JP2007200659A - Method of manufacturing metal film - Google Patents

Method of manufacturing metal film Download PDF

Info

Publication number
JP2007200659A
JP2007200659A JP2006016579A JP2006016579A JP2007200659A JP 2007200659 A JP2007200659 A JP 2007200659A JP 2006016579 A JP2006016579 A JP 2006016579A JP 2006016579 A JP2006016579 A JP 2006016579A JP 2007200659 A JP2007200659 A JP 2007200659A
Authority
JP
Japan
Prior art keywords
firing
temperature
metal
film
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006016579A
Other languages
Japanese (ja)
Other versions
JP5562512B2 (en
Inventor
Hironobu Ono
博信 小野
Takaaki Hashimoto
高明 橋本
Masahide Shima
昌秀 島
Nobufumi Sugio
暢文 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006016579A priority Critical patent/JP5562512B2/en
Publication of JP2007200659A publication Critical patent/JP2007200659A/en
Application granted granted Critical
Publication of JP5562512B2 publication Critical patent/JP5562512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing metal film suitable for forming electrically conductive film such as electrode film, wiring film or circuit film. <P>SOLUTION: In the method of manufacturing the metal film, the substrate is baked after metal nano particles dispersed substance is applied to a substrate. The process comprises a step (1) of baking at temperature of 100-600°C in oxidizing atmosphere, and a step (2) of baking at temperature of 100-600°C in reducing atmosphere; or a step (1) of baking at temperature of 100-600°C in inert atmosphere or in reducing atmosphere, a step (2) of baking at temperature of 100-600°C in oxidizing atmosphere, and a step (3) of baking at temperature of 100-600°C in reducing atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属被膜の製造方法、詳しくは電極、配線、回路などの導電性被膜を形成するに好適な金属被膜の製造方法に関する。   The present invention relates to a method for producing a metal film, and more particularly to a method for producing a metal film suitable for forming a conductive film such as an electrode, wiring, or circuit.

金属被膜の形成方法の一つとして金属ペースト法があることはよく知られているところであり、例えば、特許文献1には、粒子径が200nm以下の還元可能な金属酸化物を分散させた有機溶剤分散体を基材に塗布した後、不活性雰囲気中で焼成し、引き続き還元性雰囲気中で焼成して金属被膜を形成する方法が提案されている。   It is well known that there is a metal paste method as one method for forming a metal film. For example, Patent Document 1 discloses an organic solvent in which a reducible metal oxide having a particle size of 200 nm or less is dispersed. There has been proposed a method in which a metal film is formed by applying a dispersion to a substrate, followed by firing in an inert atmosphere, followed by firing in a reducing atmosphere.

特開2004−164876号公報Japanese Patent Application Laid-Open No. 2004-164876

しかし、特許文献1に記載の方法によって得られる金属被膜は、比抵抗値が高く、電極、配線、回路などとして用いる導電性被膜としては満足できるものではなかった。そこで、本発明は、比抵抗値が低く導電性被膜として好適な金属被膜を形成し得る新規な金属被膜の製造方法を提供しようとするものである。   However, the metal film obtained by the method described in Patent Document 1 has a high specific resistance value and is not satisfactory as a conductive film used as an electrode, wiring, circuit, or the like. Accordingly, the present invention is intended to provide a novel method for producing a metal film which can form a metal film suitable for a conductive film having a low specific resistance value.

本発明者らの研究によれば、前記課題は次の発明により解決できることが分かった。
(1) 金属ナノ粒子分散体を基板に塗布した後、酸化性雰囲気中において100〜600℃の温度で焼成し、次いで還元性雰囲気中において100〜600℃の温度で焼成することを特徴とする金属被膜の製造方法。
(2)酸化性雰囲気中における焼成の前に、不活性雰囲気中または還元性雰囲気中において100〜600℃で焼成する上記(1)の金属被膜の製造方法。
(3)金属が銀および/または銅である上記(1)または(2)の金属被膜の製造方法。
According to the study by the present inventors, it has been found that the above problem can be solved by the following invention.
(1) The metal nanoparticle dispersion is coated on a substrate, then fired at a temperature of 100 to 600 ° C. in an oxidizing atmosphere, and then fired at a temperature of 100 to 600 ° C. in a reducing atmosphere. A method for producing a metal coating.
(2) The method for producing a metal film according to the above (1), wherein firing is performed at 100 to 600 ° C. in an inert atmosphere or a reducing atmosphere before firing in an oxidizing atmosphere.
(3) The method for producing a metal film according to the above (1) or (2), wherein the metal is silver and / or copper.

本発明の方法によれば、比抵抗値が低く、電極、配線、回路などとして用いるに好適な導電性被膜を形成することができる。   According to the method of the present invention, a conductive film having a low specific resistance value and suitable for use as an electrode, wiring, circuit, or the like can be formed.

本発明で用いる「金属ナノ粒子分散体」とは、粒子径が200nm以下のナノサイズの金属微粒子が有機溶媒中などに均一に分散されているものであれば、いずれでもよく、その製造方法により限定されるものではない。なお、本発明の「金属ナノ粒子」とは、金属(0価)のナノ粒子、金属酸化物のナノ粒子、およびこれらの混合物を包含するものである。
上記金属ナノ粒子の具体例としては、粒子径が1〜200nm、好ましくは2〜100nmの、白金、金、パラジウム、ルテニウム、銀、鉄、コバルト、ニッケル、銅、モリブデン、インジウム、イリジウム、チタンおよびアルミニウムから選ばれる少なくとも1種の金属からなるナノ粒子を挙げることができる。なかでも、平均粒子径が10nm以下であって、しかも均一性に優れた金属ナノ粒子が好適に用いられる。また、銀および/または銅からなるナノ粒子が好適に用いられる。なお、本発明において、粒子径は電界放射型走査電子顕微鏡(FE−SEM)により測定したものである。
The “metal nanoparticle dispersion” used in the present invention may be any metal nanoparticle having a particle size of 200 nm or less that is uniformly dispersed in an organic solvent or the like. It is not limited. The “metal nanoparticles” of the present invention include metal (zero-valent) nanoparticles, metal oxide nanoparticles, and mixtures thereof.
Specific examples of the metal nanoparticles include platinum, gold, palladium, ruthenium, silver, iron, cobalt, nickel, copper, molybdenum, indium, iridium, titanium, and a particle diameter of 1 to 200 nm, preferably 2 to 100 nm. Mention may be made of nanoparticles made of at least one metal selected from aluminum. Among these, metal nanoparticles having an average particle diameter of 10 nm or less and excellent in uniformity are preferably used. Moreover, the nanoparticle which consists of silver and / or copper is used suitably. In the present invention, the particle diameter is measured by a field emission scanning electron microscope (FE-SEM).

金属ナノ粒子分散体としては、上記のような金属ナノ粒子を有機溶媒に分散した金属ナノ粒子コロイド、あるいは金属ナノ粒子ペーストを挙げることができる。上記有機溶媒としては、この種の金属微粒子分散体の調製に一般に用いられているものであればいずれでもよく、例えば、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、トリデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロパノール、ブタノールなどを用いることができる。   Examples of the metal nanoparticle dispersion include a metal nanoparticle colloid obtained by dispersing the above metal nanoparticles in an organic solvent, or a metal nanoparticle paste. The organic solvent may be any one that is generally used for the preparation of this kind of fine metal particle dispersion. For example, normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, Benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, trimethylbenzene, terpineol, decane, tridecane, tetradecane, hexadecane, methanol, ethanol, propanol, butanol, and the like can be used.

金属ナノ粒子分散体中の金属ナノ粒子の含有量については、適宜、決定することができるが、通常、3〜80質量%であり、好ましくは5〜70質量%である。金属ナノ粒子分散体中には、焼成により形成される金属被膜の性能などに著しい悪影響を与えないかぎり、その製造過程で生成した不純物や原料の未反応物などが含まれていてもよいが、金属被膜の性能などを考慮して、このような不純物などはできるだけ除去して使用するのが望ましい。   Although it can determine suitably about content of the metal nanoparticle in a metal nanoparticle dispersion, it is 3-80 mass% normally, Preferably it is 5-70 mass%. The metal nanoparticle dispersion may contain impurities generated during the production process, unreacted materials, etc., as long as it does not significantly adversely affect the performance of the metal film formed by firing, In consideration of the performance of the metal coating, it is desirable to remove such impurities as much as possible.

本発明によれば、金属ナノ粒子分散体を基板に塗布した後、酸化性雰囲気中において100〜600℃の温度で焼成し、次いで還元性雰囲気中において100〜600℃の温度で焼成して金属被膜を形成する。そこで、これら各工程について以下に詳しく説明する。   According to the present invention, after the metal nanoparticle dispersion is applied to the substrate, it is fired at a temperature of 100 to 600 ° C. in an oxidizing atmosphere, and then fired at a temperature of 100 to 600 ° C. in a reducing atmosphere. Form a film. Accordingly, each of these steps will be described in detail below.

金属ナノ粒子分散体を基板に塗布する方法については特に制限はなく、この種の分散体の塗布に一般に用いられている方法にしたがって行うことができる。具体的には、例えば、スクリーン印刷法、ディップコーティング法、スプレー法、スピンコーティング法などを採用することができる。また、インクジェットヘッドを用いて分散体を基板上の必要な部分のみに塗布し、配線や回路となる金属被膜を形成させることもできる。   There is no restriction | limiting in particular about the method of apply | coating a metal nanoparticle dispersion to a board | substrate, It can carry out according to the method generally used for application | coating of this kind of dispersion. Specifically, for example, a screen printing method, a dip coating method, a spray method, a spin coating method, or the like can be employed. Alternatively, the dispersion can be applied only to a necessary portion on the substrate using an ink jet head to form a metal film that becomes a wiring or a circuit.

上記基板としては、電極、配線、回路などを構成するのに一般に用いられている、焼成によって焼失、劣化しない耐熱性のものであればいずれでもよい。具体的には、例えば、鉄、銅、アルミニウムなどの金属基板、ポリイミドフィルムなどの耐熱性樹脂基板、ガラス基板などを挙げることができる。   As the substrate, any substrate may be used as long as it has a heat resistance generally used for constituting electrodes, wirings, circuits, etc. and does not burn and deteriorate due to firing. Specific examples include metal substrates such as iron, copper, and aluminum, heat resistant resin substrates such as polyimide films, and glass substrates.

酸化性雰囲気中での焼成方法については特に制限はなく、例えば、焼却炉内に塗布基板をセットし、焼却炉内に酸化性雰囲気、例えば、酸素、あるいは酸素ガスと窒素ガスやヘリウムガスなどの不活性ガスとの混合ガス、代表的には、空気を充満または流通させながら100〜600℃、好ましくは100〜450℃、より好ましくは100〜350℃の温度で焼成すればよい。この酸化性雰囲気中での焼成の目的は、基板に塗布した分散体中に含まれている有機物を燃焼除去することにあり、この酸化性雰囲気中での焼成を実施することにより、最終的に得られる金属被膜の導電性が向上する。この酸化性雰囲気中での焼成を行わないと、微量の有機物または炭素分が不純物として被膜中に残存するため、金属被膜の導電性が低下する。   There is no particular limitation on the firing method in an oxidizing atmosphere, for example, a coated substrate is set in an incinerator, and an oxidizing atmosphere in the incinerator, for example, oxygen, or oxygen gas, nitrogen gas, helium gas, etc. A mixed gas with an inert gas, typically, 100 to 600 ° C., preferably 100 to 450 ° C., more preferably 100 to 350 ° C. may be fired while filling or circulating air. The purpose of firing in this oxidizing atmosphere is to burn and remove the organic substances contained in the dispersion applied to the substrate, and finally by firing in this oxidizing atmosphere, The conductivity of the resulting metal coating is improved. Without firing in this oxidizing atmosphere, a trace amount of organic matter or carbon remains as impurities in the film, so that the conductivity of the metal film decreases.

還元性雰囲気中での焼成方法についても特に制限はなく、例えば、上記酸化性雰囲気中での焼成に引き続き、焼成炉内に還元性雰囲気、例えば、水素、あるいは水素ガスと窒素ガスやヘリウムガスなどの不活性ガスとの混合ガス(水素濃度:2〜10%)を充満または流通させながら、100〜600℃、好ましくは100〜450℃、より好ましくは100〜350℃の温度で焼成すればよい。この還元性雰囲気中での焼成の目的は、上記酸化性雰囲気中での焼成により金属の一部または全部が金属酸化物の状態になっている皮膜を還元して金属とし、皮膜に導電性を持たせるためである。   There is no particular limitation on the firing method in the reducing atmosphere, for example, following the firing in the oxidizing atmosphere, a reducing atmosphere in the firing furnace, for example, hydrogen, or hydrogen gas, nitrogen gas, helium gas, etc. Firing at a temperature of 100 to 600 ° C., preferably 100 to 450 ° C., more preferably 100 to 350 ° C. while filling or circulating a mixed gas (hydrogen concentration: 2 to 10%) with an inert gas of . The purpose of firing in this reducing atmosphere is to reduce the film in which a part or all of the metal is in a metal oxide state by firing in the above oxidizing atmosphere to a metal, and to make the film conductive. This is to have it.

上記酸化性雰囲気中および還元性雰囲気中での焼成温度が100℃未満であったり、あるいは600℃を超えると上記それぞれの所期の目的を達成できなくなる。   If the firing temperature in the oxidizing atmosphere and reducing atmosphere is less than 100 ° C. or exceeds 600 ° C., the intended purpose described above cannot be achieved.

上記酸化性雰囲気中での焼成、それに続く還元性雰囲気中での焼成は、必ずしも連続的に行う必要はなく、上記焼成処理の間に、別の処理などを実施してもよい。例えば、還元性雰囲気中での焼成を、水素ガスを用いて行うときには、酸化性雰囲気中での焼成の後、水素ガスを流通させる前に、数分間の窒素による雰囲気置換処理(Nパージ)を実施することが安全上好ましいものである。 The firing in the oxidizing atmosphere and the subsequent firing in the reducing atmosphere are not necessarily performed continuously, and another treatment or the like may be performed between the firing treatments. For example, when firing in a reducing atmosphere using hydrogen gas, after the firing in an oxidizing atmosphere, before the hydrogen gas is circulated, the atmosphere is replaced with nitrogen for several minutes (N 2 purge). It is preferable from the viewpoint of safety.

基板上に塗布した直後の金属ナノ微粒子分散体には多量の有機物が含まれているため、塗布基板を直ちに酸化性雰囲気中で焼成すると、この多量の有機物が燃焼して、急激に発熱し、その結果、被膜のひび割れや基板からの被膜の剥離などが起こりやすくなる。このため、基板への金属ナノ微粒子分散体の塗布直後に酸化性雰囲気中で焼成を行う場合には、昇温をゆっくり行うなどのコントロールが必要となり、結果的に、操作時間が長期化するという問題が生じる。そこで、本発明においては、前記酸化性雰囲気中での焼成の前に、塗布基板を不活性雰囲気中または還元性雰囲気中で100〜600℃、好ましくは100〜450℃、より好ましくは100〜350℃の温度で焼成するのが好ましい。なかでも、還元性雰囲気中で上記焼成を行うのが好ましい。   Since the metal nanoparticle dispersion immediately after coating on the substrate contains a large amount of organic matter, when the coated substrate is immediately baked in an oxidizing atmosphere, this large amount of organic matter burns and rapidly generates heat, As a result, cracking of the coating film or peeling of the coating film from the substrate is likely to occur. For this reason, when firing in an oxidizing atmosphere immediately after application of the metal nanoparticle dispersion to the substrate, it is necessary to perform control such as slowly raising the temperature, resulting in prolonged operation time. Problems arise. Therefore, in the present invention, before firing in the oxidizing atmosphere, the coated substrate is 100 to 600 ° C., preferably 100 to 450 ° C., more preferably 100 to 350 ° C. in an inert atmosphere or a reducing atmosphere. Baking is preferably performed at a temperature of ° C. Especially, it is preferable to perform the said baking in a reducing atmosphere.

したがって、本発明の他の一つの態様は、金属ナノ粒子分散体を基板に塗布した後、不活性雰囲気中または還元性雰囲気中において100〜600℃で焼成し、次に酸化性雰囲気中において100〜600℃の温度で焼成し、さらに還元性雰囲気中において100〜600℃の温度で焼成することからなるものである。   Accordingly, another embodiment of the present invention is that after the metal nanoparticle dispersion is applied to the substrate, it is fired at 100 to 600 ° C. in an inert atmosphere or a reducing atmosphere, and then in an oxidizing atmosphere. Firing at a temperature of ˜600 ° C., and further firing at a temperature of 100 to 600 ° C. in a reducing atmosphere.

上記不活性雰囲気中または還元性雰囲気中での焼成は、前記した酸化性雰囲気中での焼成と同様に、塗布基板を焼成炉内にセットし、焼成炉内に不活性ガス、例えば、窒素ガス、あるいは還元性ガス、例えば、水素ガスまたは水素ガスと窒素ガスとの混合ガス(水素濃度:2〜10%)を充満または流通させて焼成させればよい。このような不活性雰囲気中または還元性雰囲気中での焼成により、酸化性雰囲気中での焼成に際に、燃焼による急な発熱を生じさない程度まで、有機物を除去することができる。このため、工程を短時間化できるとの工業的実施に際し有利な効果が得られる。   In the inert atmosphere or reducing atmosphere, the firing is performed in the same manner as in the oxidizing atmosphere described above. The coated substrate is set in a firing furnace, and an inert gas such as nitrogen gas is placed in the firing furnace. Alternatively, a reducing gas such as hydrogen gas or a mixed gas of hydrogen gas and nitrogen gas (hydrogen concentration: 2 to 10%) may be filled or circulated and fired. By such firing in an inert atmosphere or a reducing atmosphere, organic substances can be removed to such an extent that no sudden heat generation due to combustion occurs during firing in an oxidizing atmosphere. For this reason, an advantageous effect can be obtained in industrial implementation that the process can be shortened.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。なお、比抵抗値は、低抵抗率計ロレスターGP(三菱化学株式会社製)を用いて測定した。
(銅ナノ粒子分散体の調製例)
酢酸銅一水和物(和光純薬工業株式会社製)15.7gとドデシルアミン(和光純薬工業株式会社製)148.1gを60℃にて20分攪拌混合する。次に、40℃まで冷却後、20質量%水素化ホウ素ナトリウム水溶液20gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを200g添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離した。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention. In addition, the specific resistance value was measured using the low resistivity meter Lorester GP (made by Mitsubishi Chemical Corporation).
(Preparation example of copper nanoparticle dispersion)
15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 148.1 g of dodecylamine (manufactured by Wako Pure Chemical Industries, Ltd.) are stirred and mixed at 60 ° C. for 20 minutes. Next, after cooling to 40 ° C., a reduction treatment was performed by gradually adding 20 g of a 20 mass% sodium borohydride aqueous solution. While stirring the solution after the reduction treatment, 200 g of acetone was added and allowed to stand for a while, and then a precipitate composed of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、10℃以下まで冷却した。余分なドデシルアミンを凝固させ、ろ過により除去し、銅ナノ粒子がトルエンに分散した液を得た。次に、この銅ナノ粒子−トルエン分散液からトルエンを留去することにより、銅ナノ粒子含有量が55質量%の銅ナノ粒子ペーストを調製した。この銅ナノ粒子ペースト中の銅ナノ粒子の平均粒子径をFE−SEMで測定したところ5nmであった。   Toluene was added to the precipitate and redissolved, and then cooled to 10 ° C. or lower. Excess dodecylamine was coagulated and removed by filtration to obtain a liquid in which copper nanoparticles were dispersed in toluene. Next, toluene was distilled off from this copper nanoparticle-toluene dispersion to prepare a copper nanoparticle paste having a copper nanoparticle content of 55% by mass. It was 5 nm when the average particle diameter of the copper nanoparticle in this copper nanoparticle paste was measured by FE-SEM.

上記銅ナノ粒子ペーストに適量のテトラデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅ナノ粒子を30質量%含有する銅ナノ粒子分散体を得た。
(実施例1)
上記調製例で得られた銅ナノ粒子分散体を、1cm×3cmの面積で、ガラス基板上に塗布した。
An appropriate amount of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the copper nanoparticle paste and mixed by stirring to obtain a copper nanoparticle dispersion containing 30% by mass of copper nanoparticles.
Example 1
The copper nanoparticle dispersion obtained in the above preparation example was applied on a glass substrate with an area of 1 cm × 3 cm.

上記ガラス基板を焼成炉に入れ、焼成炉内に空気を流通させながら室温から300℃まで15時間で昇温した。温度が300℃に到達してから0.5時間300℃に保持し、酸化性雰囲気中での焼成を行った。その後、温度を300℃に維持した状態で、流通させるガスを5%の水素(残りの95%は窒素)に切り替えて1時間保持し、還元性雰囲気中での焼成を行ったところ、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は8x10−6Ω・cmであった。
(実施例2)
上記調製例で得られた銅ナノ粒子分散体を、1cm×3cmの面積で、ガラス基板上に塗布した。
The glass substrate was placed in a firing furnace, and the temperature was raised from room temperature to 300 ° C. over 15 hours while air was circulated in the firing furnace. After the temperature reached 300 ° C., the temperature was maintained at 300 ° C. for 0.5 hours, and firing was performed in an oxidizing atmosphere. Thereafter, with the temperature maintained at 300 ° C., the gas to be circulated was switched to 5% hydrogen (the remaining 95% was nitrogen) and held for 1 hour, and firing in a reducing atmosphere was performed. A 0.5 μm copper film was obtained. The specific resistance value of the obtained copper film was 8 × 10 −6 Ω · cm.
(Example 2)
The copper nanoparticle dispersion obtained in the above preparation example was applied on a glass substrate with an area of 1 cm × 3 cm.

上記ガラス基板を焼成炉に入れ、焼成炉内に窒素を流通させながら室温から300℃まで1時間で昇温した。温度が300℃に到達してから0.5時間300℃に保持し、不活性雰囲気中での焼成を行った。続いて、温度を300℃に維持した状態で、流通させるガスを空気に切り替えて0.5時間保持し、酸化性雰囲気中での焼成を行った。その後、温度を300℃に維持した状態で、流通させるガスを5%の水素(残りの95%は窒素)に切り替えて0.5時間保持し、還元性雰囲気中での焼成を行ったところ、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は9x10−6Ω・cmであった。
(実施例3)
上記調製例で得られた銅ナノ粒子分散体を、1cm×3cmの面積で、ガラス基板上に塗布した。
The glass substrate was placed in a firing furnace, and the temperature was raised from room temperature to 300 ° C. over 1 hour while flowing nitrogen through the firing furnace. After the temperature reached 300 ° C., the temperature was maintained at 300 ° C. for 0.5 hours, and firing was performed in an inert atmosphere. Subsequently, in a state where the temperature was maintained at 300 ° C., the gas to be circulated was switched to air and held for 0.5 hour, and calcination was performed in an oxidizing atmosphere. After that, with the temperature maintained at 300 ° C., the gas to be circulated was switched to 5% hydrogen (the remaining 95% was nitrogen) and held for 0.5 hour, and calcination was performed in a reducing atmosphere. A copper film having a thickness of 0.5 μm was obtained. The obtained copper film had a specific resistance value of 9 × 10 −6 Ω · cm.
(Example 3)
The copper nanoparticle dispersion obtained in the above preparation example was applied on a glass substrate with an area of 1 cm × 3 cm.

上記ガラス基板を焼成炉に入れ、焼成炉内に5%の水素(残りの95%は窒素)を流通させながら室温から300℃まで1時間で昇温した。温度が300℃に到達してから0.5時間300℃に保持し、還元性雰囲気中での焼成を行った。続いて、温度を300℃に維持した状態で、流通させるガスを空気に切り替えて0.5時間保持し、酸化性雰囲気中での焼成を行った。その後、温度を300℃に維持した状態で、流通させるガスを5%の水素(残りの95%は窒素)に切り替えて0.5時間保持し、還元性雰囲気中での焼成を行ったところ、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は6x10−6Ω・cmであった。
(比較例1)
実施例1における焼成炉内に空気を流通させる代わりに、焼成炉内に窒素を流通させた以外は実施例1と同様にして、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は3x10−4Ω・cmであった。
(比較例2)
実施例3における焼却炉内に空気を流通させる代わりに、焼却炉内に窒素を流通させた以外は実施例1と同様にして、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は2x10−4Ω・cmであった。

The glass substrate was placed in a firing furnace, and the temperature was raised from room temperature to 300 ° C. over 1 hour while 5% hydrogen (the remaining 95% was nitrogen) was passed through the firing furnace. After the temperature reached 300 ° C., the temperature was maintained at 300 ° C. for 0.5 hours, and firing was performed in a reducing atmosphere. Subsequently, in a state where the temperature was maintained at 300 ° C., the gas to be circulated was switched to air and held for 0.5 hour, and calcination was performed in an oxidizing atmosphere. After that, with the temperature maintained at 300 ° C., the gas to be circulated was switched to 5% hydrogen (the remaining 95% was nitrogen) and held for 0.5 hour, and calcination was performed in a reducing atmosphere. A copper film having a thickness of 0.5 μm was obtained. The specific resistance value of the obtained copper coating was 6 × 10 −6 Ω · cm.
(Comparative Example 1)
A copper film having a film thickness of 0.5 μm was obtained in the same manner as in Example 1 except that nitrogen was circulated in the baking furnace instead of circulating air in the baking furnace in Example 1. The specific resistance value of the obtained copper film was 3 × 10 −4 Ω · cm.
(Comparative Example 2)
Instead of circulating air in the incinerator in Example 3, a copper film having a film thickness of 0.5 μm was obtained in the same manner as in Example 1 except that nitrogen was circulated in the incinerator. The specific resistance value of the obtained copper film was 2 × 10 −4 Ω · cm.

Claims (3)

金属ナノ粒子分散体を基板に塗布した後、酸化性雰囲気中において100〜600℃の温度で焼成し、次いで還元性雰囲気中において100〜600℃の温度で焼成することを特徴とする金属被膜の製造方法。 After the metal nanoparticle dispersion is applied to the substrate, firing is performed at a temperature of 100 to 600 ° C. in an oxidizing atmosphere, and then firing is performed at a temperature of 100 to 600 ° C. in a reducing atmosphere. Production method. 酸化性雰囲気中における焼成の前に、不活性雰囲気中または還元性雰囲気中において100〜600℃で焼成する請求項1記載の金属被膜の製造方法。 The method for producing a metal film according to claim 1, wherein firing is performed at 100 to 600 ° C. in an inert atmosphere or a reducing atmosphere before firing in an oxidizing atmosphere. 金属が銀および/または銅である請求項1または2記載の金属被膜の製造方法。

The method for producing a metal coating according to claim 1 or 2, wherein the metal is silver and / or copper.

JP2006016579A 2006-01-25 2006-01-25 Method for producing metal coating Expired - Fee Related JP5562512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016579A JP5562512B2 (en) 2006-01-25 2006-01-25 Method for producing metal coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016579A JP5562512B2 (en) 2006-01-25 2006-01-25 Method for producing metal coating

Publications (2)

Publication Number Publication Date
JP2007200659A true JP2007200659A (en) 2007-08-09
JP5562512B2 JP5562512B2 (en) 2014-07-30

Family

ID=38455062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016579A Expired - Fee Related JP5562512B2 (en) 2006-01-25 2006-01-25 Method for producing metal coating

Country Status (1)

Country Link
JP (1) JP5562512B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054219A1 (en) * 2007-10-25 2009-04-30 Konica Minolta Holdings, Inc. Electrode manufacturing method and thin film transistor manufacturing method using the same
JP2010013721A (en) * 2008-07-07 2010-01-21 Nippon Shokubai Co Ltd Method for producing metal nanoparticle-dispersed body having excellent film formability, and metal film
WO2011109114A3 (en) * 2010-03-05 2011-12-01 Carestream Health, Inc. Transparent conductive films, articles, and methods
JP2014027322A (en) * 2007-03-05 2014-02-06 Semiconductor Energy Lab Co Ltd Method for manufacturing wiring, and method for manufacturing memory element
US9168587B2 (en) 2010-09-27 2015-10-27 Yamagata University Fine coated copper particles and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294018A (en) * 1997-04-16 1998-11-04 Ulvac Japan Ltd Burning method for metal paste
JP2005183054A (en) * 2003-12-17 2005-07-07 Ulvac Japan Ltd Forming method for transparent conductive film, and transparent electrode
JP2006210197A (en) * 2005-01-28 2006-08-10 Sumitomo Electric Ind Ltd Metal coating film and its formation method
JP2007012590A (en) * 2005-05-30 2007-01-18 Sumitomo Electric Ind Ltd Metal coating, its forming method and metal wiring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294018A (en) * 1997-04-16 1998-11-04 Ulvac Japan Ltd Burning method for metal paste
JP2005183054A (en) * 2003-12-17 2005-07-07 Ulvac Japan Ltd Forming method for transparent conductive film, and transparent electrode
JP2006210197A (en) * 2005-01-28 2006-08-10 Sumitomo Electric Ind Ltd Metal coating film and its formation method
JP2007012590A (en) * 2005-05-30 2007-01-18 Sumitomo Electric Ind Ltd Metal coating, its forming method and metal wiring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027322A (en) * 2007-03-05 2014-02-06 Semiconductor Energy Lab Co Ltd Method for manufacturing wiring, and method for manufacturing memory element
WO2009054219A1 (en) * 2007-10-25 2009-04-30 Konica Minolta Holdings, Inc. Electrode manufacturing method and thin film transistor manufacturing method using the same
JP2010013721A (en) * 2008-07-07 2010-01-21 Nippon Shokubai Co Ltd Method for producing metal nanoparticle-dispersed body having excellent film formability, and metal film
WO2011109114A3 (en) * 2010-03-05 2011-12-01 Carestream Health, Inc. Transparent conductive films, articles, and methods
CN102782772A (en) * 2010-03-05 2012-11-14 卡尔斯特里姆保健公司 Transparent conductive films, articles, and methods
US8486537B2 (en) 2010-03-05 2013-07-16 Carestream Health, Inc. Transparent conductive films, articles, and methods
US9168587B2 (en) 2010-09-27 2015-10-27 Yamagata University Fine coated copper particles and method for producing same

Also Published As

Publication number Publication date
JP5562512B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
TWI655090B (en) Transparent electrode and method of manufacturing same
JP5706998B2 (en) Transparent conductive ink and transparent conductive pattern forming method
JP5468141B2 (en) Method for producing conductive metal thin film using carboxylic acid
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
JP5562512B2 (en) Method for producing metal coating
JP2007012590A (en) Metal coating, its forming method and metal wiring
JP2007321215A5 (en)
WO2011048937A1 (en) Conductive film using high concentration dispersion of copper-based nanoparticles, and method for producing same
JP6407014B2 (en) Conductive composition for thin film printing and method for forming thin film conductive pattern
JP5072228B2 (en) Method for producing metal coating
JP2010059535A (en) Reducing agent for low temperature reducing and sintering of copper nanoparticle, and method for low temperature sintering using the same
US8834957B2 (en) Preparation method for an electroconductive patterned copper layer
JP2006009120A (en) Metal particulate-dispersed body
JP2014179315A (en) Method for producing silver conductive film
WO2014059798A1 (en) Nano-copper ink and copper conductive film preparation method
JP2009278045A (en) Workpiece and method for producing the same
JP2007087735A (en) Metal oxide dispersion
JP5771072B2 (en) Conductive paste
JP2008235035A (en) Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
TW201819553A (en) Ink composition, method for forming a conductive member, and conductive device
JP2006210197A (en) Metal coating film and its formation method
KR20100050408A (en) Preparation method of electroconductive copper patterning layer and copper patterning layer formed therefrom
JP4995491B2 (en) Method for producing copper coating
JP2012079933A (en) Wiring material, manufacturing method of wiring, and nanoparticle dispersion
KR20100137633A (en) Metal-glass nano composite powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120928

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees