JP2007197804A - Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material - Google Patents

Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material Download PDF

Info

Publication number
JP2007197804A
JP2007197804A JP2006020477A JP2006020477A JP2007197804A JP 2007197804 A JP2007197804 A JP 2007197804A JP 2006020477 A JP2006020477 A JP 2006020477A JP 2006020477 A JP2006020477 A JP 2006020477A JP 2007197804 A JP2007197804 A JP 2007197804A
Authority
JP
Japan
Prior art keywords
raw material
organic
compound
tetravalent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006020477A
Other languages
Japanese (ja)
Inventor
Atsushi Sai
篤 齋
Mitsuhide Kawasaki
光秀 川崎
Nobuyuki Soyama
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006020477A priority Critical patent/JP2007197804A/en
Publication of JP2007197804A publication Critical patent/JP2007197804A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal-containing film in which film deposition under low temperature conditions is excellent, and capable of stable film deposition, and also capable of depositing a thin film enough in step coverage. <P>SOLUTION: The raw material for MOCVD (Metal Organic Chemical Vapor Deposition) uses an organo-metallic compound expressed by formula (1); wherein, M is bivalent Pb, tetravalent Pb, tetravalent Zr or tetravalent Ti; R<SP>1</SP>and R<SP>2</SP>are a 1 to 4C direct-chain or branched alkyl group, and are the same or different; R<SP>3</SP>is a 2 to 4C direct-chain or branched alkyl group; and, when M is bivalent Pb, n is 2 and also m is 2, when M is tetravalent Pb, n is 2 and also m is 0, and when M is tetravalent Zr or tetravalent Ti, n is 4 and also m is 4, or n is 2 and also m is 0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、DRAM(Dynamic Random Access Memory)やFeRAM(Ferroelectric Random Access Memory;強誘電体メモリー)等の誘電体メモリー、誘電体フィルター等に用いられる複合酸化物系誘電体薄膜を有機金属化学蒸着法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)により形成するための原料、特にチタン酸ジリコン酸鉛(Pb(Zr,Ti)O3;以下、PZTという。)薄膜形成用として好適なMOCVD法用原料及び該原料を用いた金属含有膜の製造方法に関するものである。 The present invention relates to a metal organic chemical vapor deposition method using a complex oxide-based dielectric thin film used for a dielectric memory such as a DRAM (Dynamic Random Access Memory) and a FeRAM (Ferroelectric Random Access Memory), and a dielectric filter. MOCVD suitable for forming a raw material for forming by (Metal Organic Chemical Vapor Deposition, hereinafter referred to as MOCVD method), in particular, lead zirconate titanate (Pb (Zr, Ti) O 3 ; hereinafter referred to as PZT) thin film. The present invention relates to a method raw material and a method for producing a metal-containing film using the raw material.

パーソナルコンピュータ、ワークステーションのメインメモリーとして使われるDRAMは高集積化の動きがめまぐるしく、高集積化に対応可能な誘電体材料や電極材料の技術開発が盛んである。また、DRAMに代わるFeRAM等の次世代メモリー等も実用化に向けて研究開発が進んでいる。
高集積化に対応可能な誘電体材料としてはPZTやSrTiO3(以下、STという。)が期待され、電極材料としてはPtやRu、RuO2、Ir、IrO2が注目されている。これら材料の成膜法として、他の膜製造方法に比べて、平滑性及び段差被覆性に優れたMOCVD法が用いられている。
DRAMs used as the main memory of personal computers and workstations are rapidly becoming highly integrated, and the technological development of dielectric materials and electrode materials that can support high integration is thriving. Research and development is also progressing toward practical application of next-generation memories such as FeRAM instead of DRAM.
PZT and SrTiO 3 (hereinafter referred to as “ST”) are expected as dielectric materials capable of high integration, and Pt, Ru, RuO 2 , Ir, and IrO 2 are attracting attention as electrode materials. As a film forming method for these materials, an MOCVD method which is superior in smoothness and step coverage as compared with other film manufacturing methods is used.

PZT薄膜やST薄膜用のMOCVD法用原料としては主としてビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)鉛(以下、Pb(dpm)2という。)、テトラキス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)ジルコニウム(以下、Zr(dpm)4という。)、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)ストロンチウム(以下、Sr(dpm)2という。)、ジイソプロポキシビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)チタン(以下、Ti(iPrO)2(dpm)2という。)のようなβジケトン化合物の室温で固体状態を示す有機金属化合物が用いられている。 As raw materials for the MOCVD method for PZT thin films and ST thin films, mainly bis (2,2,6,6-tetramethyl-3,5-heptanedionate) lead (hereinafter referred to as Pb (dpm) 2 ), tetrakis ( 2,2,6,6-tetramethyl-3,5-heptanedionate) zirconium (hereinafter referred to as Zr (dpm) 4 ), bis (2,2,6,6-tetramethyl-3,5-heptane) Dionato) strontium (hereinafter referred to as Sr (dpm) 2 ), diisopropoxybis (2,2,6,6-tetramethyl-3,5-heptanedionate) titanium (hereinafter referred to as Ti (iPrO) 2 ( An organometallic compound which is a solid state at room temperature of a β-diketone compound such as dpm) 2 ) is used.

従来の上記MOCVD法用原料は室温で固体状態を示す有機金属化合物を用いているため、この有機金属化合物を有機溶媒に溶解した溶液原料にして、気化供給することで大量生産に対応していた。MOCVD装置への供給に適したMOCVD法用原料としては、化学気相成長用の下記一般式(I)で表されるジ(アルコキシ)ビス(ジイソブチリルメタナート)チタン並びにこのチタン化合物を原料としてPZT薄膜を製造する方法が開示されている(例えば、特許文献1参照。)。   The conventional raw material for the MOCVD method uses an organometallic compound that shows a solid state at room temperature, so that the organometallic compound is made into a solution raw material dissolved in an organic solvent, and can be vaporized and supplied for mass production. . As raw materials for the MOCVD method suitable for supply to the MOCVD apparatus, di (alkoxy) bis (diisobutyrylmethanato) titanium represented by the following general formula (I) for chemical vapor deposition and this titanium compound are used as raw materials. A method for producing a PZT thin film is disclosed (for example, see Patent Document 1).

Ti(OR)2(dibm)2 ……(I)
式中、Rはメチル、エチル、n−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、neo−ペンチル、i−アミル、s−アミル、t−アミルを表し、dibmはジイソブチリルメタナートを表す。
Ti (OR) 2 (divm) 2 ...... (I)
In the formula, R represents methyl, ethyl, n-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, neo-pentyl, i-amyl, s-amyl, t-amyl. , Dimm represents diisobutyryl methanate.

この特許文献1に示される有機金属化合物は、従来よりMOCVD法用原料として使用してきた有機金属化合物に比べて、有機溶媒への溶解度に優れ、かつ低温での成膜に適している。
特開2004−59562号公報(請求項1、段落[0022]、段落[0024])
The organometallic compound disclosed in Patent Document 1 has excellent solubility in an organic solvent and is suitable for film formation at a low temperature as compared with an organometallic compound that has been conventionally used as a raw material for MOCVD.
JP 2004-59562 A (Claim 1, paragraph [0022], paragraph [0024])

しかし上記特許文献1に示される有機金属化合物も従来より使用されているMOCVD法用原料と同様、室温で固体状態を示す有機金属化合物であるため、この有機金属化合物を有機溶媒に溶解した溶液原料にして成膜室に気化供給するが、気化供給の際には気化器内で溶液原料中の有機溶媒成分のみが気化してしまい、固体状態の有機金属化合物は熱分解を起こして気化器に接続された配管等を詰まらせてしまうため、成膜室では形成する薄膜への金属成分の取り込み量がばらつくなどの問題があった。その結果、形成した薄膜に段差被覆性の劣化をもたらしていた。   However, since the organometallic compound disclosed in Patent Document 1 is also an organometallic compound that shows a solid state at room temperature, as in the case of conventionally used MOCVD process materials, a solution material obtained by dissolving the organometallic compound in an organic solvent. However, when vaporizing and supplying, only the organic solvent component in the solution raw material is vaporized in the vaporizer, and the solid-state organometallic compound undergoes thermal decomposition to the vaporizer. Since the connected piping and the like are clogged, there is a problem that the amount of the metal component taken into the thin film to be formed varies in the film forming chamber. As a result, the formed thin film was deteriorated in step coverage.

本発明の目的は、低温条件での成膜に優れた、MOCVD法用原料及び該原料を用いた金属含有膜の製造方法を提供することにある。
本発明の別の目的は、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる、MOCVD法用原料及び該原料を用いた金属含有膜の製造方法を提供することにある。
An object of the present invention is to provide a raw material for MOCVD method and a method for producing a metal-containing film using the raw material, which are excellent for film formation under low temperature conditions.
Another object of the present invention is to provide a raw material for MOCVD method and a method for producing a metal-containing film using the raw material, which can form a thin film that can be stably formed and has high step coverage. There is to do.

請求項1に係る発明は、次の式(1)で示される有機金属化合物を用いたことを特徴とするMOCVD法用原料である。   The invention according to claim 1 is a raw material for the MOCVD method using an organometallic compound represented by the following formula (1).

Figure 2007197804
Figure 2007197804

但し、Mは2価のPb、4価のPb、4価のZr又は4価のTiであり、R1及びR2は炭素数1〜4の直鎖又は分岐状アルキル基であってR1とR2は互いに同一でも異なっていてもよく、R3は炭素数2〜4の直鎖又は分岐状アルキル基であり、Mが2価のPbであるときnが2でかつmが2であり、Mが4価のPbであるときnが2でかつmが0であり、Mが4価のZr、4価のTiであるときnが4でかつmが4であるか或いはnが2でmが0である。 However, M is a divalent Pb, tetravalent Pb, tetravalent Zr or tetravalent Ti, R 1 and R 2 is a straight-chain or branched alkyl group having 1 to 4 carbon atoms R 1 And R 2 may be the same or different from each other, R 3 is a linear or branched alkyl group having 2 to 4 carbon atoms, n is 2 and m is 2 when M is divalent Pb. And when M is tetravalent Pb, n is 2 and m is 0, and when M is tetravalent Zr and tetravalent Ti, n is 4 and m is 4 or n is 2 and m is 0.

請求項1に係る発明では、上記(1)で示される有機金属化合物をMOCVD法用原料として用いることで、500℃のような低温条件での成膜でも、高い成膜速度が得られる。また、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。   In the invention according to claim 1, by using the organometallic compound represented by the above (1) as a raw material for the MOCVD method, a high film formation rate can be obtained even in a film formation under a low temperature condition such as 500 ° C. In addition, a stable film can be formed, and a thin film rich in step coverage can be formed.

請求項2に係る発明は、請求項1記載のMOCVD法用原料を用いてMOCVD法により金属含有膜を製造する方法である。   The invention according to claim 2 is a method for producing a metal-containing film by the MOCVD method using the raw material for the MOCVD method according to claim 1.

本発明のMOCVD法用原料及び該原料を用いた金属含有膜の製造方法は、βジケトン構造の末端に酸素原子−炭素原子を有するアルキルアセテートが金属原子にキレート配位した構造を有する上記式(1)で示される有機金属化合物をMOCVD法用原料として用いた場合に、低温条件での成膜に優れ、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。   The raw material for MOCVD method of the present invention and the method for producing a metal-containing film using the raw material have the above formula having a structure in which an alkyl acetate having an oxygen atom-carbon atom at the terminal of a β-diketone structure is chelated to a metal atom ( When the organometallic compound represented by 1) is used as a raw material for the MOCVD method, it is excellent in forming a film under low temperature conditions, can form a stable film, and can form a thin film with excellent step coverage. it can.

次に本発明を実施するための最良の形態を説明する。
本発明者は、従来より知られている配位子としてβジケトンが金属原子に配位して構成されている有機金属化合物について鋭意検討した結果、βジケトン構造の末端に酸素原子−炭素原子を有するアルキルアセテートが金属原子にキレート配位した構造を有する有機金属化合物をMOCVD法用原料として用いた場合、低温での成膜に優れ、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができることを見出し、本発明に至った。
Next, the best mode for carrying out the present invention will be described.
As a result of intensive studies on an organometallic compound in which a β-diketone is coordinated to a metal atom as a conventionally known ligand, the present inventor has obtained an oxygen atom-carbon atom at the end of the β-diketone structure. When an organometallic compound having a structure in which an alkyl acetate having a chelate coordination with a metal atom is used as a raw material for MOCVD, it is excellent in low-temperature film formation, stable film formation, and excellent step coverage. The present inventors have found that a thin film can be formed and have reached the present invention.

本発明のMOCVD法用原料は、次の式(1)で示される有機金属化合物を用いたことを特徴とする。   The raw material for MOCVD method of the present invention is characterized by using an organometallic compound represented by the following formula (1).

Figure 2007197804
Figure 2007197804

但し、Mは2価のPb、4価のPb、4価のZr又は4価のTiであり、R1及びR2は炭素数1〜4の直鎖又は分岐状アルキル基であってR1とR2は互いに同一でも異なっていてもよく、R3は炭素数2〜4の直鎖又は分岐状アルキル基であり、Mが2価のPbであるときnが2でかつmが2であり、Mが4価のPbであるときnが2でかつmが0であり、Mが4価のZr、4価のTiであるときnが4でかつmが4であるか或いはnが2でmが0である。 However, M is a divalent Pb, tetravalent Pb, tetravalent Zr or tetravalent Ti, R 1 and R 2 is a straight-chain or branched alkyl group having 1 to 4 carbon atoms R 1 And R 2 may be the same or different from each other, R 3 is a linear or branched alkyl group having 2 to 4 carbon atoms, n is 2 and m is 2 when M is divalent Pb. And when M is tetravalent Pb, n is 2 and m is 0, and when M is tetravalent Zr and tetravalent Ti, n is 4 and m is 4 or n is 2 and m is 0.

βジケトン構造の末端に酸素原子−炭素原子を有するアルキルアセテートが金属原子にキレート配位した構造を有する上記式(1)で示される有機金属化合物は、室温で液体状態であって、MOCVD法用原料として用いた場合に、500℃のような低温条件での成膜でも高い成膜速度が得られるので低温での成膜に優れ、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。βジケトン構造の末端に酸素原子−炭素原子を有して金属への電子供与能を向上させることにより、成膜時には熱安定性を損なわず、多量化しない安定な組成構造で成膜室へ運ばれるためであると考えられる。   The organometallic compound represented by the above formula (1) having a structure in which an alkyl acetate having an oxygen atom-carbon atom at the terminal of a β-diketone structure is coordinated to a metal atom is in a liquid state at room temperature, and is used for MOCVD When used as a raw material, a high film formation speed can be obtained even at a low temperature condition such as 500 ° C., so that it is excellent in low temperature film formation, stable film formation is possible and rich in step coverage. A thin film can be formed. By having an oxygen atom-carbon atom at the end of the β-diketone structure and improving the electron donating ability to the metal, it is transported to the film formation chamber with a stable composition structure that does not impair thermal stability during film formation and does not increase in quantity. This is thought to be because of this.

上記式(1)のMを2価のPbとし、nを2とし、かつmを2とするとき、有機Pb化合物を用いたMOCVD法用原料は、以下の式(2)で示される。   When M in the above formula (1) is divalent Pb, n is 2 and m is 2, a raw material for MOCVD using an organic Pb compound is represented by the following formula (2).

Figure 2007197804
Figure 2007197804

また、上記式(1)のMを4価のPbとし、nを2とし、かつmを0とするとき、有機Pb化合物を用いたMOCVD法用原料は、以下の式(3)で示される。   Further, when M in the above formula (1) is tetravalent Pb, n is 2 and m is 0, the raw material for the MOCVD method using the organic Pb compound is represented by the following formula (3). .

Figure 2007197804
Figure 2007197804

また、上記式(1)のMを4価のZrとし、nを4とし、かつmを4とするとき、有機Pb化合物を用いたMOCVD法用原料は、以下の式(4)で示される。   Further, when M in the above formula (1) is tetravalent Zr, n is 4 and m is 4, the raw material for MOCVD using an organic Pb compound is represented by the following formula (4). .

Figure 2007197804
Figure 2007197804

また、上記式(1)のMを4価のPbとし、nを2とし、かつmを0とするとき、有機Pb化合物を用いたMOCVD法用原料は、以下の式(5)で示される。   Further, when M in the above formula (1) is tetravalent Pb, n is 2 and m is 0, the raw material for the MOCVD method using the organic Pb compound is represented by the following formula (5). .

Figure 2007197804
Figure 2007197804

また、上記式(1)のMを4価のTiとし、nを4とし、かつmを4とするとき、有機Pb化合物を用いたMOCVD法用原料は、以下の式(6)で示される。   Further, when M in the above formula (1) is tetravalent Ti, n is 4 and m is 4, the raw material for MOCVD using an organic Pb compound is represented by the following formula (6). .

Figure 2007197804
Figure 2007197804

更に、上記式(1)のMを4価のTiとし、nを2とし、かつmを0とするとき、有機Pb化合物を用いたMOCVD法用原料は、以下の式(7)で示される。   Further, when M in the above formula (1) is tetravalent Ti, n is 2 and m is 0, the raw material for MOCVD using an organic Pb compound is represented by the following formula (7). .

Figure 2007197804
Figure 2007197804

次に、上記式(3)のR1をt−ブチル基、R2をメチル基、R3をエチル基とした有機Pb化合物の製造方法について説明する。
先ず、金属アルコキシドとしてPb−OCH3を、溶媒としてn−デカンをそれぞれ用意する。Pb−OCH3を1モル等量計り取って、この計り取った金属アルコキシドをn−デカン500mlに溶解して金属アルコキシド溶解液を調製する。次いで、調製した金属アルコキシド溶解液にt−ブチルアセトアセテートを1モル等量、ゆっくりと攪拌しながら滴下し、アセテートを滴下した後は、溶解液をオイルバスにより約120℃で2時間程度加熱還流することにより金属アルコキシドとアセテートを反応させる。次に、加熱還流した溶解液に対して2Torr(約266Pa)、80℃の条件で溶解液中の溶媒を除去することにより、0.5〜0.6モル程度の有機Pb化合物の粗生成物が得られる。更に、得られた粗生成物を0.1Torr(約13.3Pa)、60℃の条件で減圧蒸留することにより、有機Pb化合物の精製物が得られる。
Next, a method for producing an organic Pb compound in which R 1 in the formula (3) is a t-butyl group, R 2 is a methyl group, and R 3 is an ethyl group will be described.
First, Pb—OCH 3 is prepared as a metal alkoxide, and n-decane is prepared as a solvent. One mole equivalent of Pb—OCH 3 is weighed, and the metal alkoxide thus weighed is dissolved in 500 ml of n-decane to prepare a metal alkoxide solution. Next, 1 mol equivalent of t-butyl acetoacetate was added dropwise to the prepared metal alkoxide solution while stirring slowly. After the acetate was added dropwise, the solution was heated to reflux at about 120 ° C. for about 2 hours using an oil bath. By doing so, the metal alkoxide and acetate are reacted. Next, by removing the solvent in the solution under the conditions of 2 Torr (about 266 Pa) and 80 ° C. with respect to the heated and refluxed solution, a crude product of about 0.5 to 0.6 mol of organic Pb compound is obtained. Is obtained. Furthermore, the obtained crude product is distilled under reduced pressure under conditions of 0.1 Torr (about 13.3 Pa) and 60 ° C. to obtain a purified product of the organic Pb compound.

この金属アルコキシドが有するアルキル基を炭素数2〜4の直鎖又は分岐状アルキル基の範囲内に任意に選択することで、式(3)中のR3を炭素数2〜4の直鎖又は分岐状アルキル基のうちの任意の官能基に変更して有機Pb化合物を合成することが可能である。同様に、このアセテートが有するアルキル基を炭素数1〜4の直鎖又は分岐状アルキル基の範囲内に任意に選択することで、式(3)中のR1及びR2を炭素数1〜4の直鎖又は分岐状アルキル基のうちの任意の官能基に変更して有機Pb化合物を合成することが可能である。また、上記合成方法の金属アルコキシドとアセテートのモル等量割合を、金属アルコキシド1モル等量に対してアセテートを4モル等量として有機Pb化合物を合成することで、式(2)で示される2価のPbに配位子が配位した有機Pb化合物を合成することができる。上記合成方法で使用した金属アルコキシドの金属種をZrに変更することで、上記式(4)〜式(5)の有機Zr化合物を合成することができる。また、金属種をTiに変更することで上記式(6)〜式(7)の有機Ti化合物を合成することができる。 By arbitrarily selecting the alkyl group of the metal alkoxide within the range of a linear or branched alkyl group having 2 to 4 carbon atoms, R 3 in the formula (3) can be a straight chain having 2 to 4 carbon atoms or It is possible to synthesize an organic Pb compound by changing to any functional group of branched alkyl groups. Similarly, R 1 and R 2 in formula (3) are selected from 1 to 4 carbon atoms by arbitrarily selecting the alkyl group of this acetate within the range of a linear or branched alkyl group having 1 to 4 carbon atoms. It is possible to synthesize an organic Pb compound by changing the functional group to any one of the four linear or branched alkyl groups. In addition, by synthesizing an organic Pb compound with a molar equivalent ratio of metal alkoxide and acetate in the above synthesis method of 4 molar equivalents of acetate with respect to 1 molar equivalent of metal alkoxide, 2 represented by formula (2) An organic Pb compound in which a ligand is coordinated to a valent Pb can be synthesized. The organic Zr compounds of the above formulas (4) to (5) can be synthesized by changing the metal species of the metal alkoxide used in the synthesis method to Zr. Moreover, the organic Ti compound of said Formula (6)-Formula (7) is compoundable by changing a metal seed | species into Ti.

本発明のMOCVD法用原料を用いてMOCVD法により金属含有膜を製造することで、低温での成膜に優れ、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。   By producing a metal-containing film by the MOCVD method using the raw material for the MOCVD method of the present invention, a thin film excellent in film formation at a low temperature, capable of stable film formation and rich in step coverage is formed. be able to.

なお、本発明のMOCVD法用原料は、室温で液体状態であるので、このままMOCVDに用いることができる以外に、この原料を有機溶媒に12〜15重量%溶液となるように溶解して溶液を調製し、この溶液をMOCVD法用原料として使用しても良い。   In addition, since the raw material for MOCVD method of the present invention is in a liquid state at room temperature, in addition to being able to be used for MOCVD as it is, this raw material is dissolved in an organic solvent so as to be a 12 to 15% by weight solution. The solution may be prepared and used as a raw material for the MOCVD method.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
次の表1及び表2に示される構造をもつNo.1−1〜No.1−39の有機Pb化合物をそれぞれ合成した。得られた化合物の同定は1H-NMRにより行った。1H-NMRの結果を次の表1及び表2にそれぞれ示す。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
No. 1 having the structure shown in Table 1 and Table 2 below. 1-1-No. 1-39 organic Pb compounds were synthesized respectively. The obtained compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in the following Table 1 and Table 2, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

<比較例1>
有機Pb化合物としてPb(dpm)2を用意した。
<比較例2>
有機Pb化合物としてビス2,6−ジメチル−3,5−ヘプタンジオナート鉛(以下、Pb(dmhd)2という。)を用意した。
<比較例3>
有機Pb化合物としてビスイソブチリルピバロイルメタナート鉛(以下、Pb(ibpm)2という。)を用意した。
<Comparative Example 1>
Pb (dpm) 2 was prepared as an organic Pb compound.
<Comparative example 2>
Bis 2,6-dimethyl-3,5-heptanedionate lead (hereinafter referred to as Pb (dmhd) 2 ) was prepared as the organic Pb compound.
<Comparative Example 3>
Bisisobutyryl pivaloyl methanate lead (hereinafter referred to as Pb (ibpm) 2 ) was prepared as the organic Pb compound.

<比較試験1>
実施例1で得られたNo.1−1〜No.1−39の有機Pb化合物と比較例1〜3で用意した有機Pb化合物をそれぞれMOCVD法用原料として、以下の条件でPbO薄膜を成膜し、成膜したPbO薄膜における成膜時間当たりの膜厚試験、表面粗さ及び段差被覆性試験を行った。
先ず、上記有機Pb化合物を用いたMOCVD法用原料を次の表3及び表4に示す溶媒に溶解して12重量%濃度の溶液原料を調製した。次いで、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板をMOCVD装置の成膜室に設置し、調製した溶液原料を原料容器に貯留した。次に、基板温度を500℃、気化温度を100℃、圧力を約1.33kPa(10torr)にそれぞれ設定した。反応ガスとしてO2ガスを、キャリアガスとしてArガスを用い、その分圧を1000ccmの割合でそれぞれ供給して、原料容器に貯留した溶液原料を成膜室に送り込んで基板上にPbOを成膜した。成膜時間が1分、5分、10分、20分及び30分となったときにそれぞれ1枚ずつ成膜室より取出した。
(1)成膜時間あたりの膜厚試験
成膜を終えて成膜室より取出した基板上の薄膜を走査型電子顕微鏡(scanning electron microscope;以下、SEMという。)により測定した断面SEM像から膜厚を測定した。
<Comparison test 1>
No. 1 obtained in Example 1. 1-1-No. Using the organic Pb compound 1-39 and the organic Pb compound prepared in Comparative Examples 1 to 3 as raw materials for MOCVD, a PbO thin film was formed under the following conditions, and the film per film formation time in the formed PbO thin film Thickness tests, surface roughness and step coverage tests were performed.
First, the raw material for MOCVD method using the organic Pb compound was dissolved in the solvents shown in the following Tables 3 and 4 to prepare a solution raw material having a concentration of 12% by weight. Next, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus, and the prepared solution raw material was stored in a raw material container. Next, the substrate temperature was set to 500 ° C., the vaporization temperature was set to 100 ° C., and the pressure was set to about 1.33 kPa (10 torr). Using O 2 gas as the reaction gas and Ar gas as the carrier gas, the partial pressure is supplied at a rate of 1000 ccm, and the solution raw material stored in the raw material container is sent to the film formation chamber to form PbO on the substrate. did. When the film formation time was 1 minute, 5 minutes, 10 minutes, 20 minutes, and 30 minutes, one sheet was taken out from the film formation chamber.
(1) Film thickness test per film formation time Films from cross-sectional SEM images obtained by measuring a thin film on a substrate taken out of the film formation chamber after film formation with a scanning electron microscope (hereinafter referred to as SEM) The thickness was measured.

(2)段差被覆性試験
成膜時間が10分で成膜室より取出した基板上の薄膜を原子間力顕微鏡(atomic force microscope、AFM)により測定し、薄膜表面のRa(average roughness)を測定した。
(2) Step coverage test The thin film on the substrate taken out from the film formation chamber in 10 minutes is measured with an atomic force microscope (AFM), and the Ra (average roughness) of the thin film surface is measured. did.

(3)段差被覆性試験
成膜時間が10分で成膜室より取出した基板上の薄膜をSEMにより測定した断面SEM像から段差被覆性を測定した。
(3) Step coverage test The step coverage was measured from a cross-sectional SEM image obtained by measuring the thin film on the substrate taken out from the deposition chamber in 10 minutes with the SEM.

実施例1及び比較例1〜3のMOCVD法用原料を用いたPbO薄膜における試験結果を表3及び表4にそれぞれ示す。   Tables 3 and 4 show the test results of the PbO thin films using the MOCVD raw materials of Example 1 and Comparative Examples 1 to 3, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

表3及び表4より明らかなように、従来より知られている比較例1〜3で用意した有機Pb化合物を用いて得られた薄膜は、時間が進んでも膜厚が厚くならず、またAFMによる表面粗さRaが大きく、成膜の安定性が悪いことが判る。また段差被覆性も非常に悪い結果となっており、これらの従来より知られている比較例1〜3で用意した有機Pb化合物を用いてPbO薄膜を形成した場合、ボイドを生じるおそれがある。以上の評価試験より比較例1〜3で用意した有機Pb化合物は500℃のような低温での成膜には適していないことが判った。これに対して実施例1で得られたNo.1−1〜No.1−39の有機Pb化合物を用いて得られた薄膜は、比較例1〜3で用意した有機Pb化合物を用いた場合に比べて非常に成膜速度が高く、AFMによる表面粗さRaも小さく、成膜安定性が高い結果が得られた。更に、段差被覆性も1.0に近い数値が得られており、基板の平坦部分と同様に溝の奥まで均一に成膜されていることが判った。このような成膜特性を有する本発明の有機Pb化合物を用いたMOCVD法用原料は、PZT薄膜等のPb含有薄膜の製造に好適であることが判る。また、溶媒には溶解せずに、実施例1で得られたNo.1−1〜No.1−39の有機Pb化合物をそのままMOCVD法用原料としてPbO薄膜を製造しても、上記溶液とした試験結果と差異がない優れた結果が得られた。   As is clear from Tables 3 and 4, the thin films obtained using the organic Pb compounds prepared in Comparative Examples 1 to 3 that have been conventionally known do not increase in thickness even with time. It can be seen that the surface roughness Ra is large and the stability of film formation is poor. In addition, the step coverage is very poor, and when a PbO thin film is formed using the organic Pb compounds prepared in Comparative Examples 1 to 3 which are conventionally known, there is a possibility that voids are generated. From the above evaluation tests, it was found that the organic Pb compounds prepared in Comparative Examples 1 to 3 were not suitable for film formation at a low temperature such as 500 ° C. In contrast, No. 1 obtained in Example 1. 1-1-No. The thin film obtained using the organic Pb compound 1-39 has a very high film formation rate and a small surface roughness Ra due to AFM compared to the case where the organic Pb compound prepared in Comparative Examples 1 to 3 is used. As a result, high film formation stability was obtained. Further, the step coverage was also a value close to 1.0, and it was found that the film was formed uniformly to the depth of the groove in the same manner as the flat portion of the substrate. It can be seen that the raw material for MOCVD method using the organic Pb compound of the present invention having such film forming characteristics is suitable for the production of Pb-containing thin films such as PZT thin films. In addition, No. obtained in Example 1 was not dissolved in the solvent. 1-1-No. Even when the PbO thin film was produced using the organic Pb compound 1-39 as a raw material for the MOCVD method as it was, excellent results were obtained that were not different from the test results obtained for the above solution.

<実施例2>
次の表5及び表6に示される構造をもつNo.2−1〜No.2−39の有機Zr化合物をそれぞれ合成した。得られた化合物の同定は1H-NMRにより行った。1H-NMRの結果を次の表5及び表6にそれぞれ示す。
<Example 2>
No. having the structures shown in the following Table 5 and Table 6. 2-1. 2-39 organic Zr compounds were respectively synthesized. The obtained compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in the following Table 5 and Table 6, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

<比較例4>
有機Zr化合物としてZr(dpm)4を用意した。
<比較例5>
有機Zr化合物としてテトラキス2,6−ジメチル−3,5−ヘプタンジオナートジルコニウム(以下、Zr(dmhd)4という。)を用意した。
<比較例6>
有機Zr化合物としてテトラキスイソブチリルピバロイルメタナートジルコニウム(以下、Zr(ibpm)2という。)を用意した。
<Comparative example 4>
Zr (dpm) 4 was prepared as an organic Zr compound.
<Comparative Example 5>
Tetrakis 2,6-dimethyl-3,5-heptanedionate zirconium (hereinafter referred to as Zr (dmhd) 4 ) was prepared as the organic Zr compound.
<Comparative Example 6>
Tetrakisisobutyrylpivaloylmethanate zirconium (hereinafter referred to as Zr (ibpm) 2 ) was prepared as the organic Zr compound.

<比較試験2>
実施例2で得られたNo.2−1〜No.2−39の有機Zr化合物と比較例4〜6で用意した有機Zr化合物をそれぞれMOCVD法用原料として、以下の条件でZrO2薄膜を成膜し、比較試験1と同様にして成膜したZrO2薄膜における成膜時間当たりの膜厚試験、表面粗さ及び段差被覆性試験を行った。
先ず、上記有機Zr化合物を用いたMOCVD法用原料を次の表7及び表8に示す溶媒に溶解して12重量%濃度の溶液原料を調製した。次いで、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板をMOCVD装置の成膜室に設置し、調製した溶液原料を原料容器に貯留した。次に、基板温度を500℃、気化温度を100℃、圧力を約1.33kPa(10torr)にそれぞれ設定した。反応ガスとしてO2ガスを、キャリアガスとしてArガスを用い、その分圧を1000ccmの割合でそれぞれ供給して、原料容器に貯留した溶液原料を成膜室に送り込んで基板上にZrO2を成膜した。成膜時間が1分、5分、10分、20分及び30分となったときにそれぞれ1枚ずつ成膜室より取出した。
実施例2及び比較例4〜6のMOCVD法用原料を用いたZrO2薄膜における試験結果を表7及び表8にそれぞれ示す。
<Comparison test 2>
No. 2 obtained in Example 2. 2-1. A ZrO 2 thin film was formed under the following conditions using the organic Zr compound of 2-39 and the organic Zr compound prepared in Comparative Examples 4 to 6 as raw materials for the MOCVD method, respectively. Two film thickness tests per film formation time, surface roughness, and step coverage test were performed.
First, the raw material for MOCVD method using the organic Zr compound was dissolved in the solvents shown in the following Tables 7 and 8 to prepare a solution raw material having a concentration of 12% by weight. Next, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus, and the prepared solution raw material was stored in a raw material container. Next, the substrate temperature was set to 500 ° C., the vaporization temperature was set to 100 ° C., and the pressure was set to about 1.33 kPa (10 torr). O 2 gas is used as a reaction gas, Ar gas is used as a carrier gas, and the partial pressure thereof is supplied at a rate of 1000 ccm. The solution raw material stored in the raw material container is fed into the film formation chamber to form ZrO 2 on the substrate. Filmed. When the film formation time was 1 minute, 5 minutes, 10 minutes, 20 minutes, and 30 minutes, one sheet was taken out from the film formation chamber.
Tables 7 and 8 show the test results of the ZrO 2 thin films using the MOCVD method materials of Example 2 and Comparative Examples 4 to 6, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

表7及び表8より明らかなように、従来より知られている比較例4〜6で用意した有機Zr化合物を用いて得られた薄膜は、時間が進んでも膜厚が厚くならず、またAFMによる表面粗さRaが大きく、成膜の安定性が悪いことが判る。また段差被覆性も非常に悪い結果となっており、これらの従来より知られている比較例4〜6で用意した有機Zr化合物を用いてZrO2薄膜を形成した場合、ボイドを生じるおそれがある。以上の評価試験より比較例4〜6で用意した有機Zr化合物は500℃のような低温での成膜には適していないことが判った。これに対して実施例2で得られたNo.2−1〜No.2−39の有機Zr化合物を用いて得られた薄膜は、比較例4〜6で用意した有機Zr化合物を用いた場合に比べて非常に成膜速度が高く、AFMによる表面粗さRaも小さく、成膜安定性が高い結果が得られた。更に、段差被覆性も1.0に近い数値が得られており、基板の平坦部分と同様に溝の奥まで均一に成膜されていることが判った。このような成膜特性を有する本発明の有機Zr化合物を用いたMOCVD法用原料は、PZT薄膜等のZr含有薄膜の製造に好適であることが判る。また、溶媒には溶解せずに、実施例2で得られたNo.2−1〜No.2−39の有機Zr化合物をそのままMOCVD法用原料としてZrO2薄膜を製造しても、上記溶液とした試験結果と差異がない優れた結果が得られた。 As is clear from Tables 7 and 8, the thin films obtained using the organic Zr compounds prepared in Comparative Examples 4 to 6 that have been conventionally known do not increase in thickness even with time, and the AFM. It can be seen that the surface roughness Ra is large and the stability of film formation is poor. In addition, the step coverage is very bad, and when a ZrO 2 thin film is formed using the organic Zr compounds prepared in Comparative Examples 4 to 6 which are conventionally known, there is a risk of forming voids. . From the above evaluation tests, it was found that the organic Zr compounds prepared in Comparative Examples 4 to 6 were not suitable for film formation at a low temperature such as 500 ° C. On the other hand, No. obtained in Example 2 was obtained. 2-1. The thin film obtained using the organic Zr compound of 2-39 has a very high film formation rate and a small surface roughness Ra by AFM as compared with the case of using the organic Zr compound prepared in Comparative Examples 4 to 6. As a result, high film formation stability was obtained. Further, the step coverage was also a value close to 1.0, and it was found that the film was formed uniformly to the depth of the groove in the same manner as the flat portion of the substrate. It turns out that the raw material for MOCVD method using the organic Zr compound of the present invention having such film forming characteristics is suitable for the production of Zr-containing thin films such as PZT thin films. In addition, No. obtained in Example 2 was not dissolved in the solvent. 2-1. Even when a ZrO 2 thin film was produced using the organic Zr compound 2-39 as a raw material for the MOCVD method as it was, excellent results were obtained that were not different from the test results obtained for the above solution.

<実施例3>
次の表9及び表10に示される構造をもつNo.3−1〜No.3−39の有機Ti化合物をそれぞれ合成した。得られた化合物の同定は1H-NMRにより行った。1H-NMRの結果を次の表9及び表10にそれぞれ示す。
<Example 3>
No. having the structures shown in Table 9 and Table 10 below. 3-1. 3-39 organic Ti compounds were synthesized respectively. The obtained compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in the following Table 9 and Table 10, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

<比較例4>
有機Ti化合物としてTi(dpm)4を用意した。
<比較例5>
有機Ti化合物としてテトラキス2,6−ジメチル−3,5−ヘプタンジオナートチタン(以下、Ti(dmhd)4という。)を用意した。
<比較例6>
有機Ti化合物としてテトラキスイソブチリルピバロイルメタナートチタン(以下、Ti(ibpm)2という。)を用意した。
<Comparative example 4>
Ti (dpm) 4 was prepared as an organic Ti compound.
<Comparative Example 5>
Tetrakis 2,6-dimethyl-3,5-heptanedionate titanium (hereinafter referred to as Ti (dmhd) 4 ) was prepared as the organic Ti compound.
<Comparative Example 6>
Tetrakisisobutyrylpivaloylmethanate titanium (hereinafter referred to as Ti (ibpm) 2 ) was prepared as the organic Ti compound.

<比較試験3>
実施例3で得られたNo.3−1〜No.3−39の有機Ti化合物と比較例7〜9で用意した有機Ti化合物をそれぞれMOCVD法用原料として、以下の条件でTiO2薄膜を成膜し、比較試験1と同様にして成膜したTiO2薄膜における成膜時間当たりの膜厚試験、表面粗さ及び段差被覆性試験を行った。
先ず、上記有機Ti化合物を用いたMOCVD法用原料を次の表11及び表12に示す溶媒に溶解して12重量%濃度の溶液原料を調製した。次いで、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板をMOCVD装置の成膜室に設置し、調製した溶液原料を原料容器に貯留した。次に、基板温度を500℃、気化温度を100℃、圧力を約1.33kPa(10torr)にそれぞれ設定した。反応ガスとしてO2ガスを、キャリアガスとしてArガスを用い、その分圧を1000ccmの割合でそれぞれ供給して、原料容器に貯留した溶液原料を成膜室に送り込んで基板上にTiO2を成膜した。成膜時間が1分、5分、10分、20分及び30分となったときにそれぞれ1枚ずつ成膜室より取出した。
実施例3及び比較例7〜9のMOCVD法用原料を用いたTiO2薄膜における試験結果を表11及び表12にそれぞれ示す。
<Comparison test 3>
No. 1 obtained in Example 3. 3-1. A TiO 2 thin film was formed under the following conditions using the organic Ti compound of 3-39 and the organic Ti compound prepared in Comparative Examples 7 to 9 as raw materials for the MOCVD method, respectively. Two film thickness tests per film formation time, surface roughness, and step coverage test were performed.
First, the raw material for MOCVD method using the organic Ti compound was dissolved in the solvents shown in Tables 11 and 12 below to prepare a solution raw material having a concentration of 12% by weight. Next, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus, and the prepared solution raw material was stored in a raw material container. Next, the substrate temperature was set to 500 ° C., the vaporization temperature was set to 100 ° C., and the pressure was set to about 1.33 kPa (10 torr). O 2 gas is used as a reaction gas, Ar gas is used as a carrier gas, and its partial pressure is supplied at a rate of 1000 ccm. The solution raw material stored in the raw material container is fed into the film formation chamber to form TiO 2 on the substrate. Filmed. When the film formation time was 1 minute, 5 minutes, 10 minutes, 20 minutes, and 30 minutes, one sheet was taken out from the film formation chamber.
Tables 11 and 12 show the test results of the TiO 2 thin films using the raw materials for MOCVD method of Example 3 and Comparative Examples 7 to 9, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

表11及び表12より明らかなように、従来より知られている比較例7〜9で用意した有機Ti化合物を用いて得られた薄膜は、時間が進んでも膜厚が厚くならず、またAFMによる表面粗さRaが大きく、成膜の安定性が悪いことが判る。また段差被覆性も非常に悪い結果となっており、これらの従来より知られている比較例7〜9で用意した有機Ti化合物を用いてTiO2薄膜を形成した場合、ボイドを生じるおそれがある。以上の評価試験より比較例7〜9で用意した有機Ti化合物は500℃のような低温での成膜には適していないことが判った。これに対して実施例3で得られたNo.3−1〜No.3−39の有機Ti化合物を用いて得られた薄膜は、比較例7〜9で用意した有機Ti化合物を用いた場合に比べて非常に成膜速度が高く、AFMによる表面粗さRaも小さく、成膜安定性が高い結果が得られた。更に、段差被覆性も1.0に近い数値が得られており、基板の平坦部分と同様に溝の奥まで均一に成膜されていることが判った。このような成膜特性を有する本発明の有機Ti化合物を用いたMOCVD法用原料は、PZT薄膜等のTi含有薄膜の製造に好適であることが判る。また、溶媒には溶解せずに、実施例3で得られたNo.3−1〜No.3−39の有機Ti化合物をそのままMOCVD法用原料としてTiO2薄膜を製造しても、上記溶液とした試験結果と差異がない優れた結果が得られた。 As is apparent from Tables 11 and 12, the thin films obtained using the organic Ti compounds prepared in Comparative Examples 7 to 9 that have been conventionally known do not increase in thickness even with time, and the AFM. It can be seen that the surface roughness Ra is large and the stability of film formation is poor. In addition, the step coverage is also very bad, and when the TiO 2 thin film is formed using the organic Ti compounds prepared in Comparative Examples 7 to 9 which are conventionally known, there is a possibility that voids are generated. . From the above evaluation tests, it was found that the organic Ti compounds prepared in Comparative Examples 7 to 9 were not suitable for film formation at a low temperature such as 500 ° C. On the other hand, No. obtained in Example 3 was obtained. 3-1. The thin film obtained using the organic Ti compound of 3-39 has a very high film formation rate and a small surface roughness Ra by AFM as compared with the case of using the organic Ti compound prepared in Comparative Examples 7-9. As a result, high film formation stability was obtained. Further, the step coverage was also a value close to 1.0, and it was found that the film was formed uniformly to the depth of the groove in the same manner as the flat portion of the substrate. It can be seen that the raw material for MOCVD method using the organic Ti compound of the present invention having such film forming characteristics is suitable for the production of Ti-containing thin films such as PZT thin films. In addition, No. obtained in Example 3 was not dissolved in the solvent. 3-1. Even when the TiO 2 thin film was produced using the organic Ti compound of 3-39 as it was as a raw material for the MOCVD method, excellent results were obtained that were not different from the test results obtained for the above solution.

<比較試験4>
有機Pb化合物としてPb(DPM)2を、有機Zr化合物として実施例2で得られたNo.2−1〜No.2−39を、有機Ti化合物として実施例3で得られたNo.3−1〜No.3−39をそれぞれMOCVD法用原料として、上記比較試験1と同様の条件でPZT薄膜を成膜し、比較試験1と同様にして成膜したPZT薄膜における成膜時間当たりの膜厚試験、表面粗さ及び段差被覆性試験を行った。また、比較対象として有機Pb化合物としてPb(DPM)2を、有機Zr化合物として比較例4〜6を、有機Ti化合物として比較例7〜9をそれぞれMOCVD法用原料として、PZT薄膜を成膜し、同様に上記評価試験を行った。
先ず、上記有機金属化合物を用いたMOCVD法用原料を次の表13及び表14に示す溶媒にそれぞれ溶解して12重量%濃度の第1溶液原料、第2溶液原料及び第3溶液原料を調製した。次いで、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板をMOCVD装置の成膜室に設置し、調製した第1〜第3の各溶液原料を原料容器に貯留した。次に、基板温度を500℃、気化温度を100℃、圧力を約1.33kPa(10torr)にそれぞれ設定した。反応ガスとしてO2ガスを、キャリアガスとしてArガスを用い、その分圧を1000ccmの割合でそれぞれ供給して、原料容器に貯留した第1〜第3の各溶液原料を成膜室に送り込んで基板上にPZTを成膜した。成膜時間が1分、5分、10分、20分及び30分となったときにそれぞれ1枚ずつ成膜室より取出した。また、得られたPZT薄膜が高い比誘電率を有しているか否か確認するために、成膜を終えた基板上に厚さ200nmのPtによる上部電極を形成し、LCRメーター(HP社製、4284A)を用いてPZT薄膜の比誘電率を測定した。PZT薄膜における試験結果を表13及び表14にそれぞれ示す。
<Comparison test 4>
Pb (DPM) 2 was used as the organic Pb compound, and No. 1 obtained in Example 2 as the organic Zr compound. 2-1. No. 2-39 was obtained as Example No. 3 as an organic Ti compound. 3-1. A PZT thin film was formed under the same conditions as in Comparative Test 1 using 3-39 as a raw material for the MOCVD method, and a film thickness test per film formation time on the PZT thin film formed in the same manner as Comparative Test 1 Roughness and step coverage tests were performed. In addition, Pb (DPM) 2 was used as an organic Pb compound as a comparison target, Comparative Examples 4 to 6 were used as organic Zr compounds, and Comparative Examples 7 to 9 were used as organic Ti compounds, respectively. Similarly, the above evaluation test was conducted.
First, raw materials for MOCVD using the above organometallic compound are dissolved in the solvents shown in Tables 13 and 14 below to prepare first solution raw material, second solution raw material, and third solution raw material having a concentration of 12% by weight. did. Next, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface are prepared as substrates, and the substrates are placed in the film formation chamber of the MOCVD apparatus, and the prepared first to third solution raw materials are prepared. Was stored in a raw material container. Next, the substrate temperature was set to 500 ° C., the vaporization temperature was set to 100 ° C., and the pressure was set to about 1.33 kPa (10 torr). O 2 gas was used as a reaction gas, Ar gas was used as a carrier gas, and its partial pressure was supplied at a rate of 1000 ccm, and the first to third solution raw materials stored in the raw material container were fed into the film forming chamber. A PZT film was formed on the substrate. When the film formation time was 1 minute, 5 minutes, 10 minutes, 20 minutes, and 30 minutes, one sheet was taken out from the film formation chamber. In addition, in order to confirm whether or not the obtained PZT thin film has a high relative dielectric constant, an upper electrode made of Pt with a thickness of 200 nm was formed on the substrate after film formation, and an LCR meter (manufactured by HP) 4284A), the relative dielectric constant of the PZT thin film was measured. The test results for the PZT thin film are shown in Table 13 and Table 14, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

表13及び表14より明らかなように、Pb(dpm)2に、従来より知られている比較例4〜6で用意した有機Zr化合物並びに比較例7〜9で用意した有機Ti化合物を用いて得られたPZT薄膜は、時間が進んでも膜厚が厚くならず、またAFMによる表面粗さRaが大きく、成膜の安定性が悪いことが判る。また段差被覆性も非常に悪い結果となっており、これらの従来より知られている比較例4〜6で用意した有機Zr化合物並びに比較例7〜9で用意した有機Ti化合物を用いてPZT薄膜を形成した場合、ボイドを生じるおそれがある。これに対して実施例2で得られたNo.2−1〜No.2−39の有機Zr化合物並びに実施例3で得られたNo.3−1〜No.3−39の有機Ti化合物を用いて得られたPZT薄膜は、非常に成膜速度が高く、AFMによる表面粗さRaも小さく、成膜安定性が高い結果が得られた。更に、段差被覆性も1.0に近い数値が得られており、基板の平坦部分と同様に溝の奥まで均一に成膜されていることが判った。このような成膜特性を有する本発明の有機Zr化合物を用いたMOCVD法用原料並びに本発明の有機Ti化合物を用いたMOCVD法用原料は、Pb(dpm)2とともに、PZT薄膜を製造するのに好適であることが判る。 As is clear from Tables 13 and 14, Pb (dpm) 2 was prepared using the organic Zr compounds prepared in Comparative Examples 4 to 6 and the organic Ti compounds prepared in Comparative Examples 7 to 9 that have been conventionally known. It can be seen that the obtained PZT thin film does not increase in thickness even with time, and has a large surface roughness Ra by AFM, so that the stability of film formation is poor. Further, the step coverage is very bad, and the PZT thin film using these organic Zr compounds prepared in Comparative Examples 4 to 6 and the organic Ti compounds prepared in Comparative Examples 7 to 9 are known. If formed, voids may be formed. On the other hand, No. obtained in Example 2 was obtained. 2-1. 2-39 organic Zr compound as well as No. 2 obtained in Example 3. 3-1. The PZT thin film obtained using the 3-39 organic Ti compound had a very high film formation rate, a small surface roughness Ra by AFM, and high film formation stability. Further, the step coverage was also a value close to 1.0, and it was found that the film was formed uniformly to the depth of the groove in the same manner as the flat portion of the substrate. The raw material for MOCVD method using the organic Zr compound of the present invention having such film forming characteristics and the raw material for MOCVD method using the organic Ti compound of the present invention produce a PZT thin film together with Pb (dpm) 2 . It can be seen that this is suitable.

<比較試験5>
有機Pb化合物として実施例1で得られたNo.1−1〜No.1−39を、有機Zr化合物として実施例2で得られたNo.2−1〜No.2−39を、有機Ti化合物として実施例3で得られたNo.3−1〜No.3−39をそれぞれMOCVD法用原料として、上記比較試験4と同様の条件でPZT薄膜を成膜し、比較試験1と同様にして成膜したPZT薄膜における成膜時間当たりの膜厚試験、表面粗さ及び段差被覆性試験を行った。また、比較試験4と同様にして比誘電率測定を行った。また、比較対象として有機Pb化合物として比較例1〜3を、有機Zr化合物として比較例4〜6を、有機Ti化合物として比較例7〜9をそれぞれMOCVD法用原料として、PZT薄膜を成膜し、同様に上記評価試験を行った。PZT薄膜における試験結果を表15及び表16にそれぞれ示す。
<Comparative test 5>
As the organic Pb compound, No. 1 obtained in Example 1 was used. 1-1-No. No. 1-39 obtained as an organic Zr compound in Example 2 was obtained. 2-1. No. 2-39 was obtained as Example No. 3 as an organic Ti compound. 3-1. A PZT thin film was formed under the same conditions as in Comparative Test 4 using 3-39 as a raw material for the MOCVD method, and a film thickness test per film formation time on the PZT thin film formed in the same manner as Comparative Test 1 Roughness and step coverage tests were performed. Further, the relative dielectric constant was measured in the same manner as in Comparative Test 4. Further, as comparative objects, PZT thin films were formed using Comparative Examples 1 to 3 as organic Pb compounds, Comparative Examples 4 to 6 as organic Zr compounds, and Comparative Examples 7 to 9 as organic Ti compounds, respectively. Similarly, the above evaluation test was conducted. The test results for the PZT thin film are shown in Table 15 and Table 16, respectively.

Figure 2007197804
Figure 2007197804

Figure 2007197804
Figure 2007197804

表15及び表16より明らかなように、従来より知られている比較例1〜9で用意した有機Pb化合物、有機Zr化合物並びに有機Ti化合物を用いて得られたPZT薄膜は、時間が進んでも膜厚が厚くならず、またAFMによる表面粗さRaが大きく、成膜の安定性が悪いことが判る。また段差被覆性も非常に悪い結果となっており、これらの従来より知られている比較例1〜9で用意した有機Pb化合物、有機Ti化合物並びに有機Zr化合物を用いてPZT薄膜を形成した場合、ボイドを生じるおそれがある。これに対して実施例1で得られたNo.1−1〜No.1−39の有機Pb化合物、実施例3で得られたNo.3−1〜No.3−39の有機Zr化合物並びに実施例2で得られたNo.2−1〜No.2−39の有機Ti化合物を用いて得られたPZT薄膜は、非常に成膜速度が高く、表面粗さRaも小さく、成膜安定性が高い結果が得られた。更に、段差被覆性も1.0に近い数値が得られており、基板の平坦部分と同様に溝の奥まで均一に成膜されていることが判った。このような成膜特性を有する本発明の有機Pb化合物を用いたMOCVD法用原料、本発明の有機Zr化合物を用いたMOCVD法用原料並びに本発明の有機Ti化合物を用いたMOCVD法用原料は、PZT薄膜を製造するのに好適であることが判る。また、溶媒には溶解せずに、実施例1〜3で得られた有機金属化合物をそのままMOCVD法用原料としてPZT薄膜を製造しても、上記溶液とした試験結果と差異がない優れた結果が得られた。
As is clear from Tables 15 and 16, the PZT thin films obtained using the organic Pb compounds, organic Zr compounds and organic Ti compounds prepared in Comparative Examples 1 to 9 which have been conventionally known, It can be seen that the film thickness does not increase, and the surface roughness Ra by AFM is large, so that the stability of film formation is poor. In addition, the step coverage is also very bad, and when a PZT thin film is formed using the organic Pb compound, organic Ti compound and organic Zr compound prepared in Comparative Examples 1 to 9 which are conventionally known There is a risk of forming voids. In contrast, No. 1 obtained in Example 1. 1-1-No. No. 1-39 organic Pb compound, No. 1 obtained in Example 3. 3-1. 3-39 organic Zr compound as well as No. 3 obtained in Example 2. 2-1. The PZT thin film obtained using the 2-39 organic Ti compound had a very high film formation rate, a small surface roughness Ra, and high film formation stability. Further, the step coverage was also a value close to 1.0, and it was found that the film was formed uniformly to the depth of the groove in the same manner as the flat portion of the substrate. The raw material for MOCVD method using the organic Pb compound of the present invention having such film forming characteristics, the raw material for MOCVD method using the organic Zr compound of the present invention, and the raw material for MOCVD method using the organic Ti compound of the present invention are as follows: It can be seen that it is suitable for producing a PZT thin film. In addition, even when a PZT thin film was produced using the organometallic compound obtained in Examples 1 to 3 as it was as a raw material for MOCVD without dissolving in the solvent, there was no difference from the test result obtained as the above solution. was gotten.

Claims (2)

次の式(1)で示される有機金属化合物を用いたことを特徴とする有機金属化学蒸着法用原料。
Figure 2007197804
但し、Mは2価のPb、4価のPb、4価のZr又は4価のTiであり、R1及びR2は炭素数1〜4の直鎖又は分岐状アルキル基であってR1とR2は互いに同一でも異なっていてもよく、R3は炭素数2〜4の直鎖又は分岐状アルキル基であり、Mが2価のPbであるときnが2でかつmが2であり、Mが4価のPbであるときnが2でかつmが0であり、Mが4価のZr、4価のTiであるときnが4でかつmが4であるか或いはnが2でmが0である。
A raw material for metal organic chemical vapor deposition characterized by using an organic metal compound represented by the following formula (1).
Figure 2007197804
However, M is a divalent Pb, tetravalent Pb, tetravalent Zr or tetravalent Ti, R 1 and R 2 is a straight-chain or branched alkyl group having 1 to 4 carbon atoms R 1 And R 2 may be the same or different from each other, R 3 is a linear or branched alkyl group having 2 to 4 carbon atoms, n is 2 and m is 2 when M is divalent Pb. And when M is tetravalent Pb, n is 2 and m is 0, and when M is tetravalent Zr and tetravalent Ti, n is 4 and m is 4 or n is 2 and m is 0.
請求項1記載の有機金属化学蒸着法用原料を用いて有機金属化学蒸着法により金属含有膜を製造する方法。
A method for producing a metal-containing film by metal organic chemical vapor deposition using the raw material for metal organic chemical vapor deposition according to claim 1.
JP2006020477A 2006-01-30 2006-01-30 Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material Withdrawn JP2007197804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020477A JP2007197804A (en) 2006-01-30 2006-01-30 Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020477A JP2007197804A (en) 2006-01-30 2006-01-30 Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material

Publications (1)

Publication Number Publication Date
JP2007197804A true JP2007197804A (en) 2007-08-09

Family

ID=38452688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020477A Withdrawn JP2007197804A (en) 2006-01-30 2006-01-30 Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material

Country Status (1)

Country Link
JP (1) JP2007197804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294346A (en) * 2007-05-28 2008-12-04 Seiko Epson Corp Manufacturing method of ferroelectric memory device
CN102041482A (en) * 2009-10-23 2011-05-04 气体产品与化学公司 Methods for deposition of group 4 metal containing films
CN102040620A (en) * 2009-10-23 2011-05-04 气体产品与化学公司 Group 4 metal precursors for metal-containing films

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294346A (en) * 2007-05-28 2008-12-04 Seiko Epson Corp Manufacturing method of ferroelectric memory device
CN102041482A (en) * 2009-10-23 2011-05-04 气体产品与化学公司 Methods for deposition of group 4 metal containing films
CN102040620A (en) * 2009-10-23 2011-05-04 气体产品与化学公司 Group 4 metal precursors for metal-containing films
EP2322530A2 (en) 2009-10-23 2011-05-18 Air Products And Chemicals, Inc. Group 4 metal precursors for metal-containing films
EP2322690A2 (en) 2009-10-23 2011-05-18 Air Products And Chemicals, Inc. Methods for deposition of group 4 metal containing films
EP2322530A3 (en) * 2009-10-23 2011-06-15 Air Products And Chemicals, Inc. Group 4 metal precursors for metal-containing films
EP2322690A3 (en) * 2009-10-23 2011-06-15 Air Products And Chemicals, Inc. Methods for deposition of group 4 metal containing films
JP2011121936A (en) * 2009-10-23 2011-06-23 Air Products & Chemicals Inc Group-iv metal precursor for metal-containing film
JP2011155243A (en) * 2009-10-23 2011-08-11 Air Products & Chemicals Inc Method for deposition of group 4 metal-containing film
US20110250126A1 (en) * 2009-10-23 2011-10-13 Air Products And Chemicals, Inc. Group 4 metal precursors for metal-containing films
KR101151462B1 (en) 2009-10-23 2012-06-01 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Methods for deposition of group 4 metal containing films
JP2012256926A (en) * 2009-10-23 2012-12-27 Air Products & Chemicals Inc Deposition method of film containing group iv metal
TWI454589B (en) * 2009-10-23 2014-10-01 Air Prod & Chem Group 4 metal precursor for metal-containing films
US8952188B2 (en) 2009-10-23 2015-02-10 Air Products And Chemicals, Inc. Group 4 metal precursors for metal-containing films

Similar Documents

Publication Publication Date Title
TWI410514B (en) Unsymmetrical ligand sources, reduced symmetry metal-containing compounds, and systems and methods including same
TWI454589B (en) Group 4 metal precursor for metal-containing films
JP5265570B2 (en) Method for depositing ruthenium-containing films
JP2009516078A (en) Cyclopentadienyl-type hafnium and zirconium precursors and their use in atomic layer deposition
KR20080021708A (en) Beta-diketiminate ligand sources and metal-containing compounds thereof ; and systems and methods including same
JP2013527147A (en) Titanium-containing precursors for vapor deposition
TWI832066B (en) Group 5 metal compound for thin film deposition and method of forming group 5 metal-containing thin film using same
KR101676060B1 (en) Method and composition for depositing ruthenium with assistive metal species
JP3499804B2 (en) Method for growing metal oxide thin film on substrate
WO2015095845A1 (en) Cyclopentadienyl titanium alkoxides with ozone activated ligands for ald of tio2
US7491347B2 (en) Ti precursor, method of preparing the same, method of preparing Ti-containing thin layer by employing the Ti precursor and Ti-containing thin layer
JP2009007333A (en) Metal-containing complex and coating method using the same
JP2007197804A (en) Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material
JP2002145836A (en) Mew group iv metal precursor and chemical vapor deposition method using the same
KR101569447B1 (en) A precursor for zirconium oxide thin film, method for manufacturing thereof and a preparation method of thin film
JP4211300B2 (en) ORGANIC TITANIUM COMPOUND, SOLUTION MATERIAL CONTAINING THE SAME, AND TITANIUM-CONTAINING DIELECTRIC THIN FILM PRODUCED THEREFROM
JP4225607B2 (en) Method for producing bismuth-containing composite metal oxide film
KR100367346B1 (en) Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof
JP7271850B2 (en) organometallic precursor compounds
JP2005187356A (en) Organic metal compound and its solution raw material and method for forming metal-containing film using the compound
JP2005023010A (en) Organovanadium compound, solution raw material containing the compound and method for forming vanadium-containing thin film
KR100622309B1 (en) Compound for depositing semiconductor film and method of depositing film using the same
JP2006013267A (en) Organic lanthanum compound and manufacturing method of lanthanum-containing film using it
JP4356242B2 (en) Organic titanium compound and solution raw material containing the same
JP3117011B2 (en) Raw materials for metalorganic chemical vapor deposition containing organic tantalum compounds and tantalum-containing thin films made therefrom

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407