JP2010027916A - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
JP2010027916A
JP2010027916A JP2008188839A JP2008188839A JP2010027916A JP 2010027916 A JP2010027916 A JP 2010027916A JP 2008188839 A JP2008188839 A JP 2008188839A JP 2008188839 A JP2008188839 A JP 2008188839A JP 2010027916 A JP2010027916 A JP 2010027916A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
copper
conductor circuit
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188839A
Other languages
Japanese (ja)
Inventor
Shunsuke Eiki
俊介 栄喜
Susumu Arai
進 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Meiko Co Ltd
Original Assignee
Shinshu University NUC
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Meiko Co Ltd filed Critical Shinshu University NUC
Priority to JP2008188839A priority Critical patent/JP2010027916A/en
Publication of JP2010027916A publication Critical patent/JP2010027916A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board excelling in a heat radiation characteristic. <P>SOLUTION: This printed wiring board includes an insulation base material, and a conductor circuit wired thereon. In the printed wiring board, the conductor circuit is formed of dense electroplated copper containing carbon nanotubes. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はプリント配線板に関し、更に詳しくは、導体回路が電気めっき銅から成る従来のプリント配線板に比べて放熱特性が優れている新規なプリント配線板に関する。   The present invention relates to a printed wiring board, and more particularly to a novel printed wiring board having excellent heat dissipation characteristics compared to a conventional printed wiring board in which a conductor circuit is made of electroplated copper.

プリント配線板は、半導体チップや半導体パッケージ、コンデンサのような受動部品が表面実装された状態で各種の電気・電子機器に組込まれて使用される。その場合、実装部品の駆動時には当該実装部品が発熱するが、その発熱量が蓄積すると実装部品は過熱して熱損傷を起こすこともあるので、発生した熱を系外に放熱することが必要となる。
ところで、プリント配線板は、一般に、例えばガラス繊維−エポキシ樹脂基板やポリイミドフィルムのような熱伝導性が悪い絶縁基材の片面または/および両面に熱伝導性が優れている電気めっき銅から成る所定の回路パターンから成る導体回路が配線され、また絶縁基材の厚み方向に穿設された複数のスルーホールやビアの壁面にも電気めっき銅が形成された構造になっている。そのため、放熱の問題に関しては、この導体回路のパターン、本数、線幅などを適切に設計することにより、プリント配線板としての放熱特性を高める処置が採られていた。
A printed wiring board is used by being incorporated in various electric / electronic devices in a state where passive components such as a semiconductor chip, a semiconductor package, and a capacitor are surface-mounted. In that case, when the mounted component is driven, the mounted component generates heat, but if the amount of generated heat accumulates, the mounted component may overheat and cause thermal damage, so it is necessary to dissipate the generated heat outside the system. Become.
By the way, the printed wiring board is generally made of predetermined electroplated copper having excellent thermal conductivity on one side and / or both sides of an insulating base material having poor thermal conductivity such as glass fiber-epoxy resin substrate and polyimide film. A conductor circuit having the above circuit pattern is wired, and electroplated copper is also formed on the wall surfaces of a plurality of through holes and vias drilled in the thickness direction of the insulating base material. Therefore, with regard to the problem of heat dissipation, measures have been taken to improve the heat dissipation characteristics as a printed wiring board by appropriately designing the pattern, number, line width, etc. of this conductor circuit.

しかしながら、最近の電気・電子機器における小型化、薄型化、軽量化、高機能化の要求に伴い、プリント配線板への部品実装の高密度化が進んでいるのであるが、そのことは、これら部品の駆動時における発熱量の大幅な増大を招くことになり、前記した導体回路のパターン設計だけでは必要とする放熱特性を満たすことが困難になりはじめている。
また、道路信号器や各種の照明器具には、最近、LED素子が用いられはじめているが、このLED素子の場合、一定の動作領域までは駆動電流と発光輝度は略比例関係にあるので、高輝度で発光させるためには駆動電流を増加すればよいことになる。しかしながら、駆動電流を増加すると、LED素子の電力損失も比例増加してそれが熱に変換し、LED素子を実装するプリント配線板の放熱特性が悪ければ、LED素子は温度上昇して、発光効率の低下や動作寿命が短くなるという事態を招く。
However, due to recent demands for smaller, thinner, lighter, and more functional electrical / electronic devices, the mounting density of components on printed wiring boards has been increasing. This greatly increases the amount of heat generated when driving the parts, and it is becoming difficult to satisfy the required heat dissipation characteristics only by the above-described conductor circuit pattern design.
In addition, LED elements have recently started to be used in road traffic lights and various lighting fixtures. However, in this LED element, the drive current and the light emission luminance are in a substantially proportional relationship up to a certain operating region. In order to emit light with luminance, the drive current may be increased. However, when the drive current is increased, the power loss of the LED element also increases proportionally, which is converted into heat, and if the heat dissipation characteristics of the printed wiring board on which the LED element is mounted are poor, the LED element rises in temperature and the luminous efficiency Cause a decrease in the operating life and shortened operating life.

このようなことから、例えばLED素子の表面実装用プリント配線板に関しては、従来にも増して放熱特性に優れたプリント配線板が要求されている。
このような要求に対しては、例えばICチップや発光ダイオード素子(LED素子)の実装箇所に、セラミック製の基板本体の厚み方向に沿って貫通するビアを形成し、そのビアに、熱伝導率が高い、Ag,Ag−Cu系合金、またはCuの粉末を含む導電ペーストを充填して柱状のビア導体を配置して、基板本体に導体回路とは別種の放熱路を新たに形成することにより放熱特性を高めたセラミック製の配線基板が提案されている(特許文献1を参照)。
For this reason, for example, regarding a printed wiring board for surface mounting of LED elements, a printed wiring board that is more excellent in heat dissipation characteristics than ever is required.
In response to such a requirement, for example, a via that penetrates along the thickness direction of the ceramic substrate body is formed at a mounting location of an IC chip or a light emitting diode element (LED element), and thermal conductivity is formed in the via. By filling a conductive paste containing Ag, Ag-Cu alloy, or Cu powder, and arranging columnar via conductors, a new heat dissipation path different from the conductor circuit is formed on the substrate body. A ceramic wiring board with improved heat dissipation characteristics has been proposed (see Patent Document 1).

しかし、この配線基板の場合、放熱路であるビア導体を導電ペーストで形成しているので、電気めっき(とエッチング)で導体回路を形成するときに同時にビア導体を形成することはできず、放熱特性を高める作業としては工程増を招くことになるという問題がある。
特開2006−140360号公報
However, in the case of this wiring board, the via conductor, which is a heat dissipation path, is formed of a conductive paste. Therefore, when forming a conductor circuit by electroplating (and etching), it is not possible to form a via conductor at the same time. There is a problem that the process for increasing the characteristics leads to an increase in the number of processes.
JP 2006-140360 A

本発明は、電気めっき(とエッチング)で形成された導体回路それ自体の熱伝導率を高めることにより、工程増を招く上記した先行技術のような放熱路を組み込まなくても、全体として放熱特性が従来よりも向上しているプリント配線板の提供を目的とする。   The present invention increases the heat conductivity of the conductor circuit itself formed by electroplating (and etching), thereby increasing the heat dissipation characteristics as a whole without incorporating the heat dissipation path as described in the prior art, which leads to an increase in the process. An object of the present invention is to provide a printed wiring board that is improved as compared with the prior art.

本発明のプリント配線板は、外部から別の放電路を付加するのではなく、導体回路それ自体の放熱特性を高めたものであり、したがって従来から稼働している電気銅めっき設備をそのまま利用して製造される。
本発明者らは、導体回路がめっき銅単独で形成されている従来のプリント配線板に比べて放熱特性が優れているプリント配線板を製造するためには、当該導体回路を、電気めっきによる析出が可能で、かつめっき銅それ自体よりも熱伝導率が高い材料で形成すればよいとの着想を抱き、そのような材料の探索を行った。
The printed wiring board of the present invention does not add another discharge path from the outside, but enhances the heat dissipation characteristics of the conductor circuit itself, and therefore uses the conventional copper electroplating equipment as it is. Manufactured.
In order to produce a printed wiring board having excellent heat dissipation characteristics compared to a conventional printed wiring board in which the conductor circuit is formed of plated copper alone, the present inventors have deposited the conductor circuit by electroplating. In search of such a material, the idea was that it should be formed of a material having a higher thermal conductivity than the plated copper itself.

その過程で、本発明者らは、カーボンナノチューブ(Carbon nanotube:CNT)が熱伝導率は2000〜4000W/K・mと電気めっき銅の約300〜400W/K・mに比べて大幅に高い値であり、しかも導電性であるという点に着目した。
そこで、従来の電気銅めっき設備で用いている硫酸銅主体のめっき液(水溶液)にこのCNTをそのまま添加して電気めっきを行なおうとしたところ、CNTは疎水性であるため、めっき液中にCNTが分散せず、複合めっきは不可能であった。次にCNTを分散させるための分散剤をめっき液に添加して電気めっきを行なったところ、複合めっきは可能であったが、平滑なめっき膜の形成に使用できる電流密度の範囲が狭いという難点があった。
In the process, the present inventors have a carbon nanotube (CNT) having a thermal conductivity of 2000 to 4000 W / K · m, which is significantly higher than that of electroplated copper of about 300 to 400 W / K · m. In addition, attention was paid to the point that it is conductive.
Therefore, when this CNT was added as it was to the copper sulfate-based plating solution (aqueous solution) used in conventional copper electroplating equipment and electroplating was attempted, the CNT was hydrophobic, so CNT did not disperse and composite plating was impossible. Next, when electroplating was performed by adding a dispersant for dispersing CNTs to the plating solution, composite plating was possible, but the current density range that can be used to form a smooth plating film was narrow. was there.

この現象について本発明者らは、CNTが軸方向(長さ方向)のみに電気伝導性を有することに起因する現象であるとの考察を加え、めっき液の組成を検討して後述のめっき液を建浴し、再度電気めっきを実施したところ、成膜されためっき膜は銅とCNTが複合した緻密な複合体であり、そしてCNTがめっき銅の中に均一に分散していて、そのめっき層は充分に導体回路になり得るとの知見を得た。そして、その熱伝導率を測定したところ、CNTの含有量によって変動するが、電気めっき銅単独の場合に比べて高い値になることが判明した。   With respect to this phenomenon, the present inventors have considered that the CNT is a phenomenon caused by electric conductivity only in the axial direction (length direction), studied the composition of the plating solution, and described later the plating solution. Then, the electroplating was performed again, and the formed plating film was a dense composite of copper and CNT, and the CNT was uniformly dispersed in the plated copper. It has been found that the layer can be a sufficient conductor circuit. And when the thermal conductivity was measured, it became clear that it varied depending on the CNT content, but was higher than that of electroplated copper alone.

本発明は、上記した知見に基づいて開発されたプリント配線板であって、絶縁基材と前記絶縁基材に形成された導体回路とから成り、前記導体回路が、カーボンナノチューブを含有する電気めっき銅から成ることを特徴とする。
その場合、前記導体回路が、前記絶縁基材の表面に形成された回路パターンと、前記絶縁基材の厚み方向に貫通して形成されたビアに充填され、かつ前記回路パターンと一体化している柱状導体とから成り、前記電気めっき銅における前記カーボンナノチューブの含有量が0.1〜5質量%であることを好適とする。
The present invention is a printed wiring board developed on the basis of the above knowledge, and includes an insulating base material and a conductor circuit formed on the insulating base material, and the conductor circuit includes an electroplating containing a carbon nanotube. It is made of copper.
In that case, the conductor circuit is filled in a circuit pattern formed on the surface of the insulating base material and a via formed so as to penetrate in the thickness direction of the insulating base material, and is integrated with the circuit pattern. It is preferable that the carbon nanotube content in the electroplated copper is 0.1 to 5% by mass.

本発明のプリント配線板の場合、導体回路がめっき銅をマトリックスとし、このマトリックスに当該マトリックス(めっき銅)よりも高熱伝導率のCNTを均一分散する複合体で構成されているので、その導体回路が配線されているプリント配線板の放熱特性は、めっき銅単独で構成されている導体回路が配線されているプリント配線板の放熱特性よりも優れている。   In the case of the printed wiring board of the present invention, the conductor circuit is composed of a composite in which plated copper is used as a matrix, and CNTs having higher thermal conductivity than the matrix (plated copper) are uniformly dispersed in the matrix. The heat dissipation characteristic of the printed wiring board on which is wired is superior to the heat dissipation characteristic of the printed wiring board on which a conductor circuit made of plated copper alone is wired.

本発明のプリント配線板においては、導体回路がCNTが均一に分散している緻密な電気めっき銅で構成されている。
ここでいうプリント配線板とは、例えばガラス繊維−エポキシ樹脂基板やポリイミドフィルムのような絶縁基材とその片面または/および両面に配線された所定の回路パターンの導体回路から成る単層のプリント配線板や、その単層のプリント配線板をコア基板として例えばビルドアップ工法で製造された多層のプリント配線板のことを指す。
In the printed wiring board of the present invention, the conductor circuit is composed of dense electroplated copper in which CNTs are uniformly dispersed.
The printed wiring board here is, for example, a single-layer printed wiring comprising an insulating base material such as a glass fiber-epoxy resin substrate or a polyimide film and a conductor circuit having a predetermined circuit pattern wired on one or both sides thereof. It refers to a multilayer printed wiring board manufactured by, for example, a build-up method using a board or a single-layer printed wiring board as a core substrate.

また、ここでいう導体回路とは、絶縁基材の表面に所定の回路パターンで配線されたものの外に、絶縁基材の厚み方向に貫通するビアなどに本発明の電気めっき銅を用いていわゆるフィルドめっきで充填形成され、表面の回路パターンと一体的に接続された柱状導体のこともいう。この電気めっき銅を用いて柱状導体の層間ビアを形成すると、各層のプリント配線板での発生熱または伝達されてきた熱は、この柱状導体から各層の導体回路を介して放熱板方向に有効に伝達されてプリント配線板としての放熱特性が向上するので好適である。   The conductor circuit here is a so-called electroplated copper of the present invention used for vias penetrating in the thickness direction of the insulating base material, in addition to those wired with a predetermined circuit pattern on the surface of the insulating base material. It also refers to a columnar conductor that is filled with filled plating and connected integrally with the circuit pattern on the surface. When an interlayer via of a columnar conductor is formed using this electroplated copper, the heat generated or transmitted from the printed wiring board of each layer is effectively transmitted from the columnar conductor to the heat sink via the conductor circuit of each layer. This is preferable because the heat dissipation characteristics of the printed wiring board are improved.

上記した電気めっき銅に均一に分散するCNTとしては、外径が0.4〜5nmで、長さが1〜数10μmの単層CNTや二層CNT、外径が10〜200nm、内径が3〜10nmで、長さが1〜数10μmの多層CNTを使用することができる。
そして導体回路を構成する電気めっき銅におけるCNTの含有量が少なすぎると、熱伝導率はめっき銅単独の場合に比べてそれほど高い値にならず、またCNTの含有量が多すぎると、めっき液の建浴時に当該めっき液へのCNTの均一分散に難が生じ、また形成された導体回路ではCNTに対する結着材の役目も果たしているめっき銅が少なくなるので、導体回路からCNTが脱落する傾向が生じてくる。このようなことから、形成された導体回路を構成する電気めっき銅におけるCNTの含有量は0.1〜5質量%程度の値であることが好ましい。
The CNTs uniformly dispersed in the electroplated copper described above are single-wall CNTs and double-wall CNTs having an outer diameter of 0.4 to 5 nm and a length of 1 to several tens of micrometers, an outer diameter of 10 to 200 nm, and an inner diameter of 3 Multi-walled CNTs having a length of 10 nm and a length of 1 to several tens of μm can be used.
If the CNT content in the electroplated copper constituting the conductor circuit is too small, the thermal conductivity is not so high as compared to the case of the plated copper alone, and if the CNT content is too high, the plating solution Difficult to uniformly disperse CNTs in the plating solution during the bathing of the metal, and in the formed conductor circuit, there is less plating copper that also serves as a binder for the CNTs, so CNT tends to fall out of the conductor circuit Will arise. Therefore, the CNT content in the electroplated copper constituting the formed conductor circuit is preferably about 0.1 to 5% by mass.

この電気めっき銅は次のような電気めっきを行って形成することができる。
まず、用いるめっき液としては、その基本組成として、銅源である硫酸銅、硫酸、CNTの分散剤、およびCNTとを含む水溶液であることを好適とする。
めっき液における銅濃度としては、めっき時間などの関係で、0.1〜1M程度であることが好ましい。
This electroplated copper can be formed by performing the following electroplating.
First, the plating solution to be used is preferably an aqueous solution containing, as its basic composition, copper sulfate, which is a copper source, sulfuric acid, a CNT dispersant, and CNT.
The copper concentration in the plating solution is preferably about 0.1 to 1M because of the plating time and the like.

ここで、CNTの分散剤は界面活性剤の一種であって、表面が疎水性であるCNTをめっき液と濡れた状態で当該めっき液に均一分散させるための成分であり、好適にはポリアクリル酸をあげることができる。また、ポリオキシエチレンノニルフェニルなどの公知の界面活性剤であってもよい。
めっき液におけるCNTの分散剤の濃度は、銅の濃度と、分散させるCNTの量との関係で、適宜に設定される。
Here, the CNT dispersant is a kind of surfactant, and is a component for uniformly dispersing CNTs having a hydrophobic surface in the plating solution in a wet state with the plating solution. Can give acid. Further, a known surfactant such as polyoxyethylene nonylphenyl may be used.
The concentration of the CNT dispersant in the plating solution is appropriately set depending on the relationship between the copper concentration and the amount of CNT to be dispersed.

めっき液におけるCNTの分散量は、形成する導体回路(電気めっき銅)におけるCNTの含有量との関係から決められるのであるが、例えば銅濃度を上記した範囲とし、導体回路におけるCNTの含有量が0.1〜1質量%を目標とする場合、CNTは上記めっき液1Lに対し、0.5〜5gを分散させておけばよい。
なお、上記した基本組成のめっき液に、更に塩素イオンを共存させると広い範囲の電流密度で比較的平滑な電気めっき銅の成膜が可能となり、そして、上記した塩素イオンの外に、ビス―(3―ナトリウムスルホプロピル)ジスルフィドとヤーナスグリーンBを共存させておくと、形成された導体回路(電気めっき銅)にCNTが均一に分散した状態で緻密な電気めっき銅を形成することができるので好適である。
The amount of CNT dispersed in the plating solution is determined from the relationship with the content of CNT in the conductor circuit (electroplated copper) to be formed. For example, the copper concentration is in the above range, and the content of CNT in the conductor circuit is When the target is 0.1 to 1% by mass, CNT may be dispersed in an amount of 0.5 to 5 g with respect to 1 L of the plating solution.
If chlorine ions are further allowed to coexist in the plating solution having the above basic composition, it becomes possible to form a relatively smooth electroplated copper film with a wide range of current densities. When (3-sodium sulfopropyl) disulfide and Janus Green B coexist, dense electroplated copper can be formed in a state where CNTs are uniformly dispersed in the formed conductor circuit (electroplated copper). Therefore, it is preferable.

このめっき液の中に、めっき対象のプリント配線板の前駆体を浸漬する。この前駆体では、その表面は既に無電解めっきが施されて導電性が付与されている。
そして、この表面をマイナス極にして電気めっきが行われる。
そのときのめっき条件としては、液温20〜30℃、pH0〜2、電流密度0.5〜 5A/dmに設定することが好ましい。
The precursor of the printed wiring board to be plated is immersed in this plating solution. In this precursor, the surface has already been subjected to electroless plating to impart conductivity.
Then, electroplating is performed with this surface as the negative electrode.
Plating conditions at that time are preferably set to a liquid temperature of 20 to 30 ° C., a pH of 0 to 2, and a current density of 0.5 to 5 A / dm 2 .

めっき時間を選択することにより、前駆体の表面には、銅をマトリックスとしそこに均一分散するCNTから成る所望厚みのめっき層が成膜され、またビアには柱状導体が形成される。
そして、この前駆体表面のめっき層にフォトリソグラフィーとエッチング処理を行って、当該めっき層を所定パターンの導体回路にすることにより、本発明のプリント配線板が得られる。
By selecting the plating time, a plating layer having a desired thickness is formed on the surface of the precursor from CNTs in which copper is a matrix and uniformly dispersed therein, and columnar conductors are formed in the vias.
And the printed wiring board of this invention is obtained by performing photolithography and an etching process to the plating layer of this precursor surface, and making the said plating layer into the conductor circuit of a predetermined pattern.

硫酸銅五水和物0.85M(銅換算濃度)、硫酸0.55M、ポリアクリル酸2×10−5M、ビス―(3―ナトリウムスルホプロピル)ジスルフィド2ppm、ヤーナスグリーンB2ppm、塩酸50ppm(塩素イオン換算)の銅めっき液を1L建浴した。
そしてこの銅めっき液に、多層CNT(商品名VGCF、昭和電工社製、直径150nm、長さ15μm)2gを投入して、全体を撹拌して、用いるめっき液を調製した。多層CNTが均一に分散していることを確認することができた。
Copper sulfate pentahydrate 0.85M (concentration in copper), sulfuric acid 0.55M, polyacrylic acid 2 × 10 −5 M, bis- (3-sodium sulfopropyl) disulfide 2 ppm, Janus Green B 2 ppm, hydrochloric acid 50 ppm ( 1 L of a copper plating solution (in terms of chloride ion) was built.
Then, 2 g of multilayer CNT (trade name VGCF, manufactured by Showa Denko KK, diameter 150 nm, length 15 μm) was added to the copper plating solution, and the whole was stirred to prepare a plating solution to be used. It was confirmed that the multilayer CNTs were uniformly dispersed.

ついで、このめっき液にプリント配線板の前駆体を浸漬した。液温は25℃に、pHは0.5に制御した。
前駆体は、コア基板の上にビルドアップ工法で厚み60μmのエポキシ樹脂絶縁層を形成し、その絶縁層にレーザ加工で孔径100μmのビアを形成したのちデスミア処理が施され、そしてビアの壁面と絶縁層の表面に無電解銅めっきを施して導電性が付与されている。
Subsequently, the precursor of the printed wiring board was immersed in this plating solution. The liquid temperature was controlled at 25 ° C. and the pH at 0.5.
The precursor is formed by forming an epoxy resin insulating layer having a thickness of 60 μm on the core substrate by a build-up method, forming a via having a hole diameter of 100 μm by laser processing on the insulating layer, and then applying a desmear treatment. Conductivity is imparted by electroless copper plating on the surface of the insulating layer.

コア基板の導体回路をマイナス極とし、電流密度1A/dmで10時間の電気めっきを行った。
製造されたプリント配線板のビア近傍の状態を図1と図2に示す。
図1は、ビア近傍における電気めっき銅の形成状態を示す顕微鏡写真(倍率300倍)であり、図2は、ビアに充填されている電気めっき銅の一部の走査電顕写真(倍率5000倍)である。図2において、矢印で示している白い線状体がCNTである。
A conductor circuit of the core board and the negative electrode was subjected to electroplating at a current density of 1A / dm 2 10 hours.
The state in the vicinity of the via of the manufactured printed wiring board is shown in FIGS.
FIG. 1 is a photomicrograph (magnification 300 times) showing the formation state of electroplated copper in the vicinity of the via, and FIG. 2 is a scanning electron micrograph (magnification 5000 times) of a part of the electroplated copper filled in the via. ). In FIG. 2, a white linear body indicated by an arrow is CNT.

図1と図2から明らかなように、ビアには緻密な電気めっき銅から成る柱状導体が形成され、絶縁層の上にもその電気めっき銅から成る厚み75μmのめっき層が形成され、そして、その電気めっき銅は、銅をマトリックスとし、そこに均一分散するCNTで構成されている。
なお、導体回路の一部を剥離してその重量を測定したのち、塩酸でマトリックス銅を溶解して残渣のCNTの重量を測定し、それらの値から導体回路(電気めっき銅)におけるCNTの含有量を算出した。CNTの含有量は0.3質量%であった。
As is apparent from FIGS. 1 and 2, a columnar conductor made of dense electroplated copper is formed in the via, a plated layer having a thickness of 75 μm made of the electroplated copper is also formed on the insulating layer, and The electroplated copper is composed of CNTs in which copper is used as a matrix and uniformly dispersed therein.
After removing a part of the conductor circuit and measuring its weight, the matrix copper was dissolved with hydrochloric acid to measure the weight of the residual CNT, and from these values, the inclusion of CNT in the conductor circuit (electroplated copper) The amount was calculated. The content of CNT was 0.3% by mass.

比較のために、ポリアクリル酸を配合しなかったことを除いては、実施例と同じ組成の銅めっき液を建浴し、ここに、CNTを実施例の場合と同量添加してめっき液とした。CNTは全体として均一に分散することなく、一部が凝集した状態になっていた。
ついで、実施例と同様の条件でプリント配線板の前駆体に電気めっきを行った。
形成されためっき層は全体として多孔質になっており、しかもCNTは銅マトリックス内で均一に分散した状態になっていなかった。
For comparison, except that polyacrylic acid was not blended, a copper plating solution having the same composition as that of the example was constructed, and the same amount of CNT was added thereto as in the case of the plating solution. It was. CNT was in a state of being partly aggregated without being uniformly dispersed as a whole.
Next, electroplating was performed on the precursor of the printed wiring board under the same conditions as in the examples.
The formed plating layer was porous as a whole, and the CNTs were not uniformly dispersed in the copper matrix.

つぎに、上記した実施例の電気めっき銅と、通常の硫酸銅のめっき液からのめっき銅からそれぞれ試料を作成して熱伝導率を測定した。実施例の電気めっき銅の場合は、412W/K・mであり、通常のめっき銅の場合は382W/K・mであった。
このように、CNTを0.3質量%含有させるだけで、その電気めっき銅はCNTを含有しないめっき銅に比べて熱伝導率が約10%向上することが明らかとなった。したがって、この電気めっき銅で導体回路を形成したプリント配線板は、従来の導体回路を備えるプリント配線板に比べて、その放熱特性は優れている。
Next, samples were prepared from the electroplated copper of the above-described Examples and the plated copper from a normal copper sulfate plating solution, and the thermal conductivity was measured. In the case of the electroplated copper of the example, it was 412 W / K · m, and in the case of normal plated copper, it was 382 W / K · m.
As described above, it was revealed that the thermal conductivity of the electroplated copper is improved by about 10% as compared with the plated copper not containing CNT only by containing 0.3% by mass of CNT. Therefore, the printed wiring board in which the conductor circuit is formed of the electroplated copper is superior in heat dissipation characteristics as compared with the printed wiring board having the conventional conductor circuit.

本発明のプリント配線板は、導体回路がめっき銅とそれよりも熱伝導率が大幅に高い値であるCNTとの複合材になっているので、導体回路がめっき銅のみで形成されているプリント配線板に比べて放熱特性に優れている。
そのため、本発明のプリント配線板を例えばLED素子実装用として用いた場合、当該LED素子の発光量を従来以上に高めることができる。
In the printed wiring board of the present invention, the conductor circuit is a composite material of plated copper and CNT having a significantly higher thermal conductivity than that of the plated copper. Therefore, the printed circuit board is formed only of the plated copper. Excellent heat dissipation characteristics compared to wiring boards.
Therefore, when the printed wiring board of the present invention is used for mounting an LED element, for example, the light emission amount of the LED element can be increased more than before.

ビア近傍における電気めっき銅の形成状態を示す顕微鏡写真である。It is a microscope picture which shows the formation state of the electroplating copper in the via vicinity. 電気めっき銅の一部の走査電顕写真である。It is a scanning electron micrograph of a part of electroplated copper.

Claims (4)

絶縁基材と前記絶縁基材に形成された導体回路とを備え、前記導体回路がカーボンナノチューブを含有する電気めっき銅から成ることを特徴とするプリント配線板。   A printed wiring board comprising an insulating substrate and a conductor circuit formed on the insulating substrate, wherein the conductor circuit is made of electroplated copper containing carbon nanotubes. 前記導体回路が、前記絶縁基材の表面に形成された回路パターンと、前記絶縁基材の厚み方向に貫通して形成されたビアに充填され、かつ前記回路パターンと一体化している柱状導体とから成る請求項1のプリント配線板。   A circuit pattern formed on the surface of the insulating base material, and a columnar conductor that is filled in a via formed so as to penetrate in the thickness direction of the insulating base material and is integrated with the circuit pattern; The printed wiring board according to claim 1, comprising: 前記電気めっき銅における前記カーボンナノチューブの含有量が0.1〜5質量%である請求項1または2のプリント配線板。   The printed wiring board according to claim 1 or 2, wherein a content of the carbon nanotube in the electroplated copper is 0.1 to 5% by mass. 発光ダイオード素子の表面実装用のプリント配線板である請求項1〜3のいずれかのプリント配線板。   The printed wiring board according to claim 1, which is a printed wiring board for surface mounting of a light emitting diode element.
JP2008188839A 2008-07-22 2008-07-22 Printed wiring board Pending JP2010027916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188839A JP2010027916A (en) 2008-07-22 2008-07-22 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188839A JP2010027916A (en) 2008-07-22 2008-07-22 Printed wiring board

Publications (1)

Publication Number Publication Date
JP2010027916A true JP2010027916A (en) 2010-02-04

Family

ID=41733448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188839A Pending JP2010027916A (en) 2008-07-22 2008-07-22 Printed wiring board

Country Status (1)

Country Link
JP (1) JP2010027916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012449A (en) * 2014-06-27 2016-01-21 Tdk株式会社 Conductive wire
US10316424B2 (en) 2016-02-23 2019-06-11 Samsung Electronics Co., Ltd. Flexible electrically conductive structure, flexible wiring board, production method thereof, and electronic device includng the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156074A (en) * 2002-11-01 2004-06-03 Univ Shinshu Plated structure and manufacturing method therefor
JP2005277096A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Semiconductor interconnection constituted by use of metal film containing carbon nanotube and its manufacturing method, and method of manufacturing metal film containing carbon nanotube
JP2006152372A (en) * 2004-11-29 2006-06-15 Shinshu Univ Plated article of metal-fiber composite and manufacturing method therefor
JP2007009332A (en) * 2006-10-23 2007-01-18 Shinshu Univ Heat radiating body
JP2007231414A (en) * 2006-02-28 2007-09-13 Korea Advanced Inst Of Sci Technol Method for manufacturing metal/carbon nanotube composite using electroplating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156074A (en) * 2002-11-01 2004-06-03 Univ Shinshu Plated structure and manufacturing method therefor
JP2005277096A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Semiconductor interconnection constituted by use of metal film containing carbon nanotube and its manufacturing method, and method of manufacturing metal film containing carbon nanotube
JP2006152372A (en) * 2004-11-29 2006-06-15 Shinshu Univ Plated article of metal-fiber composite and manufacturing method therefor
JP2007231414A (en) * 2006-02-28 2007-09-13 Korea Advanced Inst Of Sci Technol Method for manufacturing metal/carbon nanotube composite using electroplating
JP2007009332A (en) * 2006-10-23 2007-01-18 Shinshu Univ Heat radiating body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012449A (en) * 2014-06-27 2016-01-21 Tdk株式会社 Conductive wire
US10316424B2 (en) 2016-02-23 2019-06-11 Samsung Electronics Co., Ltd. Flexible electrically conductive structure, flexible wiring board, production method thereof, and electronic device includng the same

Similar Documents

Publication Publication Date Title
KR101077378B1 (en) Heat-radiating substrate and manufacturing method thereof
TWI415528B (en) Electrical circuit board with high thermal conductivity and manufacturing method thereof
US20070081340A1 (en) LED light source module with high efficiency heat dissipation
TW201517335A (en) Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
JP2006188745A (en) Fill plated structure of inner via hole and manufacturing method thereof
KR100917841B1 (en) Metal substrate for electronic components module and electronic components module using it and method of manufacturing metal substrate for electronic components module
JP2011060824A (en) Substrate for mounting semiconductor chip, and method for producing the same
JP2007096185A (en) Circuit board
KR101587004B1 (en) a LED array board
TW201531182A (en) Ceramic circuit board of Laser Plate Copper and manufacturing method thereof
JP2011216842A (en) Heat dissipating substrate and method of manufacturing the same
KR100934476B1 (en) Circuit board and method of manufacturing the same
JP2010027916A (en) Printed wiring board
JP2007005709A (en) Low-heat-resistance wiring board for led lighting device, and led lighting device
TWI327452B (en) Process for manufacturing a wiring substrate
JP2011171687A (en) Insulated substrate, manufacturing method thereof, and forming method of wiring
JP2008159647A (en) Manufacturing method of heat dissipation substrate for electric circuit
CN105191512B (en) Printed circuit board and manufacturing methods
KR101399979B1 (en) Heat-dissipating flexible module for led using printed electronics technology and method for manufacturing the same
KR101037168B1 (en) Printed circuit board and manufacturing method thereof
KR20120017530A (en) Circuit board using anodizing and manufacturing method of the same
KR20160085617A (en) Formation technical development of metal printed circuit board for LED having high heat-radiation property
JP2008159827A (en) Heat dissipation substrate for electric circuit and its manufacturing method
JP2008147208A (en) Manufacturing method of heat dissipation substrate for electric circuit
KR102548609B1 (en) Printed circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110302