JP4225607B2 - Method for producing bismuth-containing composite metal oxide film - Google Patents

Method for producing bismuth-containing composite metal oxide film Download PDF

Info

Publication number
JP4225607B2
JP4225607B2 JP22324698A JP22324698A JP4225607B2 JP 4225607 B2 JP4225607 B2 JP 4225607B2 JP 22324698 A JP22324698 A JP 22324698A JP 22324698 A JP22324698 A JP 22324698A JP 4225607 B2 JP4225607 B2 JP 4225607B2
Authority
JP
Japan
Prior art keywords
bismuth
oet
compound
composite metal
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22324698A
Other languages
Japanese (ja)
Other versions
JP2000053422A (en
Inventor
直樹 山田
哲史 増子
和久 小野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP22324698A priority Critical patent/JP4225607B2/en
Publication of JP2000053422A publication Critical patent/JP2000053422A/en
Application granted granted Critical
Publication of JP4225607B2 publication Critical patent/JP4225607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、化学気相成長法(CVD法)を利用して形成する、ビスマス含有複合金属酸化膜のビスマス源となるビスマス化合物と他の金属化合物とからつくられるビスマス含有複合金属酸化膜に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
不揮発性メモリー、DRAMのキャパシタ材料などへの応用として、ビスマス含有金属複合酸化膜の開発が盛んに行われ、特にCVD法による膜形成に適したビスマス源となる化合物の開発が期待されている。
【0003】
近年、酸化物系のセラミックスあるいは層状セラミックスなどの製法としてCVD法を用いることが行われるようになっており、例えば、SrBi2 Ta2 9 の金属複合酸化膜を強誘電体膜として不揮発メモリーに用いた場合、該金属複合酸化膜は、従来の強誘電体メモリーの問題点を解決可能な、優れた薄膜であることが知られている。
【0004】
しかしながら、CVD法に適した各金属源化合物は、これまでに提案されたものが必ずしも十分な特性を有しているとは言えなかった。例えば、従来のビスマス源として用いられていた化合物は比較的耐熱性が高く、分解温度が高いため成長速度が低く、高融点であるためにCVD装置への供給性や揮発性が他の金属源と比べて劣っていた。該化合物と揮発性、分解性の優れた他の金属源とを用いて金属複合酸化膜の成膜を行った場合には、両者の分解温度の違いから、薄膜形成プロセスにおけるビスマス/他の金属比の制御が困難であった。
【0005】
さらに、トリフェニルビスマスやトリ(o−トリル)ビスマスなどのビスマス源では、成膜時に必要な酸素原子を分子内に持たないため、これらのビスマス源を用いる場合には、酸素含有ガスなどの酸素源を共存させる必要があった。しかしながら、酸素含有ガスを共存させた場合には他の材料の分解析出に悪影響を及ぼす欠点があった。また、特開平9−67197号公報などに提案されているビスマスのアルコキシド化合物のように、分子内に酸素原子を持った構造のビスマス化合物では、上記酸素源の問題は解決されている。しかしながら、これらの化合物は高融点の固体であるため、CVD装置による成膜の際、該化合物をアルゴンガスなどのキャリアにより昇華同伴させて成膜室へ送る必要があるが、固体を昇華同伴させて使用する場合は、表面積の変化などにより試料の供給量が変化するために、厳密な供給量の制御が困難であった。
【0006】
従って、本発明の目的は、比較的融点が低く、室温で液体またはわずかな加温で液化し、取り扱いが容易で成膜室への供給性に優れ、また昇華ではなく蒸発によって気化が可能で気化速度を一定に保つことができ、成膜室への原料の供給量の制御が容易であり、さらに、熱安定性や分解温度がCVD原料に好適なビスマス化合物を用いてなるビスマス含有複合金属酸化膜を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、検討を重ねた結果、ビスマス源の原料としてエーテル基含有アルコキシド化合物としたビスマス化合物を用いてなるビスマス含有複合金属酸化膜が、上記目的を達成し得ることを知見した。
【0008】
本発明は、上記知見に基づきなされたもので、化学気相成長法により、ABi229(式中、AはSrまたはBaを表し、BはTaまたはNbを表す)で表されるビスマス含有複合金属酸化膜を成膜するに際し、下記[化2](前記[化1]と同じ)の一般式(I)で表されるビスマス化合物と、上記式ABi229中のAおよびBを与える原料として、金属アルコキシド化合物、複合金属アルコキシド化合物〔但し、Sr[M(OR16-xLx]2(式中、xは1〜6であり、MはTaまたはNbであり、R1は直鎖または分岐鎖アルキル基であり、Lは下記[化2−1](前記[化1−1]と同じ)の一般式( II )で表わされる、アミノアルコキシド基またはアルコキシアルコキシド基である)で表される化合物を除く〕またはβ−ジケトン金属錯体化合物とを用いることを特徴とするビスマス含有複合金属酸化膜の製造方法を提供するものである。
【0009】
【化2】

Figure 0004225607
【化2−1】
Figure 0004225607
【0010】
【発明の実施の形態】
以下、本発明のビスマス含有複合金属酸化膜について詳細に説明する。
本発明のビスマス含有複合金属酸化膜に係る上記一般式(I)で表されるビスマス化合物は、CVD装置内での取り扱いおよび成膜室への供給速度の制御が容易であり、量産性の高い成膜が可能なCVD原料となりうるものである。
【0011】
本発明のビスマス含有複合金属酸化膜の原料の一つとして用いられる上記一般式(I)で表されるビスマス化合物の具体例としては、下記[化3]〜[化6]に示す化合物No.1〜4等が挙げられる。ただし、本発明は以下の例示化合物により何ら限定されるものではない。
【0012】
【化3】
Figure 0004225607
【0013】
【化4】
Figure 0004225607
【0014】
【化5】
Figure 0004225607
【0015】
【化6】
Figure 0004225607
【0016】
上記一般式(I)で表されるビスマス化合物のうち、R1 およびR2 がともにメチル基で、nが1である化合物が好ましい。
【0017】
本発明に係る上記一般式(I)で表されるビスマス化合物の製造は、例えば次の合成例のようにして行うことができる。
【0018】
合成例1(化合物No.1の合成例)
1Lの遮光丸底フラスコに、1−メトキシ−2−メチル−2−プロパノール30.0g、ナトリウム5.52gおよび乾燥THF100mlを仕込んだ後、60℃で5時間攪拌し、ナトリウムが消失したことを確認した。次に、フラスコ内を氷温まで冷却し、乾燥THF350mlおよび塩化ビスマス25.24gを加えた。再び加熱してTHFの還流下で30時間攪拌した。減圧してTHFを留去した後、ヘキサン800mlを加え、加温して残留物を溶解した。濾過して不溶物を除き、濾液を脱溶媒して、粗結晶32.6g(収率78.6%)を得た。この粗結晶を減圧蒸留(0.08torr、バス温度135〜144℃)し、白色固体24.0g(収率57.9%)を得た。
【0019】
得られた結晶について、ICPによるビスマス含有量、NMR、融点および蒸気圧を測定した。それらの結果を以下に示す。
(1)ICP
硝酸に溶解してサンプルを用いてICPを測定したところ、ビスマス含有量40.3%(理論含有量40.3%)であった。
(2)NMR
13C−NMR(重クロロホルム中:δ値)を測定したところ、次のピークを検出した。
・30.319 ppm
・58.431 ppm
・72.204 ppm
・83.820 ppm
また、 1H−NMR(重クロロホルム中:δ値)を測定したところ、次のピークを検出した。
・1.1173 ppm:s,18H
・3.1724 ppm:s,6H
・3.2780 ppm:s,9H
(3)融点および蒸気圧
微量融点測定装置を用いて融点を測定したところ、49℃であった。また蒸気圧を測定したところ以下の結果を得た。
0.1Torr/ 99℃
0.2Torr/107℃
0.3Torr/112℃
0.4Torr/115℃
【0020】
合成例2(化合物No.2の合成例)
200mlの遮光丸底フラスコに、塩化ビスマス6.31gに乾燥ベンゼン50mlを加えて攪拌しながら、1−メトキシ−2−プロパノール40mlにナトリウム1.38gを溶解してできる溶液を室温で滴下した。次に、60℃で30時間攪拌し、乾燥ベンゼン40mlを追加して60℃で濾過を行った。濾液を脱溶媒して淡褐色液体を得た後、減圧蒸留(約0.1torr、バス温度150℃)し、透明粘稠液体8.25g(収率86.6%)を得た。
【0021】
得られた結晶について、ICPによるビスマス含有量、NMRを測定した。それらの結果を以下に示す。
(1)ICP
硝酸に溶解してサンプルを用いてICPを測定したところ、ビスマス含有量43.7%(理論含有量43.9%)であった。
(2)NMR
13C−NMR(重クロロホルム中:δ値)を測定したところ、次のピークを検出した。
・23.787 ppm
・58.431 ppm
・67.029 ppm
・82.109 ppm
また、 1H−NMR(重クロロホルム中:δ値)を測定したところ、次のピークを検出した。
・1.1356 ppm,1.1514 ppm:d,9H
・3.0205 ppm:s,9H
・3.1004 ppm,3.1138 ppm:d,6H
・4.8224 ppm:s,3H
【0022】
本発明のビスマス含有複合金属酸化膜を成膜するための原料である上記一般式(I)で表されるビスマス化合物以外の金属源化合物としては、例えば、Ta(OEt)5 、Ta(Oi−Pr)5 、Ta(Ot−Bu)5 、Ta(Ot−Pen)5 、Nb(OEt)5 、Nb(Oi−Pr)5 、Nb(Ot−Bu)5 、Nb(Ot−Pen)5 、Sr(OEt)2 、Sr(Oi−Pr)2 、Sr(Ot−Bu)2 、Sr(Ot−Pen)2 、Ba(OEt)2 、Ba(Oi−Pr)2 、Ba(Ot−Bu)2 、Ba(Ot−Pen)2 などの金属アルコキシド化合物、Sr〔Ta(OEt)6 2 、Sr〔Nb(OEt)6 2 、Ba〔Ta(OEt)6 2 、Ba〔Nb(OEt)6 2 などの複合金属アルコキシド化合物、ジピバロイルメタナトバリウム、ジピバロイルメタナトストロンチウム、ピバロイルイソプロピオニルメタナトバリウム、ピバロイルイソプロピオニルメタナトストロンチウム、ジイソプロピオニルメタナトバリウム、ジイソプロピオニルメタナトストロンチウム、1−(2' −メトキシエトキシ)−2,2,6,6−テトラメチル−3,5−ヘプタンジオナトバリウム、1−(2' −メトキシエトキシ)−2,2,6,6−テトラメチル−3,5−ヘプタンジオナトストロンチウムなどのβ−ジケトン金属錯体化合物などが好ましく用いられる。(上記式中、Etはエチル基を示し、i−Prはイソプロピル基を示し、t−Buは第三ブチル基を示し、t−Penは第三ペンチル基を示す。)
【0023】
本発明のビスマス含有複合金属酸化膜〔ABi2 2 9 〕(成膜後)中のビスマスと他の金属〔A及びB〕との組成比は特に制限されず、強誘電性を示すような範囲に適宜設定されるが、好ましくは、〔Bi/A/B〕=1.8〜2.5/1/1.8〜2.5である。
【0024】
本発明のビスマス含有複合金属酸化膜は、不揮発性メモリー、DRAMのキャパシタ材料などの用途に用いられる。
【0025】
本発明のビスマス含有複合金属酸化膜を成膜するために用いるCVD法としては、例えば、熱CVD,プラズマCVD,光CVDなどの方法を挙げることができるが、一般にCVD装置に採用されるCVD法であれば特に制限を受けない。
【0026】
【実施例】
以下、実施例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例によって何ら制限を受けるものではない。
【0027】
(実施例1)SrBi2 Ta2 9 膜の作成
熱CVD装置の内圧を5Torrに調整し、熱分解炉にはPt/SiO2 /Si基板を置き、基板温度を400℃に調整した。
ビスマス源として、前記化合物No.1 20gを原料容器に充填し、この容器を70℃に調整し液体とした。この容器にアルゴンガス導入し、蒸発した化合物No.1を同伴させ、原料ガスとした。
ストロンチウム源として、1−(2' −メトキシエトキシ)−2,2,6,6−テトラメチル−3,5−ヘプタンジオナトストロンチウム 20gを原料容器に充填し、200℃に調整した。この容器にアルゴンガス導入し、蒸発した1−(2' −メトキシエトキシ)−2,2,6,6−テトラメチル−3,5−ヘプタンジオナトストロンチウムを同伴させ、原料ガスとした。
タンタル源として、Ta(OEt)5 20gを原料容器に充填し、100℃に調整した。この容器にアルゴンガス導入し、蒸発したTa(OEt)5 を同伴させ、原料ガスとした。
【0028】
化合物No. 1の同伴ガス(アルゴン)の流量を60ml/min、ストロンチウム源の同伴ガスの流量を50ml/min、タンタル源の同伴ガスの流量を40ml/minとして、これら3種のガスを基板へと導き、熱分解により堆積させた後、酸素とアルゴンの混合ガス雰囲気下、800℃で30分結晶化処理を行った。
【0029】
基板を取り出し、生成した薄膜のX線回折分析を行ったところ、SrBi2 Ta2 9 であることが確認された。
【0030】
(実施例2)SrBi2 Ta2 9 膜の作成
熱CVD装置の内圧を5Torrに調整し、熱分解炉にはPt/SiO2 /Si基板を置き、基板温度を400℃に調整した。
ビスマス源として、前記化合物No.1 20gを原料容器に充填し、この容器を70℃に調整し液体とした。この容器にアルゴンガス導入し、蒸発した化合物No.1を同伴させ、原料ガスとした。
ストロンチウム−タンタル源として、Sr〔Ta(OEt)6 2 20gを原料容器に充填し、150℃に調整した。この容器にアルゴンガス導入し、蒸発したSr〔Ta(OEt)6 2 を同伴させ、原料ガスとした。
【0031】
化合物No. 1の同伴ガス(アルゴン)の流量を60ml/min、ストロンチウム−タンタル源の同伴ガスの流量を50ml/minとして、これら2種のガスを基板へと導き、熱分解により堆積させた後、酸素とアルゴンの混合ガス雰囲気下、800℃で30分結晶化処理を行った。
【0032】
基板を取り出し、生成した薄膜のX線回折分析を行ったところ、SrBi2 Ta2 9 であることが確認された。
【0033】
【発明の効果】
本発明のビスマス含有複合金属酸化膜は、CVD法で成膜するに際し、ビスマス源として、ビスマスのエーテル基含有アルコキシド化合物を用いることにより、該化合物が常温またはわずかな加温により液体であるため、基板への供給量の制御が容易かつ安定供給が可能で、量産性を高めることができるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bismuth-containing composite metal oxide film formed by using a chemical vapor deposition method (CVD method) and formed from a bismuth compound serving as a bismuth source of a bismuth-containing composite metal oxide film and another metal compound.
[0002]
[Background Art and Problems to be Solved by the Invention]
As an application to nonvolatile memory, DRAM capacitor materials, and the like, bismuth-containing metal composite oxide films have been actively developed, and in particular, development of a compound serving as a bismuth source suitable for film formation by CVD is expected.
[0003]
In recent years, the CVD method has been used as a manufacturing method for oxide ceramics or layered ceramics. For example, a metal composite oxide film of SrBi 2 Ta 2 O 9 is used as a ferroelectric film in a nonvolatile memory. When used, the metal composite oxide film is known to be an excellent thin film that can solve the problems of conventional ferroelectric memories.
[0004]
However, it has not been said that the metal source compounds suitable for the CVD method have sufficient characteristics as previously proposed. For example, a compound used as a conventional bismuth source has a relatively high heat resistance, a high decomposition temperature, a low growth rate, and a high melting point. It was inferior compared with. When a metal composite oxide film is formed using the compound and another metal source having excellent volatility and decomposability, bismuth / other metals in the thin film formation process due to the difference in decomposition temperature between them. Controlling the ratio was difficult.
[0005]
Furthermore, since bismuth sources such as triphenyl bismuth and tri (o-tolyl) bismuth do not have oxygen atoms necessary for film formation in the molecule, oxygen such as oxygen-containing gas is used when these bismuth sources are used. The sources needed to coexist. However, the coexistence of an oxygen-containing gas has a defect that adversely affects the decomposition and precipitation of other materials. Further, in the case of a bismuth compound having a structure having an oxygen atom in the molecule, such as a bismuth alkoxide compound proposed in Japanese Patent Laid-Open No. 9-67197, the problem of the oxygen source is solved. However, since these compounds are high-melting solids, it is necessary to send the compounds to the film formation chamber by sublimation with a carrier such as argon gas during film formation by a CVD apparatus. When the sample is used, the supply amount of the sample changes due to a change in the surface area or the like, and thus it is difficult to strictly control the supply amount.
[0006]
Therefore, the object of the present invention is that it has a relatively low melting point, is liquefied at room temperature or liquefied by slight heating, is easy to handle and has excellent supply to the film formation chamber, and can be vaporized by evaporation rather than sublimation. The vaporization rate can be kept constant, the supply amount of the raw material to the film forming chamber can be easily controlled, and the bismuth-containing composite metal using a bismuth compound suitable for the CVD raw material in terms of thermal stability and decomposition temperature It is to provide an oxide film.
[0007]
[Means for Solving the Problems]
As a result of repeated studies, the present inventors have found that a bismuth-containing composite metal oxide film using a bismuth compound as an ether group-containing alkoxide compound as a bismuth source material can achieve the above object.
[0008]
The present invention has been made based on the above findings, and is represented by ABi 2 B 2 O 9 (wherein A represents Sr or Ba and B represents Ta or Nb) by chemical vapor deposition. In forming a bismuth-containing composite metal oxide film, a bismuth compound represented by the general formula (I) of the following [Chemical Formula 2] (same as the above [Chemical Formula 1]) and the above formula ABi 2 B 2 O 9 As raw materials for providing A and B, metal alkoxide compounds, composite metal alkoxide compounds [wherein Sr [M (OR 1 ) 6-x Lx] 2 (wherein x is 1 to 6, M is Ta or Nb) R 1 is a linear or branched alkyl group, L is an aminoalkoxide group or alkoxy represented by the following general formula ( II ) of [Chemical 2-1] (same as [Chemical 1-1] above) Or an alkoxide group)] or The present invention provides a method for producing a bismuth-containing composite metal oxide film characterized by using a β-diketone metal complex compound.
[0009]
[Chemical formula 2]
Figure 0004225607
Embedded image
Figure 0004225607
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the bismuth-containing composite metal oxide film of the present invention will be described in detail.
The bismuth compound represented by the above general formula (I) relating to the bismuth-containing composite metal oxide film of the present invention is easy to handle in the CVD apparatus and control the supply rate to the film formation chamber, and has high mass productivity. It can be a CVD raw material capable of film formation.
[0011]
Specific examples of the bismuth compound represented by the general formula (I) used as one of the raw materials for the bismuth-containing composite metal oxide film of the present invention include compound Nos. 3 to 6 below. 1-4 etc. are mentioned. However, this invention is not limited at all by the following exemplary compounds.
[0012]
[Chemical 3]
Figure 0004225607
[0013]
[Formula 4]
Figure 0004225607
[0014]
[Chemical formula 5]
Figure 0004225607
[0015]
[Chemical 6]
Figure 0004225607
[0016]
Of the bismuth compounds represented by the above general formula (I), compounds in which R 1 and R 2 are both methyl groups and n is 1 are preferred.
[0017]
The production of the bismuth compound represented by the general formula (I) according to the present invention can be performed, for example, as in the following synthesis example.
[0018]
Synthesis Example 1 (Synthesis Example of Compound No. 1)
A 1 L light-shielded round bottom flask was charged with 30.0 g of 1-methoxy-2-methyl-2-propanol, 5.52 g of sodium and 100 ml of dry THF, and stirred at 60 ° C. for 5 hours to confirm that sodium had disappeared. did. Next, the inside of the flask was cooled to ice temperature, and 350 ml of dry THF and 25.24 g of bismuth chloride were added. The mixture was heated again and stirred for 30 hours under reflux of THF. After depressurizing and distilling off THF, 800 ml of hexane was added and heated to dissolve the residue. The insoluble material was removed by filtration, and the filtrate was desolvated to obtain 32.6 g of crude crystals (yield 78.6%). The crude crystals were distilled under reduced pressure (0.08 torr, bath temperature 135 to 144 ° C.) to obtain 24.0 g (yield 57.9%) of a white solid.
[0019]
About the obtained crystal | crystallization, the bismuth content by ICP, NMR, melting | fusing point, and vapor pressure were measured. The results are shown below.
(1) ICP
When ICP was measured using a sample dissolved in nitric acid, the bismuth content was 40.3% (theoretical content 40.3%).
(2) NMR
When 13 C-NMR (in deuterated chloroform: δ value) was measured, the following peak was detected.
・ 30.319 ppm
58.431 ppm
72.204 ppm
・ 83.820 ppm
Further, when 1 H-NMR (in deuterated chloroform: δ value) was measured, the following peak was detected.
・ 1.1173 ppm: s, 18H
3.1724 ppm: s, 6H
-3.2780 ppm: s, 9H
(3) Melting point and vapor pressure When the melting point was measured using a micro melting point measuring apparatus, it was 49 ° C. When the vapor pressure was measured, the following results were obtained.
0.1 Torr / 99 ° C
0.2 Torr / 107 ° C
0.3 Torr / 112 ° C
0.4 Torr / 115 ° C
[0020]
Synthesis Example 2 (Synthesis Example of Compound No. 2)
A solution obtained by dissolving 1.38 g of sodium in 40 ml of 1-methoxy-2-propanol was added dropwise at room temperature to 50 ml of bismuth chloride added to 50 ml of dry benzene and stirred in a 200 ml light-shielded round bottom flask. Next, the mixture was stirred at 60 ° C. for 30 hours, and 40 ml of dry benzene was added, followed by filtration at 60 ° C. The filtrate was desolvated to obtain a light brown liquid, and then distilled under reduced pressure (about 0.1 torr, bath temperature 150 ° C.) to obtain 8.25 g of a transparent viscous liquid (yield 86.6%).
[0021]
About the obtained crystal | crystallization, the bismuth content and NMR by ICP were measured. The results are shown below.
(1) ICP
When ICP was measured using a sample dissolved in nitric acid, the bismuth content was 43.7% (theoretical content: 43.9%).
(2) NMR
When 13 C-NMR (in deuterated chloroform: δ value) was measured, the following peak was detected.
・ 23.787 ppm
58.431 ppm
・ 67.029 ppm
82.109 ppm
Further, when 1 H-NMR (in deuterated chloroform: δ value) was measured, the following peak was detected.
・ 1.1356 ppm, 1.1514 ppm: d, 9H
・ 3.0205 ppm: s, 9H
・ 3.1004 ppm, 3.1138 ppm: d, 6H
4.8224 ppm: s, 3H
[0022]
Examples of the metal source compound other than the bismuth compound represented by the general formula (I), which is a raw material for forming the bismuth-containing composite metal oxide film of the present invention, include Ta (OEt) 5 , Ta (Oi— Pr) 5 , Ta (Ot-Bu) 5 , Ta (Ot-Pen) 5 , Nb (OEt) 5 , Nb (Oi-Pr) 5 , Nb (Ot-Bu) 5 , Nb (Ot-Pen) 5 , Sr (OEt) 2 , Sr (Oi-Pr) 2 , Sr (Ot-Bu) 2 , Sr (Ot-Pen) 2 , Ba (OEt) 2 , Ba (Oi-Pr) 2 , Ba (Ot-Bu) 2 , metal alkoxide compounds such as Ba (Ot-Pen) 2 , Sr [Ta (OEt) 6 ] 2 , Sr [Nb (OEt) 6 ] 2 , Ba [Ta (OEt) 6 ] 2 , Ba [Nb (OEt) 6 ] Composite metal alkoxide compounds such as 2 , dipivaloylmeta Natobarium, dipivaloylmethanatostronium, pivaloylisopropionylmethanatobarium, pivaloylisopropionylmethanatostronium, diisopropionylmethanatobarium, diisopropionylmethanatostrontium, 1- (2'-methoxyethoxy) -2,2,6,6-tetramethyl-3,5-heptanedionatobarium, 1- (2'-methoxyethoxy) -2,2,6,6-tetramethyl-3,5-heptaneedionatostrontium Β-diketone metal complex compounds such as are preferably used. (In the above formula, Et represents an ethyl group, i-Pr represents an isopropyl group, t-Bu represents a tertiary butyl group, and t-Pen represents a tertiary pentyl group.)
[0023]
The composition ratio of bismuth and other metals [A and B] in the bismuth-containing composite metal oxide film [ABi 2 B 2 O 9 ] (after film formation) of the present invention is not particularly limited, and exhibits ferroelectricity. However, [Bi / A / B] is preferably 1.8 to 2.5 / 1 / 1.8 to 2.5.
[0024]
The bismuth-containing composite metal oxide film of the present invention is used for applications such as nonvolatile memory and DRAM capacitor materials.
[0025]
Examples of the CVD method used to form the bismuth-containing composite metal oxide film of the present invention include methods such as thermal CVD, plasma CVD, and photo-CVD, and the CVD method generally employed in a CVD apparatus. If so, there is no particular restriction.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples.
[0027]
Example 1 Preparation of SrBi 2 Ta 2 O 9 Film The internal pressure of the thermal CVD apparatus was adjusted to 5 Torr, a Pt / SiO 2 / Si substrate was placed in the pyrolysis furnace, and the substrate temperature was adjusted to 400 ° C.
As the bismuth source, the compound No. 1 was used. 1 20 g was filled into a raw material container, and this container was adjusted to 70 ° C. to obtain a liquid. Argon gas was introduced into this container and evaporated. 1 was used as a raw material gas.
As a strontium source, 20 g of 1- (2′-methoxyethoxy) -2,2,6,6-tetramethyl-3,5-heptanedionatostrontium was charged into a raw material container and adjusted to 200 ° C. Argon gas was introduced into this vessel, and evaporated 1- (2′-methoxyethoxy) -2,2,6,6-tetramethyl-3,5-heptanedionatostrontium was accompanied to obtain a raw material gas.
As a tantalum source, 20 g of Ta (OEt) 5 was filled in a raw material container and adjusted to 100 ° C. Argon gas was introduced into this container, and evaporated Ta (OEt) 5 was accompanied to obtain a raw material gas.
[0028]
Compound No. 1 entrained gas (argon) flow rate of 60 ml / min, strontium source entrained gas flow rate of 50 ml / min, tantalum source entrained gas flow rate of 40 ml / min, and these three gases to the substrate After being deposited by thermal decomposition, crystallization treatment was performed at 800 ° C. for 30 minutes in a mixed gas atmosphere of oxygen and argon.
[0029]
The substrate was taken out, was subjected to X-ray diffraction analysis of the resulting thin film, it was confirmed that the SrBi 2 Ta 2 O 9.
[0030]
(Example 2) Preparation of SrBi 2 Ta 2 O 9 film The internal pressure of the thermal CVD apparatus was adjusted to 5 Torr, a Pt / SiO 2 / Si substrate was placed in the pyrolysis furnace, and the substrate temperature was adjusted to 400 ° C.
As the bismuth source, the compound No. 1 was used. 1 20 g was filled into a raw material container, and this container was adjusted to 70 ° C. to obtain a liquid. Argon gas was introduced into this container and evaporated. 1 was used as a raw material gas.
As a strontium-tantalum source, 20 g of Sr [Ta (OEt) 6 ] 2 was filled in a raw material container and adjusted to 150 ° C. Argon gas was introduced into this vessel, and evaporated Sr [Ta (OEt) 6 ] 2 was entrained to obtain a raw material gas.
[0031]
After the flow rate of the entrained gas (argon) of Compound No. 1 is 60 ml / min and the flow rate of the entrained gas of the strontium-tantalum source is 50 ml / min, these two gases are led to the substrate and deposited by thermal decomposition. Then, crystallization treatment was performed at 800 ° C. for 30 minutes in a mixed gas atmosphere of oxygen and argon.
[0032]
The substrate was taken out, was subjected to X-ray diffraction analysis of the resulting thin film, it was confirmed that the SrBi 2 Ta 2 O 9.
[0033]
【The invention's effect】
When the bismuth-containing composite metal oxide film of the present invention is formed by the CVD method, since the bismuth source is an ether group-containing alkoxide compound of bismuth, the compound is liquid at normal temperature or slight heating, The supply amount to the substrate can be controlled easily and stably, and mass productivity can be improved.

Claims (3)

化学気相成長法により、ABi229(式中、AはSrまたはBaを表し、BはTaまたはNbを表す)で表されるビスマス含有複合金属酸化膜を成膜するに際し、下記[化1]の一般式(I)で表されるビスマス化合物と、上記式ABi229中のAおよびBを与える原料として、金属アルコキシド化合物、複合金属アルコキシド化合物〔但し、Sr[M(OR16-xLx]2(式中、xは1〜6であり、MはTaまたはNbであり、R1は直鎖または分岐鎖アルキル基であり、Lは下記[化1−1]の一般式( II )で表わされる、アミノアルコキシド基またはアルコキシアルコキシド基である)で表される化合物を除く〕またはβ−ジケトン金属錯体化合物とを用いることを特徴とするビスマス含有複合金属酸化膜の製造方法。
Figure 0004225607
Figure 0004225607
When a bismuth-containing composite metal oxide film represented by ABi 2 B 2 O 9 (wherein A represents Sr or Ba and B represents Ta or Nb) is formed by chemical vapor deposition, As a raw material for providing A and B in the above formula ABi 2 B 2 O 9 and a bismuth compound represented by the general formula (I) of [Chemical Formula 1], a metal alkoxide compound, a composite metal alkoxide compound [provided that Sr [M (OR 1 ) 6-x Lx] 2 (wherein x is 1 to 6, M is Ta or Nb, R 1 is a linear or branched alkyl group, and L is the following [Chemical 1- 1] or a β-diketone metal complex compound, wherein the compound is an aminoalkoxide group or an alkoxyalkoxide group represented by the general formula ( II )) ] or a β-diketone metal complex compound. A method for producing a membrane.
Figure 0004225607
Figure 0004225607
上記一般式(I)において、R1およびR2がともにメチル基で、nが1である請求項1記載のビスマス含有複合金属酸化膜の製造方法。The method for producing a bismuth-containing composite metal oxide film according to claim 1, wherein, in the general formula (I), R 1 and R 2 are both methyl groups and n is 1. 上記金属アルコキシド化合物が、Ta(OEt)5、Ta(Oi−Pr)5、Ta(Ot−Bu)5、Ta(Ot−Pen)5、Nb(OEt)5、Nb(Oi−Pr)5、Nb(Ot−Bu)5、Nb(Ot−Pen)5、Sr(OEt)2、Sr(Oi−Pr)2、Sr(Ot−Bu)2、Sr(Ot−Pen)2、Ba(OEt)2、Ba(Oi−Pr)2、Ba(Ot−Bu)2、またはBa(Ot−Pen)2であり、上記複合金属アルコキシド化合物が、Sr〔Ta(OEt)62、Sr〔Nb(OEt)62、Ba〔Ta(OEt)62、またはBa〔Nb(OEt)62であり、上記β−ジケトン金属錯体化合物が、ジピバロイルメタナトバリウム、ジピバロイルメタナトストロンチウム、ピバロイルイソプロピオニルメタナトバリウム、ピバロイルイソプロピオニルメタナトストロンチウム、ジイソプロピオニルメタナトバリウム、ジイソプロピオニルメタナトストロンチウム、1−(2’−メトキシエトキシ)−2,2,6,6−テトラメチル−3,5−ヘプタンジオナトバリウム、1−(2’−メトキシエトキシ)−2,2,6,6−テトラメチル−3,5−ヘプタンジオナトストロンチウムである(但し、式中、Etはエチル基を示し、i−Prはイソプロピル基を示し、t−Buは第三ブチル基を示し、t−Penは第三ペンチル基を示す)請求項1または2記載のビスマス含有複合金属酸化膜の製造方法。The metal alkoxide compound is Ta (OEt) 5 , Ta (Oi-Pr) 5 , Ta (Ot-Bu) 5 , Ta (Ot-Pen) 5 , Nb (OEt) 5 , Nb (Oi-Pr) 5 , Nb (Ot-Bu) 5 , Nb (Ot-Pen) 5 , Sr (OEt) 2 , Sr (Oi-Pr) 2 , Sr (Ot-Bu) 2 , Sr (Ot-Pen) 2 , Ba (OEt) 2 , Ba (Oi-Pr) 2 , Ba (Ot-Bu) 2 , or Ba (Ot-Pen) 2 , and the composite metal alkoxide compound is Sr [Ta (OEt) 6 ] 2 , Sr [Nb ( OEt) 6 ] 2 , Ba [Ta (OEt) 6 ] 2 , or Ba [Nb (OEt) 6 ] 2 , wherein the β-diketone metal complex compound is dipivaloylmethanatobarium, dipivaloylmethanato Strontium, pivaloyl isopropioni Methanatobarium, pivaloylisopropionylmethanatostronium, diisopropionylmethanatobarium, diisopropionylmethanatostrontium, 1- (2′-methoxyethoxy) -2,2,6,6-tetramethyl-3, 5-heptanedionatobarium, 1- (2′-methoxyethoxy) -2,2,6,6-tetramethyl-3,5-heptaneedionatostrontium (wherein Et represents an ethyl group) I-Pr represents an isopropyl group, t-Bu represents a tertiary butyl group, and t-Pen represents a tertiary pentyl group). The method for producing a bismuth-containing composite metal oxide film according to claim 1 or 2.
JP22324698A 1998-08-06 1998-08-06 Method for producing bismuth-containing composite metal oxide film Expired - Fee Related JP4225607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22324698A JP4225607B2 (en) 1998-08-06 1998-08-06 Method for producing bismuth-containing composite metal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22324698A JP4225607B2 (en) 1998-08-06 1998-08-06 Method for producing bismuth-containing composite metal oxide film

Publications (2)

Publication Number Publication Date
JP2000053422A JP2000053422A (en) 2000-02-22
JP4225607B2 true JP4225607B2 (en) 2009-02-18

Family

ID=16795098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22324698A Expired - Fee Related JP4225607B2 (en) 1998-08-06 1998-08-06 Method for producing bismuth-containing composite metal oxide film

Country Status (1)

Country Link
JP (1) JP4225607B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984591B1 (en) 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
JP4868639B2 (en) * 2000-06-12 2012-02-01 株式会社Adeka Raw material for chemical vapor deposition and method for producing thin film using the same
KR100721365B1 (en) 2003-04-08 2007-05-23 토소가부시키가이샤 New bismuth compound, method for manufacturing thereof and method for manufacturing film
CN1610076A (en) 2003-06-30 2005-04-27 松下电器产业株式会社 Method for forming ferroelectric film and semiconductor device

Also Published As

Publication number Publication date
JP2000053422A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
KR100343822B1 (en) Tantalum and niobium reagents useful in chemical vapor deposition processes, and process for depositing coatings using the same
KR101467587B1 (en) Metal(Ⅳ) TETRA-AMIDINATE COMPOUNDS AND THEIR USE IN VAPOR DEPOSITION
KR101498732B1 (en) Process for forming the strontium-containing thin film
KR20000053600A (en) Ruthenium thin film
KR20120078025A (en) Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom
KR20090059112A (en) Imide complex, method for producing the same, metal-containing thin film and method for producing the same
US20080286464A1 (en) Group 2 Metal Precursors For Depositing Multi-Component Metal Oxide Films
JP2009007333A5 (en)
JP5260148B2 (en) Method for forming strontium-containing thin film
JP2002302473A (en) ASYMMETRIC TYPE beta-KETOIMINATE LIGAND COMPOUND, METHOD FOR PRODUCING THE SAME AND ORGANOMETALLIC PRECURSOR CONTAINING THE SAME
JP4225607B2 (en) Method for producing bismuth-containing composite metal oxide film
JP4022662B2 (en) Zirconium alkoxytris (β-diketonate), production method thereof, and liquid composition for forming PZT film
JP3611640B2 (en) Method for depositing group 8 elements and raw material compounds used
EP1466918A1 (en) Novel bismuth compounds, process of producing the same, and process of producing a film
JP2002145836A (en) Mew group iv metal precursor and chemical vapor deposition method using the same
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
JP4211300B2 (en) ORGANIC TITANIUM COMPOUND, SOLUTION MATERIAL CONTAINING THE SAME, AND TITANIUM-CONTAINING DIELECTRIC THIN FILM PRODUCED THEREFROM
KR101151462B1 (en) Methods for deposition of group 4 metal containing films
JPH0977592A (en) Production of bismuth laminar ferroelectric thin film
KR20220058190A (en) Group 3 metal precusor and thin film containing metal
JP4006892B2 (en) Method for producing liquid double alkoxide of niobium, tantalum and alkaline earth metal, and method for producing complex oxide dielectric using the same
JP2000044240A (en) Bismuth titanate ferroelectric film
KR100367346B1 (en) Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof
JP7232307B2 (en) Rare earth precursor, method for producing same, and method for forming thin film using same
JP3117011B2 (en) Raw materials for metalorganic chemical vapor deposition containing organic tantalum compounds and tantalum-containing thin films made therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees