実施形態において、このような金属塩を列挙すれば、硫酸銅、シアン化銅、ピロリン酸銅、ホウフッ化銅、硫酸ニッケル、塩化ニッケル、ホウ酸であり、この中から選択されるいずれか1種以上の金属塩を使用することができる。
本実施形態において、金属メッキ溶液の1例として銅メッキ溶液を使用することができる。この銅メッキ溶液の組成は、硫酸銅100〜300g/l、硫酸30〜100g/lであり、このような銅メッキの溶液に、好ましくは炭素ナノチューブ10を0.1〜10g/l、カチオン性界面活性剤16を1.0×10-5〜3.0×10-6Mを添加することができる。
The metal plating solution includes a metal or metal salt 14.
As the metal that is one component in the existing metal plating solution, any metal that can be electroplated can be used. In the embodiment of the present invention, if such metals are listed, copper, nickel, chromium Zinc, cadmium, tin, gold, silver and rhodium, and any one or more metals selected from these can be used. As the metal salt, a salt containing the above-described metal can be used. In the embodiment of the present invention, such metal salts are listed as copper sulfate, copper cyanide, copper pyrophosphate, copper borofluoride, nickel sulfate, nickel chloride, and boric acid. One or more metal salts can be used.
In this embodiment, a copper plating solution can be used as an example of the metal plating solution. The composition of this copper plating solution is 100 to 300 g / l copper sulfate, 30 to 100 g / l sulfuric acid, and preferably 0.1 to 10 g / l carbon nanotube 10 is added to the copper plating solution. The agent 16 can be added at 1.0 × 10 −5 to 3.0 × 10 −6 M.

しかし、前記の金属メッキ溶液の組成と、このような金属メッキ溶液に炭素ナノチューブ10及びカチオン性界面活性剤16を添加する量は、当業者が望む金属/炭素ナノチューブ複合材料に従って適宜選択して実施することができるため、以下、詳細な説明は省略する。   However, the composition of the metal plating solution and the amount of the carbon nanotube 10 and the cationic surfactant 16 added to the metal plating solution are appropriately selected according to the metal / carbon nanotube composite material desired by those skilled in the art. Therefore, detailed description is omitted below.

本実施形態において、前述の金属メッキ溶液は、メッキ溶液の特性を向上させるために添加剤をさらに包含することができる。なお、このような添加剤は、メッキ溶液の特性を向上させるものであれば、どのような添加剤でも良い。
本発明において、金属メッキ溶液に添加剤として使用することができる光沢剤は、現在市販中の商品を使用することができる。従って、添加剤については、当該技術分野で通常の知識を有する当業者が適宜選択して適用することができるため、以下、詳細な内容は省略する。前記の市販商品として流通中である光沢剤を列挙すれば、CO-16A(ボソン化学、韓国)、CO-16B(ボソン化学、韓国)、N-160A(ボソン化学、韓国)、N-160B(ボソン化学、韓国)でありこれらの中から選択されるいずれか1種以上を使用することができる。
In the present embodiment, the metal plating solution described above may further include an additive in order to improve the properties of the plating solution. Such an additive may be any additive as long as it improves the properties of the plating solution.
In the present invention, as the brightener that can be used as an additive in the metal plating solution, commercially available products can be used. Accordingly, the additives can be appropriately selected and applied by those skilled in the art having ordinary knowledge in the technical field, and therefore, detailed contents thereof will be omitted below. The brighteners in circulation as the above-mentioned commercial products are listed: CO-16A (Boson Chemical, Korea), CO-16B (Boson Chemical, Korea), N-160A (Boson Chemical, Korea), N-160B ( Boson Chemical, Korea) and any one or more selected from these can be used.

前記において、既存の金属メッキ溶液に添加される最も重要な成分は、勿論、炭素ナノチューブ10とカチオン性界面活性剤(Cationic surfactants)16である。
炭素ナノチューブ10は、前記図1の説明で言及したものを使用することができる。
本実施形態において、既に説明したように、カチオン性界面活性剤16は、それぞれの炭素ナノチューブ10の表面に吸着し、炭素ナノチューブ10を抱え込んで個々の炭素ナノチューブ10を分離させる役割をする。
In the above description, the most important components added to the existing metal plating solution are, of course, the carbon nanotubes 10 and the cationic surfactants 16.
As the carbon nanotube 10, those mentioned in the description of FIG. 1 can be used.
In the present embodiment, as already described, the cationic surfactant 16 is adsorbed on the surface of each carbon nanotube 10 and plays a role of holding the carbon nanotube 10 and separating the individual carbon nanotubes 10.

本発明において、カチオン性界面活性剤16は、カチオン性を帯びる全ての界面活性剤を使用することができ、このようなカチオン性界面活性剤16は、例えば、ポリ(ジアリルジメチルアンモニウムクロライド(poly(diallyl dimethyl ammonium chrolide), PDMA)、セチルトリメチルアンモニウムクロライド(cetyl trimethyl ammonium chloride, CTAC)、セチルトリメチルアンモニウムブロマイド(cetyl trimethyl ammonium bromide, CTAB)、ドデシルトリメチルアンモニウムブロマイド(dodecyl trimethyl ammonium bromide, DTAB)、ドデシルトリメチルアンモニウムクロライド(dodecyl trimethy lammonium chloride, DTAC)、デシルアミン(Decylamine)、ドデシルアミン(Dodecylamine)、ヘキサデシルアミン(Hexadecylamine)、トリエチルアミン(Triethylamine)、オクチルサルフェート(Octylsulfate)、ナトリウム塩(sodium salt)、ヘキシルアミン(Hexylamine)、オクタデシルアミン(Octadecylamine)を挙げることができ、この中から選択されるいずれか1種以上を使用することができる。   In the present invention, as the cationic surfactant 16, any surfactant having a cationic property can be used. For example, such a cationic surfactant 16 is poly (diallyldimethylammonium chloride (poly ( diallyl dimethyl ammonium bromide, PDMA), cetyl trimethyl ammonium chloride (CTAC), cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB), dodecyl trimethyl ammonium Ammonium chloride (dodecyl trimethy lammonium chloride, DTAC), Decylamine, Dodecylamine, Hexadecylamine, Triethylamine, Octylsulfate, Sodium salt, Hexyl Min (Hexylamine), mention may be made of octadecylamine (Octadecylamine), it can be used any one or more selected from among them.

図3は、炭素ナノチューブ10とカチオン性界面活性剤16を添加したメッキ溶液に対して電気メッキ法を実施して金属/炭素ナノチューブ複合材料を製造する過程を示す概略図である。図3において、符号20は陽極(Anode)、符号22は陰極(Cathode)を示し、符号24は金属カチオン、炭素ナノチューブ及びカチオン性界面活性剤を含有する電気メッキ溶液(Electroplating Solution With Metal Cations, Carbon Nanotubes and Cationic Surfactants)を示し、符号26は金属/炭素ナノチューブ複合材料(Metal/CNT Complex material)を示し、符号28は金属カチオン(Metal Cations)を示し、符号30はカチオン性界面活性剤16に抱えられた形状の炭素ナノチューブ(CNTs covered with cationic surfactants)を示す。   FIG. 3 is a schematic view illustrating a process of manufacturing a metal / carbon nanotube composite material by performing an electroplating method on a plating solution to which the carbon nanotube 10 and the cationic surfactant 16 are added. In FIG. 3, reference numeral 20 denotes an anode, reference numeral 22 denotes a cathode, and reference numeral 24 denotes an electroplating solution with metal cation, carbon nanotube and a cationic surfactant. Nanotubes and Cationic Surfactants), 26 indicates a metal / carbon nanotube composite material, 28 indicates a metal cation, and 30 indicates a cationic surfactant 16. The carbon nanotubes (CNTs covered with reactive surfactants) of the formed shape are shown.

炭素ナノチューブ10とカチオン性界面活性剤16を添加したメッキ溶液の電解槽に陽極20としては金属カチオンを供給する金属棒を配設し、陰極22としては金属/炭素ナノチューブの複合材料を蒸着しようとする金属或は基板材料を配設する。前記のように陽極20と陰極22を配設した後、適切な電流を印加すると金属カチオンと界面活性剤が炭素ナノチューブ10の表面に吸着され、陽電荷を帯びる炭素ナノチューブ10が同時に陰極22に移動して陰極22に蒸着しながら薄膜形態の金属/炭素ナノチューブ複合材料26を形成する。   A metal rod for supplying a metal cation is disposed as the anode 20 in the electrolytic bath of the plating solution to which the carbon nanotube 10 and the cationic surfactant 16 are added, and a metal / carbon nanotube composite material is deposited as the cathode 22. A metal or substrate material is disposed. After arranging the anode 20 and the cathode 22 as described above, when an appropriate current is applied, the metal cation and the surfactant are adsorbed on the surface of the carbon nanotube 10, and the positively charged carbon nanotube 10 moves to the cathode 22 at the same time. Then, a metal / carbon nanotube composite material 26 in the form of a thin film is formed while being deposited on the cathode 22.

前記の電気メッキ法を実施する時の電流密度を5〜100mA/cm2になるように電流を調節印加して電気メッキ法を実施することが望ましい。
前記電気メッキ法を実施する時の電解槽に配設する陽極20は、銅、ニッケル、クロム、亜鉛、カドミウム、錫、金、銀、ロジウムの中から選択されるいずれか1種以上の金属を使用することができる。
前記陽極20の材料は、金属メッキ溶液の金属又は金属液と同一の金属材料を使用することが好ましい。その理由は、電流を印加して陰極22でメッキ溶液の金属が析出し始めると、メッキ溶液内の金属イオンが消費されるため、メッキ溶液内の金属イオンはその数が減少することになるが、減少した量だけ同一金属からなる陽極20の金属イオンが溶液中に溶解されることによって、減少して不足になったメッキ溶液内の金属イオンを補充するためである。
It is desirable to carry out the electroplating method by adjusting and applying current so that the current density at the time of carrying out the electroplating method is 5 to 100 mA / cm 2 .
The anode 20 disposed in the electrolytic cell when the electroplating method is performed is made of at least one metal selected from copper, nickel, chromium, zinc, cadmium, tin, gold, silver, and rhodium. Can be used.
As the material of the anode 20, it is preferable to use the same metal material as the metal of the metal plating solution or the metal liquid. The reason is that when a current is applied and metal of the plating solution starts to be deposited at the cathode 22, the number of metal ions in the plating solution is reduced because the metal ions in the plating solution are consumed. This is because the metal ions in the anode 20 made of the same metal by a reduced amount are dissolved in the solution, thereby supplementing the metal ions in the plating solution which are decreased and insufficient.

前記電気メッキ法を実施する時の電解槽に配設する陰極22は、金属/炭素ナノチューブ複合材料26を蒸着しようとする金属或は基板材料を使用することができる。本発明において、このような陰極22は例えば、銅、ニッケル、アルミニウム、又は、銅が蒸着された基板、ニッケルが蒸着された基板、アルミニウムが蒸着された基板の中から選択されるいずれか1種以上を使用することができる。即ち、基板に銅が蒸着されたシリコンウエハー、ニッケルが蒸着されたシリコンウエハー、アルミニウムが蒸着されたシリコンウエハーの中から選択されるいずれか1種以上を使用することができる。   For the cathode 22 disposed in the electrolytic cell when the electroplating method is performed, a metal or a substrate material on which the metal / carbon nanotube composite material 26 is to be deposited can be used. In the present invention, the cathode 22 is, for example, any one selected from copper, nickel, aluminum, a substrate on which copper is deposited, a substrate on which nickel is deposited, and a substrate on which aluminum is deposited. The above can be used. That is, any one or more selected from a silicon wafer in which copper is deposited on a substrate, a silicon wafer in which nickel is deposited, and a silicon wafer in which aluminum is deposited can be used.

以下、本発明における好適な実施形態を図面を参照して説明する。ただ、この実施形態は請求の範囲を限定するものではなく、本発明の属する技術分野の当業者は、特許請求範囲に記載された発明の思想及び領域の範囲内で多様に修正及び変更させることができることを理解するであろう。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. However, this embodiment does not limit the scope of the claims, and those skilled in the art to which the present invention pertains can make various modifications and changes within the spirit and scope of the invention described in the claims. You will understand that you can.

硫酸と硝酸が3:1の体積比で混合された酸溶液12に炭素ナノチューブ10を浸漬し、超音波処理18(常温、10時間、40KHz)を実施して炭素ナノチューブ10を精製し切断した。前記の超音波処理18の後、酸溶液12をフィルターでろ過し、ろ過された炭素ナノチューブ10を350℃で1時間の間、熱処理を実施して非晶質炭素のような異物質を除去した。
熱処理によって異物質が除去された炭素ナノチューブ10と、カチオン性界面活性剤16をメッキ溶液に添加して炭素ナノチューブ10とカチオン性界面活性剤16が添加されたメッキ溶液を得た。前記において、メッキ溶液は銅メッキ溶液を使用した。使用された銅メッキ溶液の組成は、硫酸銅250g/l、硫酸75g/lを包含している。この銅メッキ溶液に炭素ナノチューブ10を1g/l添加し、カチオン性界面活性剤16としてPDMA(poly(diallyl dimethyl ammonium chrolide))1.25×10-6Mを添加した。
The carbon nanotubes 10 were immersed in an acid solution 12 in which sulfuric acid and nitric acid were mixed at a volume ratio of 3: 1 and subjected to ultrasonic treatment 18 (normal temperature, 10 hours, 40 KHz) to purify and cut the carbon nanotubes 10. After the ultrasonic treatment 18, the acid solution 12 is filtered through a filter, and the filtered carbon nanotubes 10 are heat treated at 350 ° C. for 1 hour to remove foreign substances such as amorphous carbon. .
The carbon nanotube 10 from which foreign substances were removed by heat treatment and the cationic surfactant 16 were added to the plating solution to obtain a plating solution to which the carbon nanotube 10 and the cationic surfactant 16 were added. In the above, a copper plating solution was used as the plating solution. The composition of the copper plating solution used included 250 g / l copper sulfate and 75 g / l sulfuric acid. 1 g / l of carbon nanotube 10 was added to the copper plating solution, and PDMA (poly (diallyl dimethyl ammonium chloride)) 1.25 × 10 −6 M was added as the cationic surfactant 16.

前記の炭素ナノチューブ10とカチオン性界面活性剤16が添加されたメッキ溶液の電解槽に陽極20として銅棒を配設、陰極22としてニッケルが蒸着されたシリコンウエハーを配設し、20mA/cm2の電流密度に調整された電流を印加して陰極22に薄膜形態の銅/炭素ナノチューブのナノ複合材料を形成した。 A copper rod is disposed as the anode 20 in the electrolytic bath of the plating solution to which the carbon nanotubes 10 and the cationic surfactant 16 are added, and a silicon wafer on which nickel is deposited is disposed as the cathode 22, and 20 mA / cm 2 is disposed. A thin film-shaped copper / carbon nanotube nanocomposite was formed on the cathode 22 by applying an electric current adjusted to the current density of

図4は、前記実施例から得た銅/炭素ナノチューブ複合材料のSEM写真図である。SEM写真から見るように、炭素ナノチューブ10が分子水準に銅基地内に分散されていることが見られる(図4の矢印参照)。なお、銅基地内に分散されている炭素ナノチューブ10の量は、電気メッキ法を実施する時の電流密度とカチオン性界面活性剤16の量などに依存する。
図5は、図4で示した銅/炭素ナノチューブ複合材料のEDS(energy dispersive spectroscopy)成分分析表である。前記EDS成分分析を通じて銅基地内の炭素ナノチューブ10の含量が原子分率として13.93%であることを分かる。
なお、金属基地内の炭素ナノチューブ10の含量は、メッキ溶液の構成、炭素ナノチューブ10の分散、電気メッキ法を実施する時の電流密度の中から選択されるいずれか1つ以上の条件を調節して決定することができる。
FIG. 4 is an SEM photograph of the copper / carbon nanotube composite material obtained from the above example. As seen from the SEM photograph, it can be seen that the carbon nanotubes 10 are dispersed in the copper matrix at the molecular level (see arrows in FIG. 4). Note that the amount of the carbon nanotubes 10 dispersed in the copper base depends on the current density when the electroplating method is performed, the amount of the cationic surfactant 16, and the like.
FIG. 5 is an EDS (energy dispersive spectroscopy) component analysis table of the copper / carbon nanotube composite material shown in FIG. From the EDS component analysis, it can be seen that the content of carbon nanotubes 10 in the copper base is 13.93% as an atomic fraction.
The content of the carbon nanotubes 10 in the metal matrix is adjusted by adjusting at least one of the conditions selected from the composition of the plating solution, the dispersion of the carbon nanotubes 10 and the current density when the electroplating method is performed. Can be determined.

本発明による炭素ナノチューブを酸溶液で精製し、切断するステップを示す概略図である。FIG. 3 is a schematic view showing steps of purifying and cutting a carbon nanotube according to the present invention with an acid solution. 本発明による電気メッキ法を実施するためのメッキ溶液を製造する過程を示す概略図である。1 is a schematic view illustrating a process of manufacturing a plating solution for performing an electroplating method according to the present invention. 本発明による炭素ナノチューブとカチオン性界面活性剤を添加したメッキ溶液に電気メッキ法を実施して金属/炭素ナノチューブ複合材料を製造する過程を示す概略図である。1 is a schematic view illustrating a process of manufacturing a metal / carbon nanotube composite material by performing an electroplating method on a plating solution to which a carbon nanotube and a cationic surfactant according to the present invention are added. 本発明による電気メッキ法によって形成された銅/炭素ナノチューブ複合材料のSEM写真図である。It is a SEM photograph figure of the copper / carbon nanotube composite material formed by the electroplating method by this invention. 本発明による電気メッキ法によって形成された銅/炭素ナノチューブ複合材料のEDS成分分析表である。4 is an EDS component analysis table of a copper / carbon nanotube composite material formed by electroplating according to the present invention.

符号の説明Explanation of symbols

10:炭素ナノチューブ(Carbon Nanotube)
12:酸溶液(H2SO4/HNO33:1 solution)
14:金属塩及び添加剤(Metal salts & Additives)
16:カチオン性界面活性剤(Cationic surfactants)
18:超音波処理(Sonication)の波状表示
20:陽極(Anode)
22:陰極(Cathode)
24:金属カチオン、炭素ナノチューブ及びカチオン性界面活性剤が含有された電気メッキ溶液(Electroplating Solution With Metal Cations, Carbon Nanotubes and Cationic Surfactants)
26:金属/炭素ナノチューブ複合材料(Metal/CNT Complex material)
28:金属カチオン(Metal Cations)
30:カチオン性界面活性剤が塗布された炭素ナノチューブ(CNTs covered with cationic surfactants)
10: Carbon Nanotube
12: Acid solution (H 2 SO 4 / HNO 3 3: 1 solution)
14: Metal salts & Additives
16: Cationic surfactants
18: Wave display of sonication 20: Anode
22: Cathode
24: Electroplating Solution with Metal Cations, Carbon Nanotubes and Cationic Surfactants containing metal cations, carbon nanotubes and cationic surfactants
26: Metal / CNT Complex material
28: Metal Cations
30: Carbon nanotubes coated with cationic surfactants (CNTs covered with cationic surfactants)

Claims (8)

酸溶液に炭素ナノチューブを浸漬し、ろ過した後、ろ過された前記炭素ナノチューブに対して熱処理を実施するステップと、
金属又は金属塩を含む金属メッキ溶液に、前記熱処理した前記炭素ナノチューブと、カチオン性界面活性剤を添加して前記炭素ナノチューブを分散させるステップと、
前記炭素ナノチューブと前記カチオン性界面活性剤を添加した前記金属メッキ溶液が収容された電解槽に、陰極と陽極を配設した後、電流を印加して電気メッキ方法を実施し、前記陰極で金属/炭素ナノチューブの複合材料を得るステップと、
を有することを特徴とする電気メッキ方法を利用した金属/炭素ナノチューブ複合材料の製造方法。
Immersing the carbon nanotubes in an acid solution, filtering, and then performing a heat treatment on the filtered carbon nanotubes;
In the metal plating solution containing a metal or a metal salt, the heat-treated carbon nanotubes and a step of adding a cationic surfactant to disperse the carbon nanotubes;
A cathode and an anode are disposed in an electrolytic cell containing the metal plating solution to which the carbon nanotubes and the cationic surfactant are added, and then an electroplating method is performed by applying an electric current. Obtaining a carbon / carbon nanotube composite material;
A method for producing a metal / carbon nanotube composite material using an electroplating method characterized by comprising:
前記酸溶液は、硝酸、硫酸、塩酸の中から選択されるいずれか1種以上でなる溶液であることを特徴とする請求項1に記載の電気メッキ方法を利用した金属/炭素ナノチューブ複合の材料の製造方法。   2. The metal / carbon nanotube composite material using an electroplating method according to claim 1, wherein the acid solution is a solution made of at least one selected from nitric acid, sulfuric acid, and hydrochloric acid. Manufacturing method. 前記熱処理を実施する前に、前記酸溶液において超音波処理、レーザー処理、攪拌機による攪拌処理の中から選択されるいずれか1つ以上の処理方法を実施して、前記炭素ナノチューブを切断するステップをさらに包含する請求項1に記載の電気メッキ方法を利用した金属/炭素ナノチューブ複合材料の製造方法。   Before performing the heat treatment, the step of cutting the carbon nanotubes by performing any one or more treatment methods selected from ultrasonic treatment, laser treatment, and stirring with a stirrer in the acid solution. Furthermore, the manufacturing method of the metal / carbon nanotube composite material using the electroplating method of Claim 1 further included. 前記金属は、銅、ニッケル、クロム、亜鉛、カドミウム、錫、金、銀、ロジウムの中から選択されるいずれか1種以上の金属又はこれらの金属を含む金属塩である請求項1に記載の電気メッキ方法を利用した金属/炭素ナノチューブ複合材料の製造方法。   2. The metal according to claim 1, wherein the metal is at least one metal selected from copper, nickel, chromium, zinc, cadmium, tin, gold, silver, and rhodium, or a metal salt containing these metals. A method for producing a metal / carbon nanotube composite material using an electroplating method. 前記金属メッキ溶液に添加剤として光沢剤をさらに包含する請求項1に記載の電気メッキ方法を利用した金属/炭素ナノチューブ複合材料の製造方法。   The method for producing a metal / carbon nanotube composite material using the electroplating method according to claim 1, further comprising a brightener as an additive in the metal plating solution. 前記カチオン性界面活性剤は、ポリ(ジアリルジメチルアンモニウムクロライド(poly(diallyl dimethyl ammonium chrolide), PDMA)、セチルトリメチルアンモニウムクロライド(cetyl trimethyl ammonium chloride, CTAC)、セチルトリメチルアンモニウムブロマイド(cetyl trimethyl ammonium bromide, CTAB)、ドデシルトリメチルアンモニウムブロマイド(dodecyl trimethyl ammonium bromide, DTAB)、ドデシルトリメチルアンモニウムクロライド(dodecyl trimethy lammonium chloride, DTAC)、デシルアミン(Decylamine)、ドデシルアミン(Dodecylamine)、ヘキサデシルアミン(Hexadecylamine)、トリエチルアミン(Triethylamine)、オクチルサルフェート(Octylsulfate)、ナトリウム(sodium salt)、ヘキシルアミン(Hexylamine)、オクタデシルアミン(Octadecylamine)の中から選択されるいずれか1種以上である請求項1に記載の電気メッキ方法を利用した金属/炭素ナノチューブ複合材料製造方法。   The cationic surfactants include poly (diallyl dimethyl ammonium chloride (PDMA), cetyl trimethyl ammonium chloride (CTAC), cetyl trimethyl ammonium bromide, CTAB. ), Dodecyl trimethyl ammonium bromide (DTAB), dodecyl trimethy lammonium chloride (DTAC), decylamine, dodecylamine, hexadecylamine, triethylamine 2. The electroplating method according to claim 1, wherein the electroplating method is at least one selected from the group consisting of octylsulfate, sodium salt, hexylamine, and octadecylamine. Metal / carbon nanotube composite material manufacturing method. 前記炭素ナノチューブの分散は、超音波処理、レーザー処理、攪拌機による攪拌処理の中から選択されるいずれか1つ以上の処理方法を実施する請求項1に記載の電気メッキ方法を利用した金属/炭素ナノチューブ複合材料の製造方法。   2. The metal / carbon using the electroplating method according to claim 1, wherein the dispersion of the carbon nanotubes is performed by any one or more processing methods selected from ultrasonic processing, laser processing, and stirring processing by a stirrer. Manufacturing method of nanotube composite material. 前記金属/炭素ナノチューブ複合材料は薄膜形態である請求項1に記載の電気メッキ方法を利用した金属/炭素ナノチューブ複合材料の製造方法。   The method of manufacturing a metal / carbon nanotube composite material using an electroplating method according to claim 1, wherein the metal / carbon nanotube composite material is in the form of a thin film.
JP2006293550A 2006-02-28 2006-10-30 Method for manufacturing metal/carbon nanotube composite using electroplating Pending JP2007231414A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060019369A KR100748228B1 (en) 2006-02-28 2006-02-28 Method of making metal/carbon nanotube composite materials by electroplating

Publications (1)

Publication Number Publication Date
JP2007231414A true JP2007231414A (en) 2007-09-13

Family

ID=38442965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006293550A Pending JP2007231414A (en) 2006-02-28 2006-10-30 Method for manufacturing metal/carbon nanotube composite using electroplating

Country Status (4)

Country Link
US (1) US20070199826A1 (en)
JP (1) JP2007231414A (en)
KR (1) KR100748228B1 (en)
CN (1) CN101050542A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027916A (en) * 2008-07-22 2010-02-04 Meiko:Kk Printed wiring board
JP2010106354A (en) * 2008-10-28 2010-05-13 Korea Inst Of Machinery & Materials Multifunctional composite fiber by multicomponent simultaneous vapor deposition, composite material possessing the same and method of manufacturing the same
US8871388B2 (en) 2009-11-27 2014-10-28 Samsung Sdi Co., Ltd. Negative electrode for lithium battery and lithium battery including negative electrode
JP2015164896A (en) * 2009-11-25 2015-09-17 タイコ エレクトロニクス アンプ ゲゼルシャフト ミット ベシュレンクテル ハウツンク Method for applying carbon/tin mixtures to metal or alloy coatings
KR20210155251A (en) * 2020-06-15 2021-12-22 대성볼트 (주) a carbon nano method for corrosion and scratch prevent of stainless steel product

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663446B2 (en) * 2005-05-20 2014-03-04 University Of Central Florida Research Foundation, Inc. Electrochemical-codeposition methods for forming carbon nanotube reinforced metal composites
KR100907804B1 (en) * 2007-04-26 2009-07-16 주식회사 대유신소재 Apparatus and method for aluminum plating of carbon materials using electroplating
US7892956B2 (en) * 2007-09-24 2011-02-22 International Business Machines Corporation Methods of manufacture of vertical nanowire FET devices
KR100907334B1 (en) * 2008-01-04 2009-07-13 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
DE102008001000B4 (en) 2008-04-04 2010-02-18 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Layer system for electrodes
DE102009002178A1 (en) 2008-04-04 2009-10-15 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Extruded composite electrical conductor has core consisting of metal and/or metal nitrides, oxides and/or carbides containing an embedded carbon nano-material
DE102008019864B3 (en) * 2008-04-16 2009-09-24 Siemens Aktiengesellschaft Process for the electrochemical coating of a substrate by brush plating and apparatus for carrying out this process
TWI434965B (en) * 2008-05-28 2014-04-21 Mitsui Mining & Smelting Co A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
US20100052223A1 (en) * 2008-08-26 2010-03-04 Seoul National University Research & Development Business Foundation (Snu R&Db Foundation) Cnt/metal composite cable
KR101071688B1 (en) 2008-10-27 2011-10-11 주식회사 펨빅스 Method and Devices for Carbon Nanotube Cutting-Dispersion
KR101605131B1 (en) 2009-01-08 2016-03-21 삼성전자주식회사 Field electron emitter, field electron emitter device and method for preparing the same
KR101116472B1 (en) * 2009-02-06 2012-03-07 (주)엘지하우시스 carbon nanotube-metal particle complex composition and steering wheel with heating element using the same
KR100962429B1 (en) * 2009-06-08 2010-06-14 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
JP5631775B2 (en) * 2011-02-24 2014-11-26 新光電気工業株式会社 Composite plating solution
US8754041B2 (en) 2011-03-29 2014-06-17 King Fahd University Of Petroleum And Minerals Method of removing E. coli bacteria from an aqueous solution
KR101388839B1 (en) 2011-04-13 2014-04-23 경희대학교 산학협력단 Metal nanowire with carbon nanotube and method for manufacturing the same
US20150041326A1 (en) 2011-11-16 2015-02-12 Nanoridge Materials, Incorporated Conductive metal enhanced with conductive nanomaterial
CN102528038B (en) * 2011-12-31 2013-09-11 浙江工业大学 Preparation method of copper/carbon nanotube composite superhydrophobic material
CH706336B1 (en) * 2012-04-02 2016-03-31 Haute Ecole Arc Galvanic bath for the electrolytic deposition of a composite material.
JP6175702B2 (en) * 2012-12-03 2017-08-09 山形県 Carbon nanotube-containing fine crystal nickel plating film, resin molding fine mold and method
US10006141B2 (en) 2013-06-20 2018-06-26 Baker Hughes, A Ge Company, Llc Method to produce metal matrix nanocomposite
KR101503283B1 (en) * 2013-09-23 2015-03-17 전자부품연구원 Coaxial cable comprising graphene coating layer and method the same
KR101339529B1 (en) 2013-10-18 2013-12-10 경희대학교 산학협력단 Metal nanowire with carbon nanotube and method for manufacturing the same
KR101561639B1 (en) 2014-04-14 2015-10-20 전자부품연구원 Cables having a coating layer of graphene
CN103943170B (en) * 2014-05-09 2016-03-02 浙江大学 Core-sheath structural conductive core of a kind of electric wire and preparation method thereof
US10669635B2 (en) 2014-09-18 2020-06-02 Baker Hughes, A Ge Company, Llc Methods of coating substrates with composite coatings of diamond nanoparticles and metal
KR101591454B1 (en) * 2014-10-07 2016-02-03 주식회사 동희홀딩스 Manufacturing method for Metal and Oxide hybrid coated Nano Carbon
DE102014114721B4 (en) 2014-10-10 2019-08-29 Harting Electric Gmbh & Co. Kg An electrical connector and method for monitoring the condition of a contact surface of an electrical connector contact
US9873827B2 (en) 2014-10-21 2018-01-23 Baker Hughes Incorporated Methods of recovering hydrocarbons using suspensions for enhanced hydrocarbon recovery
US10167392B2 (en) 2014-10-31 2019-01-01 Baker Hughes Incorporated Compositions of coated diamond nanoparticles, methods of forming coated diamond nanoparticles, and methods of forming coatings
US10155899B2 (en) 2015-06-19 2018-12-18 Baker Hughes Incorporated Methods of forming suspensions and methods for recovery of hydrocarbon material from subterranean formations
CN106087003A (en) * 2016-06-13 2016-11-09 中国科学院金属研究所 A kind of improve the method for Cr nano-particle content in Ni Cr nano-composite plate
US11008664B2 (en) 2017-07-20 2021-05-18 The Board Of Trustees Of The University Of Alabama Methods and systems for electrochemical additive manufacturing
CN108034984A (en) * 2017-12-07 2018-05-15 哈尔滨工业大学 A kind of preparation method of carbon nanotubes copper-based laminated composite material
US11938715B2 (en) * 2017-12-28 2024-03-26 Texas Instruments Incorporated SP2-bonded carbon structures
CN108906336B (en) * 2018-09-06 2020-08-28 宁波敬业控股集团有限公司 Iron ore reverse flotation reagent and using method thereof
WO2020230141A1 (en) * 2019-05-15 2020-11-19 Technion Research & Development Foundation Limited Carbon-nanotubes copper composite conductors
CN113046732B (en) * 2021-03-10 2022-11-22 中国科学院苏州纳米技术与纳米仿生研究所 Carbon nano tube/metal composite conductor and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853443A (en) * 1956-04-25 1958-09-23 Westinghouse Electric Corp Addition agent for acid copper electrolytes
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
KR20040078002A (en) * 2003-03-03 2004-09-08 (주) 나노텍 Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
JP4001291B2 (en) 2004-03-31 2007-10-31 日精樹脂工業株式会社 Processing method of carbon nanofiber
JP4993157B2 (en) 2004-05-07 2012-08-08 新光電気工業株式会社 Granular material and method for producing granular material
JP4489561B2 (en) 2004-06-18 2010-06-23 国立大学法人信州大学 Fibrous nanocarbon / metal composite material and method for producing the same
WO2008063148A2 (en) * 2005-05-20 2008-05-29 University Of Central Florida Carbon nanotube reinforced metal composites

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027916A (en) * 2008-07-22 2010-02-04 Meiko:Kk Printed wiring board
JP2010106354A (en) * 2008-10-28 2010-05-13 Korea Inst Of Machinery & Materials Multifunctional composite fiber by multicomponent simultaneous vapor deposition, composite material possessing the same and method of manufacturing the same
JP2015164896A (en) * 2009-11-25 2015-09-17 タイコ エレクトロニクス アンプ ゲゼルシャフト ミット ベシュレンクテル ハウツンク Method for applying carbon/tin mixtures to metal or alloy coatings
US8871388B2 (en) 2009-11-27 2014-10-28 Samsung Sdi Co., Ltd. Negative electrode for lithium battery and lithium battery including negative electrode
KR20210155251A (en) * 2020-06-15 2021-12-22 대성볼트 (주) a carbon nano method for corrosion and scratch prevent of stainless steel product
KR102355237B1 (en) 2020-06-15 2022-02-28 대성볼트 (주) a carbon nano method for corrosion and scratch prevent of stainless steel product

Also Published As

Publication number Publication date
CN101050542A (en) 2007-10-10
US20070199826A1 (en) 2007-08-30
KR100748228B1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP2007231414A (en) Method for manufacturing metal/carbon nanotube composite using electroplating
US9840782B2 (en) Electrochemical process for producing graphene, graphene oxide, metal composites, and coated substrates
EP3315462A1 (en) Graphene oxide quantum dot, material composed of same and graphene-like structure, and preparation method therefor
Nekouie et al. Effect of organic additives on synthesis of copper nano powders by pulsing electrolysis
EP3192773B1 (en) Method for producing porous graphite, and porous graphite
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
Nasirpouri et al. Electrodeposition of anticorrosion nanocoatings
Ouertani et al. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method
Nkhaili et al. A simple method to control the growth of copper oxide nanowires for solar cells and catalytic applications
Sun et al. Morphology control of Cu and Cu 2 O through electrodeposition on conducting polymer electrodes
Genovese et al. Electrochemical deposition of Ag2Se nanostructures
Ghahremaninezhad et al. One-step template-free electrosynthesis of 300 μm long copper sulfide nanowires
KR100767703B1 (en) Preparation method of silver nano-powder using electrolysis
Liu et al. Rational synthesis of silver nanowires at an electrode interface by diffusion limitation
Yue et al. Hierarchical structured nickel–copper hybrids via simple electrodeposition
Saha et al. Electrodeposition of cobalt with tunable morphology from reverse micellar solution
KR101042634B1 (en) Method of fabricating metal oxide-carbon nanotube composite films using a combined electrochemical deposition and thermal oxidation
Mao et al. Cu/graphene composite coatings electrodeposited in a directly dispersed graphene solution after electrochemical exfoliation with enhanced oxidation resistance
CN111188074B (en) Preparation method of Cu-CNTs composite material
Marchewka et al. Characterization of electrochemical deposition of copper and copper (I) oxide on the carbon nanotubes coated stainless steel substrates
Elazem et al. Morphology change of galvanically displaced one-dimensional tellurium nanostructures via controlling the microstructure of sacrificial Ni thin films
Zhou et al. Ni nanocomposite films formed by Ni nanowires embedded in Ni matrix using electrodeposition
Avramović et al. The particle size distribution (PSD) as criteria for comparison of silver powders obtained by different methods of synthesis and by conditions of electrolysis
US20150221930A1 (en) ELECTROLESS DEPOSITION OF Bi, Sb, Si, Sn, AND Co AND THEIR ALLOYS
Song et al. Copper-graphene composite foils via electro-deposition: A mini review

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090715